Symbol	Variable	Units	Use or assumption
D	Frictional dissipation	$\mathrm{W}\mathrm{m}^{-2}$	Assumed to be in steady state, with $D = G$
G	Convective power	${ m Wm^{-2}}$	Eqs. (1), (3) and (4)
$J_{ m in}$	Turbulent fluxes of sensible and latent heat	${ m Wm^{-2}}$	Eqs. (1), (2) and (5)
$J_{ m opt}$	Turbulent fluxes J_{in} optimized to yield max. power	${ m Wm^{-2}}$	Eq. (7)
$J_{ m out}$	Cooling rate of the heat engine	${ m Wm^{-2}}$	Eqs. (1) and (2)
k	Radiative parameterization constant	${ m W}{ m m}^{-2}{ m K}^{-1}$	Used in linearization of $R_{1,net}$
$R_{1,\mathrm{out}}$	Flux of terrestrial radiation to space	${ m Wm^{-2}}$	Assumed to be in steady state, with $R_{1,out} = R_{s,avg}$
R_{S}	Surface absorption of solar radiation	${ m Wm^{-2}}$	Forcing
$R_{\rm s,avg}$	Surface absorption of solar radiation (average)	${ m Wm^{-2}}$	Eq. (6)
$T_{\rm a}$	Atmospheric temperature	K	Assumed to be the radiative temperature
$T_{\mathbf{e}}$	Temperature of the heat engine	K	Assumed to be similar to the surface temperature
$T_{ m S}$	Surface temperature	K	_
$\mathrm{d}U_\mathrm{a}/\mathrm{d}t$	Change in atmospheric heat storage	${ m Wm^{-2}}$	Eq. (6)
$\mathrm{d}U_\mathrm{e}/\mathrm{d}t$	Change in heat storage within heat engine	${ m Wm^{-2}}$	Eqs. (1)–(4)
	(assumed to be the same as dU_a/dt in Sect. 2.2)		
$\mathrm{d}U_\mathrm{S}/\mathrm{d}t$	Change in ground heat storage	${ m Wm^{-2}}$	Prescribed from observations, Eq. (6)
	(or ground heat flux)		
$\mathrm{d}U_{\mathrm{tot}}/\mathrm{d}t$	Change in total heat storage	${ m Wm^{-2}}$	Eq. (6)