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Abstract. ESMs (Earth system models) are important tools that help scientists understand the complexities of
the Earth’s climate. Advances in computing power have permitted the development of increasingly complex
ESMs and the introduction of better, more accurate parameterizations of processes that are too complex to be
described in detail. One of the least well-controlled parameterizations involves human activities and their di-
rect impact at local and regional scales. In order to improve the direct representation of human activities and
climate, we have developed a simple, scalable approach that we have named the POPEM module (POpulation
Parameterization for Earth Models). This module computes monthly fossil fuel emissions at grid-point scale
using the modeled population projections. This paper shows how integrating POPEM parameterization into the
CESM (Community Earth System Model) enhances the realism of global climate modeling, improving this be-
yond simpler approaches. The results show that it is indeed advantageous to model CO; emissions and pollutants
directly at model grid points rather than using the same mean value globally. A major bonus of this approach is
the increased capacity to understand the potential effects of localized pollutant emissions on long-term global

climate statistics, thus assisting adaptation and mitigation policies.

1 Introduction

The Earth system is a complex interplay of physical, chemi-
cal, and biological processes that interact in nonlinear ways
(Ladyman et al., 2013; Lorenz, 1963; Rind, 1999; Williams,
2005). Much effort has been devoted to understanding these
complex interactions, and several improvements have been
made since the end of the last century.

One of the most important advances in this field has
been the use of coupled numerical climate models, dubbed
Earth system models or ESMs (Edwards, 2011; Flato, 2011;
Schellnhuber, 1999). These models aim to simulate the com-
plex interactions of the atmosphere, ocean, land surface, and
cryosphere, together with the carbon and nitrogen cycles
(Giorgetta et al., 2013; Hurrell et al., 2013; Martin et al.,
2011; Schmidt et al., 2014).

However powerful, climate models are far from being per-
fect (Hargreaves, 2010; Hargreaves and Annan, 2014). Un-
resolved processes (Williams, 2005), limited computational
resources (Shukla et al., 2010; Washington et al., 2009), and
model uncertainties (Baumberger et al., 2017; Lahsen, 2005;
Steven and Bony, 2013) are ongoing issues that still require
attention and further improvement.

One of the fields most in need of development is the inclu-
sion of co-evolutionary dynamical interactions of the socioe-
conomic dimension into global models with other Earth sys-
tem components (Nobre et al., 2010; Robinson et al., 2018;
Sarofim and Reilly, 2011). Human activity has become a
major driver of change in the Earth system, especially over
the past several decades (Alter et al., 2017; Barnett et al.,
2008; Crutzen, 2002), and it now dominates the natural sys-
tem in many different ways (Motesharrei et al., 2016; Ruth
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et al., 2011). However, most global models use basic so-
cioeconomic assumptions about the behavior of societies and
are only unidirectionally linked to the biogeophysical part of
the Earth system (Miiller-Hansen et al., 2017; Smith et al.,
2014). The standard way of introducing anthropogenic cli-
mate change into ESMs is through representative concentra-
tion pathways (RCPs). These are consistent sets of projec-
tions involving only radiative forcing components (van Vu-
uren et al., 2011), but which represent a step forward from
the scenario approach of the last decade (Moss et al., 2010;
van Vuuren et al., 2014; van Vuuren and Carter, 2014). How-
ever, RCPs are not fully integrated socioeconomic parame-
terizations but rather estimates for describing plausible tra-
jectories of human climate change drivers (Moss et al., 2010;
van Vuuren et al., 2012). They provide simplified accounts
of human activities and processes from one-way coupled in-
tegrated assessment models (IAMs; Miiller-Hansen et al.,
2017).

The use of RCPs is advantageous because they provide
a set of pathways that serve to initialize climate models.
However, two major problems remain within this approach.
Firstly, human activities are not intrinsically embedded into
the ESM, impeding sensitivity studies. Secondly, because
of the weak coupling of IAMs, they cannot capture the
sometimes counterintuitive bidirectional feedback and non-
linearity between the socioeconomic and natural subsystems
(Motesharrei et al., 2016; Ruth et al., 2011). Good examples
that illustrate the importance of including such bidirectional
feedbacks feature in the HANDY model (Motesharrei et al.,
2014) which has been used to analyze the key mechanisms
behind societal collapses.

The RCP approach has been used in climate models be-
cause of its low computational cost. However, advances in
computational resources now allow to parameterize human—
Earth processes in a more detailed way, including the in-
clusion of population dynamics into the modeling, as in
the POPEM (POpulation Parameterization for Earth Models)
module (Navarro et al., 2017).

One important, but sometimes overlooked, process is
the direct regional effect of anthropogenic greenhouse
gas (GHG) emissions. Although some GHGs quickly mix in
the atmosphere (IPCC, 2014a), their mixing times and life-
times vary (Archer et al., 2009; Prather, 2007), and local-
ized emissions may produce a transient response in the atmo-
sphere. Given the highly nonlinear character of the processes
involved, it is not unreasonable to assume that accounting
for geographical variability is significant, and the spatial and
time distribution of these emissions may affect global cli-
mate (Alter et al., 2017; Grandey et al., 2016; Guo et al.,
2013). This hypothesis has seldom been investigated, as most
current models treat certain GHG emissions as a homoge-
neously distributed forcing. Thus, for instance, the most typ-
ical CESM (Community Earth System Model) simulations
prescribe a CO; concentration on the assumption that it is
well mixed in the atmosphere (Neale et al., 2012).
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This paper describes the results of a 50-year simulation
with a simple parameterization of fossil fuel CO, emissions
at model grid-point scale, integrating the POPEM module
into the CESM. The aim of this paper is to show that this
grid-point scale modeling of anthropogenic CO; emissions
(and other pollutants) represents an improvement over sim-
pler approaches, and leads to better representation of the ge-
ographical variability of precipitation.

The purpose of the new modeling is not only to improve
precipitation and temperature estimates but also to help un-
derstand the carbon cycle feedback, and evaluate the climate
sensitivity of the Earth under alternative GHG emission sce-
narios. While our focus here is anthropogenic CO; emis-
sions, the POPEM parameterization can accommodate other
GHGs and human-dependent processes in order to advance
CESMs towards a comprehensive fully coupled modeling of
anthropogenic dynamics in the global climate.

The paper is organized as follows: in Sect. 2, we present
the validation of the POPEM stand-alone mode and set the
framework for evaluating the impact of POPEM parameter-
ization — its incorporation into the CESM and the testing
framework; in Sect. 3, we compare the outputs of CONTROL
and POPEM runs and see how they compare with obser-
vations. In Sect. 4, we highlight the importance of the dy-
namical modeling of anthropogenic emissions at grid-point
scale to better represent the socioeconomic parameters in the
CESM model and improve precipitation estimates.

2 Material and methods

2.1 The CESM model

The Community Earth System Model (CESM) is a state-
of-the-art ESM and probably the most widely used climate
model. It was developed and is maintained by the National
Center for Atmospheric Research (NCAR), with contribu-
tions from external researchers funded by the US Department
of Energy, the National Aeronautics and Space Administra-
tion (NASA), and the National Science Foundation (Hurrell
etal., 2013). CESM is an ESM comprising a system of multi-
geophysical components, which periodically exchange two-
dimensional boundary data in the coupler (Craig et al., 2012).
It consists of five component models and one central cou-
pler component: the atmosphere model CAM (Community
Atmosphere Model; Tilmes et al., 2015); the ocean model
POP (Parallel Ocean Program; Kerbyson and Jones, 2005);
the land model CLM (Community Land Model; Lawrence et
al., 2011); the sea ice model CICE (Community Ice Code;
Hunke and Lipscomb, 2008); and the ice sheet model CISM
(Community Ice Sheet Model; Lipscomb et al., 2013).
CESM - formerly the Community Climate System
Model (CCSM) — was conceived as a coupled atmospheric—
oceanic circulation model (Boville and Gent, 1998; Collins et
al., 2006; Gent et al., 2011; Hurrell et al., 2013; Williamson,
1983). Since the release of the first version, CESM has
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evolved into a complex Earth system model now used in
different fields. This includes research into atmospheric
(Bacmeister et al., 2014; Liu et al.,, 2012; Yuan et al.,
2013), biogeochemical (Lehner et al., 2015; Nevison et al.,
2016; Val Martin et al., 2014), and human-induced processes
(Huang and Ullrich, 2016; Levis et al., 2012; Oleson et al.,
2011), as well as others. The core code of CESM has also
been utilized by various research centers for developing their
own models (norESM; Bentsen et al., 2013; CMCC-CESM-
NEMO; Fogli and Iovino, 2014; MIT IGSM-CAM; Monier
et al., 2013). CESM has been used in many hundreds of peer-
reviewed studies to better understand climate variability and
climate change (Hurrell et al., 2013; Kay et al., 2015; Sander-
son et al., 2017). Simulations performed with CESM have
made a significant contribution to international assessments
of climate, including those of the Intergovernmental Panel
on Climate Change (IPCC) and the CMIP5/6 project (Cou-
pled Model Intercomparison Project Phase 5/6) (Eyring et
al., 2016; IPCC, 2014b; Taylor et al., 2012).

A major advantage of CESM over other ESMs is its
availability. Some climate models are developed by scien-
tific groups and access to the source code is limited. The
CESM source code is free and available to download from
the NCAR website. This approach helps improve the model
by setting up a framework for collaborative research and
makes the model fully auditable. CESM is a good example of
a “full confidence level” model, after Tapiador et al. (2017),
where many “avatars” of the code are routinely run in sev-
eral independent research centers, and there is an entire com-
munity improving the model and reporting on issues and re-
sults. However, the model is not immune to bias. One im-
portant shortcoming is the poor representation of precipita-
tion in terms of spatial structure, intensity, duration, and fre-
quency (Dai, 2006; Tapiador et al., 2018; Trenberth et al.,
2015, 2017). Another major bias is the anomalous warm sur-
face temperature in coastal upwelling regions (Davey et al.,
2002; Justin Small et al., 2015; Richter, 2015).

2.2 POPEM specifics and stand-alone validation

2.2.1 POPEM parameterization model overview

The POPEM module is a demographic projection model
coded in FORTRAN that is intended to estimate monthly fos-
sil fuel CO, emissions at model grid-point scale using pop-
ulation as the input. Due to a lack of actual GHG measure-
ments at appropriate spatial and temporal scales, it is neces-
sary to use a proxy. For this, POPEM employs population,
the evolution of which is modeled using external parameters
that feed the module. The idea of using population as proxy
is not new, and population density has previously been used
to downscale national CO; emissions (Andres et al., 1996,
2016). However, these inventories were not dynamical but
instead tied to historical data so it is not possible to use them
either to estimate future changes in emissions or coupled

www.earth-syst-dynam.net/9/1045/2018/

1047

with other components of the model. This change represents
an important advance in the way emissions are computed.
Thus, POPEM uses a bottom-up approach, where emissions
are calculated at cell level on the basis of population pro-
jections, while global inventories use a top-down approach,
which is less flexible when coupled with other components
of the ESM.

The demographic/emissions module presented here is an
updated version of the demographic module explained in
Navarro et al. (2017). The differences between the versions
are minimal. They involve better approximation of emissions
in highly polluting regions with poor population data, such as
China; a better estimate for coastal zones and country limits;
and a change in the model time step for more efficient cou-
pling with CESM. The inclusion of these changes results in
more accurate emission estimates when compared with in-
ventories than the previous version did. However, the model
is not immune to bias. The most important limit is the degra-
dation of the model outputs when there is increased spatial
resolution — resolution of 0.25° and higher.

Detailed information on POPEM and its validation in the
demographic realm can be found in Navarro et al. (2017).
In short, from an initial condition, the routine computes the
population for each model grid point in a 2-D matrix and
then calculates fossil fuel CO, emissions using per capita
emission rates by nations. The process is repeated for each
time step (e.g., annually) throughout the simulation period.

As seen in Fig. 1, POPEM stores gridded emission data in
a 3-D array (time, latitude, and longitude) to be used by the
modified version of the co2_cycle module. This module
reads emission data and passes this to the atm_comp_mct,
which calculates the total amount of CO; emissions from dif-
ferent sources (land, ocean, and fossil fuel).

2.2.2 POPEM trend verification

Prior to coupling POPEM with CESM, we performed sev-
eral tests to evaluate its ability to reproduce historical popu-
lation trends and CO; emissions. To do this, we ran the mod-
ule in stand-alone mode. In a first test, we ran a short sim-
ulation (1950-2013) and compared the emission data with
a standard emissions inventory (CDIAC). In a second test,
POPEM was run for 70 years (1950-2020) and population
estimates were validated against the UN (United Nations)
population statistics database for those years when data were
available.

As shown in Fig. 2, POPEM is capable of satisfacto-
rily simulating the observed population. Comparison with
UN data shows good agreement. However, POPEM presents
slight differences from the reference data in some regions.
Several of these discrepancies can be explained by the initial
model conditions; POPEM uses the same age distribution in-
side each grid cell to initiate the model (only for the first time
step). This distribution is based on the global average age
structure. Consequently, the model overestimates the popu-
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Figure 1. Conceptual scheme of the POPEM module coupled
with the CAMS atmosphere module. POPEM requires three in-
put data sets to compute emissions (black dashed rectangles): ini-
tial population distribution; demographic parameters (age structure,
death, and birth rates); and per capita emission rates by country.
POPEM provides a 3-D array (time, latitude, longitude) with emis-
sions that are read by the co2_cycle module and passed to the
atm_comp_mct module which computes the total amount of CO,
in the atmosphere.
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lation in those regions with a more elderly age structure, i.e.,
Europe and North America, and underestimates areas with
younger populations, i.e., Latin America and Asia.

These disparities in population counts have a diverse ef-
fect on the outputs in terms of GHG emissions. Thus, for
example, the bias in Europe seems to be more important
than the bias in Latin America and Oceania. Two principal
reasons could explain this: population size, as Europe has a
larger population than Oceania, so there is greater bias in the
CO, emissions estimation; and the per capita emissions rate,
as Latin American countries have lower per capita emission
rates than European nations.

It is worth noting here that the POPEM outputs in Fig. 2
are clearly nonlinear and thus not trivially derived from sim-
ply extrapolating population. The North American estimate
of CO;, emissions (second row from the bottom) clearly
shows the added value introduced by the model.

Earth Syst. Dynam., 9, 1045-1062, 2018

(a) Population (b) CO, emissions

8.0 TV IR e—
= 60 30000 e
o 1 o
S 40 ] 20 000 S
2o ] 10 000
14
o] 7] 1500 1 / <
S 10 - S
E ] 900 - E
0.6 - ]
< : 300 - <
2 e=____1 B .
5.0 21000
g 40 ' 15000 1 «
3 30 9000 1 2
< 20 3000 | <
1.0 e
v 076 P 8000 v
2 0.68 / 6000 /V \% &
5 4000 { / 5
D 0.60 // M
2000
5 052 .
S 07 2100 o
— —
GEJ 05 1500 QEJ
< 04 900 <
— 01 300 i
S 040 7000 S
£ 035 £
£ 030 5000 g
< 025 <
© 0.20 3000 .
Z Z
500
@ 0.04 L ©
o p—] e o
% 0.03 // 300 y W %
S = 100 S
o1 & d
1950 1970 1990 2010 1950 1970 1990 2010
Year Year
— UN -—POPEM — CDIAC—POPEM

Figure 2. Comparison of the population estimates for the
years 1950-2020 (a) and the historical CO, emission estimates
for the years 1950-2012 (b). The first row compares global data,
the second to seventh rows compare regional data (Africa, Europe,
Latin America, North America, and Oceania). In (a), the red line
shows the estimates given using POPEM and blue indicates UN es-
timates. Values are given in billions of people. In (b), the red line
shows the estimates given using POPEM and the black indicates
CDIAC estimates. Units are given in million metric tons.

Figure 3 shows how POPEM distributes CO2 emissions
for different years in the recent past. In 1950, the major-
ity of emissions tended to be concentrated in the USA and
Europe, while in 2000, China, the USA, and India were the
most polluting countries. This is consistent with the litera-
ture: POPEM’s estimates generally agree with the emissions
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Evolution of the CO, emissions in the POPEM model
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Figure 3. POPEM CO; emission estimates for 1950, 1980,
and 2000. POPEM produces a gridded representation of anthro-
pogenic CO; emissions using population dynamics and country
per capita emissions derived from the CDIAC database. Values are
given in millions of metric tons per year.

maps for the recent past (Andres et al., 1996; Boden et al.,
2017; Oda et al., 2018; Rayner et al., 2010), as well as with
regional studies on CO; emissions (Gately et al., 2013; Gur-
ney et al., 2009).

The regionalized distribution of emissions depicted in
Fig. 3 represents a vast improvement over the standard proce-
dure of using globally averaged emissions. Even accounting
for rapid mixing of GHGs, transient effects are likely to ap-
pear given the hemispheric contrast and regional differences
in the emissions. The differences in Asia are illustrative of
the economic changes in the recent past and the exponential
pace of industrialization in that region.

2.3 CESM experimental setup

The CESM used in this work is based on version 1.2.2
(http://www.cesm.ucar.edu/models/, last access: 10 Febru-
ary 2018). This set includes active components for the atmo-
sphere, land, ocean, and sea ice, all coupled by a flux coupler.
The latest atmospheric module CAMS (Neale et al., 2012)
is used to introduce more accurate modeling of atmospheric

www.earth-syst-dynam.net/9/1045/2018/

1049

physics. Additionally, the carbon cycle module is included in
CESM’s atmosphere, land, and ocean components (Lindsay
etal., 2014).

We ran an experiment at 1.9° of spatial resolution for the
period 1950-2000. Two simulations were performed to an-
alyze the effects of the regionalized emissions (Fig. 3) on
the CESM. Our control case used homogeneous CO, con-
centration parameters (standard procedure in ESMs), while
the POPEM case used geographically distributed CO, emis-
sion data. In the latter, the POPEM module was coupled with
the atmospheric CO; flux routine to provide monthly grid-
ded CO, emissions. The gridded data were used at each time
step by the atmospheric routine. Apart from this change, both
simulations were identical in order to identify the effects (if
any) of the POPEM parameterization.

2.4 Validation data
2.4.1 GPCP data set

Precipitation is one of the key elements for balancing the
energy budget, and one of the most challenging aspects of
climate modeling. Hence, high-quality estimates of precipi-
tation distribution, amount, and intensity are essential (Hou
et al., 2014; Kidd et al., 2017; Xie and Arkin, 1997). While
there are many sources of precipitation data to be used as a
reference (see Tapiador et al., 2012, for a review), only a few
qualify as “full confidence level validation data” (Tapiador et
al., 2017).

The Global Precipitation Climatology Project (GPCP;
Adler et al., 2016) has several products suitable for validating
climate models. GPCP-Monthly is one of the most popular
precipitation data sets for climate variability studies. It com-
bines data from rain gauge stations and satellite observations
to estimate monthly rainfall on a 2.5° global grid from 1979
to the present. The careful combination of satellite-based
rainfall estimates results in the most complete analysis of
rainfall available to date over the global oceans, and adds
necessary spatial detail to rainfall analyses over land. Due to
its relevance and global coverage, it has been widely used for
validating precipitation in climate models (Li and Xie, 2014;
Pincus et al., 2008; Stanfield et al., 2016; Tapiador, 2010).

2.4.2 CRU data set

Global surface temperature data sets are an essential resource
for monitoring and understanding climate variability and cli-
mate change. One of the most commonly used data sets is
produced by The Climate Research Unit at the University of
East Anglia (CRU). This group produces a high-resolution
gridded climate data set for land-only areas, the Climate
Research Unit Time-series (CRUTS; Harris et al., 2014).
CRUTS contains monthly time series of 10 climate vari-
ables, including surface temperature. The data set is derived
from monthly observations at meteorological stations. Sta-
tion anomalies are interpolated into 0.5° latitude/longitude
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grid cells covering the global land surface and combined with
existing climatology data to obtain absolute monthly values
(New et al., 1999, 2000). It is commonly used in the val-
idation of climate models because of its confidence levels,
together with temporal and spatial coverage, and the fact it
compiles station data from multiple variables from numer-
ous data sources into a consistent format (Christensen and
Boberg, 2012; Hao et al., 2013; Liu et al., 2014; Nasrollahi
et al., 2015).

2.4.3 GISTEMP data set

NASA’s GISTEMP (GISS Surface Temperature Analysis) is
a global surface temperature change data set (Hansen and
Lebedeff, 1987; see Hansen et al., 2010, for an updated ver-
sion). It combines land and ocean surface temperatures to
create monthly temperature anomalies at 2° x 2° degrees of
spatial resolution. The use of anomalies reduces the estima-
tion error in those places with incomplete spatial and tempo-
ral coverage (Hansen and Lebedeff, 1987). The anomalies are
calculated over a fixed base period (1951-1980) that makes
the anomalies consistent over long periods of time.

The first version was originally conceived only for land ar-
eas (Hansen and Lebedeff, 1987) but in 1996 marine surface
temperatures were added (Hansen et al., 1996). The updated
version of GISTEMP includes satellite-observed night lights
to identify stations located in extreme darkness and adjust
temperature trends of urban stations for non-climatic factors
(Hansen et al., 2010). Just like CRUTS, GISTEMP is com-
monly used to validate climate models because of its cover-
age and confidence levels (Baker and Taylor, 2016; Brown et
al., 2015; Neely et al., 2016; Peng-Fei et al., 2015).

3 Results and discussion

3.1 Comparison between the CONTROL and POPEM
runs

It is worth stressing that a parameterization which performs
well when tested for the variable it models does not neces-
sarily translate into an overall improvement of the other vari-
ables in the model. An accepted practice in climate model-
ing is to tune ESMs by adjusting some parameters to achieve
a better agreement with observations (Hourdin et al., 2017;
Mauritsen et al., 2012). These adjustments to specific tar-
gets may, however, decrease the model’s overall performance
(Hourdin et al., 2017), and give poor scores for variables
other than those tuned. Thus, for example, if a model is bi-
ased with respect to aerosol concentrations or humidity, then
improved parameterization of cloud formation may worsen
the performance of the model with regard to precipitation
(Baumberger et al., 2017). This mismatch can be caused by
model over-specification, or over-tuning.
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The first step in evaluating the new parameterization is to
compare the outputs with a control simulation to make sure
the new addition does not negatively interact with the dy-
namical core or spoil the contributions of the rest of the pa-
rameterizations. Figure 4 shows that this is not the case with
the POPEM parameterization, which does not negatively af-
fect the outputs of precipitation and temperature. Rather,
both variables are now closer to the observed data than they
were in the control run, especially in terms of reducing the
double ITCZ (Intertropical Convergence Zone), which artifi-
cially features in global models (Mechoso et al., 1995; for a
recent analysis of double ITCZ in CMIP5 models see Oues-
lati and Bellon, 2015).

Figure 4a shows that there is just a slight discrepancy in
the absolute difference in rainfall between the GPCP and
CESM simulations (the first and the third quartiles of the
distribution remain between +0.4 mm day~'). Grid-point to
grid-point comparison between the model and GPCP indi-
cates the ability of CESM to reproduce the spatial distribu-
tion of precipitation. In both simulations, the CESM exhibits
a good correlation coefficient (0.72 R?) compared with the
reference data (Fig. 4b). The results are even better for tem-
perature (0.88 R?; Fig. 4d).

Direct comparison of aggregated data is a standard pro-
cedure for gauging model abilities. Figure 5 compares two
latitude—time graphs for precipitation (Fig. 5a) and surface
temperature (Fig. 5b), both for the CONTROL case and for
the new POPEM parameterization.

It is clear from Figs. 5a and 6a that POPEM does alter
the spatial pattern of precipitation and exerts a definite effect
on the climate pattern, as the module reduces the otherwise
exaggerated ITCZ precipitation in the Southern Hemisphere
reported by several authors (Hwang and Frierson, 2013; Li
and Xie, 2014).

Disparities in temperature between the CONTROL and
POPEM runs are apparent at high latitudes. In this case,
POPEM produces lower temperatures at both poles, a result
which deserves further attention (Figs. 5b and 6b).

There are also important differences in precipitation in the
30° N-30° S band. Here POPEM reduces model bias, espe-
cially in the Southern Hemisphere and on the Tibetan Plateau
(see Sect. 3.2 for more details). On the other hand, POPEM
departs from the control simulation in the Asia Pacific region
between 10° N—10° S. This result reinforces the double ITCZ
bias in this area.

These results show that the POPEM parameterization gen-
erally agrees with historical data for population, and also
compares well with the control simulation in the sense of
addressing some of the known biases in precipitation and
temperature, offering a more detailed version of CO; emis-
sions at a relatively cheap computational cost. As discussed
above, the CONTROL run uses global concentration values
to include CO; on the assumption that it is well mixed in
the atmosphere (Neale et al., 2012). This assumption reduces
the computational burden of the simulation but does not al-
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mean temperature at every grid point for CRU and CESM simulations (POPEM and CONTROL). Units are in mm dayfl (precipitation) and

in °C (temperature).

low for precise emissions modeling in the future. This is an
important aspect for regionalized emission scenarios, since
even if the new parameterization is not significantly better
than the old approach (but no worse), it is desirable as it al-
lows for sensitivity analyses, such as evaluating the effects of
the US leaving the Paris Agreement.

Potential applications of POPEM include not only sensi-
tivity analyses of local CO; emissions policies but also the
added feature of performing tests for “what if” scenarios.
One interesting example would be the climate response un-
der the hypothesis that China and India — the most populated
countries in the world — reach US CO, per capita emission
rates. Another “what if” scenario would be the climate re-
sponse of an increasingly urbanized world. In both cases,
POPEM provides a flexible framework for testing the alter-
native hypotheses.

The realism of the ESM will be enhanced with a fully cou-
pled system. Such a fully fledged ESM will include bidirec-
tional feedback between POPEM and CESM to evaluate the
effects of climate change on population dynamics and emis-
sions.
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3.2 Validation against observational data sets

Once it has been verified that the new parameterization does
not worsen the modeling, the next step in evaluating the per-
formances is comparing the simulation outputs for both the
CONTROL run and the POPEM module using actual obser-
vational data. Direct comparisons with historical data can
help show whether or not a climate model correctly repre-
sents the climate of the past. However, although observa-
tional measurements are often considered the ground truth
to validate models against, it is important to be aware that
measurements have their own uncertainties (Tapiador et al.,
2017).

Figure 7 shows a comparison of CESM precipitation sim-
ulations for the period 1980-2000 using the GPCP. It is ap-
parent that there is an overall consensus, even though there
are differences. Despite these known biases, the model agrees
with the observations on the major features of global precip-
itation.

The improvements in parameterizing emissions become
clearer if we focus on specific regions. For the El Nifio-
4 area, there are statistically significant differences (at the
0.05 significance level) between both the CONTROL run
and the POPEM modeling when compared with the refer-
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Figure 5. Latitude vs. time plots for precipitation (a) and surface
temperature (b). For absolute difference graphs, blue represents
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CONTROL. Units are in mm dayfl for precipitation and in °C for
temperature.

ence data. This observation illustrates the limitations of the
modeling and the need of advances in the parameteriza-
tions. However, for this area the correlation (Rz) between
POPEM and GPCP is slightly better than CONTROL and
GPCP (0.706 R? versus 0.692 R?).

The real added value, however, is not in a better estima-
tion of the totals but in the ability of POPEM to better cap-
ture the structure of the precipitation. Figure 8 shows the his-
tograms of mean precipitation in the El Nifo-4 area using
the POPEM parameterization (Fig. 8a), the standard forcing
approach (CONTROL, Fig. 8b), and the reference GPCP es-
timates (Fig. 8c). While the CONTROL simulation severely
overestimates the low end of the distribution, POPEM gives
a more realistic value. This result is not apparent in the oth-
erwise improved correlation of POPEM, and is also buried in
the box plots.

El Nifio-4 is important because it presents a lower vari-
ance in the SST (sea surface temperature) than any other of
the El Nifio areas, playing a key role in identifying EI Nifio
Modoki events (Ashok et al., 2007; Ashok and Yamagata,
2009; Yeh et al., 2009). The consequences of such events are
severe disruptions in human activities due to the increased
risk of droughts, heat waves, poor air quality, and wildfires
(McPhaden et al., 2006). Thus, precise modeling of the pro-
cesses in this sector of the Pacific is extremely important.

Another important benefit of POPEM is the reduction of
the double ITCZ bias in the Southern Hemisphere. Although
a small change can be inferred from Fig. 7a and b, the im-
provement is buried in the annual mean precipitation maps.
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Figure 9a shows that the POPEM results are closer to obser-
vations of the intra-annual variability in precipitation, espe-
cially for the driest months (June—October).

The figure also shows slight improvements for two other
typical biases seen in CESM, namely the excess precipita-
tion in the Tibetan Plateau (Chen and Frauenfeld, 2014; Su
et al., 2013; Fig. 9c) and the bias in some areas affected by
the Asian—Australian monsoon (AAM), such as the top end
of Australia (Meehl and Arblaster, 1998; Meehl et al., 2012;
Fig. 9b).

The results for the El Nifio-4 area show that detailed, grid-
point emissions of GHGs improve the quantification of pre-
cipitation in dry areas, in agreement with our hypothesis
about the benefits of locally distributed versus global mean
forcings. Also, the double ITCZ example shows that the tran-
sient effects of regionalized GHG emissions may even trans-
late into (long) 50-year climatologies, meaning there is room
for improvement in the “rapidly mixing, well-mixed gases”
forcing approach.

Figure 10 compares the annual mean temperatures for
the period 1950-2000. CESM simulations show a signif-
icant bias in high latitudes of the Northern Hemisphere
(cf. Fig. 10a and b). In these areas, the model produces colder
temperatures than those registered in the CRUTS reference
data but this is also an issue in the CONTROL run. This de-
viation is also apparent in Fig. 4b, where negative values lie
away from the idealized regression line, and indicate further
improvement of the CESM.

The bias is also reproduced when compared with tem-
perature anomalies for a specific region. Thus, for instance,
CESM gives poor scores in the Barents Sea area (Fig. 11a)
while POPEM obtains better results for the Bering Sea, es-
pecially in the Russian part (Fig. 11b). Here, POPEM gives
more realistic values for the period 1970-1998 but, even with
the improvement, the model still overestimates the tempera-
ture anomaly.

If we focus on global temperature anomalies, CESM sim-
ulations are able to reproduce the progressive increase in the
temperature anomaly (Fig. 12a). However, the CONTROL
case simulates a sharp drop at the end of the period (1990-
1999), while POPEM portrays this change as smooth, in
agreement with the observations.

The differences between CONTROL and POPEM are bet-
ter demonstrated when comparing land and ocean separately
(Fig. 12b and c). While the temperature anomalies for land
are quite similar in both cases, POPEM provides a better rep-
resentation of the ocean tendency from 1992 onwards, and
that translates to an overall improvement (Fig. 12a).

3.3 Validation against ESPI and ONI indices

The El Nifio—Southern Oscillation (ENSO) is the most dom-
inant inter-annual climate variation in the tropics. It occurs
when seasonally averaged SST anomalies in the eastern Pa-
cific Ocean exceed a given threshold and cause a shift in the
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tion (1980-2000) as simulated by the CESM (POPEM and CON- Figure 8. Histograms of the mean precipitation in the El Nifio-4
TROL) model and GPCP observational database. (a) Global an- area (5° N-5° S, 160° E-150° W) using the POPEM parameteriza-
nual mean precipitation maps for GPCP, POPEM, and CONTROL. tion (a), the standard forcing approach (CONTROL, b), and the ref-

(b) Absolute difference maps. Units are in mm day — 1
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erence GPCP estimates (c).
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atmospheric circulation (Trenberth, 1997). Historically, the
definition of ENSO does not include precipitation because of
the limitations of stations (Ropelewski and Halpert, 1987),
but recent work with satellites has confirmed that this phe-

nomenon is a major driver of global precipitation variability
(Haddad et al., 2004).
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anomaly between GISTEMP, CONTROL, and POPEM from 1950
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A major advantage of satellite-derived precipitation in-
dices over more conventional ones is the description of
the strength and position of the Walker circulation (Cur-
tis and Adler, 2000). Under that assumption, Curtis and
Adler (2000) derived three satellite-based precipitation in-
dices: the ENSO precipitation index (ESPI), El Nifio in-
dex (EI), and La Nifia index (LI). Precipitation anomalies are
averaged over areas of the equatorial Pacific and Maritime
Continent — where the strongest precipitation anomalies as-
sociated with ENSO are found — to construct differences or
basin-wide gradients (Curtis, 2008).

Figure 13 shows a comparison of GPCP, CONTROL, and
POPEM for the ESPI, EI, and LI indices.

Unfortunately, CONTROL and POPEM cases have dif-
ficulty simulating the precipitation patterns associated with
ENSO. Figure 13 shows that bias increases in 1982-1983 and
1997-1998 El Nifio years. The same bias emerges when
comparing the EI and LI indices. In that case, the CESM
model produces stronger El Nifio/La Nifia events than the
observed data. Consequently, we can consider that CESM is
unable to obtain a precise estimate of precipitation patterns,
suggesting that current climate models are far from generat-
ing realistic simulations of the precipitation field (Dai, 2006).
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Table 1. Comparison of the ONI index for the period 1950-1999. The table compares the ability of the models to reproduce the number,

strength, and duration of El Nifio events.

Source Number Agreement1 Disagreement2 Intensity Durationg‘Vg
of events biasgVg

CPC 14 10.3

CONTROL 7 33 121 0.59°C 194

POPEM 10 37 121 0.22°C 114

! The number of months that CPC and CESM agree on El Niio. 2 Disagreement defined as the number of months
where CPC and CESM obtain opposite results. 2 Intensity: (|(CESM ONI| — [CPC ONI|)/number of cases (units

in °C). 4 Mean duration of El Nifio event (in months).

| Land + Ocean (a) w

Temperature anomaly (°C)

-0.30 L
NS U
1950 1960 1970 1980 1990
Year
—GISTEMP— CONTROI=— POPEM

Figure 12. A comparison of the global annual mean surface tem-
perature anomaly between GISTEMP, CONTROL, and POPEM
from 1950 to 1999. (a) Global, (b) land, and (¢) ocean. The black
line represents observational data (GISTEMP), the blue line is the
CONTROL case, and the red is the POPEM case. Anomaly was
referenced to 1951-1980 period.

Another widely used ENSO index is the Oceanic Nifio
Index (hereafter ONI). ONI was developed by the NOAA
Climate Prediction Center (CPC) as the principal means for
monitoring, assessing, and predicting ENSO (Kousky and
Higgins, 2007). This index is defined as 3-month running-
mean values of SST departures from the average in the Nifio-
3.4 region. It is computed from a set of homogeneous histor-
ical SST analyses (Kousky and Higgins, 2007; Smith et al.,
2003).

Figure 14 compares the ONI index for CPC, POPEM, and
CONTROL cases. It is clear from the figure that POPEM pro-
duces a more realistic representation of the ENSO, especially
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Figure 13. Time series of precipitation anomalies for the ENSO
region after Curtis and Adler (2000). (a) ENSO precipitation in-
dex (ESPI), (b) El Nifo Index (EI), and (¢) La Nifa Index (LI).
The Black line shows GPCP data, the blue line is the CONTROL
case, and the red line is the POPEM case. Orange shading denotes
El Nifio years defined as consecutive months (minimum 3) with
NINO3.4 SST anomalies (5°N-5°S, 170-120° W) greater than
+0.5°C.

if we focus on the 1992—-1999 period. POPEM also obtains
better results than CONTROL in the number of simulated El
Nifio events (see Table 1). The improvement is also notice-
able in the intensity. The CONTROL case exhibits an overly
strong ENSO — a common bias in CESM (Tang et al., 2016)
— but POPEM reduces this bias (0.22 °C versus 0.59 °C).

Another important indicator is the mean duration of
El Nifio events. Table 1 shows that POPEM obtains bet-
ter results according to observations (11 months in CPC,
10 months in POPEM, and 19 months in CONTROL).
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Figure 14. Comparison of the Oceanic El Nifio Index (ONI) for
CPC (a), POPEM (b), and CONTROL (c¢) cases. El Nifio and
La Nifia are defined according to Kousky and Higgins (2007):
3-month running mean with anomalies greater than +0.5°C (or
—0.5°C) for at least 5 consecutive months in the NINO3.4 region.
The base period for computing SST departures is 1971-1999.

4 Conclusions and future work

Like all models, climate models are simplified versions of the
real world and therefore do not include the full complexity
of the Earth system. Due to certain limitations, e.g., compu-
tational resources or spatial and temporal resolution, climate
models have to make assumptions and resort to parameteri-
zations.

One important simplification is to use prescribed forcings
instead of dynamically modeling GHG emissions. However,
precise modeling of anthropogenic CO> emissions is impor-
tant for climate change research as it allows sensitivity anal-
yses to be performed.

Here we present a new module of gridded CO, emis-
sions that is coupled with CESM. The module, denominated
POPEM, computes anthropogenic CO; emissions by using
population estimates as a proxy for disaggregating emissions
beyond the national level. POPEM makes CESM use dynam-
ical emission data instead of fixed concentration parameters.

In terms of population and emissions, the module com-
pares well when validated with data. Thus, POPEM’s esti-
mates for the 1950-2000 period are in general agreement
with population and emission inventories from the recent
past. In spite of the more realistic depiction of the actual
emissions (Fig. 3), issues persist. The performance of the
model can be further improved in places where popula-
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tion projections are difficult to model. For instance, POPEM
tends to underestimate emissions on the west coast of the
United States and the Anatolian Plateau, and overestimates
emissions in China and Japan.

When the POPEM module is coupled with CESM to gen-
erate climatologies, the ability to successfully model pre-
cipitation and surface temperature is preserved. Moreover,
the results of 50-year simulations show that the dynami-
cal modeling of emissions produced by POPEM results in
slight but noticeable differences in the resultant precipitation
regime and surface temperature. Thus, dynamically model-
ing the emissions alters the ITCZ by reducing precipitation
in the Southern Hemisphere and increasing it in the North-
ern Hemisphere. For particularly interesting areas, such as
the El Nifio-4 region, the POPEM outperforms the traditional
approach.

Further work will be devoted to improving the modeling
of those areas and hopefully minimizing some of the original
biases of the CESM model. These include the emergence of a
double ITCZ in CESM simulations, which is a common bias
for most climate models (Oueslati and Bellon, 2015), as well
as SST simulated by climate models, which are generally too
low in the Northern Hemisphere and too high in the Southern
Hemisphere (Wang et al., 2014).

Current applications of the parameterization include eval-
uating the effects of changes in regional policies, and a bet-
ter understanding of the carbon cycle (Friedlingstein et al.,
2006). Future work will be devoted to evaluating the climate
response to alternative anthropogenic CO; emissions, to cou-
pling POPEM with the newest version of CESM (CESM2;
Joel, 2018), to fully coupling human—Earth subsystems, to
increasing the spatial resolution of the simulations, and to
refining the spatial and temporal distribution of emission es-
timates.

Although the version of POPEM presented here is al-
ready functional, this work is intended to be just the first
step in fully coupling socioeconomic dynamics with ESMs.
This will include bidirectional feedbacks between human and
Earth systems and the simulation of societal processes based
on the internal dynamics of the model instead of using ex-
ternal sources to make the projections. Only within a cou-
pled global human—Earth system framework can we produce
more realistic representations of the Earth system capturing
much of the important feedbacks that are missing from cur-
rent models (Motesharrei et al., 2016). The success of this
approach will depend on the ability of scientists from differ-
ent research fields to work in an interdisciplinary framework
of continuous collaboration.

Data availability. Code (POPEM) and model outputs (UCLM-
CESM) used in this paper are available from the correspond-
ing author upon request. Data from the Global Precipitation Cli-
matology Project (GPCP and ESPI index) are freely accessible
at http://gpcp.umd.edu/ (last access: 30 July 2018; Adler et al.,
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2018). Climate Research Unit Time Series (CRUTS) data are avail-
able at https://crudata.uea.ac.uk/cru/data/hrg/ (last access: 30 July
2018; Harris et al., 2014). GISTEMP data are available at the
NASA Goddard Institute for Space Studies website (https://data.
giss.nasa.gov/gistemp/, last access: 30 July 2018; Hansen et al.,
2010). The Oceanic Nifio Index (ONI) is produced by the Climate
Prediction Center and is accessible at http://origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_v5.php (last ac-
cess: 30 July 2018; Kousky and Higgins, 2007).
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