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Abstract. We used principal component analysis (PCA) to derive climate indices that describe the main spatial
features of the climate in the Baltic states (Estonia, Latvia, and Lithuania). Monthly mean temperature and total
precipitation values derived from the ensemble of bias-corrected regional climate models (RCMs) were used.
Principal components were derived for the years 1961–1990. The first three components describe 92 % of the
variance in the initial data and were chosen as climate indices in further analysis. Spatial patterns of these indices
and their correlation with the initial variables were analyzed, and it was detected (based on correlation coefficient
between principal components and initial variables) that higher values in each index corresponded to locations
with (1) less distinct seasonality, (2) warmer climate, and (3) wetter climate. In addition, for the pattern of the
first index, the impact of the Baltic Sea (distance to coast) was apparent; for the second, latitude and elevation
were apparent, and for the third elevation was apparent. The loadings from the chosen principal components
were further used to calculate the values of the climate indices for the years 2071–2100. An overall increase was
found for all three indices with minimal changes in their spatial pattern.

1 Introduction

Spatial representation of the climate, e.g., the mapping of cli-
matic zones, is a useful tool in climate analysis. First, it can
be used to better convey information about the climate fea-
tures of the region for applications in climate change adap-
tation and mitigation. Second, the spatial patterns can give
insight into both the possible relationship between and the
impact of the climate on other fields, e.g., phenological pro-
cesses and vegetation distribution (Feng et al., 2012). Third,
they illustrate geographical features that influence climate,
such as hillsides and coastal zones. There is a wide vari-
ety of approaches for creating spatial representations of cli-
mate, but usually they belong to either rule-driven or data-
driven methods. Rule-driven methods are used more often,
the most popular being the Köppen–Geiger classification
(Peel et al., 2007). These methods are based on certain pre-
defined rules; for example, thresholds of meteorological vari-
ables or frequency of events. Climate zones derived from
classifications of this type usually correspond to vegetation

distributions in the sense that each climate type is dominated
by one vegetation zone or eco-region (Belda et al., 2014).
However, predefined rules make these methods subjective.
Alternatively, the spatial pattern can be derived from data-
driven or analytical methods. These include principal compo-
nent analysis (PCA; Benzi et al., 1997; Estrada et al., 2009),
cluster analysis (Bieniek et al., 2012), or a combination of
both methods (Briggs and Lemin, 1992; Fovell and Fovell,
1993; Baeriswyl and Rebetez, 1997; Malmgren et al., 1999;
Fan et al., 2014; Forsythe et al., 2015). Analytical methods,
depending on the chosen variables, can give results that are
similar to those of rule-driven methods, but the results are
more homogenous (Netzel and Stepinski, 2016). Analytical
methods provide a spatial pattern that must be interpreted be-
fore it can be linked with possible applications.

Principal component analysis or empirical orthogonal
function analysis has two important applications. First, it can
reduce the number of variables that are used to describe re-
gional climate while still retaining most of the variation seen
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in the initial data. Second, principal components provide new
indices that are a linear combination of the chosen variables.
The loadings of the chosen principal components are the co-
efficients that define the newly created indices, which then
describe the main features of climate. Variables for PCA can
be chosen and indices calculated with a specific purpose in
mind; for example, indices for the classification of different
types of winters (Hagen and Feistel, 2005) or estimation of
crop yield based on the climate (Cai et al., 2013). Indices can
also be chosen to describe the climate of the region in general
(Estrada et al., 2009). However, the problem with the indices
that are derived using analytical methods is that their mean-
ing is not known beforehand, so their interpretation may re-
quire further analysis.

For many practical applications, temperature and precip-
itation are the two main variables of interest for a certain
region. They are usually sufficient for representing vegeta-
tion types in corresponding climate zones (Zhang and Yan,
2014). Vegetative production, organic matter decomposi-
tion, and the cycling of nutrients are strongly influenced by
temperature and moisture (Briggs and Lemin, 1992). Dis-
tinct changes in temperature and precipitation are to be ex-
pected in the future (BACC II, 2015). Thus, any climate pat-
terns based on these two variables will consequently be af-
fected, leaving a significant impact on living organisms. For
instance, plant species inhabiting regions subjected to cli-
mate change might have too little time to adapt (Mahlstein
et al., 2013).

The Baltic state region exhibits significant spatial and tem-
poral climatic variability, with an influence from air masses
of arctic to subtropical origin (Jaagus and Ahas, 2000; Rut-
gersson et al., 2014). The terrain is mostly flat, with the high-
est elevations extending slightly above 300 m. The Baltic Sea
and the shape of its coastline have an important role in the
climate of the region. PCA has been used to describe precip-
itation patterns in the Baltic countries with atmospheric and
landscape variables (Jaagus et al., 2010).

To study the effects of climate change on climate pat-
terns, regional climate model (RCM) data can be used
(Castro et al., 2007; Mahlstein and Knutti, 2010; Tapiador
et al., 2011; Fan et al., 2014). RCMs are continuously im-
proving and correspond rather well to climate observations
(Tapiador et al., 2011). Other advantages of using RCM data
are that (a) their data are regularly spaced, while PCA applied
to irregularly spaced data can produce distorted loading pat-
terns (Karl et al., 1982), and (b) RCM data are also available
as future projections, giving insight into the manifestation of
climate change. Additionally, the spatial representativeness
of the network of observation stations in the Baltic states has
been reported to be problematic (Remm and Jaagus, 2011).

The aim of this work is to define climate indices that rep-
resent the main features of Baltic state climate in a compact
form. The study consists of several parts. First, RCM data
for temperature and precipitation were bias corrected. Sec-
ond, monthly average values for the reference period 1961–

Table 1. List of the regional climate model (RCM) ensemble
members used (ENSEMBLES) showing the originating institution,
the name of the RCM, and the driving general circulation model
(GCM). For an explanation of abbreviations, see van der Linden
and Mitchell (2009).

Institution GCM RCM

C4I HadCM3Q16 RCA3
CNRM ARPEGE Aladin
CNRM ARPEGE_RM 5.1 Aladin
DMI ARPEGE HIRHAM
DMI ECHAM5-r3 DMI-HIRHAM5
ETHZ HadCM3Q0 CLM
GKSS IPSL CLM
HC HadCM3Q0 HadRM3Q0
HC HadCM3Q16 HadRM3Q16

(high sensitivity)
HC HadCM3Q3 HadRM3Q3

(low sensitivity)
ICTP ECHAM5-r3 RegCM
KNMI ECHAM5-r3 RACMO
KNMI ECHAM5-r3 RACMO
KNMI MIROC RACMO
METNO BCM HIRHAM
METNO HadCM3Q0 HIRHAM
MPI ECHAM5-r3 REMO
SMHI BCM RCA
SMHI ECHAM5-r3 RCA
SMHI HadCM3Q3 RCA
UCLM HadCM3Q0 PROMES
VMGO HadCM3Q0 RRCM

1990 were calculated and standardized. Third, PCA was per-
formed and the main principal components were identified.
The acquired principal components and their spatial patterns
were analyzed. Fourth, the loadings of chosen principal com-
ponents were used to calculate indices for the years 2071–
2100 and compared to reference data.

2 Data and methods

2.1 Climate data and methods

The source of the RCM ensemble data is the ENSEMBLES
project (van der Linden and Mitchell, 2009). Model data sets
for the A1B scenario are given for the time period 1961–
2100, and 22 model runs were considered (shown in Table 1).

We used time series of daily average air temperature at
2 m of height and daily precipitation. RCMs are known to be
prone to systematic biases (Teutschbein and Seibert, 2012).
A bias correction method (Sennikovs and Bethers, 2009) that
uses quantile mapping was chosen and the cumulative distri-
bution function was calculated for each day of the year using
an 11-day running average – the data for 5 days before and
5 days after the day of interest. The ensemble median was
then used for PCA. The control period for bias correction

Earth Syst. Dynam., 8, 951–962, 2017 www.earth-syst-dynam.net/8/951/2017/



L. Bethere et al.: Climate indices for the Baltic states from principal component analysis 953

Figure 1. Monthly precipitation 1961–1990; bias-corrected median of RCM ensemble.

was 1961–1990. Bias-corrected data were then interpolated
to a regular grid because it has been shown that PCA ap-
plied to irregularly spaced data can produce distorted load-
ing patterns (Karl et al., 1982). The bias correction method
and model resolution is described in detail in Sennikovs and
Bethers (2009).

Two time periods were chosen: 1961–1990 (as a reference
climate) and 2071–2100 (as future climate projections). For
each time period, monthly average temperature and precipi-
tation were calculated for each grid point. In total 24 climatic
variables were used for each time period: 12 monthly precip-
itation and 12 monthly average temperatures. This is an “R-
mode” analysis according to Cattell (1952). The spatial dis-
tribution of these variables for the reference period is shown
in Figs. 1 and 2. Figure 1 shows a north–south gradient of
monthly precipitation during April–June and an east–west
gradient of monthly precipitation during October–January.

Figure 2 shows an east–west gradient of monthly tempera-
tures during October–February and a north–south gradient of
monthly temperatures during April–June. This implies that
some of the variables can be combined in seasons (as done by
Malmgren et al., 1999, and Forsythe et al., 2015) and that for
some months temperature and precipitation are correlated.
A better understanding of variables with similar patterns can
be gained by examining the correlation matrix in Fig. 3. The
matrix areas that represent strongly correlated variables are
marked in this figure, and they show the following relation-
ships.

1. Very strong correlation (above 0.8) between precipita-
tion levels in winter months. Locations with more pre-
cipitation in, e.g., December also have more precipita-
tion in January (compared to the rest of the territory).

2. Strong correlation (above 0.5) between precipitation
and temperature in spring months. Thus, locations with
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Figure 2. Monthly average temperature 1961–1990; bias-corrected median of RCM ensemble.

colder springs also are dryer, whilst locations with
warmer springs also have more spring precipitation.

3. Strong negative correlation (below −0.5) between pre-
cipitation in autumn and late spring/early summer tem-
perature. Locations with more precipitation in autumn
also have colder springs.

4. Very strong correlation (above 0.8) between temper-
atures of autumn and winter months. Locations with
warmer autumns also have warmer winters.

Figure 3 shows that the 24 monthly variables contain re-
dundant information, and through PCA we can summarize
the information and create new variables.

2.2 PCA method

The aim of PCA is to create a new set of uncorrelated vari-
ables that are a linear combination of the initial variables and
explain as much of the initial variation as possible. An ex-
tensive description of PCA can be found in Jolliffe (2002),
and its applications to climate are described in Preisendor-
fer (1988).

Although PCA is a widely used methodology, the ter-
minology in the literature can vary (Wilks, 2011). We will
briefly describe the terminology used in this article.

Suppose that X is an n×p data matrix, where n is the
number of objects and p is the number of variables. The
means of the p variables have been subtracted. In our case
we have p = 24 climatic variables in n= 7143 grid points.
A typical PCA is applied to p×p covariance (or correlation)
matrix calculated by Eq. (1). By solving Eq. (2) we can find
eigenvectors ei, i = 1, . . .,24 and corresponding eigenvalues
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Figure 3. Temperature–precipitation correlation matrix; bias-
corrected data. Marked and numbered features show especially high
absolute correlation: (1) strong correlation between precipitation
levels in winter months; (2) strong correlation between precipitation
and temperature in spring months; (3) strong negative correlation
between precipitation in autumn and spring temperature; (4) strong
correlation between temperatures in autumn and winter months.

λi, i = 1, . . .,24. As a result we have obtained non-correlated
linear combinations of the initial climatic variables calcu-
lated by Eq. (3).

S= (n− 1)−1XTX (1)
Se = λe (2)
Y i =Xiei i = 1, . . .,24 (3)

Values λi represent the explained variance of each “principal
component” Y i . Linear weights ei that define each princi-
pal component will be called “loadings”. “Indices” describe
Y i values that are calculated using loadings from the refer-
ence period (but not necessarily reference period data). For
the reference period, principal components coincide with in-
dices, but indices can be also calculated using future period
data and reference period loadings.

An important choice must be made when applying PCA:
whether to use a correlation matrix or covariance matrix in
the calculation of loadings. If the covariance matrix is used
then a second choice must be made: whether to use standard-
ization and what type. The scaling process has a significant
impact on the PCA process. When performing data standard-
ization, the following issues should be taken into account.

1. Variables should be of a similar scale; otherwise, vari-
ables with considerably larger variance will dominate
the principal components. Different scales are usually
a consequence of different units of measurement. In
our case the variance for precipitation measured in mil-
limeters is considerably larger than that for temperature
measured in degrees Celsius.

Figure 4. Scree plot (explained variance of each principal compo-
nent) calculated for the reference (1961–1990) climate.

2. In the case of variables measured in the same units,
variances contain useful information and can improve
the interpretation of PCA (Overland and Preisendor-
fer, 1982). Therefore, for variables that are measured in
the same units (for example, average temperature in dif-
ferent months) we wish to keep the ratio between vari-
ances of different months. This means that the corre-
lation matrix, in which each variable is divided by its
square root of variance, should not be used as it would
bring the variances of all 24 variables to 1.

3. As we are planning to use the acquired loadings as co-
efficients for the calculation of climate indices for the
future time period and compare them with the reference
climate, it is necessary that the same standardization
process be used for the data of the future time period.

4. It is important to note that subtraction of the mean (or a
similar constant) for each variable does not impact the
result of PCA as it does not impact the covariance be-
tween variables. However, if the initial values have a
zero mean (the mean is subtracted from each variable)
then the resulting principal components have a similar
scale, and spatial patterns are more convenient to re-
view.

Taking into account the issues described above we propose
using standardization as defined by Eq. (4), in which the spa-
tial mean is subtracted for each variable as usual, but the av-
erage variance of all temperature or precipitation variables is
used for scaling:

T k − T k√
V (T )

,
P k −P k√
V (P )

, k = 1, . . .,12, (4)

where V (T ) , V (P ) represents the average variance of
12 temperature and precipitation variables for the reference
period.

The variances before and after such standardization for the
reference period are shown in Table 2. The ratio of variances
for different months is retained. For data representing the fu-
ture time period, the standardization is performed by using
the mean values and average variances from the reference
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Table 2. Variances of climate variables before and after standardization for the years 1961–1990.

1961–1990

Before standardization

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Mean
28.85 7.45 13.03 13.66 31.93 63.40 47.20 65.65 86.22 110.43 114.47 50.60 52.74

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Mean
1.36 0.95 0.60 0.62 0.93 0.41 0.09 0.19 0.39 0.54 0.83 1.27 0.68

After standardization

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Mean
0.55 0.14 0.25 0.26 0.61 1.20 0.89 1.24 1.63 2.09 2.17 0.96 1.00

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Mean
2.00 1.40 0.88 0.91 1.37 0.60 0.14 0.27 0.57 0.80 1.22 1.86 1.00

Figure 5. Spatial pattern of first three principal components based on monthly temperature and precipitation data for the years 1961–1990.

period. The results of data standardization for the future time
period are shown in Table 3. It can be seen that in the fu-
ture the variance in precipitation data will increase and the
variance in temperature data will decrease. However, the dis-
tribution of variances over the year is similar.

Another detail that must be considered when using PCA is
the choice of method for determining the number of principal
components that describe data variation sufficiently well and
can be used in further analysis. There are multiple methods
to choose from (Preisendorfer, 1988); however, in our case
one of the most common methods, the scree plot, gives ex-
cellent and clear results. A scree plot is a graph of explained
variances in acquired principal components, and the number
of principal components is decided based on the break point
in such a graph. Components to the left of the break point are
retained.

3 Results

3.1 Principal components for the control period
(1961–1990)

The explained variance and loadings of the first three prin-
cipal components are shown in Table 4. The scree plot of
all principal components is shown in Fig. 4. The first two
components already describe 78 % of the variance in the ini-
tial variables, while the first three components describe 92 %
of the variance. According to Jolliffe (2002) the cutoff point
should be between 70 and 90 % of the explained variance.
However, the scree plot clearly shows that the first three prin-
cipal components can be retained, so we chose to further an-
alyze the first three components.

Figure 5 shows the spatial pattern of the first three prin-
cipal components for the reference climate. They should be
analyzed together with the correlation coefficients between
the new variables and initial variables shown in Table 5, in
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Table 3. Variances of climate variables before and after standardization for the years 2071–2100.

2071–2100

Before standardization

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Mean
52.78 12.33 22.68 27.02 33.84 52.5 42.87 72.7 126.1 154.3 204.3 85.6 73.92

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Mean
1.08 0.92 0.37 0.25 0.26 0.12 0.11 0.2 0.45 0.51 0.84 1.08 0.52

After standardization

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Mean
1.00 0.23 0.43 0.51 0.64 1.00 0.81 1.38 2.39 2.93 3.87 1.62 1.40

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Mean
1.59 1.35 0.55 0.36 0.38 0.18 0.16 0.3 0.67 0.74 1.23 1.58 0.76

which the bright red or blue colors mark high positive or
negative correlation. One can see that variables that were ini-
tially highly correlated (positively or negatively; Fig. 3) show
similar (or in the case of negative correlation, the opposite)
values in Table 5.

Correlation coefficient values (Table 5) show that the first
principal component (PC1) has a high positive correlation
with the autumn–winter temperature and precipitation and
a high negative correlation with temperature and precipita-
tion in late spring and early summer months. This means that
higher values of PC1 correspond to places with warmer win-
ters with more precipitation (snow or rain) and colder sum-
mers with less precipitation. However, it is also important
to note that the total sum of the loadings is above 1, which
implies that a constant increase in all variables would also
result in higher values of PC1. From the spatial distribution
(Fig. 5) we can see that PC1 has an east–west gradient im-
plying less distinction between seasons at the seaside. It can
be concluded that PC1 reflects the continentality of climate,
and it represents the influence of the Baltic Sea.

The second principal component (PC2) is positively cor-
related with all monthly temperatures and negatively cor-
related with precipitation in autumn. This means that high
PC2 values correspond to regions that are generally warmer
than others and have low precipitation in autumn. For PC2
a north–south gradient is evident with the warmer climate in
the south. This means that PC2 represents the influence of
latitude. This pattern is also slightly influenced by geograph-
ical features (elevation) and the shape of the coast.

PC3 is mainly positively correlated with precipitation for
most of the year (December–August) and spring temperature
(April–May). This means that high PC3 values correspond to
places with overall high precipitation or, in other words, an
overall wetter year. PC3 mainly reflects the terrain, i.e., the
distribution of elevation.

Figure 6. Correlation coefficients between indices (principal com-
ponents) and initial variables for the reference and future climates.

When the spatial patterns of PC2 and PC3 are analyzed the
effect of orography can be seen. The location of the highlands
is especially visible, while for PC1 the terrain seems to have
little impact.

3.2 Climate indices for future climate (2071–2100)

Loadings (linear weights) acquired through PCA from the
reference data (Table 4) can be used as coefficients that de-
fine new climate indices. We can use these coefficients to
calculate climate from different data (other time periods or
other geographical locations). It is also important to note that
statistics (mean values and variances) from the reference data
used in data standardization should also be applied to other
data for comparison to be possible. In our case we calcu-
lated such climate indices for future climate (corresponding
to the period 2071–2100) and analyzed the change in climate
patterns. The standardization of the variables is shown by
Eq. (5), and the calculation of the climate indices is shown
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Table 4. Explained variance and loadings of the first three principal
components calculated from temperature and precipitation data for
the years 1961–1990.

PC1 PC2 PC3 Sum

Explained variance 0.47 0.31 0.14 0.92

Loadings

P1 0.16 −0.05 0.22
P2 0.05 −0.03 0.14
P3 0.06 0.00 0.20
P4 −0.03 0.06 0.18
P5 −0.15 0.12 0.22
P6 −0.15 0.13 0.45
P7 −0.05 −0.15 0.38
P8 0.08 −0.31 0.24
P9 0.25 −0.31 0.13
P10 0.32 −0.33 0.09
P11 0.39 −0.16 0.24
P12 0.23 −0.08 0.24
T1 0.35 0.27 −0.04
T2 0.25 0.30 0.06
T3 0.14 0.26 0.16
T4 −0.11 0.26 0.27
T5 −0.23 0.21 0.35
T6 −0.18 0.11 0.17
T7 −0.06 0.07 0.02
T8 0.02 0.17 0.04
T9 0.12 0.22 0.02
T10 0.19 0.22 −0.01
T11 0.27 0.23 −0.07
T12 0.34 0.27 −0.08

by Eq. (6):

T k − T k√
V (T )

,
P k −P k√
V (P )

, k = 1, . . .,12, (5)

where T k , P k represents temperature and precipitation val-
ues for the future period, T k , P k represents mean temper-
ature and precipitation values for the reference period, and
V (T ), V (P ) represents the average variance in 12 tempera-
ture and precipitation variables for the reference period.

Y i =Xici, i = 1, . . .,24, (6)

where Xi represents temperature and precipitation data for
the future period, ci represents coefficients (loadings) from
the reference period, and Y i represents climate indices for
the future period.

It is important to note that Y i values should not be called
“principal components” even though they hold a similar
meaning as principal components from the reference data.
Y i values are not derived using PCA directly and they do not
use eigenvectors from future data.

In Fig. 6 the correlation coefficients between indices and
initial variables are shown and it can be seen that they are

Table 5. Correlation coefficients between principal components and
standardized initial data for the years 1961–1990. High positive cor-
relation corresponds to darker red color and high negative correla-
tion corresponds to darker blue color.

20 

 

 

PC1 PC2 PC3 

P1 0.73 -0.18 0.54 

P2 0.44 -0.24 0.68 

P3 0.41 -0.01 0.73 

P4 -0.22 0.33 0.65 

P5 -0.65 0.4 0.53 

P6 -0.45 0.33 0.76 

P7 -0.17 -0.42 0.75 

P8 0.25 -0.75 0.41 

P9 0.66 -0.67 0.2 

P10 0.73 -0.63 0.12 

P11 0.89 -0.29 0.3 

P12 0.78 -0.23 0.46 

T1 0.83 0.53 -0.06 

T2 0.7 0.69 0.1 

T3 0.49 0.76 0.32 

T4 -0.38 0.74 0.52 

T5 -0.66 0.48 0.55 

T6 -0.76 0.38 0.41 

T7 -0.57 0.5 0.11 

T8 0.15 0.91 0.14 

T9 0.54 0.8 0.06 

T10 0.72 0.67 -0.01 

T11 0.81 0.56 -0.12 

T12 0.83 0.53 -0.11 

 

  

similar to those for past climate. Therefore, they have the
same interpretation and it is possible to analyze the change in
spatial patterns between the past and future climate. The spa-
tial distributions of future indices are shown in Fig. 7. Statis-
tical descriptors, e.g., the minimal, maximal, and mean value
of past and future indices, are summarized in Table 6. In ad-
dition, as we have used the same standardization (subtraction
of the reference period mean) and climate index calculation
process (loadings from the reference period), we can derive
conclusions about increases or decreases in these climate in-
dices. However, it is important to note that no conclusions
can be derived about the value by which the increase or de-
crease has happened.
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Figure 7. Climate indices (based on principal components from 1961–1990) for the years 2071–2100.

Table 6. Statistics of climate indices (based on PCA) for past and
future data.

1961–1990 2071–2100

PC1 Mean 0.00 8.38
Min −4.84 3.17
Max 8.95 18.24

PC2 Mean 0.00 11.38
Min −5.62 6.24
Max 6.14 17.05

PC3 Mean 0.00 7.13
Min −8.43 1.54
Max 4.84 12.28

All indices have higher values in future climate. This can
be interpreted as an overall warmer climate (increase in PC2)
and wetter climate (increase in PC3). The interpretation of
PC1 is more complicated as coefficients (Table 4) for some
variables are positive and negative for others. An increase
in PC1 would be observed in the case of a constant in-
crease in all variables. However, an increase would also be
observed in the case of a temperature and precipitation de-
crease in spring and summer. An average increase of “stan-
dardized” (by Eq. 5) mean values is 1.4 units for temperature
and 4.5 units for precipitation. Such a constant increase with
the coefficients in Table 4 would result in a 6.5 unit increase
for PC1. As we can see from the index statistics in Table 7,
an increase of 8.4 units is observed for PC1, so we suspect
that the additional increase can be attributed to changes in
seasonality.

For PC1 it is shown that the values corresponding to
coastal regions in the reference climate will “move” to the
eastern part of the Baltic states in the future projections. The

expected changes in PC2 are the largest, and the maximum
values of PC2 for the reference climate (in southern Lithua-
nia) are lower than the minimum values for the future climate
(in central Estonia). The statistics in Table 6 show that the
reference range of this index does not overlap with the range
of future values. The climate corresponding to the reference
values of PC3 in western Lithuania (the Zemaiciai Highland)
will in the future be observable on plateaus in the central and
northeastern parts of the Baltic states.

4 Discussion

The methodology used in this study has been able to reduce
24 climate variables to three new indices that more efficiently
and compactly represent the main features of the climate in
the Baltic countries. The methodology can also be applied
to future climate data and therefore the impacts of climate
change can be analyzed. Additional analysis is needed for
the interpretation of the acquired indices.

Some insight into the possible interpretation of the ac-
quired climate indices can be gained from the literature. The
spatial distribution of PC1 is similar to the spatial patterns of
the mean start date of winter (see results for Estonia in Jaa-
gus and Ahas, 2000) with higher PC1 values corresponding
to later winters.

As PC2 is mainly linked to temperature, the patterns ex-
hibited by PC2 can be expected to be similar to the spa-
tial distribution of phenological events for which tempera-
ture is the main driving factor. For example, the spatial pat-
tern of PC2 shows similarities to spring and summer start
dates in the Baltic Sea region and to more specific phenolog-
ical events, such as apple tree blossoming and the beginning
of the vegetation of rye (Jaagus and Ahas, 2000) or straw-
berry blooming and harvest (Bethere et al., 2016). In gen-
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Table 7. Description and interpretation of climate indices based on PCA.

Name High values correspond to locations with Possible interpretation of high values

PC1 Warm winter with high precipitation, cold summer with low precipitation Less distinct seasonality
PC2 High overall temperature, low precipitation in autumn Warmer climate
PC3 High annual precipitation, warmer springs More humid climate

eral, higher values of PC2 correspond to places with earlier
phenological processes.

High values of winter precipitation and high temperatures
in spring can be interpreted in the context of spring floods;
however, additional analysis is needed to account for the
snow cover. The spatial distribution of PC3 is similar to
the map of average annual precipitation in the study region
(Jaagus et al., 2010). Interestingly, the precipitation in au-
tumn months (September–October) has a small contribution
to PC3 (Table 5).

Conclusions based on spatial pattern and correlation coef-
ficient analysis are summarized in Table 7.

The methodology could be further improved to better link
the acquired indices with phenological processes or seasons
by either rotating the acquired principal components (Jolliffe,
2002) or performing correlation or regression analysis with
other variables, such as crop yield (Cai et al., 2013). This
approach would be especially useful in the case of PC1, for
which analysis is currently complicated due to both changes
in seasonality and the constant increase affecting PC1 val-
ues. Another approach that could be used to describe the spa-
tial variability of the climate in the Baltic states is clustering
based on the chosen principal component values (Fovell and
Fovell, 1993; Forsythe et al., 2015).

If variables other than temperature or precipitation are
used for the principal component analysis, in some cases the
standardization procedure should be modified. However, it
should be taken into account that when more than one data
set is used, e.g., when past and future climate is compared,
the same values used for standardization should be applied to
all of them.

5 Conclusions

Most of the spatial variability in monthly average tempera-
ture and precipitation over the Baltic countries can be repre-
sented by three principal components for both past and fu-
ture climate. These components can be considered climate
indices, in which higher values correspond to locations with
(1) climate with less distinct seasons, (2) warmer climate,
and (3) climate with more precipitation. Each component has
a distinct spatial pattern. The index related to seasonality ex-
hibits a clear east–west (or inland) gradient with less distinct
seasonality at the seaside (west). The second index (warmer
climate) shows a north–south gradient with a warmer climate
in the south. This index also reflects orography with colder

climate in hilly regions. The third index reflects the overall
precipitation. Its spatial distribution is mainly dominated by
elevation, with maxima at the highlands and less precipita-
tion in the plains and at the seaside. A specific standardiza-
tion of the data also allows for the calculation of such indices
for the future climate. Change in the climate indices in the
future implies less distinct seasons and a warmer and wetter
climate.

Although there is significant change in the magnitude of
the indices between the future and reference periods, the
change in spatial distribution is relatively small. For the first
and third components, regions can be identified in which the
future climate will be similar to the current climate in other
regions.
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