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Abstract. Groundwater closely interacts with surface water and even climate systems in most hydroclimatic
settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes
by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluc-
tuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with
long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was uti-
lized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale
multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated
that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely
dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed
that different levels of multifractality exist, which may be partially due to a broad probability density distribu-
tion with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level
fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution,
or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm),
which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian
with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite
moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for general-
ized governing equations of groundwater flow processes that can model both the long-memory behavior and the
Brownian finite-memory behavior.

1 Introduction

Groundwater in both confined and unconfined aquifers is
usually a complex and dynamic system that highly interacts
with surface water and even climate systems in most hydro-
climatic settlings due to its discharge to rivers and streams
and its recharge affected by various related physical pro-
cesses, such as precipitation, evapotranspiration, and infiltra-
tion (Green et al., 2011; Joelson et al., 2016; Li and Zhang,
2007; Rakhshandehroo and Amiri, 2012; Taylor et al., 2013).
These processes, which take place over various spatiotempo-
ral scales, add further complexity to groundwater systems.

Groundwater level fluctuations dynamically reflect the re-
sponses of an aquifer to its diverse inputs and outputs. Con-
sequently, groundwater level fluctuations are often nonsta-
tionary, rendering variabilities over different spatial and tem-
poral scales and resulting in no dependence on single rep-
resentative spatial and temporal scales. Therefore, ground-
water level fluctuations are often characterized as scale-free
processes and modeled as fractional Brownian motion (Hard-
stone et al., 2012; Yu et al., 2016). Although not neces-
sarily totally random, groundwater level fluctuations may
demonstrate long-range dependence through time, implying
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a power-law relationship over a variety of timescales, which
can be represented by fractals (Yu et al., 2016).

Fractal analysis of both persistent and anti-persistent be-
havior has been extensively utilized to investigate possible
relationships in variability among various scales (Blöschl
and Sivapalan, 1995). Temporal fractal scaling analysis of
groundwater dynamics can be essential to a better under-
standing of the modeling of hydrological processes by con-
sidering temporal correlations and scaling cascading issues,
since groundwater closely links to surface water in hydrolog-
ical modeling and hydrological models are built upon certain
temporal and spatial scales (Blöschl and Sivapalan, 1995; Yu
et al., 2016). Hence, fractal scaling analysis of groundwater
level fluctuations can guide more representative modeling in
hydrological models and in coupled land–atmosphere mod-
els. In fact, groundwater dynamics were found to provide
a positive feedback to the memory of land surface hydrolog-
ical processes in climate systems, and enhanced knowledge
of fractal behavior in subsurface hydrological processes can
help improve weather forecast and climate prediction on dif-
ferent temporal scales (Lo and Famiglietti, 2010). Further-
more, fractal scaling analysis of groundwater level fluctua-
tions may help investigate extreme events and anthropogenic
forcing in Earth systems (Yu et al., 2016).

Detrended fluctuation analysis (DFA), originally used to
analyze the long-range power-law correlations (i.e., persis-
tent fractal scaling behavior) of time series, is considered
a powerful method to quantify the scaling parameter or the
Hurst exponent for its capacity in detecting nonstationari-
ties and distinguishing seasonal oscillations from intrinsic
fluctuations compared with conventional methods, such as
R/S analysis or the variation method (Dubuc et al., 1989;
Hardstone et al., 2012; Shang and Kamae, 2005). In order to
characterize multifractal structures within complex nonlin-
ear heterogeneous processes, multifractal detrended fluctua-
tion analysis (MF-DFA; Kantelhardt et al., 2002) was devel-
oped based on the framework of DFA, which is mostly used
to quantify monofractality. DFA and MF-DFA have been
widely applied to evaluate the fractal scaling properties of
rainfall and streamflow time series in hydrology (Kantelhardt
et al., 2002; Koscielny-Bunde et al., 2006; Labat et al., 2011;
Livina et al., 2003; Matsoukas et al., 2000; Zhang et al.,
2008).

More specifically, DFA was first adopted in subsurface
hydrology by Li and Zhang (2007) to systematically eval-
uate the fractal dynamics of groundwater systems. They ana-
lyzed 4 years of continuous hourly data from seven wells and
found that groundwater level fluctuations are likely to follow
fractional Brownian motion (fBm) and that temporal scal-
ing crossovers exist in the fluctuations. These findings were
later confirmed by Little and Bloomfield (2010), Rakhshan-
dehroo and Amiri (2012), and Yu et al. (2016) with the ap-
plication of DFA to hourly or 15 min interval data for up to
5 years from 7 wells, daily data for 6 years from 2 wells, and
daily data from 22 wells that have more than 2500 records,

respectively. Rakhshandehroo and Amiri (2012) further uti-
lized MF-DFA to evaluate the multifractality of groundwater
level fluctuations and concluded that the extent of multifrac-
tality in groundwater level fluctuations is stronger than that
in river runoff.

Unlike the general finding of fBm-type behavior in
groundwater level fluctuations (Li and Zhang, 2007; Little
and Bloomfield, 2010; Rakhshandehroo and Amiri, 2012; Yu
et al., 2016), Joelson et al. (2016) found persistent scaling
behavior in the analysis of hourly groundwater level fluctu-
ation time series for a 14-month duration and fit the fluctua-
tion data with the Lévy stable distribution to account for the
observed non-Gaussian heavy-tailed behavior.

Multiscale multifractal analysis (MMA) was proposed on
the basis of MF-DFA, which normally analyzes time series
with crossovers only on a predefined large or small scale to
obtain the generalized Hurst surface, which simultaneously
provides local fractal properties at various scale ranges (Gier-
ałtowski et al., 2012; Wang et al., 2014). To the best of our
knowledge, MMA has not yet been applied to analyze time
series in hydrology or subsurface hydrology.

In this paper, DFA, MF-DFA, and MMA are applied to
systematically evaluate the temporal fractal scaling proper-
ties (monofractality and multifractality) of groundwater level
fluctuations in two confined aquifer wells with daily data of
70 and 80 years in Texas, USA. Long-term groundwater level
data are used, since the Hurst exponent estimated by a larger
number of data points tends to be more stable (Weron, 2002).
We also check the variation in the estimated Hurst exponent
by DFA with different lengths of data and variable time inter-
vals, which is largely unexplored in the aforementioned stud-
ies. The possible explanation of the existence of multifractal-
ity is studied by MF-DFA and MMA. Furthermore, we inves-
tigate the groundwater level fluctuation probability distribu-
tion by fitting the data with the α-stable distribution and other
distributions, such as Gaussian distribution, gamma distribu-
tion, and lognormal distribution, to check if the fBm identi-
fied in previous studies is adequate to characterize ground-
water level fluctuations. Additionally, we compare the Hurst
exponent from fractal analysis with that from the stability in-
dex of the fitted α-stable distribution, since the stability index
and the Hurst exponent are related under certain conditions
(Taqqu et al., 1997).

2 Methodology

Since the pioneering work of Hurst (1951) on the long-
memory behavior (or persistent fractal) of the storage ca-
pacity of reservoirs in the Nile River, the Hurst exponent
has been regarded as the best-known estimator indicating
the magnitude of long-range dependence in time series and
has been widely used to study fractal scaling behavior in
geophysical sciences, specifically for river flows and turbu-
lence (Nordin et al., 1972; Szolgayova et al., 2014; Vogel
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et al., 1998), porosity and hydraulic conductivity in subsur-
face hydrology (Molz and Boman, 1993), climate variabil-
ity (Bloomfield, 1992; Franzke et al., 2015; Koutsoyiannis,
2003), and sea level fluctuations (Barbosa et al., 2006; Er-
can et al., 2013). The Hurst exponent H may be defined as
follows:

φ (ct) d
H⇒ cHφ (t) ,∀t ≥ 0,∀c > 0, (1)

where φ is a given stochastic process, t is time, c is a pos-
itive constant, and d is the finite dimension of the time se-
ries data; 0<H < 0.5 demonstrates anti-persistent behavior,
H = 0.5 corresponds to uncorrelated noise, 0.5<H < 1 in-
dicates long-range dependence (i.e., persistent behavior), and
H = 1 is for pink noise.

Here, the Hurst exponent was adopted to quantify the scal-
ing properties of groundwater level fluctuation time series.
Many methods for the estimation of the Hurst exponent are
used in the literature, and different methods may provide sig-
nificantly different estimates. Detrended fluctuation analy-
sis is chosen here due to its superior performance compared
to conventional methods in detecting evolving nonstationari-
ties, which can be very useful to investigate the fractal behav-
ior of time series datasets with different time intervals and in
differentiating seasonal trends from the inherent fluctuations
of time series (Yu et al., 2016).

2.1 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA), also known as vari-
ance of the regression residuals, was proposed by Peng
et al. (1994). The method is briefly summarized as follows.

First, the original time series {xt } t = 1,2, . . .,n are con-
verted to corresponding sums as

Xt =

t∑
i=1

(xi − x) . (2)

Then, {Xt } is divided into m (m= n/l) nonoverlapping
blocks

{
Yj
}

of size l, and a least-squares fit (or the lo-
cal trend) is performed by calculating the variance for each
block:

V =
1
l

l∑
j=1

[
Yj −Yl(j )

]2
, (3)

where Yl(j ) is the local fitted polynomial trend of first or-
der, second order, or any other higher order. Finally, the root
mean- square over all blocks is calculated, yielding the “fluc-
tuation”:

F (l)=

√√√√ 1
m

m∑
i=1

V . (4)

Fitting a linear line of log(F (l)) against log(l) would indicate
the presence of power-law scaling as

F (l)∝ lα. (5)

For fractional Gaussian noise (FGN), α =H , where H is
the Hurst exponent. For nonstationary processes (e.g., frac-
tional Brownian motion) α =H + 1 (Heneghan and Mc-
Darby, 2000). In this study, the local trend is fitted by a lin-
ear line. The DFA method does not assume stationarity in
advance. Moreover, it is less sensitive to trends within the
data than other approaches, such as the R/S, since a linear
regression fit is applied locally in each block.

2.2 Multiscale multifractal analysis

Multiscale multifractal analysis (MMA) is a generalization
of multifractal detrended fluctuation analysis (MF-DFA),
which is developed from DFA (Gierałtowski et al., 2012). In
contrast to MF-DFA, which requires the presumption of scal-
ing ranges, MMA is capable of concurrently characterizing
different fractal properties (monofractality or multifractality)
of time series over a wide range (both small and large) of
temporal scales. MMA can be specified as follows.

Based on DFA, the qth-order fluctuation is calculated as
(Kantelhardt et al., 2002)

Fq (l)=

 1
2m

2m∑
i=1

[
1
l

i∑
j=1

(
Yj −Yi (j )

)2]q/2
1/q

. (6)

If a long-range power-law correlation exists in the time se-
ries, then Fq (l) for large values of l yields (Kantelhardt et al.,
2002)

Fq (l)∼ lh(q), (7)

where h(q) is the generalized Hurst exponent and values of
h(q) can be interpreted as follows: h ∈ (0,0.5) indicates anti-
persistent behavior of the time series, h= 0.5 denotes un-
correlated noise, h ∈ (0.5,1) indicates persistent behavior of
the time series, h= 1.5 corresponds to Brownian motion,
and h≥ 2 indicates black noise; h(q) yields the classical
Hurst exponent H when q = 2 for stationary time series and
H = h (2)−1 for nonstationary time series, and h(q) is inde-
pendent of q for monofractal data and strongly depends on q
for time series showing persistent multifractal behavior.

The strength of multifractality may be further measured by
the Hölder spectrum or singularity spectrum (Feder, 1988).
The Hölder exponent αq and the Hölder spectrum (singular-
ity spectrum) f

(
αq
)

can be computed as follows (Kantel-
hardt et al., 2002):

τq = qh (q) ,αq =
dτq
dq

andf
(
αq
)
= qαq − τq , (8)

where τq is the classical multifractal scaling exponent. The
strength of multifractality in a time series can be estimated
by the width of f

(
αq
)
, which can be illustrated by the range

of αq as 1αq = αmax−αmin (Koscielny-Bunde et al., 2006).
The above estimators show the formulation of MF-DFA.

After the calculation of all Fq (l) values by MF-DFA, a mov-
ing fitting time window, which completely sweeps through
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the range of scale l along Fq (l), is used to study quasi-
continuous changes between h(q) dependence and the range
of scale l. The fitting procedure is as follows:

hfi (q, l)=
log

[
1Fq (l)fi

]
log

(
1lfi

) , (9)

where fi is a fitting window (i = 1,2, . . .,n) and hfi is the
local scaling exponent in fi . For a fixed q, the spectrum of
scaling exponents over the whole range of scale l is obtained
by h(q, l)=

{
hf1 ,hf2 , . . .,hfn

}
. After plotting the results of

h (q, l) for all the q values, the Hurst surface h (q, l), which
simultaneously provides the generalized Hurst exponent for
multiple scales and q, is obtained (Wang et al., 2014).

The capability of MMA, which is inherited from DFA and
MF-DFA, is that it can effectively detect observational noise
and nonstationarities in time series. Similar to MF-DFA, the
results of h (q, l) in MMA characterize large fluctuations in
the fragments of data for q > 0, while the results of h (q, l)
correspond to small fluctuations for q < 0.

2.3 Alpha-stable distributions

The α-stable distributions introduced by Lévy (1925) repre-
sent a class of stable laws determined by four parameters:
the stability index α, the skewness parameter β, the scale
parameter γ , and the location parameter δ. Therefore, the
α-stable distribution of a random variable X is usually de-
noted by X ∼ Sα (β, γ, δ). No closed forms exist for the α-
stable distributions, except for the following three distribu-
tions: Gaussian, Cauchy, and Lévy. The α-stable distribu-
tion of a random variable,X ∼ Sα (β, γ, δ), can be described
by the following characteristic function (Samoradnitsky and
Taqqu, 1994):

φx (t)=


exp

{
−γ α |t |α

[
1− iβsign(t) tan

(πα
2

)]
+ iδt

}
,

α 6= 1

exp
{
−γ α |t |α

[
1+ iβsign(t)

(
2
π

)
log |t |

]
+ iδt

}
,

α = 1

(10)

where

sign(t)=


1, if t > 0
0, if t = 0
−1, if t < 0

. (11)

The stability index α is also known as the characteristic
exponent and is in the interval of α ∈ (0,2]. The distribution
becomes a normal distribution when α = 2. The skewness
parameter satisfies−1≤ β ≤ 1. The location parameter δ in-
dicates the shift of the peak of the distribution and it is unde-
fined unlessα > 1. The distribution is symmetric around δ if
β = 0. The scale parameter γ measures the dispersion of the
distribution and is always positive (γ > 0).

Stable distributions are heavy tailed, and the tails of these
distributions demonstrate asymptotical power law behavior

with 0< α < 2 and −1< β < 1. One important property of
the α-stable distribution is that there is a possible link be-
tween the stable distribution and self-affine behavior accord-
ing to the generalized central limit theorem (Gnedenko and
Kolmogorov, 1956). To be more specific, approximation of
the tail of the stable distribution X ∼ Sα (β, γ, δ) may be
shown (Samoradnitsky and Taqqu, 1994):{

lim
x→∞

P (X > x)= cα (1+β)γ αx−α

lim
x→∞

P (X <−x)= cα (1−β)γ αx−α , (12)

where cα = 1
π

sin
(
πα
2

)
0 (α). This behavior indicates that α-

stable distributions can be well accommodated to model self-
similar processes. The distribution with 1< α < 2 is of sig-
nificant interest to researchers as the mean of the distribution
can be defined and the variance is infinite. The non-integer
α in this range, which is capable of characterizing processes
with infinite variance, is related to the Hurst exponentH , pre-
senting long-range dependence and statistical self-similarity
properties, as follows (Taqqu et al., 1997):

α = 3− 2H. (13)

Since the Lévy α-stable distribution is 1/α self-similar, the
following equation is also used to describe the relationship
between the stability index and the Hurst exponent (Peters,
1994):

α =
1
H
. (14)

3 Data analysis

Two confined aquifer wells with long groundwater level
records (70 and 80 years long) were chosen in this study to
perform fractal scaling analysis (see Appendix A for the se-
lection procedure). Groundwater level time series data of the
two wells were obtained from the Water Data for Texas web-
site (http://waterdatafortexas.org/groundwater/). These two
wells are both located at Edwards (Balcones Fault Zone)
aquifer, which primarily consists of partially dissolved lime-
stone. The geophysical properties and basic statistics of the
groundwater levels of the two wells are listed in Table 1.
Based on the data availability, the study period was chosen
from 1 January 1945 to 31 December 2014 for Well 1, and
from 1 January 1935 to 31 December 2014 for Well 2. The
missing groundwater level data of the two wells were ob-
tained by linear interpolation. The total daily records used
in this study are 25 567 and 29 220 for Well 1 and Well 2,
respectively (Fig. 1).

The autocorrelation function (ACF) in Fig. 2 shows very
slow decay in both datasets, and the dataset of Well 1 decays
more slowly than that of Well 2. In fact, it takes several years
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Table 1. Statistics and geophysical properties of studied wells in Texas, USA.

Well ID Location (lat, long) Well depth
below land
surface (m)

Aquifer type Record period Mean (m) SD (m)

Well 1 6950302 (29.208888◦ N,
99.784444◦W)

87.48 Confined 24 Oct 1940 to present 11.57 4.75

Well 2 6837203 (29.479166◦ N,
98.432499◦W)

266.40 Confined 12 Nov 1932 to present 20.10 5.00

Note: mean represents the mean groundwater level (hydraulic head) depth below land surface.

Figure 1. Groundwater level time series data of (a) Well 1 and (b) Well 2.

(more than 1000 days) for Well 1 to become decorrelated,
while it takes a couple of years (more than 500 days) for
Well 2. Moreover, the ACF plots greatly vary in different 20-
year intervals of the two datasets (bottom left and right panels
in Fig. 2), which may imply that the long-range dependence
characteristics of the two wells would vary through time.

The power spectra of Well 1 (1945–2014) and Well 2
(1935–2014) groundwater levels are presented in Fig. 3.
The power-law exponents are estimated as 2.44 and 2.08
for Well 1 and Well 2 groundwater levels, respectively, in-
dicating the existence of fractals in both datasets. Hurst
exponents can be deduced from the power-law exponents
(Heneghan and McDarby, 2000) as 0.72 and 0.54 for
Well 1 and Well 2 groundwater levels, respectively. Further-
more, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
(Kwiatkowski et al., 1992) is conducted to test the stationar-
ity of the data. The null hypothesis for the KPSS test is that
a time series is stationary, and the alternative is that data are
nonstationary. The estimates of the KPSS statistic are 5.6357

and 1.8012 for Well 1 and Well 2 groundwater levels, re-
spectively, and both reject the null hypothesis at a 1 % sig-
nificance level, which suggests that the two time series are
nonstationary. These results provide reference for the quan-
tification of the Hurst exponent later by DFA.

3.1 Monofractal analysis

The Hurst exponents of groundwater level fluctuation data,
quantified by the DFA approach over different time intervals,
are investigated here. The evolution of the Hurst exponentH
through time is shown in Fig. 4, for which the data were cho-
sen in the original order, moving year by year forward from
1945 to 2014 for Well 1 (i.e 1945–1949, 1945–1950, . . . ,
1945–2014) and from 1935 to 2014 for Well 2 (i.e 1935–
1939, 1935–1940, . . . , 1935–2014). Figure 4a and b clearly
show that the Hurst exponent varies through time for both
Well 1 and Well 2 groundwater levels. Box plots in Fig. 4c
demonstrate that the mean and variance of the Hurst expo-
nent through time differ noticeably for both Well 1 and Well 2
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Figure 2. Autocorrelation function (ACF) for all groundwater level datasets (a); ACF at each 20-year interval for Well 1 (b) and Well 2 (c).

Figure 3. Power spectra of (a) Well 1 and (b) Well 2 groundwater levels.

groundwater levels.H is 0.73 and 0.51 for Well 1 and Well 2,
respectively, when all the available data are used, which sug-
gests that both datasets indicate long memory. These esti-
mates of Hurst exponents are also consistent with the ones
that are deduced from the power-law exponents in Fig. 3. In
general, groundwater level fluctuations of Well 1 show per-
sistent fractal behavior (H > 0.5, more specificallyH > 0.7)
for all investigated time periods, and those of Well 2 vary be-

tween persistent and anti-persistent, even showing uncorre-
lated behavior at certain times.

The Hurst exponent H for Well 1 groundwater levels
varies between 0.8 and 0.85 for up to 8 years of daily data
for end years 1948–1952 (Fig. 4a). It then stabilizes within
values of 0.71 and 0.78 for 9 years and longer time durations
(for end years after 1952; Fig. 4a). On the other hand, H for
Well 2 groundwater levels varies between 0.53 and 0.6 for up
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Figure 4. (a) The evolution of the Hurst exponent through time for Well 1 groundwater levels, which starts from 1945; (b) the evolution of
the Hurst exponent through time for Well 2 groundwater levels, which starts from 1935; (c) box plots of the Hurst exponents in panels (a)
and (b).

to 7 years of daily data for end years 1939–1941 (Fig. 4b). It
then stabilizes within 0.46 and 0.53 for time durations longer
than 8 years (for end years after 1941; Fig. 4b). As such, the
fractal behavior of groundwater levels obtained from short-
duration data (in this study, less than 8 years for Well 1 and
7 years for Well 2) may not exhibit stable long-term fractal
behavior. These results further imply that the length of time
series and the time period covered jointly affect the value
of H . The Hurst exponents here demonstrate the ability of
DFA in distinguishing the seemingly long-range correlations
caused by external effects (such as seasonal trends) from
intrinsic fluctuations (Yu et al., 2016), since the ACF plots
show very slow decay in both wells (Fig. 2).

Figure 5 presents the Hurst exponents of groundwater level
data estimated with different moving time windows (5, 10,
and 20 years). Daily data were used in different time win-
dows: 5-year moving window (i.e., 1945–1949, 1946–1950,
. . . , 2010–2014), 10-year moving window (i.e., 1945–1954,
1946–1955, . . . , 2005–2014), and 20-year moving window
(i.e., 1945–1964, 1946–1965, . . . , 1995–2014). Figure 5a and
b show that the Hurst exponents vary greatly in different time
windows (i.e different length of groundwater level fluctua-
tion data) and also do not remain constant even with the same
time window when the time window moves in time. More-
over, the results in Fig. 5a and b demonstrate that the Hurst

exponent tends to be stable as the time window increases,
which is consistent with the results in Fig. 4.

Additionally, the correlation coefficient r is used to inves-
tigate the relationship between the Hurst exponent and the
variation in groundwater level fluctuations, which is quan-
tified by the coefficient of variation, cv (cv = δ/µ, where δ
is the SD of the data and µ is the corresponding average).
From Fig. 5c it may be inferred that strong linear correla-
tion exists between cv and H (r > 5), and the correlation be-
comes stronger as the time window increases from 5 to 20.
Meanwhile, for Well 2 groundwater levels the correlation is
weaker (r < 0.5), and r increases first and then decreases af-
terwards following the increase in the time window from 5 to
20 (Fig. 5d). For Well 1 groundwater levels (Fig. 5c), a larger
cv normally follows a greaterH for 5-, 10-, and 20-year time
windows. However, for Well 2 groundwater levels (Fig. 5d),
this relationship generally does not hold (especially for the
20-year time window). Figure 5c and d suggest that the vari-
ability in groundwater level fluctuations may affect the intrin-
sic correlation (long memory or short memory) of the data,
but it is highly site specific. The different Hurst exponents in
different wells may be due to the effect of the heterogeneity
of the aquifer materials (Li and Zhang, 2007).

Figure 6 further investigates the variation in the Hurst ex-
ponents with box plots for 5-, 10-, 20-, 30-, 40-, and 50-year
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Figure 5. (a) The Hurst exponent of Well 1 groundwater levels estimated by DFA within different time windows. (b) The Hurst exponent of
Well 2 groundwater levels estimated by DFA within different time windows. (c) The relationship between the coefficient of variation and the
Hurst exponent obtained in panel (a). (d) The relationship between the coefficient of variation and the Hurst exponent obtained in panel (b).

Figure 6. Box plots of the Hurst exponents under different moving time windows for (a) Well 1 groundwater levels and (b) Well 2 ground-
water levels.
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Figure 7. Fq as a function of timescale l and the generalized Hurst exponent h as a function of q for the groundwater levels of (a) Well 1
(b) Well 2; (c) the scaling exponent spectrum τq vs. the moments for the groundwater levels of Well 1 and Well 2; (d) the singularity spectrum
for the groundwater levels of Well 1 and Well 2.

moving time windows. Unlike the inconsistency of the lin-
ear correlation between cv and H , the variation in H in both
Well 1 and Well 2 groundwater levels is consistent here. The
variation in H for the groundwater levels in both wells gen-
erally decreases as the moving time window increases, which
confirms the findings in Fig. 5a and b.

3.2 Multifractal analysis

The multifractal results obtained by MF-DFA in Fig. 7 in-
clude log–log plots of Fq (l) against timescale l, the general-
ized Hurst exponent h(q), the scaling exponent spectrum τq
and the singularity spectrum f

(
αq
)

corresponding to a series
of moments q (−5≤ q ≤ 5); h(q) is the slope of the linear re-
gression line of the log–log plot for a given q. Clearly, mul-
tifractality exists in the groundwater levels of Well 1 (1935–
2014) and Well 2 (1945–2014), since h(q) greatly varies with
q, as demonstrated in Fig. 7a and b, and the relationships be-
tween τq and q in Fig. 6c are not linear for the groundwater
levels of Well 1 and Well 2. This also suggests that differ-
ent exponents should be used to illustrate the fractal scal-
ing behavior (self-affinity) of different time intervals of the

data. Moreover, h(q) continuously decreases as q increases
in both figures, implying that relatively small fluctuations oc-
cur more frequently in the time series than large ones (Grech
and Czarnecki, 2009; Rakhshandehroo and Amiri, 2012).

The singularities of the processes in the groundwater lev-
els of Well 1 and Well 2 are revealed in Fig. 7d. The width
of the singularity spectrum, 1αq , is used to measure the
level of multifractality. The width of the singularity spec-
trum 1αq tends to be zero for monofractal structures and
would increase as the level of multifractality of the signal in-
creases; 1αq was found to be 4.05 for the groundwater lev-
els of Well 1 and 1.07 for the groundwater levels of Well 2.
These results indicate a high level of multifractality in both
time series, and Well 1 groundwater levels have a stronger
multifractality, which further suggests that the multifractal
behavior is quite site specific.

Two types of rationale are used to account for multifractal-
ity in time series (Kantelhardt et al., 2002). The first type is
that a broad probability density function of time series data,
which cannot be represented by a regular distribution with fi-
nite moments, causes multifractality. The second type is that
multifractality is caused by long-range correlations of small
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Figure 8. Fq as a function of timescale l and the generalized Hurst exponent h as a function of q after shuffling for (a) Well 1 groundwater
levels and (b) Well 2 groundwater levels. (c) The scaling exponent spectrum τq vs. the moments for Well 1 and Well 2 groundwater levels
after shuffling and (d) the singularity spectrum for Well 1 and Well 2 groundwater levels after shuffling.

and large fluctuations (Kantelhardt et al., 2002; Rakhshan-
dehroo and Amiri, 2012). To distinguish these two types of
multifractality, the corresponding randomly shuffled dataset
is analyzed. The multifractality will vanish if it is totally due
to the second type and will remain otherwise. If the multi-
fractality is due to both types, the shuffled data will present
weaker multifractality than the original data (Kantelhardt
et al., 2002).

Therefore, a shuffling procedure was conducted to inves-
tigate the types of the multifractality for Well 1 and Well 2
groundwater levels. The corresponding multifractality results
are shown in Fig. 8. This figure clearly shows that multi-
fractality still exists in the shuffled groundwater level data
of Well 1, since dependency between h(q) and q remains
(Fig. 8a). The relationship between τq and q is not linear
(Fig. 8c), which further verifies the existence of multifractal-
ity in shuffled Well 1 data;1αq was 0.18 (Fig. 8d), which in-
dicates a much weaker multifractality compared with1αq =
4.05 for the original data. The results for shuffled Well 2
groundwater level data, on the contrary, show that shuffling
almost completely destroyed the intrinsic fractal correlations,
since h(q) is independent of q (Fig. 8b), τq is linear with q

(Fig. 8c), and the singularity spectrum almost converges to
a single point with1αq = 0.02 (Fig. 8d), which may indicate
an approximate monofractal structure in Well 2 groundwater
levels.

The results in Fig. 8 reveal that different types of multi-
fractality exist in Well 1 and Well 2 groundwater level time
series. For Well 1, the multifractality is clearly due to the
combined effect of a broad probability density function and
temporal correlations in diverse magnitudes of fluctuations.
Meanwhile, the multifractality is almost purely caused by
long-range temporal correlations in small and large fluctu-
ations for Well 2 groundwater levels.

Since the Hurst exponent varies for different time intervals
of the groundwater level time series of Well 1 and Well 2
(Figs. 4, 5, and 6) and the small and large fluctuations of
temporal correlations contribute to the multifractality of both
datasets (Fig. 8), multiscale multifractal analysis (MMA) is
adopted to investigate the fractal behavior at different tempo-
ral scale ranges in detail, as demonstrated in Fig. 9. It is noted
that the generalized Hurst surfaces for the original datasets
of both Well 1 and Well 2 groundwater levels (top images
in Fig. 9) are far from flat (hill-like shape), which clearly
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Figure 9. Multiscale multifractal analysis for (a) Well 1 groundwater levels and (b) Well 2 groundwater levels. The top figure (in red, yellow,
and green) is for the original data and the bottom (in blue) is for the shuffled data. The thick black line indicates MF-DFA results for a given
temporal scale, and the solid dots show the generalized Hurst exponents at q = 2 by DFA over different scales.

suggests that different fractal scaling exponents are needed
to represent fractal behavior at multiple temporal scales for
both datasets. In addition, the generalized Hurst exponents
at q = 2 are between 1.5 and 2 for Well 1 groundwater lev-
els, indicating persistent behavior, and are mostly within the
range between 1 and 1.55 for Well 2 groundwater levels, in-
dicating persistent and anti-persistent fractal behavior (some-
times even uncorrelated). Moreover, the Hurst surfaces for
the shuffled time series of Well 1 and Well 2 (bottom im-
ages in Fig. 9) show that the surfaces become much flatter
than those generated by the original datasets (small fluctu-
ations in the Hurst surfaces still exist after shuffling),which
suggests that the shuffling substantially destroys the intrinsic
correlations, as consistent with the MF-DFA results.

3.3 Relationship between the stability index and the
Hurst exponent

Multifractal analysis suggests that multifractality is partially
due to a broad probability density distribution that may have
infinite moments. However, fBm (fractional Brownian mo-
tion), which has been identified as an appropriate model to
characterize groundwater level fluctuations (Li and Zhang,
2007; Little and Bloomfield, 2010; Rakhshandehroo and
Amiri, 2012; Yu et al., 2016), is Gaussian with finite mo-
ments. Therefore, fBm may be inappropriate for the descrip-
tion of physical processes with infinite moments, such as the

groundwater level fluctuations in this study. Histograms and
normal probability plots for Well 1 and Well 2 groundwater
levels in six selected durations of varying length apparently
indicate that the Gaussian distribution may not be suitable
to represent the groundwater level processes of both wells,
especially for Well 1 (Figs. 10 and 11, in which the prob-
ability curve would lie on the straight red line if the data
are normally distributed). Well 1 groundwater levels clearly
show a heavy tail, and Well 2 groundwater levels demon-
strate right-skewed behavior. As such, the Lévy alpha-stable
distribution, which is non-Gaussian with a heavy tail and has
infinite variance, was adopted to fit the groundwater datasets.
Moreover, to obtain a relatively comprehensive picture of
the underlying probability distribution, the Gaussian distri-
bution, gamma distribution, and lognormal distribution were
also used to fit the datasets (the Statistics and Machine Learn-
ing Toolbox in Matlab is used for this purpose). The fitting
procedure is conducted continuously with the data starting
from 1945 for Well 1 and from 1935 for Well 2 and moves
forward year by year with the same end year, 2014, for all the
fitting durations (at least 15 years of daily data are used to en-
sure a good characterization of the data distribution). Results
for the six selected durations are presented in Figs. 12 and 13
for Well 1 and Well 2 groundwater levels, respectively.

Figure 12 shows that, in general, the Lévy stable distri-
bution fits the groundwater level fluctuation time series of
Well 1 over different durations very well. Meanwhile, the
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Figure 10. Histograms and normal probability plots for various time intervals of groundwater levels of Well 1.

other distributions, i.e., normal, gamma, and lognormal, can-
not satisfactorily capture the behavior of the groundwater
levels of Well 1. This verifies the finding that the irregular
distribution of Well 1 groundwater levels contributes to the
multifractality. For Well 2 groundwater levels, Gaussian dis-
tribution adequately fits the data, except at the peak values
(Fig. 13). Furthermore, the fitted stable, gamma, and lognor-
mal distributions converge to the Gaussian distribution. This
may imply that fBm may partially represent the behavior of
Well 2 groundwater levels, which has the Hurst exponent
fluctuating between 0.48 and 0.52 (Fig. 14b).

Furthermore, the stability index α of the stable distribution
is related to the Hurst exponentH given by a relationship be-
tween α and H . Two formulae (Eqs. 12 and 13) are used to
estimate H . The estimated H is then compared with that es-
timated by DFA (Fig. 14). With respect to the difference be-
tween the Hurst exponent estimated by DFA (for both Well 1
and Well 2 groundwater levels) and that deducted from ei-
ther H = 1

α
or H = 3−α

2 , the relative difference is less than

10 % (even less than 1 % in some time intervals) for most of
the comparisons. For Well 1 groundwater levels, the Hurst
exponent by H = 1

α
generally matches better with H esti-

mated by DFA than that by H = 3−α
2 (Fig. 14a), although

for some durations, such as 1950–2014 or 1955–2014, the
latter performs better than the first. Figure 14c further shows
that the stability index α is strongly correlated with the co-
efficient of variation cv of the groundwater level fluctuation
data from Well 1, since the correlation coefficient is as high
as −0.84. It suggests that a larger cv of Well 1 groundwater
levels would probably imply a smaller α. A stability index
α = 2 for all the stable distributions for the groundwater lev-
els data from Well 2 (α = 2 corresponds to Gaussian distri-
bution) is found. This may be due to the fact that the Lévy
stable distribution here is restricted in the range 1< α ≤ 2,
which corresponds to 0.5≤H < 1. However, Well 2 ground-
water levels do not have long memory in some time intervals.
The relationship between H and α would completely fail
when H < 0.5. However, the resulting stability index α = 2
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Figure 11. Histograms and normal probability plots for various time intervals of groundwater levels of Well 2.

for Well 2 groundwater levels is acceptable considering that
the difference betweenH estimated by DFA andH estimated
by the stability index is less than 5 % for all the time periods.
This result is also consistent with Fig. 11 in which Gaus-
sian distribution is capable of capturing the main groundwa-
ter level fluctuation patterns of Well 2.

The results indicate that fBm, which has Gaussian charac-
teristics, may be a reasonable model for representing ground-
water level fluctuations under certain conditions, such as in
the case of the dataset of Well 2, which has the Hurst expo-
nent fluctuating close to around 0.5. However, fBm may be
an insufficient model for capturing the behavior of ground-
water fluctuations in other cases, for example in the case of
the groundwater levels of Well 1, in which a non-Gaussian
distribution, such as a heavy-tailed stable distribution (Lévy
motion), is needed instead. In the presence of long memory,
fractional Lévy motion may be more appropriate to model
and forecast the groundwater dynamics.

It is important to note that the results obtained so far are
limited to the analysis of temporal correlations of the ground-
water level fluctuations at certain locations. The properties
of the groundwater levels at the two wells, such as their frac-
tal behavior and underlying distributions, are highly different
from each other, which confirms that the results are site spe-
cific. Well 1 and Well 2 are chosen because the groundwater
level fluctuation records of these two wells are long and com-
plete. In addition, these two wells are very representative in
terms of fractal scaling behavior and underlying probability
density distribution.

Groundwater dynamics in aquifers result from multiple
complex dynamic processes, such as hydrologic processes
(precipitation, river runoff, etc.), the hydraulic properties of
soil and aquifers, and anthropogenic perturbations (such as
the construction of reservoirs and pumping of water). These
processes and properties vary at different spatiotemporal
scales, which directly or indirectly affect groundwater sys-
tems. The two confined aquifer wells analyzed in this study
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Figure 12. Probability density function and cumulative distribution function (first two rows and last two rows, respectively) of groundwater
level fluctuation time series data of Well 1.

are located at the same type of aquifer but present drastically
different dynamics of groundwater level fluctuations. The re-
sults obtained herein may be attributed to the time–space
heterogeneity of aquifer characteristics, hydrometeorologi-
cal conditions, and even anthropogenic forcing, but detailed
research, such as the employment of time–space analysis,
needs to be conducted to justify this and to account for the
effect of heterogeneity on fractal behavior at different tempo-
ral scales. The non-Gaussian fractal property of the ground-
water system in Well 1 that demonstrates long memory pro-
vides further insight for the resulting transport processes in
the porous medium, which may also present non-Gaussian
features with memory similar to the non-Gaussian behavior
that is found in the precipitation time series in other studies
(Joelson et al., 2016; Lovejoy and Mandelbrot, 1985). Unlike
Well 1 groundwater levels, the origin of multifractality for
the Well 2 groundwater levels is difficult to explain due to the

very weak multifractality after the shuffling. An intuitive ex-
planation may be that it is due to noise. However, the fractal
structure is not affected by dynamical noise (Serletis, 2008).
Additionally, Gaussian distribution may partially represent
the dataset of Well 2 groundwater levels, but it fails to cap-
ture the peak of the skewed distribution of Well 2 groundwa-
ter levels, which may imply that an irregular distribution that
also holds certain Gaussian characteristics may be needed to
fully characterize the groundwater dynamics of Well 2.

4 Conclusions

In this study, the fractal scaling properties of groundwater
level fluctuations of two confined aquifer wells with 70 and
80 years of daily data were analyzed. Detrended fluctuation
analysis (DFA) was utilized to quantify the Hurst exponent
and monofractality. The DFA results indicated that fractals
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Figure 13. Probability density function and cumulative distribution function (first two rows and last two rows, respectively) of groundwater
level fluctuation time series data of Well 2.

exist in the groundwater level time series of both wells, and it
was shown that the Hurst exponent is highly dependent on the
length and specific time period of the time series. A persistent
scaling pattern was found for all investigated time periods of
Well 1 groundwater levels (Hurst exponent, H > 0.5), and
the scaling pattern varied between anti-persistent and persis-
tent regimes for Well 2 groundwater levels. The Hurst expo-
nent H for Well 1 groundwater levels fluctuated between 0.8
and 0.85 for up to 8 years of daily data for end years 1948–
1952 (Fig. 4a) and then stabilized within the range of 0.71–
0.78 for 9 years and longer time durations (for end years after
1952; Fig. 4a). On the other hand, H for Well 2 groundwater
levels fluctuated between 0.53 and 0.6 for up to 7 years of
daily data for end years 1939–1941 (Fig. 4b) and then sta-
bilized within the range 0.46–0.53 for durations longer than
8 years (for end years after 1941; Fig. 4b).

Multifractal detrended fluctuation analysis (MF-DFA) and
multiscale multifractal analysis (MMA) were adopted to ex-
amine the multifractality and multifractal behavior at dif-
ferent temporal scales for confined groundwater levels. Al-
though the MF-DFA results showed that a relatively high
level of multifractality exists for the groundwater levels of
both wells, a stronger multifractality was observed for the
dataset of Well 1 compared to that of Well 2. The observed
multifractality was postulated to originate from the combined
effect of the underlying irregular probability distributions
and different magnitudes of fluctuations in multiple long-
range temporal correlations for Well 1 groundwater levels
and mostly long-range temporal correlations in small and
large fluctuations for Well 2 groundwater levels. Moreover,
the MMA results confirmed the existence of multifractality
and diverse correlations of groundwater levels over differ-
ent timescales. For Well 1, the Hurst exponent by H = 1

α
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Figure 14. (a) Well 1 groundwater levels: comparison between the Hurst exponent estimated by DFA and by stability index. (b) Well 2
groundwater levels: comparison between the Hurst exponent estimated by DFA and by stability index. (c) Well 1 groundwater levels: the
coefficient of variation cv vs. the stability index obtained in panel (a). (d) Well 2 groundwater levels: the coefficient of variation cv vs. the
stability index obtained in panel (b).

generally matches H estimated by DFA than better that by
H = 3−α

2 . The stability index α is strongly correlated with
the coefficient of variation cv of the groundwater level fluc-
tuation data from Well 1, since the correlation coefficient is
as high as −0.84. For Well 2, a stability index α = 2 for all
the fitted stable distributions for the groundwater level data
from Well 2 (α = 2 corresponds to Gaussian distribution) is
found.

Furthermore, the underlying probability distribution of
groundwater level fluctuations for Well 1 represented mainly
long-memory characteristics, which were fitted reasonably
well by the Lévy stable distributions for various time peri-
ods. On the other hand, those of Well 2 represented mainly

Gaussian characteristics, which sometimes failed to capture
the peaks of the skewedprobability distributions of Well 2
groundwater levels. Time series analysis of groundwater
level fluctuations of the two wells demonstrated that the ob-
served fractal behavior is site specific, and there is a need for
generalized governing equations of groundwater flow pro-
cesses that can model both the long-memory behavior and
the Brownian finite-memory behavior (Kavvas et al., 2017;
Tu et al., 2017).

Data availability. The data used in this article can be accessed by
contacting the corresponding author.
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Appendix A: Selection criteria for the two wells

As of May 2016, there are 257 monitoring wells, both
active and inactive, reported on the web page of Water
Data for Texas (http://waterdatafortexas.org/groundwater/).
The groundwater level datasets consist of data taken from
77 confined aquifer wells, 179 unconfined aquifer wells, and
1 unknown aquifer well. Since the focus of this study is
on the confined aquifer well, the spatial distribution of the
77 datasets related to the confined aquifer is provided in
Fig. A1.

The longest dataset has more than 81 years of record with
an approximate 2.6 % missing rate, and the second-longest
dataset includes more than 72 years of record with an approx-
imate 3.6 % missing rate. The third-longest dataset has more
than 10 % missing measurements and has about one-third
of the length of the second-longest dataset. Therefore, the
first- and second-longest groundwater level records were an-
alyzed in this study. Record lengths (in days) and percentage
of missing data for the 20 longest groundwater level records
reported by Water Data for Texas are presented in Fig. A2.

It can be seen from Fig. A2 that only the first two records
are of excellent data quality with respect to length and com-
pleteness. Therefore, the groundwater level fluctuations of
these two confined aquifer wells are analyzed in this study.
The results indicate two different behaviors of the ground-
water level fluctuations, i.e., Gaussian and non-Gaussian,
which are not reported or compared in previous studies on
the fractal scaling analysis of groundwater level fluctuations.
Therefore, the results of this behavior with respect to these
two confined aquifer wells are reported in the paper. These
two wells are both located at the Edwards (Balcones Fault
Zone) aquifer, which primarily consists of partially dissolved
limestone. However, the dynamics of the groundwater level
fluctuations in these two wells behave drastically differently,
which may imply rather different climate-related and anthro-
pogenic perturbations in these two wells. Unfortunately, due
to the lack of high-quality datasets and detailed information
about the aquifers in this area, further discussion on the re-
gionalization of the fractal properties is difficult.

Figure A1. Spatial distribution of the confined aquifer wells in
Texas, USA reported by Water Data for Texas. The two red stars
denote the locations of the wells that have the first- and second-
longest records; yellow solid circles denote the locations of the other
75 wells.

Figure A2. Record lengths (in days) and percentage of missing data
for the 20 longest groundwater level records reported in Texas by
Water Data for Texas.
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