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Abstract. Bias correction of climate variables is a standard practice in climate change impact (CCI) studies.
Various methodologies have been developed within the framework of quantile mapping. However, it is well
known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the
temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statis-
tics is presented. The methodology separates the modeled temperature signal into a normalized and a residual
component relative to the modeled reference period climatology, in order to adjust the biases only for the former
and preserve the signal of the later. The results show that this method allows for the preservation of the originally
modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature.
To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX
regional climate models (RCMs).

1 Introduction

Climate model output provides the primary source of infor-
mation used to quantify the effect of the foreseen anthro-
pogenic climate change on natural systems. One of the most
common and technically sound practices in climate change
impact (CCI) studies is to calibrate impact models using the
most suitable observational data and then to replace them
with the climate model data in order to assess the effect of
potential changes in the climate regime. Often, raw climate
model data cannot be used in CCI models due to the presence
of biases in the representation of regional climate (Chris-
tensen et al., 2008; Haerter et al., 2011). In fact, hydrolog-
ical CCI studies outcome have been reported to become un-
realistic without a prior adjustment of climate forcing biases
(Hagemann et al., 2013; Hansen et al., 2006; Harding et al.,
2014; Sharma et al., 2007). Papadimitriou et al. (2017) quan-
tified the effect of the bias in seven forcing parameters on
the resulting runoff of a land surface model, emphasizing
the necessity of bias adjustments beyond the precipitation
and temperature parameters. These biases are attributed to
a number of reasons such as the imperfect representation of

the physical processes within the model code and the coarse
spatial resolution that does not permit the accurate represen-
tation of small-scale processes. Furthermore, in some cases,
climate model tuning for global projections focuses on the
adequate representation of feedbacks between processes, and
hence the realistic depiction of a variable, such as tempera-
ture, against observations is sidelined (Hawkins et al., 2016).

A number of statistical bias correction methods have been
developed and successfully applied in CCI studies (e.g., Gril-
lakis et al., 2013; Haerter et al., 2011; Ines and Hansen, 2006;
Teutschbein and Seibert, 2012). Their main task is to adjust
the statistical properties of climate simulations to resemble
those of observations, in a common climatological period.
A commonly used type of procedure to accomplish this is
a transfer function (TF) which minimizes the difference be-
tween the cumulative density function (CDF) of the climate
model output and that of the observations, a process also re-
ferred to as quantile mapping. As a result of quantile map-
ping, the reference (calibration) period’s adjusted data are
statistically closer, and sometimes near-identical to the ob-
servations. Hence, the statistical outcome of an impact model
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run using observational data is likely to be reproduced by the
adjusted data. The good performance of statistical bias cor-
rection methods in the reference period is well documented
(Grillakis et al., 2011, 2013; Ines and Hansen, 2006; Pa-
padimitriou et al., 2015). The procedure, however, overlooks
the time dependency of the distribution and hence the un-
equal effect of the TF to the varying over time CDF. An in-
dicative example is presented in Fig. 1, where modeled tem-
perature data have a mean bias of 2.49 ◦C in the reference
period (Fig. 1a) relative to the observations. This mean bias
is expressed by the average horizontal distance between the
TF and the bisector of the central plot. The left histogram il-
lustrates the reference period modeled data for 1981–2010.
The histogram at the bottom is derived from observational
data. The histogram on the right is derived from a moving
30-year period between 1981 and 2098. The rightmost his-
togram shows the difference between the reference period
and the moving 30-year period. The red mark shows the the-
oretical change in the average correction applied by the TF,
due to the changes in the projected temperature histogram.
Hence, the average correction applied for the period 2068–
2097 reaches 3.85 ◦C, significantly higher than the reference
period’s bias (Fig. 1b). The time-dependency of the correc-
tion magnitude introduces a long-term signal distortion in
the corrected data. In the quantile-mapping-based correction
methodologies in which the TF distance from the bisector
is variable, this effect is unavoidable. Nevertheless, in cases
where the TF retains a relatively constant distance to the bi-
sector (i.e., parallel to the bisector), the trend of the corrected
data remains similar to the raw model data regardless of the
temporal change in the model data histogram.

Based on the previous example, the time extrapolation
of the TF is regarded as a leap of faith that may lead to
a false certainty about the robustness of the adjusted pro-
jection. This may significantly change the original modeled
long-term trend or other higher moments of the climate vari-
able statistics that eventually change the long-term signal
of the climate variable. In their work on distribution-based
scaling (DBS) bias correction, Olsson et al. (2015) showed
that their methodology might alter the long-term tempera-
ture trends, attributing the phenomenon in the severity of the
biases in the mean or the standard deviation between the un-
corrected temperatures and the observations. Maraun (2016)
discusses whether the change in the trend is a desired fea-
ture of bias correction, concluding that it is case-specific and
depends on the skillfulness of the climate model to simulate
the correct long-term signal. In the case of CCI studies, this
implies that climate model data are assessed for their skill
to well represent the trend, which is not a common prac-
tice. A possible but indirect solution to this is described in
Maurer and Pierce (2014), who study the change in precipi-
tation trend over an ensemble of atmospheric general circu-
lation model (AGCM). They conclude that, while individual
quantile-mapping-corrected AGCM data may significantly
modify the signal of change, a relatively large ensemble es-

Figure 1. The transfer function (TF – heavy black line) between
observed (bottom histograms) and modeled (histograms on the left)
for the reference period (1981–2010) is used to adjust bias of
a 30-year moving window from 1981–2010 to 2068–2097. The
rightmost plot shows the residual histogram after bias correction.
The change in the average correction (red mark) on the TF in
comparison to the reference period mean correction (square) is
shown. The animated version provided in the Supplement shows
the temporal evolution of the bias as the 30-year time window
moves on the projection data. Data were obtained from ICHEC-EC-
EARTH r12i1p1 SMHI-RCA4_v1 RCM of Euro-CORDEX experi-
ment (0.11◦ resolution) simulation under the representative concen-
tration pathway of RCP85, for the location Chania International Air-
port (long= 24.08, lat= 35.54). Observational data were obtained
from the E-OBS v14 dataset (Haylock et al., 2008) of 0.25◦ spatial
resolution.

timation diminishes the problem as individual model trend
changes were canceled out. Li et al. (2010) present a quan-
tile mapping method to adjust temperature biases taking into
account the differences of the future and reference period dis-
tributions. A drawback of the method is that the difference
between the two periods’ distributions depends on the future
period length. In their work, Hempel et al. (2013) propose a
methodology to resolve the trend changing issue by preserv-
ing the absolute changes in monthly temperature and relative
changes in monthly values of precipitation. A characteristic
of their approach is that it maps anomalies instead of absolute
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values, indicating that specific correction values are attached
to each temperature anomaly, while it also has the drawback
that the edges of the distribution are not corrected adequately.
A similar approach that is additive for temperature and mul-
tiplicative for precipitation was also followed by Pierce et
al. (2015). Bürger et al. (2013) and Cannon et al. (2015) test
the de-trending of the data prior to their quantile mapping
correction, figuring that the removal of the trends prior to the
quantile mapping and their reintroduction after the correction
tends without absolutely maintaining the long-term trend.

In this study, we present a methodology to conserve the
long-term statistics such as trend and variability of the cli-
mate model data in quantile mapping. The methodology con-
siders the separation of the temperature signal relative to
the raw data reference period, producing a normalized and
a residuals data stream. The separation is performed on an
annual basis. The residuals include the gradual changes in
the signal and the year-to-year fluctuations in the distribution
of the temperature. The quantile mapping bias correction is
then applied to the normalized daily temperature. Finally, the
residual components are merged to the bias-corrected time
series to form the corrected time series. The idea of identi-
fying and using two different timescales in bias correction
of temperature was introduced in Haerter et al. (2011), who
present a method to separate the different timescales and ap-
ply a correction to each one. The methodology presented
here is tested along with a generalized version of the multi-
segment statistical bias correction (MSBC) quantile mapping
methodology (Grillakis et al., 2013). The methodology takes
the form of a pre- and post-processing module that can be ap-
plied along with different statistical bias correction method-
ologies. The two-step procedure is examined for its ability
to remove the daily biases with simultaneous preservation of
the long-term statistics. The procedure is compared to the
simple quantile mapping and a quantile mapping in combi-
nation with a simpler trend preservation procedure.

2 Methods

2.1 Residual separation

The statistical difference of each individual year’s simulated
data, compared to the average reference period simulated
data is identified as residuals. These are estimated between
the CDF of each year’s modeled climate data and the CDF
of the entire reference period of the model data. Let SR be
the reference period model data and Si the climate data for
year i, then the normalized data SN

i for year i are estimated
by transferring each year’s data onto the average reference
period CDF through a transfer function TFSi

estimated an-
nually. This can be formulated as Eq. (1).

SN
i = TF−1

SR

(
TFSi

(Si)
)

(1)

The difference between the original model data Si and the
normalized data SN

i is the residual components SD
i of the time

series (Eq. 2).

SD
i = Si − SN

i (2)

The original model data Si can be reproduced by adding back
the residuals SD

i to the normalized data SN
i . After the sep-

aration, the normalized climate model data are statistically
bias-corrected following a suitable methodology. The resid-
uals are preserved in order to be later added back to the bias-
corrected time series. We refer to the described method as a
normalization module (NM) to hereafter lighten the nomen-
clature of the paper. The normalization procedure is per-
formed on annual basis, as this consists of an obvious pe-
riodicity to use in the case of temperature, even if it is not so
well defined in the tropics. The underlying assumption of the
NM procedure is that it considers no major changes in the
reference period data, a notion that can hardly fall short due
to the usually short length of the reference period.

2.2 Bias correction

Here, the NM is applied along with a modification of the
MSBC algorithm that is presented in Grillakis et al. (2013).
This methodology follows the principles of quantile mapping
correction techniques and was originally designed and tested
for GCM precipitation adjustment. The method partitions the
CDF data into discrete segments and an individual quantile
mapping correction is applied to each segment, achieving a
better-fitted transfer function. Here the methodology is mod-
ified to use linear functions instead of the gamma functions
used in the original methodology, in order to facilitate po-
tential negative temperature values but also as a known tech-
nique in quantile mapping, as it has also been used elsewhere
(Themeßl et al., 2011). An indicative example is shown in
Fig. 2, where the CDFs are split into discrete segments and
linear functions are fit to each of them. In Fig. 2, p symbol-
izes the cumulative probability and s is the slope of the linear
function. Then the corrected temperature for each tempera-
ture value of the specific segment is estimated as in Eq. (3).

T n
corr = sn

obs ·

(
T n

raw− bn
raw

sn
raw

)
+ bn

obs (3)

The optimal number of segments is estimated using the
Schwarz Bayesian information criterion (SBIC) to balance
between complexity and performance. Additionally, the up-
per and lower edge segments are explicitly corrected using
the average difference between the reference period of the
raw model data and the observations (Fig. 2 1T ). This pro-
vides robustness, avoiding unrealistic temperature values at
the edges of the model CDF. The bias correction methodol-
ogy modification has been already used in the Bias Correc-
tion Intercomparison Project (BCIP) (Nikulin et al., 2015),
while produced adjusted data have been used in a number
of CCI studies (Daliakopoulos et al., 2016; Grillakis et al.,
2016; Koutroulis et al., 2016; Papadimitriou et al., 2017,
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Figure 2. MSBC methodology on temperature correction using linear functions (borrowed from Grillakis et al., 2013; modified) in one of
the data segments.

2016). As the MSBC methodology belongs to the parametric
quantile mapping techniques, it shares their advantages and
drawbacks. A comprehensive shakedown of advantages and
disadvantages of quantile mapping in comparison to other
methods can be found in Maraun et al. (2010) and Themeßl
et al. (2011). A step-by-step example of the multisegment
correction procedure is provided in Appendix A of Grillakis
et al. (2013).

2.3 Validation of the results

The Klemes (1986) split sample test methodology was
adopted for verification. Split sample is the most common
type of test used for the validation of model efficiency. The
methodology considers two periods of calibration and valida-
tion between the observed and modeled data. The first period
is used for the calibration, while the second period is used
as a pseudo-future period in which the adjusted data are as-
sessed against the observations. A drawback of the split sam-
ple test in bias correction validation operations is that the re-
maining bias of the validation period is a function of the bias
correction methodology deficiency and the model deficiency
itself to describe the validation period’s climate, in aspects
that are not intended to be bias-corrected. That said, a skill-
ful bias correction method should deal well in that context,
as model “democracy” (Knutti, 2010), i.e., the assumption
that all model projections are equally possible, is common
in CCI studies in which little attention is given to the model
selection.

3 Case study area and data

To examine the effect of NM on the bias correction on a
time series, the Hadley Centre Central England Tempera-
ture (HadCET – Parker et al., 1992) observational dataset
was considered to adjust the simulated output from the earth
system model MIROC-ESM-CHEM (Hasumi and Emori,
2004) historical emissions run between 1850 and 2005 for
central England. This particular case study was chosen due
to the large observational record (the longest instrumental
record of temperature in the world) that is available for cen-
tral England, i.e., the triangular area of the United King-
dom enclosed by Lancashire, London and Bristol. Discussion
about dataset-related uncertainties can be found in Parker
et al. (1992) and Parker and Horton (2005). In the specific
application and in order to resemble a typical CCI study,
data between 1850 and 1899 serve as the calibration pe-
riod, while the rest of the data between 1900 and 2005 are
used as the pseudo-future period for the validation. Finally,
the bias correction results of the two procedures, with (BC-
NM) and without (BC) the normalization module, were com-
pared against the validation period observations. An addi-
tional comparison was also performed to a less complicated
trend preservation procedure, inspired by Bürger et al. (2013)
and Cannon et al. (2015). This procedure considers the de-
trending of the raw data using a 5-year moving average
temperature. The detrended data are corrected using the BC
methodology, while the trend is additively put back into the
time series after the correction, similarly to the NM. We re-
fer to this as BC-TREND. This comparison is used to bench-
mark the BC-NM towards a simpler quantile mapping that
also approaches the trend preservation.

Furthermore, to expand the methodology assessment on
the regional scale, the split sample test is adopted to assess
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Table 1. RCMs used in this experiment.

# {GCM}_{realization}_{RCM}

1 CNRM-CM5_r1i1p1_SMHI-RCA4_v1
2 EC-EARTH_r12i1p1_SMHI-RCA4_v1
3 EC-EARTH_r3i1p1_DMI-HIRHAM5_v1
4 IPSL-CM5A-MR_r1i1p1_SMHI-RCA4_v1

RCA4_v1RCA4_v1RCA4_v1
5 MPI-ESM-LR_r1i1p1_SMHI-RCA4_v1

the efficiency of the two procedures on a pan-European scale.
In order to scale up the split sample test, the k-fold cross val-
idation test (Geisser, 1993) is employed. The procedure has
been proposed for evaluating the performance of bias correc-
tion procedures in Maraun (2016). In the k-fold cross vali-
dation test, the data are partitioned into k equal sized folds.
Of the k folds, one subsample is retained each time as the
validation data for testing the model, and the remaining k−1
subsamples are used as calibration data. In a final test, the
procedures are applied on a long-term transient climate pro-
jection experiment to assess their effect in the long-term at-
tributes of the temperature in a European-scale application.

Temperature data from the European division of the Co-
ordinated Regional Downscaling Experiment (CORDEX),
openly available through the Earth System Grid Federation
(ESGF), are considered. Additional information about the
Euro CORDEX domain can be found on the CORDEX web
page (http://wcrp-cordex.ipsl.jussieu.fr/). Data from five re-
gional climate models (RCMs) (Table 1) with 0.44◦ spa-
tial resolution and daily time step between 1951 and 2100
are used. The projection data are considered under Repre-
sentative Concentration Pathway (RCP) 8.5, which projects
an 8.5 W m−2 average increase in the radiative forcing un-
til 2100. The European domain CORDEX simulations have
been evaluated for their performance in previous studies
(Kotlarski et al., 2014; Prein et al., 2015). The EOBSv12
temperature data were used (Haylock et al., 2008). Discus-
sion about the applicability of EOBS to compare tempera-
ture of RCMs control climate simulations can be found in
Kyselý and Plavcová (2010). Figure 3 shows the 1951–2005
daily temperature average and standard deviation for the five
RCMs of Table 1. The RCMs’ mean bias ranges between
about −2 and 1 ◦C relative to the EOBS dataset (individual
models data are included to the ESM). The positive mean
bias in all RCMs is mainly seen in eastern Europe, while the
same areas exhibit negative bias in standard deviation. Some
of the bias may, however, be attributed to the ability of the
observational dataset to represent the true temperature (Hof-
stra et al., 2010).

For the k-fold cross validation, the RCM data between
1951 and 2010 are split into six 10-year sections, compris-
ing a 6-fold, five-RCM-ensemble experiment of Fig. 4. Each
section is validated once by using the remaining five sections

Figure 3. Mean temperature (upper) and standard deviation (lower)
for EOBS, RCM ensemble (ENS) and for their difference (model –
obs) (DIFF) for the reference period 1951–2005.

Figure 4. The 6-fold cross validation scheme with the calibration
(C) and the validation (V) periods of each fold. Each experiment
(Exp) was replicated for all five RCMs.

for the calibration. A total of 30 tests are conducted using
each procedure.

For the transient experiment, the RCM data between 1951
and 2100 are considered, using the 1951–2010 as calibration
to correct the 1951–2100 data.

4 Results

The results of the split sample test on the central England ex-
ample are presented in Fig. 5. The NM separates of the raw
data into a residuals and a normalized stream (Fig. 5b). In the
annual aggregates the normalized time series do not exhibit
any trend or significant fluctuation, since the normalization
is performed on annual basis, while the long-term trend and
variability are contained in the residual time series. In Fig. 5a,
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Table 2. Statistical properties of the calibration and the validation periods for the two bias correction procedures. Variables denoted with ∗

are estimated on annual aggregates. SD stands for standard deviation, pn for the nth quantile and IQR for the interquartile range.

Parameter RAW Normalized Residuals OBS BC BC-NM BCTREND

C
al

ib
ra

tio
n

Mean (◦C) 11.2 11.2 0.0 9.1 9.2 9.2 9.1
SD (◦C) 4.5 4.6 0.9 5.3 5.3 5.3 5.3
p10 (◦C) 5.7 5.7 −0.9 2.1 2.2 2.2 2.1
p90 (◦C) 17.4 17.2 1.0 16.3 16.3 16.2 16.2
Slope (◦C 10 years−1)∗ −0.067 0.000 −0.067 −0.026 −0.086 −0.065 −0.061
SD (◦C)∗ 0.46 0.46 0.01 0.61 0.57 0.45 0.53
IQR∗ 0.76 0.76 0.01 0.86 0.95 0.75 0.94

V
al

id
at

io
n

Mean (◦C) 11.3 11.2 0.1 9.6 9.3 9.3 9.2
SD (◦C) 4.7 4.6 0.9 5.2 5.5 5.4 5.5
p10 (◦C) 5.6 5.7 −0.9 2.7 2.0 2.0 1.9
p90 (◦C) 17.4 17.2 1.0 16.3 16.3 16.2 16.2
Slope (◦C 10 years−1)∗ 0.052 0.000 0.051 0.076 0.062 0.051 0.044
SD (◦C)∗ 0.48 0.47 0.01 0.54 0.57 0.46 0.53
IQR∗ 0.63 0.62 0.01 0.76 0.75 0.62 0.68

Figure 5. (a) Annual average temperature of raw model, observations and the bias-corrected with and without the NM data and following
the BC-TREND approach, for the calibration period 1850–1899 (solid lines) and the validation period 1900–2005 (dashed lines). (b) Annual
averages of the normalized and the residuals of the raw temperature. Probability densities of annual (c) and of daily means (d).

annual aggregates obtained via the BC, BC-NM, and the BC-
TREND procedures are compared to the raw data and the ob-
servations. Results show that all three procedures adjust the
raw data to better fit the observations in the calibration period
1850–1899. In the validation period, all three procedures pro-
duce similar results in terms of mean and standard deviation,

but the BC-NM long-term linear trend is slightly lower than
that of the BC results and slightly higher than the respective
BC-TREND slope. While both BC and BC-TREND slopes
are closer to the observations’ linear trend, the BC-NM is
closer to the raw data trend (Table 2). The BC-TREND vali-
dation period trend is found lower relative to the RAW data,
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Figure 6. Power spectral density of temperature (a) and high-power regions of annual and half-year periods (b). (c) Standard deviation of
temperature aggregates between 1 and 10 957 days (horizontal axis visible between 1 day and 10 years). (d) The inter-annual and sub-annual
periods’ average (denoted with red and cyan arrows respectively) spectral power (a) and standard deviation (c).

but closer to it relative to the BC. This is attributed to the new
trend that was introduced to the detrended time series by the
differential quantile mapping in each year’s CDF, similar to
the Fig. 1 example.

Figure 5c shows that, in the annual aggregated tempera-
ture, the BC-NM resembles the raw data histograms in shape,
but shifted in mean towards the observations. A small de-
crease in the variability can also be observed in the BC-
NM relative to the raw data but consists of a substantially
smaller disturbance relative to the BC. The annual variabil-
ity in BC-TREND is closer to the raw data compared to the
BC approach, but the BC-NM still outperforms in the an-
nual variability preservation. The transfer of the mean with
a simultaneous preservation of the larger part of the variabil-
ity of the BC consists of a nearly idealized behavior for the
adjusted data when the long-term statistics preservation is a
desired characteristic, as the distribution of the annual tem-
perature averages is retained after the correction (trend, stan-
dard deviation, interquartile range – Table 2). The respective
results generated on daily data (Fig. 5d) show that all three

procedures adjust the calibration and validation histograms
to a similar degree towards the observations. This can also
be verified by the mean, the standard deviation, and the 10th
and 90th percentile of the daily data of Table 2. An early con-
cluding remark about the NM is that it retained the long-term
statistics of the adjusted data towards the climate model sig-
nal better than the alternative approaches, without, however,
sacrificing the daily scale quality of the correction.

To further inter-compare the effect of each approach in the
data variability beyond the inter-annual and the daily basis,
we estimate the power spectral density (PSD; Huybers and
Curry, 2006) over their daily temperature signals (Fig. 6).
The marked spectral peaks associated with the annual and 6-
month periodicity are an expected result. Focusing on those
regions (Fig. 6b), it is shown that the BC-NM is closer to
the observational variability relative to the other two correc-
tion techniques, while in the 6 months all techniques provide
similar results. The average power density of the domain be-
yond the annual periodic shows that the BC-NM is closer
to the raw data, while the respective sub-annual average is
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Figure 7. Mean surface temperature of the cross validation test.
Panels (a) and (b) show the ensemble mean of the five raw models
data and the EOBS respectively, while panel (c) shows their differ-
ence. Panels (d) and (e) show the ensemble mean remaining bias of
the five RCMs after the correction with and without the NM module
respectively, for the calibration periods’ data. Panels (f) and (g) are
the same as (d) and (e) but for the validation period data.

almost equal to the BC and the BC-TREND averages. Fig-
ure 6c shows the standard deviation estimated on tempera-
ture aggregates between 1 and 10 957 days (i.e., 30 years).
Figure 6d shows the average variability and average spectral
power of the two scaling regimes, above and below annual.
The sub-annual scales average variability of the BC-NM re-
sembles the observational variability, outperforming the BC
and BC-TREND approaches that show higher values. More
importantly, the NM works well on the inter-annual scale,
where the average variability is found to be closer to the raw
data variability compared to the inflated BC and the deflated
BC-TREND results.

In Fig. 7, the results of the cross validation test of the
BC on the Euro CORDEX data with and without the use of
NM are shown, in terms of mean temperature. The means
of the raw temperature data and the observations are respec-
tively equal for their calibration and the validation periods
due to the design of the experiment. The bias correction re-
sults show that both the correction with and without the NM,
appropriately meet the needs in terms of the mean value. The
differences between the calibration and validation averages
with the corresponding observations show consistently low
residuals. A significant difference between the two tests is

Figure 8. Ensemble long-term linear trend of the five RCMs’
data. The trend is estimated on the mean temperature (top) and
the 10th (middle) and 90th (bottom) percentiles on an annual ba-
sis. The change in the corrected data trend relative to the raw
data trend is provided for the BC (middle panels) and the BC-NM
data (right panels). All values are expressed as degrees per century
(◦C 100 years−1).

that the use of the BC-NM increases the residuals due to
the exclusion of some parts of the signal from the correc-
tion process. Nonetheless, the scale of the residuals is con-
sidered below significance in the context of CCI studies, as
it ranges only up to 0.035 ◦C. The increased residuals of the
NM are the trade-off to the preservation of the model long-
term climate change signal, in the transient experiment. Po-
tential drawbacks that arise from the residuals’ existence are
discussed later. Figure 8 shows the long-term change in the
signal of the mean temperature, for the 10th and 90th per-
centiles (estimated on annual basis). The trends are estimated
by linear least squares regression and are expressed in de-
grees Celcius per century. The use of the NM was superior
in preserving the long-term trend relative to the raw model
data in all three cases. Without using the NM module, the
distortion in the mean annual temperature trend lies between
−0.5 and 0.5◦C per century, while the distortion in the 10th
and 90th percentiles is apparently more profound. Addition-
ally, the northeastern Europe 10th and 90th percentiles reveal
a widening of the temperature distribution when NM is not
used. This widening is attributed to the considerable nega-
tive trend in the 10th percentile and the considerable positive
90th percentile trend in the same areas. The magnitude of
the distortion is considerable and can potentially lead to CCI
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Figure 9. Average of standard deviations for the study domain, for the raw data (a), the BC (b) and the BC-NM (c) for the different models
and the observations, on an annual basis. Differences between the raw and the bias-corrected standard deviations are shown in (d) and (e).
Plots (f) and (g) correspond to the same data as (d) and (e), but normalized for their 1951–2005 mean.

overestimation. In contrast, with the use of NM the change
in the trend is reduced in most of the European area.

The impact of NM on the standard deviation is also signif-
icant. Figure 9 shows the evolution of the standard deviations
of the adjusted daily data for each model, in the cases of raw
data and the bias-corrected data using the BC and the BC-
NM. The standard deviation is estimated for each grid point
and calendar year, and is averaged across the study domain.
The results show that the standard deviation of the adjusted
data differs from the respective standard deviations of the
raw data, in both adjustment approaches. This is an expected
outcome, as raw model data standard deviations differ from
the respective observed data standard deviation (Fig. 9d, e).
However, the standard deviation differences between BC-
NM and the raw data (Fig. 9f) are significantly more stable
than the respective differences from BC (Fig. 9g), meaning
that the signal of standard deviation is better preserved and
does not inflate significantly with time in the former case.
Additionally, the variation of the standard deviations time se-
ries exhibits lower fluctuations.

5 Discussion

This study focuses on known issues of bias correction that
have been well discussed in the literature. Whether the long-
term signal of temperature should be preserved or not has

been discussed on a more theoretical level in Maraun (2016),
while Haerter et al. (2011) mention that a credible bias cor-
rection methodology should involve the consequences of
greenhouse gas concentration changes. This is somehow con-
sistent with the temperature trend preservation as the model
sensitivity is retained in the corrected time series. As pointed
in Fischer et al. (2012), models tend to underestimate the
inter-annual variability due to deficiencies between land–
atmosphere interactions, which urges for its correction. Nev-
ertheless, the long-term statistics’ preservation may be neces-
sitated in cases that temperature is used in biophysical impact
modeling (Rubino et al., 2016), or may be preferred as a safer
option than the unintentional alteration, especially in cases
where the observational data record is not long enough.

The methodology shares similarities to other correction
methods found in the literature. Furthermore it exhibits a
number of advancements that overpass drawbacks of other
trend preserving methodologies. The fundamental idea of the
presented method is also identified in the method of Haerter
et al. (2011) method that considers two different timescales
and performs a cascade correction of temperature. In the
present study, a discrimination of annual and daily scales
is used for the separation of the temperature signal in two
parts. While in the former methodology, the cascade correc-
tion benefits the results in both timescales, here the separa-
tion offers a correction on the daily scale and an intentional
preservation of the raw model statistics on the annual scale.
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Comparisons can also be performed with the methodology
of Li et al. (2010), who use the differences in the raw data
between the reference period and the projection period. In
the present study the differences are defined between the ref-
erence period and each year of correction separately. This
can be considered as an evolution of the technique that over-
comes the subjectivity of the future period selection. Addi-
tionally, the quantile mapping correction ensures the skillful
correction in the higher and lower quantiles, relative to sim-
pler additive approaches such as that of Hempel et al. (2013),
which, while preserving the trend and year-to-year variabil-
ity, marginally improves the tails of the temperature distribu-
tion (Sippel et al., 2016). Regarding the simpler BC-TREND
version that was used for the central England example, it was
found that it tends to preserve the long-term statistics as also
noted by Cannon et al. (2015), but the 5-year average that
was used for the trend preservation still cannot encompass
the changes in each year’s CDF, as the NM can.

Beyond these advancements, a critical drawback of the
presented methodology is that it uses a large number of pa-
rameters to approximate the transfer functions in the two
stages of the correction. The methodology can be described
as of “varying complexity” as the number of the estimated
parameters (number of segments) and the added value of the
complexity is weighted by an information criterion. Nonethe-
less, it is highly invasive, which means that in the case that
high-noise observations were used, it would lead to trans-
fer of that noise to the corrected data variability. This was
marginally detected in the analysis of the standard devia-
tions in Fig. 9, even if the effect of the BC-NM mitigated the
effect compared to the BC. Another weakness stems from
the residuals’ exclusion from the correction. In the theoret-
ical case where the future projected temperature variability
changes radically relative to the reference period, the correc-
tion would result in larger remaining biases as it was shown
earlier, which could impair the physical continuity of the
time series. This limitation should be taken into consider-
ation for the case that the BC-NM is used to correct other
types of variables, without forbidding its use on them.

6 Conclusions

This study elaborates the issue of the distortion of the long-
term statistics in quantile mapping statistical bias correction
relative to the raw model data. An extra processing step is
presented that can be applied along with quantile mapping
statistical bias correction techniques. This step, namely NM,
splits the original data into two parts – a normalized one
that is bias adjusted using quantile mapping, and a residu-
als part that is added to the former after the bias correction.
The methodology is tested and validated from several points
of view, leading to some key remarks about its added value.
First, it is shown that the use of the NM module results in the
long-term temperature trend preservation of the mean tem-

perature change, as well as of the trend in the higher and
lower percentiles. Furthermore, the examination of the stan-
dard deviation temporal evolution shows that it is better re-
tained relative to the raw data, as the exclusion of the resid-
uals from the correction minimizes the inflation of the vari-
ance. Additionally, the inter-annual variability of the raw data
is preserved relative to the compared simpler quantile map-
ping methods, which is an important feature for climate im-
pact studies that involve carbon cycle simulations (Rubino
et al., 2016). Another noteworthy feature of the proposed
method is that the normalization is performed on an annual
basis; hence, the projection period results are not affected by
the length of the projection period. Nevertheless, it has to be
stressed that a range of issues – such as the disruption of the
physical consistency of climate variables, the mass/energy
balance and the omission of correction feedback mechanisms
to other climate variables (Ehret et al., 2012) – were not ex-
amined in this work, despite the existence of methods that
preserve consistency between specific variables (Sippel et al.,
2016). As an epilogue, bias correction cannot add further ac-
curacy to the data but rather add usefulness to it, depending
on the needs of each application. Nevertheless, it should not
be underestimated that this added usefulness may obscure a
deterioration of the climate change signal owing to the bias
correction.
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