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Abstract. Earth’s global mean surface temperature has increased by about 1.0 ◦C over the period 1880–2015.
One of the main causes is thought to be the increase in atmospheric greenhouse gases. If greenhouse gas emis-
sions are not substantially decreased, several studies indicate that there will be a dangerous anthropogenic in-
terference with climate by the end of this century. However, there is no good quantitative measure to determine
when it is “too late” to start reducing greenhouse gas emissions in order to avoid such dangerous interference.
In this study, we develop a method for determining a so-called “point of no return” for several greenhouse gas
emission scenarios. The method is based on a combination of aspects of stochastic viability theory and linear
response theory; the latter is used to estimate the probability density function of the global mean surface tem-
perature. The innovative element in this approach is the applicability to high-dimensional climate models as
demonstrated by the results obtained with the PlaSim model.

1 Introduction

In the year 2100, which is as far (or as close) in the future as
1932 is in the past, mankind will be living on an Earth with
a different climate than today. At that time, we will know
the 2100 global mean surface temperature (GMST) value
and its increase, 1T , above the pre-industrial GMST value.
From the then available GMST records, it will also be known
whether this change in GMST has been gradual or whether it
was rather “bumpy”. If the observational effort continues as
of today, there will also be an adequate observational record
to determine whether the probability of extreme events (e.g.
flooding, heat waves) has increased.

The outcomes of these future observations to be made
by future generations will strongly depend on the socio-
economic and technological developments and political deci-
sions made now and over the next decades. Fortunately, there
is a set of tools available to inform decision makers: Earth
system models. These models come in different flavours,
from global climate models (GCMs) providing details on
the development of the ocean–atmosphere–ice–land system
to integrated assessment models (IAMs), which also aim to
describe the development of the broader socio-economic sys-

tem. During the preparation for the fifth assessment report
(AR5) of the Intergovernmental Panel on Climate Change
(IPCC), GCM studies have focussed on the climate system
response to GHG changes as derived by IAMs from dif-
ferent socio-economic scenarios; the data from these sim-
ulations are gathered in the so-called CMIP5 archive (http:
//cmip-pcmdi.llnl.gov/cmip5/).

Depending on the representation of fast climate feedbacks
in GCMs that determine their climate sensitivity, the CMIP5
models project a GMST increase 1T of 2.5–4.5 ◦C over the
period 2000–2100 (Pachauri et al., 2014). This does not mean
that the actual measured value of 1T in 2100 will be in this
interval. For example, the GMST may be well outside this
range because of current model errors which misrepresent
the strength of a specific feedback. As a consequence, a tran-
sition might have occurred in the real climate system which
did not occur in any of the CMIP5 model simulations. An-
other possibility is that the GHG development was eventually
far outside of the scenarios considered in CMIP5.

A crucial issue in 2100 will be whether a climate state
has been reached in which a dangerous anthropogenic inter-
ference (DAI) can be identified (Mann, 2009). In this case,
present-day islands will have been swallowed by the ocean
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and extreme events will have increased in frequency and
magnitude (Smith and Schneider, 2009). These effects are
very inhomogeneously distributed over the Earth and lead to
enormous socio-economic consequences. If this is the case
in 2100, then there is a point in time at which we must
have crossed the conditions for DAI. This time, marking the
boundary of a “safe” and “unsafe” climate state, obviously
depends on the metrics used to quantify the state of the com-
plex climate system.

In very simplified views, this boundary is interpreted as a
threshold CO2 concentration (Hansen et al., 2008) or GMST.
The latter, in particular the 1Tc = 2 ◦C threshold, has be-
come an easy to communicate (and maybe therefore leading)
idea to set mitigation targets for greenhouse gas reduction.
Emission scenarios have been calculated (Rogelj et al., 2011)
such that 1T will remain below 1Tc. Although thresholds
for GMST have been criticized for being very inadequate re-
garding impacts (Victor and Kennel, 2014), such a threshold
forms the basis for policymaking as set forward in the Paris
2015 (COP21) agreement.

Supposing that measures are being taken to keep 1T <
1Tc, does this mean that we are “safe”? The answer is a sim-
ple no, as DAI may still have occurred regionally, such as the
disappearance of island chains due to sea level rise (Victor
and Kennel, 2014). Hence, attempts have been made to de-
fine what “safe” means in a more general way, such as the tol-
erable windows approach (TWA; Petschel-Held et al., 1999)
and viability theory (VT; Aubin, 2009). These approaches
also deal with general control strategies to steer a system to-
wards “safety” when needed.

On a more abstract level, both TWA and VT start by defin-
ing a desirable (or “safe”) subspace V of a state vector x in
a general state space X. This subspace is characterized by
constraints, such as thresholds for properties of x. For ex-
ample, when x is a high-dimensional state vector of a GCM,
such a threshold could be 1T <1Tc for GMST. When the
time development (or trajectory) of x is such that it moves
outside the subspace V , a control is sought to steer the tra-
jectory back into V . Note that this is an abstract formulation
of the mitigation problem when the amplitude of the green-
house gas emission is taken as a control. Recently, (Heitzig
et al., 2016) have added more detail to regions in the space
X which differ in their “safety” properties and the amount of
flexibility in the control to steer to “safety”.

Given a certain desirable subspace of the climate system
state vector (e.g. to avoid DIA) and a suite of control options
(e.g. CO2 emission reduction), it is important to know when
it is too late to steer the system to “safe” conditions, for ex-
ample in the year 2100. In other words, when is the point of
no return (PNR)? The TWA and VT approaches and the the-
ory in (Heitzig et al., 2016) suffer from the “curse of dimen-
sionality” and cannot be used within CMIP5 climate models.
For example, the optimization problems in VT and TWA lead
to dynamic programming schemes which have up to now
only been solved for model systems with low-dimensional

state vectors. The approach in (Heitzig et al., 2016) requires
the computation of regional boundaries in state space, which
also becomes tedious in more than two dimensions. Hence,
with these approaches it will be impossible to determine a
PNR using reasonably detailed models of the climate system.

In this paper, we present an approach similar to TWA and
VT, but one which can be applied to high-dimensional mod-
els of the climate system. The key to the approach is the
estimation of the probability density function of the prop-
erties of the state vector x which determine the “safe” sub-
space V . The PNR problem is coupled to limitations in the
control options (e.g. of emissions) and can be defined pre-
cisely using these options and stochastic viability theory. The
methodology is presented in Sect. 2; to illustrate the con-
cepts, we apply the approach in Sect. 3 to an idealized en-
ergy balance model with and without tipping behaviour. In
Sect. 4, the application to a high-dimensional climate model
is presented using data from the Planet Simulator (PlaSim;
Fraedrich et al., 2005). A summary and discussion in Sect. 5
concludes the paper.

2 Methodology

Here we briefly describe the concepts we need from stochas-
tic viability theory and then define the PNR problem, specif-
ically in the climate change context.

2.1 Viable states

Viability theory studies the control of the evolution of dy-
namical systems to stay within certain constraints on the
system state vector (Aubin, 2009). Here we consider finite
dimensional deterministic systems with state vector x ∈ Rd

and vector field f : Rd
→ Rd given by

dx

dt
= f (x, t). (1)

In the general formulation of viability theory, a time-
dependent input is also considered on the right-hand side of
Eq. (1), which can be used to control the path of the trajectory
x(t) in state space.

For our purposes, we only need the concept of a viable
state, which is related to constraints on the state vector defin-
ing a viable region V in state space, also called the viability
constraint set. In the model (Eq. 1) such a set can, for ex-
ample, be defined by a threshold condition ||x||< ||x∗||. An
initial condition x0 = x(t = 0) is called viable if x(t) ∈ V for
all 0≤ t ≤ t∗, where t∗ is a certain end time. The set of all
these initial conditions forms the viability kernel associated
with V .
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Stochastic extensions of viability theory consider finite dy-
namical systems defined by stochastic differential equations:

dXt = f (Xt , t)dt +g(Xt , t)dWt , (2)

where Xt ∈ Rd is a multidimensional stochastic process,
Wt ∈ R

n is a vector of n-independent standard Wiener pro-
cesses, and the matrix g ∈ Rd×n describes the dependence of
the noise on the state vector. The normalized probability den-
sity function (PDF) p(x, t) can be formally determined from
the Fokker–Planck equation associated with Eq. (2).

A stochastic viability kernel Vβ consists of initial condi-
tions X0 for which the system has, for 0≤ t ≤ t∗, a probabil-
ity larger than a value β to stay in the viable region V (Doyen
and De Lara, 2010). For example, in a one-dimensional ver-
sion of Eq. (2) with state vector Xt ∈ R and a viable region
V given by x ≤ x∗, a state Xt is called viable with tolerance
probability βT if

x∗∫
−∞

p(x, t)dx ≥ βT; (3)

otherwise, Xt is called non-viable.

2.2 Linear response theory

In relatively idealized low-dimensional models (such as the
energy balance model in Sect. 3), the probability density
functions can be easily computed by solving for the Fokker–
Planck equation (see Sect. 3.2). However, in order to find the
temporal evolution of the PDF of the global mean surface
temperature (GMST) under any CO2-equivalent forcing in
high-dimensional climate models, such as PlaSim in Sect. 4,
we will use linear response theory (LRT). With this theory,
the effect of any small forcing perturbation on the system
state can be calculated by running the climate model for only
one forcing scenario (Ragone et al., 2016).

In LRT, the expectation value of an observable 8, when
forcing the system with a time-dependent function f (t), can
be calculated by computing the convolution of a Green’s
function G〈8〉 and the forcing f (t) according to

〈8〉f (t)=

+∞∫
−∞

G〈8〉(τ )f (t − τ )dτ. (4)

To construct this Green’s function, the property that the con-
volution in the time domain is the same as pointwise multi-
plication in the frequency domain is used. The Fourier trans-
form of Eq. (4) is given by

〈8̃〉f (ω)= χ〈8〉(ω)f̃ (ω), (5)

with χ〈8〉(ω), 〈8̃〉f (ω), and f̃ (ω) as the Fourier transforms
of G〈8〉(t), 〈8〉f (t), and f (t), respectively. Therefore, once

the time evolution of the expectation value of an observable
under a certain forcing is known, the Green’s function of this
observable can be constructed with Eq. (5), and consequently
the linear response of the observable to any forcing can be
calculated.

2.3 The point of no return problem

In the climate change context, scenarios of GHG increase
and the associated radiative forcing have been formulated as
representative concentration pathways (RCPs). In (Pachauri
et al., 2014), there are four RCP scenarios (Fig. 1a) ranging
from an increase in radiative forcing of 2.6 Wm−2 (RCP2.6)
in 2100 (with respect to 2000) to a forcing increase of
8.5 Wm−2 (RCP8.5).

To define the PNR for each of these RCPs, a collection of
mitigation scenarios on greenhouse gas emissions has to be
considered. These mitigation scenarios will lead to changes
in GHG concentrations described by functions Fλ(t), where
λ is a parameter. For instance, the collection Fλ could result
from mitigation measures that lead to an exponential decay to
different stabilization levels (measured in CO2 equivalent, or
CO2 eq.) within a certain time interval. An example of such
a collection Fλ is shown by the dashed and dotted red lines
in Fig. 1b. The most extreme member of Fλ is defined as the
mitigation scenario (represented by a certain value of param-
eter λ) which has the steepest initial decrease at a certain time
t (dashed curve in Fig. 1b).

Along the curve of a certain RCP scenario, there will be
a point in time at which action will be taken to reduce emis-
sions of GHG; this is indicated by a time of action tb. Con-
sider, for example (Fig. 1b), that tb is chosen as the first year
in which the state vector Xt is no longer viable. A reduc-
tion in emissions is, however, not immediately followed by
a decrease in CO2 eq. due to the long residence time of at-
mospheric CO2. In addition, there is a delay to take action in
emission reduction due to technological, social, economic,
and institutional challenges. Hence, emission reduction will
only start 1t1 years after tb. The CO2 eq. will, even after
emissions have been reduced, also still increase over a time
1t2. The time at which the CO2 eq. starts to reduce accord-
ing to Fλ is indicated by tc = tb+1t , where1t =1t1+1t2.
Eventually, Xt may become viable again and this point in
time is indicated by te (Fig. 1b).

For a given RCP scenario, tolerance probability βT, viable
region V , and collection Fλ, we define the PNR (πt ) as the
first year tc in which, even when at that moment the most
extreme CO2-equivalent reduction scenario Fλ applies,

a. either Xt will be non-viable for more than τT years,
where τT is a set tolerance time, or

b. Xt will be non-viable in the year 2100.

The first PNR, which we will indicate below by π tol
t , is based

on limiting the number of years that Xt is non-viable since
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Figure 1. (a) The CO2-equivalent trajectories of the RCP scenarios used by the IPCC in CMIP5. (b) The solid red curve represents a typical
RCP scenario. At the time tb, the climate state becomes non-viable, while at t = tc a CO2-equivalent reduction Fλ applies; at time te, the
climate state is viable again.

(during these years) society is exposed to risks from, for ex-
ample, extreme weather events. The second PNR, which we
will indicate below by π2100

t , imposes no restrictions on how
long Xt is non-viable, but it is only based on Xt being non-
viable at the end of this century. Hence, under the given set
of mitigation options, it is guaranteed that the state will have
left the viable region by the year 2100. We will use both PNR
concepts in the results below.

3 Energy balance model

In this section, we illustrate the concepts and the computa-
tion of the PNR for an idealized energy balance model of the
Budyko–Sellers type (Budyko, 1969; Sellers, 1969). We will
also assume that the CO2 eq. can be directly controlled, and
hence no carbon cycle model is needed to determine CO2 eq.
from an emission reduction scenario.

3.1 Formulation

We use the stochastic extension of the model formulation as
in Hogg (2008). The equation for the atmospheric tempera-
ture Tt (in K) is given by

dTt = (6)

1
cT

{
Q0(1−α(Tt ))+G+A ln

C(t)
Cref
− σεTt

4
}

dt + σsdWt .

The values and meanings of the parameters in Eq. (6) are
given in Table 1. The first term on the right-hand side of
Eq. (6) represents the short-wave radiation received by the
surface and α(T ) is the albedo function given by

α(T )= α0H (T0− T )+α1H (T − T1) (7)

+

(
α0+ (α1−α0)

T − T0

T1− T0

)
H (T − T0)H (T1− T ).

This equation contains the effect of land ice on the albedo,
and H (x)= 1/2(1+ tanh(x/εH )) is a continuous approxi-
mation of the Heaviside function. When the temperature

T < T0, the albedo will be α0, and when T > T1 it will be
α1 and the albedo is linear in T for T ∈ [T0,T1].

The second term on the right-hand side of Eq. (6) repre-
sents the effect of greenhouse gases on the temperature. It
consists of a constant part (G) and a part (A ln C(t)

C0
) depend-

ing on the mean CO2-equivalent concentration in the atmo-
sphere (indicated by C(t)). The third term on the right-hand
side of Eq. (6) expresses the effect of long-wave radiation
on the temperature, and the last term represents noise with a
constant standard deviation σs. The standard value of σs, cho-
sen as 3 % of the value ofG/cT, is hence about 0.3 K year−1.
The variance in CO2 concentration originates mostly from
seasonal variations, and 3 % is on the high side. Neverthe-
less, we still use this value because if we take values smaller
than 3 % the PDF of the GMST will almost be a delta func-
tion, and concepts cannot be illustrated clearly.

3.2 Results: stochastic viability kernels

When using the global mean CO2-equivalent concentration
C in Eq. (6) as a time-independent control parameter, a bi-
furcation diagram can be easily (numerically) calculated for
the deterministic case (σs = 0). In Fig. 2, such diagrams are
plotted for C versus the equilibrium temperature T for two
values of α1. To obtain realistic values for the temperature,
the temperature equilibria are shifted upwards by 30 K. This
is done by substituting T with T −30 and adapting the right-
hand side of Eq. (6) such that the new temperature is a steady
state. This is obviously a bit artificial here, but we justify it by
our aim to illustrate the methodology; the results from more
realistic models will follow in Sect. 4. The diagram corre-
sponding to α1 = 0.2 (Fig. 2a) has two saddle-node bifurca-
tions which are absent for α1 = 0.45 (Fig. 2b). From now on,
the energy balance model with α1 = 0.45 and α1 = 0.2 will
be called the monostable and bistable case, respectively.
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(a) (b)

Figure 2. Bifurcation diagram of the deterministic energy balance model for α1 = 0.45 (a; monostable model) and α1 = 0.2 (b; bistable
model). The solid curve represents a stable equilibrium, while the dashed curve represents an unstable equilibrium.

For σs 6= 0, we explicitly determine the normalized PDF
p(x, t) by rewriting Eq. (6) as

dTt = f (Tt , t)dt + σsdWt , (8)

with f (T , t)= c−1
T (Q0(1−α(T ))+G+A ln C(t)

Cref
−σεT 4), the

Fokker–Planck equation of Eq. (8), which is given by

∂p

∂t
+
∂(fp)
∂x
−
σ 2

s
2
∂2p

∂x2 = 0. (9)

This differential equation is solved numerically for p(x, t)
under any prescribed function C(t) with boundary condi-
tions p(xu, t)= p(xl, t)= 0, where xl = 270 K, xu = 335 K,
and an initial condition p(x,0) (specified below) satisfies∫ xu
xl
p(x,0)dx = 1.

We first show stochastic viability kernels for each initial
condition T0 and C0, where C0 is an initial CO2-equivalent
concentration and T0 is the expectation value of the initial
PDF of Tt . As a starting time, we take the year 2030 and sup-
pose that the climate system will be forced by a certain RCP
scenario from 2030 to 2200. For every C0, the original RCP
scenario from Fig. 1a is adjusted such that its time develop-
ment remains the same, but it has C0 as the CO2-equivalent
concentration in 2030. The PDF of the GMST p(x, t = 0)
(t = 0 refers to the year 2030) has a prescribed variance (de-
fined by σ 2

s ) and expectation value T0.
In Fig. 3, the stochastic viability kernels are plotted for

the energy balance model forced by the RCP4.5 scenario and
a viable region V defined by T ≤ 293 K. The results for the
monostable and bistable cases are plotted in Fig. 3a and b, re-
spectively. The colours indicate, for each combination of T0
and C0, in which stochastic viability kernel the initial state
(C0,T0) is located. For example, consider the bistable case
and an initial condition of T0 = 288 K and C0 = 400 ppmv;
this initial condition is in the kernel Vβ with β ≥ 0.9. This
means that, with a probability larger than 0.9, a trajectory of
the model starting at (C0,T0) will remain viable up to the
year 2200, where C follows the RCP4.5 scenario. The white
areas contain initial conditions that are in a stochastic viabil-
ity kernel Vβ with β < 0.5.
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Figure 3. The stochastic viability kernels for the monostable and
bistable cases forced by the RCP4.5 scenario. The viable region is
defined as T ≤ 293K and is indicated by the red dashed line. These
plots show, for each combination of T0 and C0, in which stochastic
viability kernel these initial values are located. The numbers in the
colour bar represent the β in Vβ . For convenience, the bifurcation
diagram of the deterministic model is also shown.

The sensitivity of the stochastic viability kernels with re-
spect to the RCP scenario, the threshold defining the viable
region V , and the amplitude of the noise σs was also inves-
tigated (results not shown). The behaviour is as expected in
that the area of the kernels becomes smaller (larger) when
noise is larger (smaller), when the threshold temperature is
smaller (larger), and when the radiative forcing associated
with the RCP scenario is more (less) severe. For example for
the RCP6.0 scenario, each combination of T0 and C0 (same
range as in Fig. 3) is in a Vβ with β < 0.5 for both monos-
table and bistable cases.

3.3 Results: point of no return

Again for illustration purposes, we assume that a reduction in
the emissions will have an immediate effect on the CO2 eq.
such that effectively the CO2 eq. is controlled. We choose the
collection Fλ to consist of mitigation scenarios that exponen-
tially decay to the pre-industrial CO2-equivalent concentra-
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Table 1. Value and meaning of the parameters in the energy balance model given by Eq. (6).

cT 5.0× 108 Jm−2 K−1 Thermal inertia ε 1.0 Emissivity
Q0 342 Wm−2 Solar constant/4 α0 0.7 Albedo parameter
G 1.5× 102 Wm−2 Constant α1 0.2 or 0.45 Albedo parameter
A 2.05× 101 Wm−2 Constant T0 263 K Albedo parameter
Cref 280 ppmv Reference CO2 concentration T1 293 K Albedo parameter
σ 5.67× 10−8 Wm−2 K−4 Stefan–Boltzmann constant εH 0.273 K Albedo parameter

tion, which is 280 ppmv. For this exponential decay, we con-
sider different e-folding times τd. The most extreme scenario
has an exponential decay within 50 years, which corresponds
to an e-folding time of τd = 9 years. Hence, the collection Fλ
is given by (for τd ≥ 9)

Fλ(t)= (Ctc − 280)exp
(
−
t − tc

τd

)
+ 280. (10)

In this equation, tc is the time at which the scenario is applied,
andCtc is the associated CO2-equivalent concentration at that
moment.

Next, we determine PNR values π tol
t for the energy bal-

ance model when it is forced by the four different RCP sce-
narios using a tolerance probability of βT = 0.9 and a tol-
erance time of τT = 20 years. The π tol

t values for a system
forced with the RCP4.5, RCP6.0, and RCP8.5 scenarios are
shown in Fig. 4 for both the monostable and bistable cases.
As expected, the more extreme the RCP scenario, the earlier
the PNR. This can be easily explained by the fact that when
the CO2-equivalent concentration rises faster, the tempera-
ture will become non-viable earlier. Consequently, the PNR
will be earlier, since the GMST is only allowed to be non-
viable for at most τT years. When the model is forced with
RCP2.6, there is no PNR for either model. The reason for
this is that the CO2-equivalent concentration will remain low
throughout the whole period, and consequently the tempera-
ture will stay viable. The value of π tol

t for the bistable case
is earlier than the value for the monostable case in each sce-
nario. This can be clarified by the fact that the PDF of the
temperature in the bistable case will leave the viable region
at a lower CO2-equivalent concentration because of the exis-
tence of nearby equilibria.

The sensitivity of π tol
t versus the tolerance time τT and the

tolerance probability βT was also investigated, and the results
are as expected (and therefore not shown). A longer toler-
ance time will shift π tol

t to later times; for example, for the
RCP4.5 scenario π tol

t = 2071, 2088, and 2116 for τT = 0,20
and 50 years for the bistable case (for fixed βT = 0.9). With a
fixed τT = 20 years, the value of π tol

t shifts to smaller values
when the tolerance probability is increased. For example, for
βT = 0.80 and 0.99, the values of π tol

t are 2127 and 2058,
respectively, for the bistable case (for βT = 0.9, π tol

t = 2088;
see Fig. 4).
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Figure 4. The PNR π tol
t for a system forced with different RCP

scenarios, tolerance probability βT = 0.9, and tolerance time τT =
te − tb = 20 years. The triangles indicate the point of no return for
the bistable case and the squares for the monostable case. The dotted
line is the most extreme scenario of Fλ with an exponential decay
to 280 ppmv and an e-folding time of 9 years. Note that for both
cases there is no PNR when the model is forced with the RCP2.6
scenario.

4 PlaSim

The results in the previous section have illustrated that a PNR
can be calculated when an estimate of the probability density
function is available and a collection of mitigation scenarios
is defined. We will now apply these concepts to the more
detailed, high-dimensional climate model PlaSim, a general
circulation model developed by the University of Hamburg
(see https://www.mi.uni-hamburg.de/en/arbeitsgruppen/
theoretische-meteorologie/modelle/plasim.html).

Atmospheric dynamical processes are modelled using the
primitive equations formulated for vorticity, divergence, tem-
perature, and the logarithm of surface pressure. Moisture is
included by transport of water vapour (specific humidity).
The governing equations are solved using the spectral trans-
form method on a T21 grid (resulting in a horizontal resolu-
tion of about 5 to 6◦ in the midlatitudes). In the vertical, five
non-equally spaced sigma (pressure divided by surface pres-
sure) levels are used. Considering that the model has about
100 prognostic variables, this yields an order of magnitude
for the model dimensionality of about 105. The model is
forced by diurnal and annual cycles. PlaSim is freely avail-
able, including a graphical user interface facilitating its us-
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age, and has been applied to a variety of problems in climate
response theory (Ragone et al., 2016).

A main problem here is to determine a relation between
the CO2 eq. (and associated radiative forcing) and the GMST,
i.e. a response function. Previous approaches have used a fit
of a specific response function (e.g. a power law function) to
available observations (Rypdal, 2016). This is more compli-
cated for an approach using stochastic viability theory (ap-
plying it did not produce useful results), and hence we pro-
ceed by using linear response theory as described in Sect. 2.3.

We use the same data as in Ragone et al. (2016) provided
by F. Lunkeit and V. Lucarini (University of Hamburg, Ger-
many). The difference from those in Ragone et al. (2016) is
that the seasonal forcing is present, which results in a long-
term increase in the GMST of 5 ◦C (instead of 8 ◦C in Ragone
et al., 2016) under a scenario in which the CO2 concentration
doubles. The reason for this difference is not fully clear but
probably results from seasonal rectification effects of nonlin-
ear feedbacks. GMST data from two ensembles were used,
each with 200 simulations made with two different CO2-
forcing profiles (all other GHGs are kept constant). For both
forcing profiles, the starting CO2 concentration is set to a
value of 360 ppmv, which is representative of the CO2 con-
centration in 2000. During the first set of experiments, the
CO2 concentration is instantaneously doubled to 720 ppmv
and kept constant afterwards. During the second set of ex-
periments, the CO2 concentration increases each year by 1 %
until a concentration of 720 ppmv is reached. This will take
approximately 70 years, and afterwards the concentration is
fixed. The total length of the simulations is 200 years. Fur-
thermore, the forcing f (t) in Eq. (4) is taken as the logarithm
of the CO2 concentration, since the radiative forcing scales
approximately logarithmically with the CO2 concentration.

To determine the PDF of GMST under any CO2-
equivalent forcing, we make the assumption that at each point
in time the PDF of the GMST is normally distributed. As we
have 200 data points for the GMST at each time interval, a χ2

test was used to analyse the PDFs. For each time, the value
of χ2 > 0.05 and therefore the assumption that the PDF of
the GMST is normally distributed appears justified.

The Green’s functions for the expectation value and vari-
ance of GMST have been calculated with the instantaneously
doubling CO2 profile and the associated ensemble. From the
ensemble, at each point in time the expectation value and
variance are calculated to obtain the temporal evolution of
these two variables. Subsequently, we have found the Green’s
functions using Eq. (5). To check whether these Green’s
functions perform well, we compared the temporal evolution
of the expectation value and variance of the GMST under the
1 % forcing (calculated with Eq. 4) with those directly gen-
erated by PlaSim (Fig. 5).

The expectation value determined with LRT is close to the
one directly generated by PlaSim. However, the variance of
the ensemble generated by PlaSim is much noisier than the
one calculated with LRT. Although the Green’s function of

the variance provides only a rough approximation, it has the
right order of magnitude and we will use it to calculate the
variance of the GMST for other forcing scenarios.

4.1 Results: point of no return under CO2-equivalent
control

We first consider the case without a carbon cycle model,
again assuming that the CO2-equivalent concentration can
be controlled directly. The scenarios Fλ chosen for use in
PlaSim exponentially decay to different stabilization levels
(varying between 400 and 550 ppmv; see Edenhofer et al.,
2010). This stabilization level is taken as the parameter λ. We
assume that stabilization happens within 100 years, which
corresponds to an e-folding time τd of about 25 years; the
mitigation scenarios Fλ are then given by

Fλ(t)=
(
Ctc − λ

)
exp

(
−
t − tc

τd

)
+ λ, (11)

where tc is again the time at which the mitigation scenario is
applied, and Ctc is the associated CO2-equivalent concentra-
tion. The most extreme mitigation scenario in Fλ in terms of
CO2-equivalent decrease is the one that stabilizes at a CO2-
equivalent concentration of 400 ppmv.

We next determine the PNR π2100
t by requiring the GMST

to be viable in 2100 using a tolerance probability of βT =

0.90. The viable region is set at T ≤ 16.15 ◦C, which cor-
responds to temperatures less than 2 ◦C above the pre-
industrial GMST.

The values of π2100
t for all the RCP scenarios are plot-

ted in Fig. 6a. Solid curves show the RCP scenarios, while
dashed curves present the most extreme scenario Fλ. For
RCP8.5, π2100

t is 10 years earlier than for RCP6.0, since the
CO2-equivalent concentration increases much faster for the
RCP8.5 scenario. The mitigation scenario after the point of
no return, represented by the dashed line, is the same for all
RCP scenarios. This is related to our definition of π2100

t , for
which the GMST is required to be viable in 2100. The mitiga-
tion scenario that is plotted is the ultimate scenario that guar-
antees this. It indicates that for each CO2 scenario the associ-
ated π2100

t is given by the intersection of that CO2-equivalent
scenario and the mitigation scenario. This is because an ex-
ponential decay to 400 ppmv within 100 years is considered
always possible, no matter the CO2-equivalent concentration
at tc. However, when this concentration becomes too high,
this mitigation scenario is no longer very realistic.

The influence of the tolerance probability on π2100
t for the

RCP4.5 scenario is plotted in Fig. 6b, for which we only
consider a tolerance probability of 0.8, 0.9, and 0.99. When
the tolerance probability is higher, it takes longer before the
GMST will be viable again and thus the PNR π2100

t will be
earlier. However, the differences are very small since the mit-
igation scenarios that guarantee viability in 2100 for the dif-
ferent tolerance probabilities are very close.
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Figure 5. (a) The expectation value and (b) variance of GMST generated by PlaSim (orange) and determined through LRT (blue) for the
1 % CO2 concentration increase.
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Figure 6. (a) The PNR π2100
t for the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios for a tolerance probability of βT = 0.9 and 1t = 0.

The solid lines represent the RCP scenarios and the dashed line the most extreme scenario from Fλ. Note that these dashed lines coin-
cide. (b) The point of no return for RCP4.5 for different tolerance probabilities.

4.2 Results: point of no return under emission control

Finally, we consider a more realistic case in which emis-
sions are controlled and a carbon model converts emissions
to CO2 eq. A simple carbon model relating emissions E to
concentrations C is given by

CCO2 (t)= CCO2,0+

t∫
0

GCO2 (τ ) ECO2 (t − τ )dτ, (12)

where CCO2,0 is the initial concentration. The Green’s func-
tion for CO2 is taken directly from (Joos et al., 2013):

GCO2 (t)= a0+

3∑
i=1

aie
t/τi , (13)

for which the parameters are shown in Table 2. The
quantity ECO2 is the CO2 emission in ppm yr−1 that has
been converted from ppm yr−1 using the carbon molecular
weight as ECO2 [ppm yr−1

] = γ ECO2 [GtC yr−1
] with γ =

0.46969 ppm GtC−1. The emissions for the RCP scenarios
are taken from (Meinshausen et al., 2011) 1. The carbon
model underestimates CO2 levels for very high emission sce-
narios as it does not include saturation of natural CO2 sinks.

1See the database at http://www.pik-potsdam.de/~mmalte/rcps/

Following Table 8.SM.1 of (Myhre et al., 2013), we obtain
the changes in radiative forcing compared to pre-industrial
(in Wm−2) due to changes in CO2 as

1FCO2 = αCO2 ln
CCO2

C0
, (14)

where C0 is the pre-industrial (1750) CO2 concentration.
We use the same PlaSim ensemble of instantaneous CO2

doubling runs again to determine a Green’s function that re-
lates radiative forcing changes to temperature changes as

1T (t)=

t∫
0

GT(τ )1F (t − τ )dτ, (15)

where GT is the data-based function determined from LRT.
The total radiative forcing is taken as1F = A1FCO2 , where
we introduce a scaling constant A to correct for the high cli-
mate sensitivity of the PlaSim model compared to typical
CMIP5 models. Based on trial runs attempting to reconstruct
mean CMIP5 RCP temperature trajectories with RCP CO2
emissions, we choose A= 0.6.

For PlaSim, the Green’s function GT, as determined
through LRT, is well approximated by a one-timescale ex-
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Table 2. Model parameters. No units are given for dimensionless parameters.

CCO2,0 (ppm) 278 αCO2 5.35 C0 (ppm) 278
a0 0.2173 A 0.6 γ (ppm GtC−1) 0.46969
a1 0.2240 a2 0.2824 a3 0.2763
τ1 (yr) 394.4 τ2 (yr) 36.54 τ3 (yr) 4.304
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Figure 7. (a) Warming in 2100 when starting exponential CO2 emission reduction in a given year. (b) CO2 concentration for the four RCP
scenarios as computed by the model (solid) and following exponential mitigation starting from the point of no return (dashed).

ponential:

GT(t)≈ b1e
−t/τb1 , (16)

with b1 = 0.25 KW−1 m2 yr−1 and τb1 = 4.69 years. We de-
termine a Green’s function for the temperature variance in
the same way.

To compute the point of no return π2100
t in the carbon–

climate model, we start from pre-industrial CO2 concentra-
tions and take the corresponding initial temperature perturba-
tion as1T = 0. We then prescribe the RCP emission scenar-
ios for RCP2.6, RCP4.5, RCP6, and RCP8.5 (that are iden-
tical up to the year 2005). At a year tb > 2005 we start the
reduction in emissions at an exponential rate; i.e. for t > tb
the emissions follow

ECO2 (t)= ECO2 (tb)exp
(
−
t − tb

τe

)
, (17)

where τe = 25 years is the e-folding timescale of the emis-
sion reduction that we keep constant. Using the carbon
model, we compute the instantaneous CO2 concentrations for
each such scenario and use the Green’s functions for GMST
mean and variance to determine the PDF in the year 2100
for each starting year tb. Assuming Gaussian distributions
(as mentioned, this is well satisfied for the original PlaSim
ensemble), we can then easily determine the temperature
threshold below which 90 % of the values fall. The first year
for which this threshold is above 2 K gives π2100

t . Note that
the value of tc (in Fig. 1b), at which the CO2 starts to de-
crease, is determined by the coupled carbon–climate model.

The warming in 2100 predicted by our simple climate
model when starting exponential CO2 emission reduction in
a given year is shown in Fig. 7a. The intersections between
the RCP curves (solid colour) and the dashed line (represent-
ing 2 K warming) provide values of π2100

t . Values do not dif-
fer much for the different RCP (4.5, 6.0, and 8.5) scenarios
and are before 2030. RCP2.6 does not have a point of no re-
turn as its emission scenario is sufficient to keep the warming
safely below 2 K. The counter-intuitive lowering of the curve
for RCP2.6 (also slightly for RCP4.5) is due to very fast
emission reductions in these RCP scenarios. Starting emis-
sion reduction at later times may therefore lead to lower total
emissions (and hence temperatures). The CO2 concentration
for the four RCP scenarios as computed by the model (solid)
and following the exponential mitigation starting from the
point of no return (dashed) is shown in Fig. 7b. Note how
emissions “still in the pipeline” lead to CO2 increases even
after the reduction is initiated.

Note that this approach does not factor in the uncertainty
in the carbon model as we do not have a Green’s function
propagating the carbon uncertainty through the temperature
model. Including this would very likely increase the variance
in the PDF and move the point of no return to an earlier year.
On the other hand, the PlaSim variance is quite small, so the
90 % threshold is not vastly different from the mean.
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5 Discussion

Pachauri et al. (2014) stated with high confidence that “with-
out additional mitigation efforts beyond those in place to-
day, and even with adaptation, warming by the end of the
21st century will lead to high to very high risk of severe,
widespread and irreversible impacts globally”. If no mea-
sures are taken to reduce GHG emissions during this century
and if there are no new technological developments that can
reduce GHGs in the atmosphere, it is likely that the GMST
will be 4 ◦C higher than the pre-industrial GMST at the end
of the 21st century (Pachauri et al., 2014). Consequently, it
is important that anthropogenic emissions are regulated and
significantly reduced before widespread and irreversible im-
pacts occur. It would help motivate mitigation to know when
it is “too late”.

In this study we have defined the concept of the point of no
return (PNR) in climate change more precisely using stochas-
tic viability theory and a collection of mitigation scenarios.
For an energy balance model, as in Sect. 3, the probabil-
ity density function could be explicitly computed, and hence
stochastic viability kernels could be determined. The addi-
tional advantage of this model is that a bistable regime can
easily be constructed to investigate the effects of tipping be-
haviour on the PNR. We used this model (with the assump-
tion that CO2 could be controlled directly instead of through
emissions) to illustrate the concept of PNR based on a toler-
ance time for which the climate state is non-viable. For the
RCP scenarios considered, the PNR is smaller in the bistable
than in the monostable regime of this model. The occurrence
of possible transitions to warm states in this model indeed
cause the PNR to be “too late” earlier.

The determination of the PNR in the high-dimensional
PlaSim climate model, however, shows the key innovation
in our approach, i.e. the use of linear response theory (LRT)
to estimate the probability density function of the GMST.
PlaSim was used to compute another variant of a PNR based
only on the requirement that the climate state is viable in
the year 2100. Hence, the PNR here is the time at which no
allowed mitigation scenario can be chosen to keep GMST
below a certain threshold in the year 2100 with a specified
probability. In the PlaSim results, we used a viability region
defined as GMSTs lower than 2 ◦C above the pre-industrial
value, but with our methodology, the PNR can be easily de-
termined for any threshold defining the viable region. The
more academic case in which we assume that GHG levels can
be controlled directly provides PNR (for RCP4.5, RCP6.0,
and RCP8.5) values around 2050 (Sect. 4.2). However, the
more realistic case in which the emissions are controlled
(Sect. 4.3) and a carbon model is used reduces the PNR for
these three RCP scenarios by about 30 years. The reason is
that there is a delay between the decrease in GHG gas emis-
sions and concentrations.

Although our approach provides new insights into the
PNR in climate change, we recognize that there is potential

for substantial further improvement. First of all, the PlaSim
model has a too-high climate sensitivity compared to CMIP5
models. Although in the most realistic case (Sect. 4.3) we
somehow compensate for this effect, it would be much better
to apply the LRT approach to CMIP5 simulations. Second, in
the LRT approach, we assume the GMST distributions to be
Gaussian. This is well justified in PlaSim, as can be verified
from the PlaSim simulations, but it may not be the case for
a typical CMIP5 model. Third, for the more realistic case in
Sect. 4.3, we do not capture the uncertainties in the carbon
model and hence in the radiative forcing.

A large ensemble such as that available for PlaSim is not
available (yet) for any CMIP5 model. However, we have re-
cently applied the same methodology to two CMIP5 model
ensembles, i.e. a 34-member ensemble of abrupt CO2 qua-
drupling and a 35-member ensemble of smooth 1 % CO2 in-
crease per year. The CO2-quadrupling ensemble was used
to derive the Green’s function, and then the 1 % CO2 in-
crease ensemble was used as a check on the resulting re-
sponse. The probability density function of GMST increase
is close to Gaussian for the 1 % CO2 increase ensemble but
clearly deviates from a Gaussian distribution for the 4x CO2-
forcing ensemble, particularly at later times. Although the
ensemble is relatively small and the models within the en-
semble are different (but many are related), the results for the
LRT-determined GMST response (Aengenheyster, 2017) are
surprisingly good. This indicates that the methodology has
a high potential to be successfully applied to the results of
CMIP5 model simulations (and in the future, CMIP6). The
applicability of LRT to other observables than GMST can
in principle be performed, but the results may be less useful
(e.g. due to non-Gaussian distributions).

Because PlaSim is highly idealized compared to a typ-
ical CMIP5 model, one cannot attribute much importance
to the precise PNR values obtained for the PlaSim model
as in Fig. 7. However, we think that our approach is gen-
eral enough to handle many different political and socio-
economic scenarios combined with state-of-the-art climate
models when adequate response functions of CMIP5 mod-
els have been determined (e.g. using LRT). Hence, it will
be possible to make better estimates of the PNR for the real
climate system. We therefore hope that these ideas on the
PNR in climate change will eventually become part of the
decision-making process during future discussions about cli-
mate change.
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