
Earth Syst. Dynam., 8, 55–73, 2017
www.earth-syst-dynam.net/8/55/2017/
doi:10.5194/esd-8-55-2017
© Author(s) 2017. CC Attribution 3.0 License.

Continuous and consistent land use/cover change
estimates using socio-ecological data

Michael Marshall1, Michael Norton-Griffiths1, Harvey Herr1, Richard Lamprey2, Justin Sheffield3,
Tor Vagen1, and Joseph Okotto-Okotto4

1Climate Research Unit, World Agroforestry Centre, United Nations Ave, Gigiri,
P.O. Box 30677-00100, Nairobi, Kenya

2Fauna & Flora International, The David Attenborough Building, Pembroke St,
Cambridge, CB2 3QZ, UK

3Department of Civil and Environmental Engineering, Princeton University,
Princeton, NJ 08544, USA

4Lake Basin Development Authority, P.O. Box 1516-40100, Kisumu, Kenya

Correspondence to: Michael Marshall (m.marshall@cgiar.org)

Received: 11 August 2016 – Discussion started: 9 September 2016
Revised: 10 December 2016 – Accepted: 4 January 2017 – Published: 8 February 2017

Abstract. A growing body of research shows the importance of land use/cover change (LULCC) on modifying
the Earth system. Land surface models are used to stimulate land–atmosphere dynamics at the macroscale, but
model bias and uncertainty remain that need to be addressed before the importance of LULCC is fully realized.
In this study, we propose a method of improving LULCC estimates for land surface modeling exercises. The
method is driven by projectable socio-ecological geospatial predictors available seamlessly across sub-Saharan
Africa and yielded continuous (annual) estimates of LULCC at 5 km× 5 km spatial resolution. The method was
developed with 2252 sample area frames of 5 km× 5 km consisting of the proportion of several land cover types
in Kenya over multiple years. Forty-three socio-ecological predictors were evaluated for model development.
Machine learning was used for data reduction, and simple (functional) relationships defined by generalized ad-
ditive models were constructed on a subset of the highest-ranked predictors (p ≤ 10) to estimate LULCC. The
predictors explained 62 and 65 % of the variance in the proportion of agriculture and natural vegetation, respec-
tively, but were less successful at estimating more descriptive land cover types. In each case, population density
on an annual basis was the highest-ranked predictor. The approach was compared to a commonly used remote
sensing classification procedure, given the wide use of such techniques for macroscale LULCC detection, and
outperformed it for each land cover type. The approach was used to demonstrate significant trends in expanding
(declining) agricultural (natural vegetation) land cover in Kenya from 1983 to 2012, with the largest increases
(declines) occurring in densely populated high agricultural production zones. Future work should address the
improvement (development) of existing (new) geospatial predictors and issues of model scalability and transfer-
ability.
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1 Introduction

Land use/cover change (LULCC) is an important concern for
global environmental sustainability because it can adversely
affect surface albedo and heating (Davin and de Noblet-
Ducoudré, 2010), evapotranspiration and other components
of the hydrologic cycle (Sterling et al., 2013), local to re-
gional climate with the coupling or indirect recycling of sur-
face moisture (Makarieva et al., 2013), global climate via car-
bon and other greenhouse gas emissions (Anderson-Teixeira
and DeLucia, 2011; Ward et al., 2014), and ecosystem ser-
vices worsened by these impacts (Turner et al., 2013). Land
surface models, which can be coupled to a regional or global
climate model, are used to simulate land–atmosphere interac-
tions retrospectively or prospectively (Pitman, 2003) to iden-
tify intervention “hotspots” or develop realistic land man-
agement scenarios at the macroscale (Turner et al., 2007).
Traditionally, spatially explicit LULCC was not an input to
land surface models but was instead represented by structural
(e.g., leaf area index) or physiological (e.g., stomatal resis-
tance) changes in vegetation. LULCC was then mapped in
parallel to characterize these changes. These early attempts
have been replaced by fully coupled LULCC and land sur-
face models (e.g., Shevliakova et al., 2009; Lawrence et al.,
2012). Although the impact of LULCC on the Earth system
is well established and quantifiable, studies remain sparse,
due in part to the inadequacy of LULCC estimates (Pielke
et al., 2011). In order to further land–atmosphere interaction
research, LULCC models must be developed that provide
consistent estimates over long historical time frames, regular
(annual) intervals, and large spatial domains at 5 km× 5 km
spatial resolution; are projectable 50–100 years into the fu-
ture; and use a consistent classification approach (Meiyappan
et al., 2014; Rounsevell et al., 2014; Verburg et al., 2011).

Heistermann et al. (2006) reviews the two primary cate-
gories of macroscale LULCC models (geographic and eco-
nomic), while Schaldach and Priess (2008) and Rounsev-
ell et al. (2014) include reviews of blended or integrated
approaches. The Conversion of Land Use and its Effects
(CLUE) model (Veldkamp and Fresco, 1996; Verburg et al.,
2002) is an example of a geographic technique. It identi-
fies important social (population, economy, society, politics
and planning, culture, and technology) and ecological (cli-
mate, vegetation, soil, topography, and hydrology) predic-
tors from observed LULCC data, which are related to each
other statistically, and then cellular automata are used to sim-
ulate competition between the predicted land use/cover types
and neighboring grid cells based on these relationships. De-
cision rules are typically used iteratively to guarantee real-
istic LULC transitions occur. LandSHIFT (Alcamo et al.,
2011) is an example of an economic approach because sup-
ply (LULC) is distributed on a grid cell basis by demand.
Supply is determined from national estimates of crop yield
and the net primary productivity of grasslands. Multi-criteria
analysis, which involves applying cost functions and LULC

constraints based on socio-ecological inputs, is used to define
demand hierarchically and disaggregate supply over base-
line or projected periods. Integrated approaches (e.g., CLU-
Mondo: van Asselen and Verburg, 2013) are becoming more
common, because they more adequately account for LULCC
processes and the interaction of demand and trade with sup-
ply than economic or geographic models, respectively. Like
most geographic and economic models, however, integrated
models have a sound theoretical basis, but can be difficult
to employ on a grid-cell basis at high spatial resolution at
the macroscale, because of data inconsistencies and incon-
gruities and model complexity that can propagate error, as
well as the time and other resources needed to operate them.
Earth observation (remote sensing) models are an impor-
tant subcategory of the geographic approach because they
overcome many of these challenges, making their opera-
tional use on a grid-cell basis at high spatial resolution at
the macroscale more feasible.

Hansen and Loveland (2012) and Ban et al. (2015) present
recent reviews of macroscale remote-sensing-based LULCC
modeling. Remote sensing approaches use multivariate sta-
tistical techniques to classify land cover types based on the
spectral or textural characteristics of gridded satellite data
(DeFries et al., 1995). These approaches are simpler than in-
tegrated approaches, because they tend to capture change at
a single resolution directly with no interaction between adja-
cent pixels. Remote sensing approaches, therefore, tend to be
more parsimonious than integrated approaches and require
less time for processing. Early remote sensing approaches in-
volved daily coarse spatial resolution (8 km) Advanced Very
High Resolution Radiometer (AVHRR) data available from
1981. Large disagreement and uncertainties in the models,
due to mixed pixel effects from small LULC patch size, as
well as diverse classification systems and methods, limited
their use at the macroscale (Lepers et al., 2005). Recently,
improved computational storage and processing and consen-
sus on classification has facilitated the creation of consistent
global LULCC maps at Landsat (30 m) resolution (Giri et al.,
2013). GlobeLand30 (Chen et al., 2015), for example, uses a
pixel-object-knowledge-based approach to classify Landsat
images from spectrally derived vegetation indices globally in
2000 and 2010. The use of Landsat data alone poses serious
challenges to modeling LULCC on an annual basis: persis-
tent cloud cover and a 16-day revisit cycle make retrieval of
cloud-free pixels difficult; the Landsat platforms have been
retired (Landsat 5), have failed (Landsat 6), suffer from tech-
nical problems (Landsat 7), or have only recently become
active (Landsat 8). To improve the temporal resolution and
continuity of classification, other remote sensing products,
such as the Global Forest Change product (Hansen et al.,
2010), fuse Moderate-resolution Imaging Spectroradiometer
(MODIS) data available every 1–2 days at 250–500 m spatial
resolution with Landsat data. However, these products are
only available over the MODIS era (2000–present), making
long-term classification difficult. In short, the major draw-
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back of remote sensing approaches is that the temporal range
and continuity necessary for long-term annual global change
detection are often sacrificed for high (≤ 500 m) spatial res-
olution. Finally, remote sensing data are not projectable like
other socio-ecological data, such as population density, pre-
cipitation, or temperature, limiting their use to retrospective
analyses.

The purpose of this study was to propose a simple (func-
tional) way to map LULCC at the macroscale at 5 km× 5 km
spatial resolution on an annual basis using socio-ecological
predictors that are available on an annual basis and pro-
jectable 50–100 years into the future to facilitate land–
atmosphere modeling and research. The method was de-
veloped using sample area frames consisting of continuous
land cover proportions developed from multi-year aerial and
ground surveys in Kenya over a 30-year period. The ap-
proach was compared with remote sensing predictors that
have been used to classify land cover types based on their
phenology. Kenya is an ideal location to develop such a
method because, like with many countries in sub-Saharan
Africa (SSA), data are scarce compared to the Global North,
and the impact of land modification on people and the envi-
ronment is high (Lambin et al., 2003). In addition, (1) pop-
ulation density is highest in the most agriculturally produc-
tive areas due to unequitable land distribution and poor in-
frastructure (Jayne and Muyanga, 2012), making ecological
determinants that are generally used to map LULCC poten-
tially less relevant (Pricope et al., 2013); (2) agriculture is
the primary source of livelihood and crops are mostly rainfed
(Ngetich et al., 2014); and (3) interannual rainfall variability
is high and frequently causes devastating droughts and floods
(Held and Soden, 2006).

2 Data and methods

2.1 Study area

Aerial surveys were conducted in 1983, 1985, 2012, and
2013, to assess changes in land cover over parts of the
Lake Victoria basin and central region of Kenya (Machakos
and Makueni areas). The surveys yielded 2252 sample area
frames of 5 km× 5 km covering 28 150 km2 or approxi-
mately 47 % of Kenya’s arable lands (Fig. 1). Olofsson et
al. (2012) suggest that 5 km× 5 km sample area frames are
appropriate for evaluating macroscale LULCC models. The
lakeshore and lowlands of Lake Victoria basin are primarily
tropical, with one long rain season that extends from Febru-
ary to September (UNEP, 2008). The neighboring highlands
follow a bimodal pattern and annual totals are higher than
near the lakeshore, due to warm moist westerlies during the
West African monsoon and orographic uplift. Central Kenya
is drier and has two distinct rain seasons: long rains (March–
June) and short monsoon rains (October–December). The
Machakos area, which includes Muranga’, Kiambu, and the

Figure 1. Study area: 1 126 25 km2 sample frames demarcating the
proportion of land use/cover types estimated from aerial photo in-
terpretation and ground surveys. Photos were taken and surveys
were performed in western Kenya in 1983 and 2012, north-central
Kenya (Machakos area) in 1985 and 2012, and south-central Kenya
(Makueni area) in 1985 and 2013. Source of remote sensing im-
age and topographic map: Environmental Systems Research Insti-
tute (ESRI).

northern part of Machakos, is humid subtropical and there-
fore wetter than Makueni to the southeast, which is semiarid.

The probability (proportion) of various land cover types
within each frame was available at two levels of specificity:
level one (agriculture, natural vegetation, urban, and miscel-
laneous) and level two (crops, fallow, shrubs, savanna, wet-
lands, forest, and agroforestry). These two levels of speci-
ficity were analyzed to determine the level of detail that can
be captured using coarse-resolution geospatial data. Contin-
uous data were used, because at 5 km× 5 km resolution, spa-
tial heterogeneity makes discrete classification impractical.
Agriculture included agroforestry, defined here as trees on a
farm; crops (banana, coffee, maize, sugar cane, tea, wheat,
and others); and pasture/fallow. Natural vegetation included
savanna, shrubs (open and closed), wetlands (perennial and
permanent), and forest (evergreen and deciduous). Urban in-
cluded built-up structures, such as roads, homes, and towns.
Miscellaneous included fish ponds and other water bodies,
exposed rock, and charcoal pits. The frames were developed
using an aerial point-sampling approach (Norton-Griffiths,
1988): several thousand geotagged aerial photos were taken
over parallel transects spaced 1 km apart at approximately

www.earth-syst-dynam.net/8/55/2017/ Earth Syst. Dynam., 8, 55–73, 2017



58 M. Marshall et al.: Continuous and consistent land use/cover change estimates

Table 1. Dates on which aerial sample surveys were conducted.

Sample region First survey Second survey

Lake Victoria November 1983 October 2012
Machakos March–May 1985 November–December 2012
Makueni June 1985 February 2013

488 m (height above ground) in 1983/1985 and then again
in 2012/2013, resulting in approximately seven aerial nat-
ural color analogue photos per frame with a ground sam-
pling distance of < 1 cm in 1983/1985 and five aerial natural
color digital photos per frame with a ground sampling dis-
tance of 6.5 cm in 2012/2013. The retrieval dates are shown
in Table 1. A team of six technicians interpreted the pho-
tos on a rolling basis to minimize potential bias and errors
that can occur from manual classification by different inter-
preters and for different years. The proportion of each land
cover type (0–100 %) was determined by manually classify-
ing a grid of 320 randomly distributed points superimposed
over each photo. For each year, all land cover types were rep-
resented and classified, but not all frames were interpreted
and classified (Fig. 1). The interpretations were validated via
site visits and meetings with community stakeholders. The
estimates were then averaged over the photos across inter-
preters to get the proportions for each frame. Further details
on the 1983/1985 and 2012/2013 campaigns can be found in
EcoSystems Ltd (1983, 1987), and Lamprey (2013).

2.2 Macroscale data handling and processing

The development of the functional relationships from the
sample area frames involved four major steps illustrated in
Fig. 2. Non-remote-sensing and remote sensing predictors
were selected after an exhaustive online search that are freely
and seamlessly available across SSA, so that the relationships
can be used in future studies across the continent for retro-
spective or prospective analyses. Given the large number of
predictors collected, machine learning was used to identify
a subset of the most powerful predictors before construct-
ing the functional relationships. The functional relationships
were then evaluated against remote sensing predictors with
hold-out samples and finally used to demonstrate how the
relationships can be used to reconstruct LULCC estimates
continuously through time.

Forty-three non-remote-sensing (climatic, hydrologic, so-
cioeconomic, and topographic) and 16 remote sensing (phe-
nological) predictors of land cover change were compared
and subset for model building with the sample area frames.
Either slowly changing (long-term average/one-time value)
or dynamic predictors were considered. The slowly chang-
ing predictors and their sources are shown in Table 2. Us-
ing these predictors alone could streamline the modeling pro-
cess. However, in reality, phenology, climate, and population
change frequently, so these predictors were derived on an an-

Figure 2. Model workflow.

nual basis as well. The handling and processing of annually
changing or dynamic predictors are discussed in Sect. 2.2.1–
2.2.3. For the remainder of the paper, dynamic predictors in-
clude a “.d” extension. All of the geospatial data were pro-
jected to Africa Equidistant Conic (m) to facilitate distance
calculations. The predictors were resampled to the finest res-
olution data (90 m× 90 m) and aggregated to 5 km× 5 km
resolution for model building.

2.2.1 Climate

Bioclimatic (BIOCLIM: Hijmans et al., 2005) variables were
used to capture climatic differences in land cover types be-
cause they (1) provide biologically meaningful information
and (2) have been projected mid-21st century at high spa-
tial resolution for SSA (AFRICLIM: Platts et al., 2014). Two
additional climate parameters were included in the analysis,
because they are potentially relevant and part of the Platts et
al. (2014) dataset: atmospheric demand for moisture (poten-
tial evapotranspiration – PET) and the moisture index. The
BIOCLIM variables were computed on an annual basis from
1983–2012 using monthly temperature, shortwave incoming
radiation, and precipitation. The variables were estimated us-
ing the “biovars” function in the “dismo” package in R (Hi-
jmans et al., 2017). As with the Platts et al. (2014) dataset,
PET was estimated using Hargreaves and Samani (1985).

The temperature/radiation and precipitation predictors
were taken from the Princeton University high-resolution
meteorological forcing (PHF) (Chaney et al., 2014) and the
Climate Hazards Group InfraRed Precipitation with Stations
(CHIRPS) (Funk et al., 2014) datasets, respectively. PHF
originally spanned 1979–2008, but was extended to 2012 for
this study. It is a downscaled version of the Princeton Univer-
sity Global Meteorological Forcing (PGF) dataset (Sheffield
et al., 2006) for SSA. It assimilates new observation data,
specifically station data from the US National Climatic Data
Center (NCDC) Integrated Surface Database (ISD) and has
undergone more rigorous correction than the global dataset.
PHF is a blend of the most up-to-date observation-based, re-
mote sensing, and reanalysis data sources: the National Cen-
ters for Environmental Prediction–National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis, the Global Pre-
cipitation Climatology Project, the Tropical Rainfall Measur-
ing Mission (TRMM), the Climatic Research Unit (CRU),
and the Surface Radiation Budget. The data are downscaled
using elevation. The dataset includes precipitation, mini-
mum/maximum temperature, pressure, shortwave and long-
wave radiation, specific humidity, and wind speed at a daily
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Table 2. Slowly changing (long-term average/one-time value) predictors considered for LULCC estimation and their data sources. Climate,
remote sensing, and population predictors were considered as annually changing as well. Dynamic (annual) variables are distinguished with
a “.d” extension.

Category Variable Description Units Source

Climate bio1 Annual mean temperature ◦C https://www.york.ac.uk/
environment/research/kite/
resources/

bio2 Mean diurnal range ◦C
bio3 Isothermality
bio4 Temperature seasonality ◦C
bio5 Maximum temperature of warmest month ◦C
bio6 Minimum temperature of coldest month ◦C
bio7 Temperature annual range ◦C
bio10 Mean temperature of warmest quarter ◦C
bio11 Mean temperature of coldest quarter ◦C
bio12 Annual precipitation mm
bio13 Precipitation of wettest month mm
bio14 Precipitation of driest month mm
bio15 Precipitation seasonality mm
bio16 Precipitation of wettest quarter mm
bio17 Precipitation of driest quarter mm
mi Moisture index
pet Potential evapotranspiration mm

Hydrology dtw Depth to groundwater mm http://www.bgs.ac.uk/research/
groundwater/international/
africanGroundwater/maps.html

gwp Groundwater productivity L s−1

gws Groundwater storage mm

Phenological ampl Linear amplitude https://ecocast.arc.nasa.gov/data/
pub/gimms/

ampn Nonlinear amplitude
lint Linear intercept (annual mean)
nint Nonlinear intercept (annual mean)
phsl Linear phase
phsn Nonlinear phase
strn Nonlinear strength (asymmetry)
warpn Nonlinear warp (asymmetry)

Socioeconomic popd Population density no. of people km−2 http://na.unep.net/siouxfalls/
datasets/datalist.php

Topography asp Aspect ◦ http://www.cgiar-csi.org/data/srtm-
90m-digital-elevation

elev Elevation m
slp Slope %
topind Topographic wetness index

time step and 0.1◦ (∼ 10 km× 10 km at the Equator) reso-
lution. CHIRPS is available at pentad (5-day) intervals and
0.05◦ (∼ 5 km× 5 km at the Equator) spatial resolution from
1981 to 2012. Like PHF, CHIRPS is a blend of several
observation-based, remote sensing, and reanalysis sources:
geostationary thermal infrared satellite observations from the
Climate Prediction Center and National Climatic Data Cen-
ter, TRMM, and NOAA-NCAR. CHIRPS was selected as the

precipitation data source over PHF, because it incorporates
the largest collection of ground-based precipitation data in
East Africa and bias correction is performed using the Cli-
mate Hazards Precipitation climatology (Funk et al., 2015).
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2.2.2 Population density

Population density was derived from the UNEP/GRID-Sioux
Falls African Population Distribution Database (APDD)
on an annual basis from 1983 to 2012. APDD consists
of population density at a spatial resolution of 2.5 arcmin
(∼ 5 km× 5 km at the Equator) for base years 1960, 1970,
1980, 1990, and 2000. The grids are derived from popu-
lation statistics at various administrative (district, province,
etc.) levels and temporal scales, depending on the avail-
ability of national population statistics. A detailed descrip-
tion of the derivation of gridded population can be found
in Deichmann (1996). Each grid cell represents “popula-
tion potential”, based on its proximity to the transporta-
tion network (roads, railroads, and navigable rivers, and ma-
jor towns/cities). Population at a given administrative level
is then disaggregated according to the population potential.
Grid cells that are closer to the network have higher coeffi-
cients and therefore receive a larger proportion of the popula-
tion than grid cells further away. The base years are then ex-
trapolated with an exponential growth/decay function (Davis,
1995). For consistency, the same function was used to dis-
tribute population between base years on an annual basis for
each grid cell:

Pi,j,t = Pi,j,T e
1tki,j , (1)

ki,j = ln
(
PT+10n/PT+10(n−1)

)
/10. (2)

Pi,j,t is the interpolated population/population density for
a given year (t) and at grid cell i, j ; Pi,j,T is the
population/population density for a given base year (pe-
riod= 10 years); 1t is the change in time from the base
year to the year being interpolated; and ki,j (Eq. 2) is the
growth/decay coefficient. The growth/decay coefficient is de-
fined by PT+10(n−1) (initial base year for iteration n) and
PT+10n (last base year for iteration n). The denominator was
set to 10, because ki,j accounted for decadal trends. After
2000, population statistics were extrapolated to 2012 using
the 1990–2000 growth/decay coefficients.

2.2.3 Remote sensing predictors

The National Aeronautics and Space Administration’s
Global Inventory Modeling and Mapping Studies (GIMMS)
normalized difference vegetation index (NDVI) version 3
(NDVI3g) (Pinzon and Tucker, 2014) was used to estimate
the remote sensing predictors. NDVI is a ratio-based vegeta-
tion index derived from Earth observation (AVHRR) surface
reflectance in the visible red and near infrared (NIR). NDVI
approaching one (zero) is indicative of dense vegetation (bare
soil). NDVI3g is available at 0.08◦ (∼ 8 km× 8 km at the
Equator) spatial resolution and at a 15-day time step from
1983 to 2013. NDVI3g has been compared to other long-
term global vegetation records and is considered the most
appropriate for trend analyses (Tian et al., 2015).

The predictors were derived from NDVI using harmonic
regression (Eastman et al., 2009) on an annual basis from
1983 to 2012. Linear harmonic regression estimates the am-
plitude (maximum) and phase (timing) of a fitted time se-
ries, but unless higher-order harmonics are introduced, linear
harmonic regression is too rigid to account for outliers and
multimodal regimes commonly found in the tropics. To over-
come these obstacles, nonlinear harmonic regression (Carrão
et al., 2010) was used to estimate five phenological predic-
tors:

NDVIi,j,T =Mi,j +Ai,j cos(ω0t +∅+α cos(ω0t +ϕ)) , (3)

where NDVIi,j,T is NDVI at grid cell i, j and over period
T , which in this case was 24, because nonlinear harmonic
regression was computed on an annual basis from the 15-
day data; M is the intercept (annual mean NDVI); A is the
amplitude; φ is the annual phase; and α and ϕ are nonlin-
ear terms defining the strength of nonlinearity (asymmetry)
and nonlinear phase (deceleration/acceleration of asymme-
try), respectively. The frequency (ω0) equals 2π/T . The ap-
proach can be reduced to a linear harmonic oscillator by set-
ting αcos(ω0t +ϕ) to zero. The nonlinear predictors were
derived at each grid cell using the “nlsLM” function in the
“minipack.lm” package in R (Elzhov et al., 2016). The nl-
sLM function uses the Levenberg–Marquardt optimization
method (Moré, 1978) to find the nonlinear least-squares fit.
The function was constrained by the seed and boundary con-
ditions described in Carrão et al. (2010). One thousand iter-
ations at each grid cell were performed to avoid fitting local
optima. Linear terms (A and φ) were computed for the anal-
ysis as well, using the “lm” function in the “stats” package
in R (https://cran.r-project.org/), because they are more effi-
cient and are easier to interpret.

2.3 Land cover model development using remote
sensing and non-remote-sensing predictors

Land cover models were developed for each level of speci-
ficity. Seventy percent of the samples (N = 1576) were used
for model calibration and 30 % of the samples (N = 676)
were used for model validation.

Machine learning was used to omit redundant predictors
and determine the feasibility of using the remaining predic-
tors to predict each land cover type, given the large number of
predictors and possible intercorrelations. Machine learning
techniques lead to stable results when the number of predic-
tors is large and are less affected by nonlinearity and multi-
collinearity than other automated fitting routines (Fernández-
Delgado et al., 2014). Breiman’s random forest algorithm
(Breiman, 2001) available in the “randomForest” package
in R was selected in particular, because it is less suscepti-
ble to over-fitting and yields higher prediction accuracy than
other machine learning algorithms. The random forest (RF)
algorithm yields an ensemble model, bagged from multiple
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and independent decision trees consisting of various combi-
nations of predictors and sample subsets. The performance
of the ensemble was measured with a pseudo-coefficient of
determination (pseudo-R2), which is one minus the ratio of
the cross-validated mean squared error (MSE) of the predic-
tion to the variance of the observed data. As MSE or the
average error between predicted and observed estimates ap-
proaches zero, R2 approaches one (perfect correlation). The
importance of each predictor in the ensemble is also quanti-
fied and is defined by the percent increase in cross-validated
MSE when a predictor is removed from the ensemble. Once
the predictors were ranked, the “rfcv” function was used to
determine the number of predictors to use to develop func-
tional relationships for each land cover class. The rfcv func-
tion computes the cross-validated MSE versus the number of
predictors included in the ensemble in descending order of
importance.

The drawback of RF is that it results in complex rela-
tionships that are difficult to interpret. Generalized additive
models (GAMs) (Hastie and Tibshirani, 1990) were used
to build functional relationships on the subsets of important
predictors identified with RF because a number of studies
have successfully estimated the proportion of crop area with
socio-ecological predictors and GAMs (Grace et al., 2014;
Husak et al., 2008; Marshall et al., 2011); like RF, GAMs
are not severely impacted by nonlinear data, and unlike RF,
GAMs are relatively simple and easy to interpret. Since the
response variable (proportion of land cover type) was contin-
uous and bounded from 0 to 100 %, the data were fitted us-
ing a quasi-binomial distribution (link: logistic). The logistic
GAM predicts the log likelihood of an event (probability of
success/probability of failure) using, in our case, a series of
cubic spline functions:

log
(

pj

1−pj

)
= β0+

∑
fi,j

(
xi,j

)
, (4)

where p is the probability of a LULC type for sample area
frame j , β0 is the intercept, and fi,j (xi,j ) is the cubic spline
function for predictor xi at sample area frame j . The GAMs
were developed with the “gam” function in the “mgcv” pack-
age in R. Model calibration was evaluated with explained
part and overall deviance. Deviance is the log likelihood
(probability space) alternative to variance. Part deviance is
the deviance explained when the target predictor is removed
from a GAM minus the overall deviance. Another pseudo-R2

statistic (1−model deviance/null deviance) was also com-
puted to compare calibration with validation.

In order to demonstrate how the models can be used for
macroscale application, the final GAMs developed were em-
ployed to reconstruct the annual change in agriculture and
natural vegetation and to perform a trend analysis from 1983
to 2012 at each sample area frame. Trends were estimated
using the Theil–Sen technique, which computes the median
of all possible pairwise slopes in a time series. The approach
has been used, for example, to measure long-term trends in

Figure 3. Box plot of the proportion of land cover types for two
levels of classification (N = 2252). The first and second levels of
classification are shaded in orange and yellow, respectively.

NDVI (de Beurs and Henebry, 2005), because it is not signif-
icantly impacted by outliers or nonlinearity. The significance
of each trend was assessed using the Mann–Kendall statistic.
Trends were masked at the 99.9 % confidence band.

3 Results

3.1 Land cover sample area frame summary

The distribution of land cover over the sample area frames
is illustrated with a box plot in Fig. 3. Agriculture and nat-
ural vegetation land cover (level one) were normally dis-
tributed, with agriculture having a higher median (54.04 %)
and lower spread (29.32 and 76.33 % at the first and third
quartiles) than natural vegetation (median= 39.72 %, first
quartile= 16.21 %, and third quartile= 65.67 %). The pro-
portion of urban and miscellaneous land cover was con-
siderably lower (median= 4.00 and 0 %, respectively) and
nonlinear, each having several high proportion outliers. The
disaggregated land cover (level two) distributions, with the
exception of crops, were nonlinear with long right tails.
Crops represented the largest proportion of land cover
(median= 37.52 %) and had the largest spread (19.43 and
58.46 % at the first and third quartiles), followed by savanna
(median= 15.79 %, first quartile= 3.80 %, and third quar-
tile= 31.91 %). Wetlands represented the smallest propor-
tion of land cover (median= 0 %), with sample area frames
not exceeding 75 %, while forest represented the second
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Figure 4. Percent mean squared error (MSE) increase after each of the top 20 non-remote-sensing (a, c) and 16 remote sensing (b, d) predic-
tors were omitted from the random forest ensemble model predicting the proportion of agriculture and natural vegetation in the calibration
sample frames, respectively. The models explained 69, 49, 69, and 50 % of the proportion variability.

smallest proportion of land cover (median= 2.22 %) but had
a large number of outliers.

3.2 Data reduction

The top remote sensing and non-remote-sensing predic-
tors considered are ranked in descending order of impor-
tance for agriculture and natural vegetation using bar graphs
in Fig. 4. The RF ensemble models using non-remote-
sensing predictors performed moderately well for agricul-
ture (pseudo-R2

= 0.69) and natural vegetation (pseudo-
R2
= 0.69) but poorly for the more nonlinear distribu-

tions (urban pseudo-R2
= 0.37 and miscellaneous pseudo-

R2
= 0.50). The RF ensemble models using remote sens-

ing predictors all performed poorly: agriculture (pseudo-
R2
= 0.49), natural vegetation (pseudo-R2

= 0.50), urban
(pseudo-R2

= 0.22), and miscellaneous (pseudo-R2
= 0.33).

It should be noted in each case, however, that the highest-
ranked remote sensing predictors resulted in lower model er-
ror than the highest-ranked non-remote-sensing predictors.
The non-remote-sensing predictors were more numerous and
generated larger incremental improvements that contributed

to overall greater predictive power. For the non-remote-
sensing ensembles, dynamic predictors were more impor-
tant than slowly changing predictors, and population density
and climate predictors consistently outranked topographic
or hydrologic predictors. Popd.d, popd, bio7.d, bio14.d, and
bio3.d were consistently ranked the most important predic-
tors of agriculture and natural vegetation proportions. Omit-
ting popd.d, the most important predictor for agriculture,
for example, led to a more than 65 % increase in ensem-
ble MSE. Given that popd.d and popd were both important,
model results were compared with popd.d and popd individ-
ually and combined as anomalies (popd.d / popd). Ensemble
performance was better when the two predictors were con-
sidered separately. The most important remote sensing pre-
dictors were less influential than popd.d; strn, ampn.d, and
ampl.d were more equally important for agriculture and nat-
ural vegetation, followed by phsl and phsn.

The importance of predictors of level two (crops, sa-
vanna, and forest) proportions is ranked in Fig. 5. The
ranking was more variable for level two classification, but
popd.d remained the most important predictor in each case.
The level two RF ensemble models predicted less variabil-
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Figure 5. Percent mean squared error (MSE) increase after each of the top 20 non-remote-sensing (a, c, e) and 16 remote sensing (b, d, f) pre-
dictors were omitted from the random forest ensemble model predicting the proportion of crops, savanna, and forest in the calibration sample
frames, respectively. The models explained 63, 46, 62, 44, 62, and 46 % of the proportion variability.

ity than the level one RF ensemble models and the non-
remote-sensing predictors outperformed the remote sens-
ing predictors when more than the highest-ranked predic-
tors were introduced. The non-remote-sensing models per-
formed moderately well for crops (pseudo-R2

= 0.63), sa-
vanna (pseudo-R2

= 0.62), and forest (pseudo-R2
= 0.61)

but poorly for fallow (pseudo-R2
= 0.42), shrubs (pseudo-

R2
= 0.54), wetlands (pseudo-R2

= 0.10), and agroforestry
(pseudo-R2

= 0.55). Precipitation-based climatic predictors

(bio12.d, bio13.d, bio14.d, and bio16.d) were more impor-
tant in the savanna ensemble than temperature-based climatic
determinants driving the crop ensemble. For the forest simu-
lation, topographic predictors (slp and topind) were more im-
portant than most of the climatic predictors. The remote sens-
ing ensembles performed poorly for all of the level two land
cover classes: crops (pseudo-R2

= 0.46), fallow (pseudo-
R2
= 0.33), shrubs (pseudo-R2

= 0.44), savanna (pseudo-
R2
= 0.44), wetlands (pseudo-R2 < 1 %), forest (pseudo-
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Figure 6. Curves showing the mean squared error (MSE) of the predicted proportion of forest from the random forest ensembles parameter-
ized with non-remote-sensing (a) and remote sensing (b) predictors. The number of predictors corresponds to the bar graphs in descending
order of importance.

R2
= 0.46), and agroforestry (pseudo-R2

= 0.41). For crops,
strn and ampl.d remained the most important predictors.
Maximum annual NDVI, as captured by ampl.d and ampn.d,
was much more important for predicting the proportion of
savanna. Unlike other ensembles, which were driven by dy-
namic predictors, the most important remote sensing predic-
tors for forest cover were long-term averages.

3.3 Building functional relationships

The GAMs were developed for moderately performing land
cover classes and used considerably fewer predictors than the
RF ensembles, because most of the predictors in the ensem-
bles explained very little, if any, variance. This is illustrated
in Fig. 6, which shows MSE versus the number of predic-
tors used in the non-remote-sensing and remote sensing en-
sembles for forest cover. For the non-remote-sensing ensem-
ble, MSE increased from 119.76 to 120.49 after the 10th
predictor and leveled off after the 13th predictor were in-
troduced. For the remote sensing ensemble, MSE increased
from 120.49 to 163.34 and leveled off after the 7th predictor
was introduced. For this reason, the GAMs were built with
10–13 of the highest-ranked non-remote-sensing predictors
and additional predictors, namely popd, were removed after
redundancies were identified in the GAM component func-
tional plots and with significance tests (not shown). GAMs
were not constructed using the remote sensing predictors be-
cause of the poor results of the ensembles and the inability of
additional predictors to substantially improve the accuracy of
the GAMs. Similarly, non-remote-sensing GAMs were not
developed for urban, miscellaneous, fallow, shrubs, or wet-
lands.

Figures 7 and 8 show the functional relationships of
the predictors used for estimating the proportion of agri-
culture and natural vegetation. Each model explained
61.5 % (pseudo-R2

= 0.66) and 61.4 % (pseudo-R2
= 0.66)

of model deviance with nine and seven predictors, respec-
tively. The error bars tended to be wider at proportion ex-
tremes, because fewer data points were available to train the
models. The relative importance of each predictor, as defined
by part deviance and other calibration statistics, is shown in
Table 3 for the land cover types that were considered feasi-
ble for model building. Popd.d remained the most important
predictor and uniquely explained 7.0–26.2 % of model de-
viance. The log likelihood of agriculture (natural vegetation)
increased (decreased) rapidly as population density increased
from 0 to 550 people km−2, more gradually between 550 and
1200 people km−2, and reversed beyond 1200 people km−2.
The predictive power of the topographic and climatic vari-
ables dropped off sharply compared to popd.d. For agricul-
ture, bio14.d and topind were the second and third most im-
portant predictors but explained only 1.9 and 1.6 % unique
deviance. As seen in the partial functional plots, the pro-
portion of agriculture was highest in high-production zones
(medium population density) on ridges and crests where top-
ind was low and for very wet tropical areas where bio14.d
was high and semi-arid areas where bio14.d was low. For
natural vegetation, temperature predictors, bio4.d and bio7.d,
explained the second and third highest unique deviance after
popd.d (2.0 and 1.3 %). As seen in the functional plots, low-
population areas with more seasonal temperatures, or inter-
annual variation, and lower bio3.d (isothermality) tended to
have higher proportions of natural vegetation (savanna and
shrubs). Isothermality is the ratio of mean diurnal tempera-
ture range (bio2.d) to the temperature annual range (bio7.d),

Earth Syst. Dynam., 8, 55–73, 2017 www.earth-syst-dynam.net/8/55/2017/



M. Marshall et al.: Continuous and consistent land use/cover change estimates 65

Figure 7. Partial functional plots relating the proportion (probability) of agriculture expressed as the log of odds ratio with (a) population
density (popd.d), (b) precipitation of driest month (bio14.d), (c) topographic wetness index (topind), (d) mean diurnal range (bio2.d), (e) pre-
cipitation seasonality (bio15), (f) temperature seasonality (bio4.d), (g) slope (slp), (h) moisture index (mi.d), and isothermality (bio3.d). The
probabilities are defined using a logistic model with cubic smoothing splines (N = 1,576).

which is the difference between the annual maximum and
minimum temperatures. Areas that are less isothermal es-
sentially have more pronounced seasons and are climatically
less tropical. For the level two classifications, calibration
was more difficult and yielded poorer relationships. Popd.d
was the most important predictor and explained 7.0–16.4 %
unique deviance. The predictive power of the topographic
and climatic variables was more equally distributed than for
the level one classification.

In all cases, the R2 for the validation subset was lower
than the pseudo-R2 from the calibration subset: agricul-
ture (1R2

=−0.04), natural vegetation (1R2
=−0.01),

crops (1R2
=−0.03), savanna (1R2

=−0.01), and forest
(1R2

=−0.06) (Fig. 9). With the exception of the crops
GAM, level two GAMs tended to under-predict high propor-
tions of land cover (savanna and forest) and contained nu-
merous outliers.

3.4 Trend analysis

The GAMs for agriculture and natural vegetation were used
to simulate trends in the annual proportions for the sample
area frames from 1983 to 2012 as part of the evaluation to
demonstrate how the approach could be used for a retro-
spective analysis. The proportion of agriculture for 1983 and
2012 is shown in Fig. 10a and b, while trends over the 30-
year period are shown in Fig. 10c. The high-potential agri-
cultural zone (wet highlands) in western Kenya experienced
the largest increase in simulated agricultural cover (> 1 % per
year or 30 % over the 30-year period). A time series of the
strongest trend (1.68 % per year) is shown in Fig. 10d. Simu-
lated population density was at 145 people km−2 in 1983 for
this sample area frame, which steadily increased to 478 peo-
ple km−2 by 2012. Closer to the lake, which consists of
drier marginal mixed farming, trends were insignificant at the
99.9 % confidence band or relatively weak (< 1 % per year).
Similar patterns were seen for the marginal mixed farming
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Table 3. Calibration statistics of the generalized additive models used to predict the proportion of land cover (N = 1576). Predictors are
significant at the 99.9 % confidence band.

Land cover type Variable ID Part deviance (%) Pseudo-R2 Deviance (%)

Agriculture popd.d 20.0 0.66 61.5
bio14.d 1.9
topind 1.6
bio2.d 1.4
bio15 1.3
bio4.d 1.2
slp 0.9
mi.d 0.8
bio3.d 0.7

Natural vegetation popd.d 26.2 0.66 61.4
bio4.d 2.0
bio7.d 1.3
slp 1.2
bio14.d 0.6
bio3.d 0.5
pet.d 0.4

Crops popd.d 15.5 0.56 52.1
bio2.d 3.5
bio15 1.8
bio3.d 1.7
bio4.d 1.4
pet.d 1.0
bio14.d 0.7
bio16.d 0.7

Savanna popd.d 7.0 0.56 55.7
bio13 3.7
bio12.d 2.4
topind 2.2
bio16 2.2
bio7.d 1.6
bio14.d 1.6
bio17.d 1.4

Forest popd.d 16.4 0.57 61.2
bio16.d 4.3
mi.d 2.1
bio3.d 2.0
bio12 1.6
pet.d 1.3
elev 1.0
topind 0.7
bio14.d 0.7
slp 0.7

and high-potential agricultural zones of central Kenya. The
only decrease in agricultural lands was in the town of Kitale
(−1.40 % per year). The time series is also shown in Fig. 10d.
Population density in Kitale was 1110 people km−2 in 1983,
which is near the threshold of declining agriculture cover
versus population density at 1200 people km−2. By 2009,
when the largest decrease in agriculture cover occurred, from

51.0 to 29.5 %, population density had steadily increased
and surpassed another apparent threshold above 3000 peo-
ple km−2. The direction and relative magnitude of trends in
natural vegetation (not shown) generally corresponded in-
versely to trends in agriculture, but were negatively weak
(maximum=−0.4 % per year or−12 % over the 30-year pe-
riod).

Earth Syst. Dynam., 8, 55–73, 2017 www.earth-syst-dynam.net/8/55/2017/



M. Marshall et al.: Continuous and consistent land use/cover change estimates 67

Figure 8. Partial functional plots relating the proportion (probability) of natural vegetation expressed as the log of odds ratio with (a) pop-
ulation density (popd.d), (b) temperature, seasonality (bio4.d), (c) temperature annual range (bio7.d), (d) slope (slp), (e) precipitation of the
driest month (bio14.d), (f) isothermality (bio3.d), and (g) potential evapotranspiration (pet.d). The probabilities are defined using a logistic
model with cubic smoothing splines (N = 1576).

4 Discussion

The results make three important contributions that the land
surface modeling community should consider to improve
LULCC detection, particularly for SSA: (1) a socioeconomic
variable (population density) was the highest-ranked predic-
tor of LULCC and had considerably more predictive power
than biophysical predictors, (2) non-remote-sensing predic-
tors outperformed remote sensing predictors due to their
number and the incremental improvement in the predictive
power of each, and (3) coarse-resolution data were able to
capture general classification descriptors, but unable to cap-
ture more detailed descriptors.

The global increase in agricultural land cover has been at-
tributed to the demand for food and other agricultural com-
modities by a growing population (Pongratz et al., 2008).
In SSA, smallholder farms, which support the majority of
the labor force, are small (half are < 1.5 ha) and concen-
trated in densely populated areas, while large portions of

arable farmland in sparsely populated areas remain under-
utilized (Jayne et al., 2003). This underutilization is due
primarily to a lack of investment in infrastructure and un-
equitable tenure systems, which forces farmers to grow more
on less land. This relationship is confirmed by rural popula-
tion survey data in Kenya, which showed that fertilizer in-
put use and net farm income per hectare increase until ap-
proximately 550 people km−2 and then sharply decline, be-
cause farm sizes shrink, surplus production decreases, and
farmers must adopt costlier strategies (e.g., zero-grazing) to
maximize revenue (Jayne and Muyanga, 2012). The func-
tional relationship for population density and steady increase
in area under cultivation in high-production zones demon-
strated by the trend analysis in this study, corresponds to
this finding, as area under cultivation increased rapidly to ap-
proximately 550 people km−2 and then increased more grad-
ually with higher population density until 1200 people km−2.
Few sample area frames had population densities greater than
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Figure 9. Predicted versus observed proportion of agriculture (a);
natural vegetation (b); crops (c); savanna (d); and forest (e) for the
validation subset (N = 676). The 1 : 1 line is drawn through the ori-
gin.

1200 people km−2, as in Kitale, so it is difficult to know
whether this functional relationship holds for very high popu-
lation densities. At least to 2008, Kitale experienced a growth
rate of 12 %, well above the national average (7 %), due to
persistent drought and out-migration from neighboring high-
production zones (Majale, 2008). Although the functional re-
lationship for population density corroborates household sur-
veys in Kenya and other agrarian countries in SSA, it should
be further scrutinized, because land tenure in SSA is com-
plex (Place, 2009), the dependency of LULCC predictors on
location and spatial scale can be high (Rindfuss et al., 2004),
and the transition from agrarian to industrialized nations may
make 50–100-year projections for SSA obsolete.

The proposed methodology when applied to other regions
of the world will undoubtedly result in a different combina-
tion of socio-ecological predictors and functional relation-
ships, because access to land varies across agrarian and non-
agrarian societies, so further study is required with observed
data to develop region-specific models and validate the re-
sults for countries in SSA. Kumar et al. (2013), for example,
showed that in the United States pre-1900, when the country

was largely agrarian and transportation networks were weak,
population density and crop area were directly correlated, be-
cause crops needed to be grown close to markets. However,
as the country became more industrialized and transporta-
tion networks improved, farmers moved to more biophysi-
cally suitable areas away from city centers, making biophys-
ical determinants of crop area more important than popula-
tion density in the latter half of the 20th century. Whether the
analyses are performed in agrarian or non-agrarian regions,
extensive preparation of observation data will be required,
because the data used in this study, namely consistent sample
area frames at a spatial resolution appropriate for land sur-
face modeling and spanning multiple climatic zones through
time, are quite unique.

Population density estimates vary widely (Wilson, 2014),
and given its fundamental importance to the proposed model
framework, future work should aim to integrate a more dy-
namic product that better accounts for interannual variability
and realistic representation of current and projected popu-
lation density. To the authors’ knowledge, this was the first
attempt to make a population product dynamic. However,
the approach is essentially tracking decadal trends that ex-
plain a significant portion of interannual variability. In real-
ity, population density can show high interannual variability
due to migration and other factors. Regarding the product it-
self, changes in population density do not necessarily “grow”
from transportation networks and are influenced by impor-
tant feedbacks now and in the future. In addition, the extrap-
olation method used is efficient and can be projected indefi-
nitely, but does not capture complex demographics that other
methods do and can lead to “runaway” growth/decline and
unrealistic mid- to late-21st century projections for scenario-
building (Baker et al., 2008). Finally, there is no consensus
on which population product to use however, in the future,
other products (e.g., Afripop) should be compared against the
product used here, used to adjust growth/decay coefficient
for population density estimates beyond 2000, or combined
to make a model ensemble.

This paper highlights the importance of gridded socioe-
conomic data in mapping LULCC, but gridded macroscale
datasets are almost exclusively biophysical in nature. The
biggest gains in LULCC prediction could be made, therefore,
by developing gridded macroscale socioeconomic data from
existing country-level products, such as the human develop-
ment index. More minor gains could be made by integrat-
ing biophysical predictors not used in this study, such as soil
type and properties. Gridded soils data exist globally from
the International Soil Reference and Information Center but
were not considered in this study, because they are one-time
values and do not capture the dynamic nature of soils or its
complex relationship with LULCC. A dynamic soils product
was recently developed for the MODIS era (see Vågen et al.,
2016) and could be a powerful tool for LULCC detection,
especially if it is back-casted over the full temporal range
of other predictors. Many biophysical predictors are avail-

Earth Syst. Dynam., 8, 55–73, 2017 www.earth-syst-dynam.net/8/55/2017/



M. Marshall et al.: Continuous and consistent land use/cover change estimates 69

Figure 10. Simulated percent agriculture for sample area frames in 1983 (a) and 2012 (b), change in agriculture per year over the 30 year
(1983–2012) period (c), and time series of the strongest positive (red) and negative (blue) trend (d). Trends were determined with a Theil–Sen
estimator and masked for significance using the Man–Kendall statistic at the 99.9 % confidence band.

able mid- and late 21st century and are therefore widely used
for prospective analyses, so methods should be explored to
project soils and socio-economic data into the future to im-
prove LULCC estimates.

Grace et al. (2014) developed GAMs to predict cropped
area in Kenya using biophysical predictors (rainfall, ele-
vation, NDVI, slope, and the topographic wetness index)
and explained much of the deviance in cropped area (41.9–
81.4 %). Although the models used different predictors for
different years and production zones, and the definition of
cropped area and the degree of functional smoothing were
not explicit, the study shows that the intercorrelation among
predictors may be obscuring the importance of biophysi-
cal determinants. Specifically, population density tends to
be highly correlated with and could be suppressing the ex-
planatory power of biophysical predictors, though the partial
deviance statistics did not reflect this. In addition, the ran-
dom forest algorithm accounts for intercorrelation to some
degree, but other techniques could be introduced to further
reduce these effects. For example, principal component anal-

ysis could be used to develop temperature and precipitation
indices that integrate all or some of the BIOCLIM predictors.

Phenological patterns extracted from continuous Earth-
observation-based NDVI have been widely used to map
LULCC over long time periods, given the lack of higher
spatial and spectral resolution data before the MODIS era
(Ali et al., 2014; de Bie et al., 2012). These studies show
that vegetation periodicity is highly variable for a given
land cover type and that long-term averages of phenolog-
ical predictors are more reliable for mapping LULCC. In
this study, many of the important remote sensing predictors
(particularly for forests) were long-term averages, but they
still under-predicted LULCC when compared against non-
remote-sensing predictors, which were more numerous and
resulted in larger incremental improvements to model accu-
racy. Perhaps the main difficulty in using long-term Earth
observation data for LULCC estimation is the coarseness of
the data and the rapid change in vegetation that often oc-
curs over small spatial scales. Population density, which was
a much stronger predictor, on the other hand, may well be
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captured using coarse-resolution data, because this predic-
tor changes more gradually over space. An analysis of the
non-remote-sensing and remote sensing predictors together
revealed that for agriculture, natural vegetation, savanna, and
forest cover, Earth observation data provided an additional
1–2 % explained deviance. If the long-term average remote
sensing predictors could be downscaled using MODIS or
Landsat data and then aggregated to 5 km× 5 km resolution
with distribution moments as predictors, for example, the ex-
planatory power of non-remote-sensing predictors could be
further enhanced for retrospective analyses. Another avenue
worth exploring could involve using downscaled long-term
average remote sensing predictors to develop 5 km× 5 km
probabilities as in the Pengra et al. (2015) dataset to evaluate
the non-remote-sensing models proposed here.

The evaluation of the models at two levels of specificity
revealed that coarse resolution is able to better simulate gen-
eral descriptors, such as natural vegetation, but is poorer at
predicting more detailed descriptors, such as forest. Each of
the more detailed random forest ensembles with non-remote-
sensing predictors had 1R2s of −0.06, −0.07, and −0.07
for crop, savanna, and forest over agriculture and natural
vegetation, respectively. Part of this discrepancy can be at-
tributed to the increased interpretation uncertainty, as inter-
preters find it more challenging to distinguish between more
detailed LULC types. In addition, coarse-resolution data may
not be able to capture the level of heterogeneity in the area
sample frames needed to distinguish land-use/cover-specific
socio-ecological patterns and properties.

5 Conclusion

This study developed and evaluated a simple method to pro-
vide consistent estimates of LULCC annually over 30 years
at 5 km× 5 km resolution using non-parametric functional
relationships with a small subset of socio-ecological predic-
tors (p ≤ 10). Functional relationships were developed after
data-mining 43 geospatial datasets that are available seam-
lessly across SSA, which can be used for retrospective or
prospective mid- and late-21st century analyses as well. The
relationships are intuitive and tunable, making their use prac-
tical for decision makers to identify intervention hotspots
and develop land management scenarios. Model validation,
performed with the proportion of major land cover types in
Kenya over a 30-year period, revealed that a number of activ-
ities should be performed to improve the predictive power of
the models for practical use. These activities should include
integrating improved existing or newly developed spatially
explicit geospatial (particularly socioeconomic) datasets into
the proposed model framework. With these improvements,
land surface and LULCC modeling could be greatly en-
hanced and the consequence of the latter on the Earth system
more fully understood. In an upcoming study, the modeling
approach proposed here will be used with a newly acquired

sample area frame dataset to estimate historical LULCC and
project land suitability across SSA mid-21st century with
AFRICLIM and population statistics.

6 Data availability

All input geospatial data, sample area frame proportions of
land use/cover, and model outputs will be made freely avail-
able on the World Agroforestry Centre’s Landscapes Portal
(http://landscapeportal.org/). Other data used in this study
not on the Landscapes portal, including AFRICLIM (Platts
et al., 2014), quantitative groundwater maps for Africa
(MacDonald et al., 2012), GIMMMS NDVI3g (Pinzon and
Tucker, 2014), UNEP/GRID, 1987, CGIAR-CSI SRTM 90m
(Jarvis et al., 2008), CHIRPS (Funk et al, 2014), and PHF
(Chaney et al., 2014), are available at https://www.york.ac.
uk/environment/research/kite/resources/; http://www.bgs.ac.
uk/research/groundwater/international/africanGroundwater/
maps.html; https://ecocast.arc.nasa.gov/data/pub/gimms/;
http://na.unep.net/siouxfalls/datasets/datalist.php;
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation;
http://chg.geog.ucsb.edu/data/; and http://hydrology.
princeton.edu/data.php.
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