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Abstract. In the 21st century, climate change in combination with increasing demand, mainly from population
growth, will exert greater pressure on the ecosystems of the Sahel to supply food and feed resources. The balance
between supply and demand, defined as the annual biomass required for human consumption, serves as a key
metric for quantifying basic resource shortfalls over broad regions.

Here we apply an exploratory modelling framework to analyse the variations in the timing and geography of
different NPP (net primary production) supply–demand scenarios, with distinct assumptions determining supply
and demand, for the 21st century Sahel. We achieve this by coupling a simple NPP supply model forced with
projections from four representative concentration pathways with a global, reduced-complexity demand model
driven by socio-economic data and assumptions derived from five shared socio-economic pathways.

For the scenario that deviates least from current socio-economic and climate trends, we find that per capita NPP
begins to outstrip supply in the 2040s, while by 2050 half the countries in the Sahel experience NPP shortfalls.
We also find that despite variations in the timing of the onset of NPP shortfalls, demand cannot consistently be
met across the majority of scenarios. Moreover, large between-country variations are shown across the scenarios,
in which by the year 2050 some countries consistently experience shortage or surplus, while others shift from
surplus to shortage. At the local level (i.e. grid cell), hotspots of total NPP shortfall consistently occur in the same
locations across all scenarios but vary in size and magnitude. These hotspots are linked to population density
and high demand. For all scenarios, total simulated NPP supply doubles by 2050 but is outpaced by increasing
demand due to a combination of population growth and the adoption of diets rich in animal products. Finally,
variations in the timing of the onset and end of supply shortfalls stem from the assumptions that underpin the
shared socio-economic pathways rather than the representative concentration pathways.

Our results suggest that the UN sustainable development goals for eradicating hunger are at high risk for
failure. This emphasizes the importance of policy interventions such as the implementation of sustainable and
healthy diets, family planning, reducing yield gaps, and encouraging the transfer of resources to impoverished
areas via trade relations.

1 Introduction

The global demand for food is projected to double by 2050
(compared to the year 2005) due to rapid population growth
and changes in dietary preferences (Hertel, 2015; Tilman
et al., 2011). As a consequence, global agricultural supply
needs to increase substantially in order to satisfy this de-
mand (Ray et al., 2013). Agricultural practices can be inten-

sified with technological investments (i.e. mechanization, ir-
rigation, and fertilization) to increase yields, but these are
costly and often lead to environmental degradation (Foley
et al., 2005). As opposed to agricultural intensification, the
amount of agricultural land can be expanded in order to
meet future demand. This results in changing land use and
land cover (LULCC), for example from natural vegetation to
cropland. Approximately 35 % of the total ice-free land sur-
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face is used for agriculture (Ramankutty et al., 2008). Agri-
cultural land (grassland and cropland) expanded by 3 % glob-
ally between 1985 and 2005 and is expected to further in-
crease, especially in the tropics (Foley et al., 2011). The pro-
duction of the most common crops (e.g. cereals, oil crops,
and vegetables) increased by nearly 80 % over the past four
decades (FAOSTAT, 2015; Foley et al., 2011), mostly due to
increases in yield (Kastner et al., 2012) and to a smaller ex-
tent LULCC (Foley et al., 2011). Despite the large increase
in agricultural production, global food security is not en-
sured (due to access and distribution challenges; e.g. Brown,
2016; Pinstrup-Andersen, 2009), as there are presently 792
million people chronically undernourished across the planet,
one-third of which are in Africa (FAOSTAT, 2015).

The Sahel region of sub-Saharan Africa is one of the most
technologically underdeveloped regions in the world where
yield gaps are explained by low and variable rainfall com-
bined with low soil fertility (Yengoh and Ardö, 2014). The
population largely relies on rain-fed farming practices in-
cluding subsistence agriculture, cash crops, pastoralism, and
agro-pastoralism. The population has a high reliance on their
own land, and 95 % of food produced is for domestic con-
sumption (Abdi et al., 2014; Running, 2014). The vulnerabil-
ity of the population to variations in agricultural supply due
to frequent drought undermines wealth accumulation, which
would otherwise provide a buffer in drought years (Barbier
et al., 2009). Additionally, poor transportation infrastructure
inhibits the trade and distribution of food resources (Olsson,
1993). Between the late 1960s and the early 1990s, the Sahel
experienced a protracted dry period in which severe droughts
caused fluctuating levels of food supply, leading in some
cases to severe humanitarian crises. The devastating droughts
in 1972–1973 and 1983–1984 induced complete crop failure,
leading to the largest famines in the recent history of the Sa-
hel (Ibrahim, 1988). The latest major drought to hit the region
was in 2002. As of 2013, over 11 million people across the
region were considered to be food insecure (UN, 2013).

NPP estimates from MODIS (Moderate Resolution Imag-
ing Spectroradiometer) suggest that the Sahel region experi-
enced a near-constant rate of crop productivity between 2000
and 2010, while the population grew at a rate of 3.1 % over
the same period (Abdi et al., 2014). Abdi et al. (2014) also
showed that 19 % of the NPP supply in the Sahel was able to
satisfy demand for the year 2000, but this increased to 41 %
in 2010 due to a 31 % increase in the population. Since the
NPP demand increased at an annual rate of 2.2 % over the pe-
riod while the supply was nearly constant, the near doubling
in NPP demand implies in relative terms that there was less
NPP supply to service the increased population. This raises
the question of whether demand could consistently outstrip
supply in the future and underscores the importance of de-
veloping tools for analysing potential future supply and de-
mand that could be of use for policy makers. Indeed, the bal-
ance between supply and demand (annual biomass required
for human consumption) serves as a key metric for quanti-

fying basic resource shortfalls over broad regions (Abdi et
al., 2014; Running, 2014).

Developing such tools requires the coupling of specific
models that address different sectors, such as a model for
supply and a model for demand, that can be run across mul-
tiple future climate, socio-economic, and CO2 concentration
scenarios. However, the supply–demand system in the Sahel
is complex and the future cannot be precisely evaluated. This
is because there are many uncertainties associated with the
assumptions that underpin the natural and socio-economic
drivers that lead to particular supply–demand balances. As
such, an exploratory modelling approach is required in which
emphasis is placed on a structured analysis across a range
of outcomes. This approach capitalizes on future indetermi-
nacy for developing adaptive policy insights (e.g. Kwakkel
and Pruyt, 2013). As the goal of exploratory frameworks is
not prediction, they often employ parsimonious or simplified
versions of more complex models (often referred to as meta-
models in the latter case) that run across a range of scenarios
(e.g. Harrison et al., 2016). Another benefit of using such
simplified models is the ease with which they can be coupled
to other sectoral models (e.g. Kebede et al., 2015).

In this study we couple a simple supply model (biome-
based meta-model Ensemble – BME) with a demand model
(parsimonious land use model – PLUM) to compute NPP
supply–demand balance for a set of 21st century Sahel sce-
narios covering different climate, [CO2], and socio-economic
trajectories in an exploratory modelling framework. Our
overall aim is to quantify variations in the timing and geog-
raphy of NPP supply and demand in the Sahel in association
with these trajectories. Three different aggregation levels are
considered, including the Sahel, national, and local (grid cell)
levels with a spatial resolution of 0.5◦× 0.5◦. Thereafter we
discuss the natural and socio-economic factors that lead to
changes in the balance between supply and demand through-
out the 21st century, as accounted for by the coupled models.
The Sahel-level analysis focuses on the total impact of the
different future climatic and socio-economic pathways and
its timing on supply and demand and asks the fundamen-
tal question of whether the Sahel as a whole could poten-
tially be self-sufficient. By contrast, the country-level analy-
sis focusses on a level relevant for policy, international rela-
tions, and aid agencies. Finally, the local-level analysis iden-
tifies potential hotspots of supply shortage occurring at sub-
national levels. We restrict our analyses to localized supply–
demand only in order to flag areas that would require the
lateral transfer of supply from elsewhere via trade or aid.
This would provide a first-order boundary condition for fur-
ther studies or for use by policy makers. As a consequence,
specifically accounting for the myriad of political, social, and
cultural factors that affect lateral transfer, access to, and dis-
tribution of supply is beyond the scope of this study.
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2 Materials and methods

2.1 Modelling framework

In the current study, we couple two sectoral models to assess
the future supply and demand trajectories for the Sahel re-
gion. We divided the modelling framework into three parts
(Fig. 1). The first part describes NPP supply, the second en-
capsulates NPP demand, and the third combines the two.

2.1.1 NPP supply

Supply is dependent on vegetation growth and can be quanti-
fied as net primary production (NPP), which is defined as the
difference in gross photosynthetic assimilation of carbon and
carbon loss due to autotrophic respiration per area per unit
time (Foley, 1994). NPP is an established measure of ecosys-
tem productivity indicating how much energy is available
for all life on Earth. We estimated the future plant produc-
tivity of the Sahel with the BME (biome-based NPP meta-
model). The BME is a rapid biome-based NPP meta-model
that emulates the performance of the more complex model
LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Sim-
ulator; B. Smith et al., 2014) in a simplified and more time-
efficient manner. LPJ-GUESS is a state-of-the-art dynamic
global potential natural vegetation model that incorporates
carbon and nitrogen interactions (B. Smith et al., 2014). LPJ-
GUESS (carbon cycling only) shows good skill in predicting
NPP on regional and global scales (Hickler et al., 2008; Tang
et al., 2010). We developed the BME using LPJ-GUESS NPP
simulations driven by several climate and CO2 concentration
perturbations (see Table A1). The biome definition in BME is
taken from the major biome classification (MBC; Reich and
Eswaran, 2002), which stratifies the terrestrial biosphere into
13 biomes based on soil moisture and temperature regimes.
We chose this biome definition because it represents a trade-
off between global biosphere classifications that either have
too many or too few biomes compared to other stratifications
(Kottek et al., 2006; Metzger et al., 2013; Olson et al., 2001).
The trade-off also allowed for a reasonably accurate repro-
duction of vegetation dynamics compared with LPJ-GUESS.
For our study, we parameterized BME for the four major
biomes of the Sahel: (a) desert tropical, (b) desert temper-
ate, (c) tropical semi-arid, and (d) tropical humid (Fig. 2).
A recent study by Gonzalez et al. (2010) shows that climate
change has the potential to shift biomes by the end of the 21st
century. For simplicity, we therefore assumed static biomes
that persist during climatic changes encountered during the
modelling period (2000–2100). A detailed description of the
BME implementation is provided in Appendix A1.

We also evaluated LPJ-GUESS (e.g. Olin et al., 2015)
and BME performance (magnitudes, trends, and inter-annual
variability) by first implementing a global biome-by-biome-
level validation in which the results from the Sahel are high-
lighted. We then compare BME estimates with LPJ-GUESS

Figure 1. Conceptual logic of the modelling framework. The
framework is based on three components enclosed by three grey
boxes: (1) NPPsupply, (2) NPPdemand, and (3) NPPbalance. The
white boxes indicate data inputs originating from modelling stud-
ies (as referenced in Sect. 2.2). The main models and equations are
given in the boxes outlined in red, with solid arrows showing the
data flow. The dashed arrow between the NPP model (Sect. 2.1.1)
and the land use model (Sect. 2.1.2) represents an indirect model
coupling for areas of cropland and pasture. The box outlined in
blue indicates the final coupling allowing for the assessment of
NPPsupply and NPPdemand.

Figure 2. Major biome map from the year 2000 for the greater Sa-
hel region. The hatched area shows the traditionally defined Sahel,
where annual rainfall ranges from 100 to 600 mm. The major biome
map is based on Reich and Eswaran (2002).

NPP simulations (including LPJ-GUESS managed land in
order to gauge the effect of agriculture on NPP, keeping in
mind that BME is based on a model of potential natural veg-
etation) that were excluded from BME parameterization. Fi-
nally, we compare BME estimates against MODIS-derived
NPP (2000–2006; Running et al., 2004) and country-level
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censuses of crop yield trends from Ray et al. (2013). We also
include a comparison with LPJ-GUESS C (carbon cycling
only), a version that has been previously validated on the
global scale (e.g. Hickler et al., 2008). The evaluation cov-
ered the entire Sahel region and was run from 1970 to 2006
(see Appendix A2).

We forced BME with climate data (spatial resolution
0.5◦× 0.5◦) from five GCMs (general circulation models:
HADLEY, GFDL, IPSL, MIROC, and NorESM) and [CO2]
based on four RCPs (representative concentration pathways:
2.6, 4.5, 6.0, and 8.5) to estimate the annual total NPP in
kg dry-weight m−2 yr−1 (DW, dry weight). We used climate
data derived from runs across the four RCPs for each of the
five models. We then calculated the annual means of the five
GCM NPP yields, resulting in four NPP time series (covering
each RCP) spanning from 2000 to 2100. By averaging the
GCM-based NPP estimates, we decreased the data amount
while reducing spatial and temporal variability stemming
from individual GCMs. In the next step, we summed the an-
nual NPP estimates over the grid cell area in m2 using the
latitude of each grid cell centre. Additionally, we used annual
land use projections from Hurtt et al. (2011) to calculate the
total area of pasture and cropland in each grid cell. This al-
lowed us to estimate annual total NPPsupply (kg cell−1 yr−1)
for pasture and cropland separately. We estimated cropland
and grassland scaling factors for each country by dividing the
PLUM-predicted land use area with the total land use area
provided by the Hurtt et al. (2011) dataset (Table C1). We
then applied the scaling factors to the Hurtt et al. (2011) land
use data and multiplied the resulting cropland and grassland
areas with the NPP estimates to obtain annual NPPcereal_supply
and NPPgrazing_supply (kg DW cell−1 yr−1). We addressed po-
tential developments in the wider use of existing agricul-
tural technology that result in higher plant productivity with
a technology improvement factor, and this factor is used to
decrease the yield gap. The technology improvement factor
is the aggregate result of parameterizing three technology-
related parameters (trends in technology, change in yield
with GDP per capita, and how agricultural management prac-
tices are transferred both within and between countries) that
are consistent with the scenario storyline of each SSP. Pa-
rameter ranges have been empirically determined based on
an analysis of data between the years 1995 and 2005. Yield
gaps are not necessarily closed but are decreased (see En-
gström et al., 2016a for more detail). We then used country-
wide yield gap fractions provided by PLUM spanning from
2000 to 2100 (Engström et al., 2016a; Licker et al., 2010).
The yield gap fractions are country specific and dependent
on technological development in each scenario. They are thus
consistent with the SSP storylines (Engström et al., 2016a).
For example, a scenario with strong technological change has
large decreasing yield gaps, while a scenario with slow tech-
nological change has slow or stagnating (or even increas-
ing) yield gaps. Here, we calculated yearly technology im-
provement factors by dividing the inverse yield gap fraction

(i.e. 1 yield gap fraction) of the respective year with the in-
verse yield gap of the starting year (i.e. 2000). Thereafter,
we applied the annual technology improvement factors to the
NPPcereal_supply (kg cell−1 yr−1) of the respective year and
country.

Finally, we used the root-to-shoot ratio (R :S) to remove
the below-ground biomass NPP of croplands (we exclude
tubers and groundnuts) and pasture from our NPP esti-
mates, since this component cannot generally be appropri-
ated by humans or by the majority of animals. For crop-
lands, we assumed common agricultural practice across the
Sahel region and therefore applied a region-wide R :S= 0.1
(Jackson et al., 1996). This a reasonable R :S since crops
produce low root biomass compared to the above-ground
biomass. Moreover, we extracted the consumable parts of
the above-ground NPP by using a region-wide crop har-
vest index of 0.235, which is the average of reported har-
vest indices for maize, millet, sorghum, and wheat (Haberl et
al., 2007; Wirsenius, 2000). In contrast to crops, grasslands
produce more below-ground NPP in relation to above-ground
NPP (R :S> 1; Jackson et al., 1996). We therefore consid-
ered the climatic limitations of individual biomes by extract-
ing above-ground NPP (for grasslands): (a) desert tropical
R :S= 2.8; (b) desert temperate R :S= 1.1; (c) tropical semi-
arid R :S= 2.8; and (d) tropical humid R :S= 1.6 (IPCC,
2006; Mokany et al., 2006).

2.1.2 NPP demand

For the calculation of NPP demand only, the parts of NPP
that are available for direct consumption (excluding NPP pre-
served in national parks, for example) are considered here.
Future NPP demand can be projected by applying a set of
consistent assumptions for future societal and economic de-
velopments described in socio-economic scenarios. We sim-
ulated future NPP demand for each country of the greater
Sahel with PLUM, which is based on a conceptual model of
socio-economic processes that determine global agricultural
land use change (Engström et al., 2016b). These processes in-
clude population and economic development, the consump-
tion of cereal, milk, and meat dependent on economic de-
velopment, lifestyle and diet choice, and the development of
cereal yields dependent on technological change. PLUM is
driven by country-level population and gross domestic prod-
uct (GDP) data, with a range of parameters that characterize
the development of the socio-economic processes mentioned
above. PLUM was evaluated against historic (1991–2010)
consumption and land use data on the country scale and was
shown to reproduce land use change and consumption pat-
terns on the global aggregated scale (Engström et al., 2016b).
Due to the model’s relative simplicity and the limited num-
ber of scenario parameters, it is suited for scenario studies
and was used to quantify uncertainty ranges for global crop-
land scenarios based on shared socio-economic pathways
(SSPs; Engström et al., 2016a). Mean cropland change for
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the five scenarios resulted in 963–2280 Mha of cropland by
2100 compared to 1503 Mha of cropland in 2000. The pa-
rameter settings resulting in the uncertainty ranges for each
scenario are described in Engström et al. (2016a) and the re-
ported mean values were used in the current study. For more
details, see Engström et al. (2016a). In the version of PLUM
applied in our study, we introduced an additional parame-
ter which characterizes the increasing intensification of live-
stock production systems in scenarios with strong increases
in milk and meat consumption (Engström et al., 2017). This
process was previously not included in PLUM, but it was
later identified to lead to an underestimation of land require-
ments for scenarios with strong increases in milk and meat
consumption (Engström et al., 2016a).

We forced PLUM with the five socio-economic scenarios
from 2000 to 2100 (see the box outlined in red in Part 2 of
Fig. 1) taken from the SSPs, but it is important to remember
that is it also coupled to the BME (see the dashed arrow in
Fig. 1) through annual country-level total NPP estimates for
cropland. Aggregation of BME NPP estimates was imple-
mented as described in Engström et al. (2016a), except that
cropland fractions in 2000 from the MIRCA dataset were re-
placed with Hurtt et al. (2011) cropland fractions from 2000
to 2100.

Finally, we defined the demand of NPP as compounds
that are necessary for human livelihood in the Sahel region
following the NPPdemand approach of Abdi et al. (2014).
However, our approach differs from Abdi et al. (2014)
by distinguishing between the demand for cereal and pas-
ture products. PLUM outputs were combined to determine
NPPcereal_demand as given in Eq. (1) and NPPgrazing_demand
(see Eq. A9 in Sect. A3):

NPPcereal_demand = NPPfood+NPPfeed, (1)

where NPPcereal_demand is the total amount of annual NPP
needed for human appropriation via cropland; NPPfood
(ton country−1) is the NPP needed for consumed cere-
als; and NPPfeed (ton country−1) is the amount of cereal-
based fodder to support the region’s livestock population.
NPPgrazing_demand is the NPP needed to sustain the livestock
through grazing (ton country−1). Furthermore, we converted
NPPcereal_demand and NPPgrazing_demand to per capita demand
(kg person−1) using country population projections of the
corresponding year in the SSP. A detailed methodology of
the PLUM output combinations to satisfy Eq. (1) is given in
Appendix A.

In the following step, we disaggregated the annual per
capita NPPcereal_demand and NPPgrazing_demand from a country
to a 0.5◦ grid cell resolution in order to facilitate the spatial
analysis of NPP supply and demand at the grid cell level.
For that we multiplied annual per capita demand with the
gridded population data (0.5◦× 0.5◦ resolution) of the cor-
responding years. The disaggregated annual NPPcereal_demand
and NPPgrazing_demand (kg cell−1 yr−1) are therefore weighted

Table 1. Scenario matrix translated into quantitative probabilities
(see also Engström et al., 2016b).

RCP2.6 RCP4.5 RCP6 RCP8.5 Sum

SSP1 0.0909 0.4545 0.4545 0.0000 1
SSP2 0.0000 0.0909 0.6818 0.2273 1
SSP3 0.0000 0.1667 0.5000 0.3333 1
SSP4 0.0000 0.3704 0.5556 0.0741 1
SSP5 0.0000 0.0741 0.3704 0.5556 1

by population density (i.e. population centres achieve high
demand).

2.1.3 NPP supply–demand balance

In the next step, we combined the NPPsupply (i.e. RCP based)
with the NPPdemand (i.e. SSP driven) using a SSP–RCP like-
lihood matrix (Engström et al., 2016a; see Table 1) in order
to facilitate the analysis of the NPP supply and demand bal-
ance. To create the likelihood matrix, a qualitative probability
was assigned to describe the likelihood of an SSP resulting
in an RCP (Engström et al., 2016a). The qualitative likeli-
hood estimates are based on expert judgements ranging from
“very low” to “very high” and were translated into quanti-
tative probabilities (Engström et al., 2016a). For the analy-
sis, we considered SPP–RCP combinations with likelihoods
above > 0.05 (> very low likelihood).

Next, we computed cereal-based (i.e.
NPPcereal_balance=NPPcereal_supply−NPPcereal_demand)
and grazing (i.e. NPPgrazing_balance = NPPgrazing_supply−

NPPgrazing_demand) balances. In order to combine the bal-
ances meaningfully, we defined four rules as outlined in
Table 2. Rule no. 1 states that a deficit of cereal products
(NPPcereal_balance < 0) cannot be balanced with a surplus of
plant growth on grassland (NPPgrazing_balance≥ 0) because
grassland products are inappropriate for direct human
consumption, resulting in all grazing surplus being disre-
garded. Rule no. 2 regulates the treatment of cereal and
grazing surplus occurring simultaneously; pasture NPP
surplus (NPPgrazing_balance ≥ 0) is ignored but the cereal-
based NPP surplus (NPPcereal_balance ≥ 0) is retained. This
surplus is of interest because it can potentially balance
NPP shortages in adjacent grid cells and on the coun-
try level. Rule no. 3 permits the combination of cereal
(NPPcereal_balance < 0) and grazing (NPPgrazing_balance < 0)
deficits in order to quantify the total NPP shortage of the
grid cell. The last rule allows for the supplementation of
grazing-based shortages (NPPgrazing_balance < 0) with cereal
surplus (NPPcereal_balance ≥ 0).

2.2 Scenarios

In the current study, we combine four representative concen-
tration pathways (RCPs) with five SSPs which are the lat-
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Table 2. Rules of combining NPPcereal_balance and NPPgrazing_balance to determine the final balance of NPP demand and supply.

Combination NPPcereal_balance NPPgrazing_balance NPPbalance
rule

1 < 0 ≥ 0 NPPcereal_balance
2 ≥ 0 ≥ 0 NPPcereal_balance
3 < 0 < 0 NPPcereal_balance+NPPgrazing_balance
4 ≥ 0 < 0 NPPcereal_balance+NPPgrazing_balance

Table 3. Summary of the shared socio-economic pathway key characteristics (population development, economic growth, consumption and
diet, policy orientation, and technological change) based on Engström et al. (2016) and O’Neill et al. (2017).

Pathway Key characteristics

SSP1: Relatively low population development
Sustainability – Medium to high economic growth
taking the green road Low growth in material consumption, low-meat diets

Towards sustainable development
Rapid technology development and transfer

SSP2: Medium population development
Middle of the road Medium (but uneven) economic growth

Material-intensive consumption, medium meat consumption
Weak focus on sustainability
Medium technology development and slow transfer

SSP3: High population development
Regional rivalry – Slow economic growth
a rocky road Material-intensive consumption

Oriented toward security
Slow technology development and transfer

SSP4: Relatively high population development
Inequality – Low to medium economic growth
a road divided Elites: high consumption, rest: low consumption

Toward the benefit of the political and business elite
Rapid technology transfer in high-tech sectors, but slow in others,
little transfer within countries to poorer people

SSP5: Relatively low population development
Fossil-fuel development – High economic growth
taking the highway Materialism, status consumption, meat-rich diets

Toward development, free markets, human capital
Rapid technology change and transfer

est future climate, [CO2], and socio-economic projections
(O’Neill et al., 2014; van Vuuren et al., 2011, 2013) from
the Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5) framework. Each RCP represents
a different cumulative measure of future human greenhouse
gas (GHG) emissions and is defined by radiative forcing tar-
gets for the year 2100, which range from 2.6 to 8.5 W m−2

(van Vuuren et al., 2011). For each RCP, we obtained cli-
mate data from the Inter-Sectoral Impact Model Intercom-
parison Project (ISI-MIP) containing climate simulations
of five general circulation models (GCMs) for each RCP
(Hempel et al., 2013; GCMs: Collins et al., 2013; Dufresne

et al., 2013; Dunne et al., 2013; Iversen et al., 2013; Watan-
abe et al., 2011.) The climate data (0.5◦× 0.5◦ resolution)
were bias corrected by using the ISI-MIP approach that pre-
serves trends in absolute changes in monthly temperature and
relative changes in monthly precipitation amounts (Hempel
et al., 2013). For future socio-economic developments, the
SSPs consider different narratives of future population levels,
urbanization scenarios, and economic development (O’Neill
et al., 2017; van Vuuren et al., 2013) as summarized in Ta-
ble 3.

No mitigation strategies are assumed, and the resulting
scenarios are thus reference scenarios. Furthermore, for each
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Table 4. Per capita NPP balance, NPP supply, NPP demand, and population for SSP2–RCP6 for 2000 and 2050. NPP is given in dry weight
(DW).

Country Per capita Per capita Per capita Total population
NPP balance NPP supply NPP demand (million)
(kg DW yr−1) (kg DW yr−1) (kg DW yr−1)

2000 2050 2000 2050 2000 2050 2000 2050

Benin 867 −267 1341 607 474 874 8 25
Burkina Faso 737 147 933 316 196 169 12 46
Cameroon 1740 456 2127 1173 387 717 16 40
Chad 1220 326 1878 1484 658 1157 8 26
Djibouti −134 −119 0 0 134 120 1 2
Eritrea 218 91 333 221 124 130 4 12
Ethiopia 366 −660 825 779 459 1439 67 149
Gambia 431 −449 1137 632 706 1082 1 3
Ghana 1216 211 1490 1291 274 1080 19 48
Guinea 1371 631 1773 1697 402 1066 8 22
Guinea Bissau 1720 714 2319 1648 599 934 1 3
Ivory Coast 1513 737 1795 1549 282 811 17 41
Liberia 975 39 1186 1312 212 1273 3 10
Mali 818 −81 1929 1191 1111 1272 11 43
Mauritania −401 −512 1129 1043 1530 1555 3 8
Niger 2163 −114 3437 1426 1274 1540 11 55
Nigeria 738 −204 1059 719 321 923 123 386
Senegal 369 −297 925 539 556 837 10 28
Sierra Leone 565 183 759 949 194 767 4 12
Sudan 986 −97 2517 1512 1530 1609 29 96
Togo 1900 838 2171 1491 271 653 5 11

Mean∗ 860 −107 1377 957 517 1064 361 1066

∗ Weighted mean using national population data as weight.

of the considered SSP and RCP combinations, we used a dis-
tributed population projection dataset at 1 km2 from Boke-
Olén et al. (2017). The population dataset was created by
Boke-Olén et al. (2017) to match both the RCP-specific ur-
ban fractions from Hurtt et al. (2011) and SSP country, urban,
and rural population counts. Hence, one population dataset
exists for each SSP and RCP combination used in this study.
We resampled (summed) the population dataset to the same
spatial resolution as the climate data (0.5◦× 0.5◦) and grid
cells with population counts below 3000 people per grid cell
(∼ 1 person per 1 km2) were excluded following Abdi et
al. (2014).

Additionally, variation in NPP supply estimates originat-
ing from the five GCMs was retained for an estimate of sup-
ply uncertainty to be included in the analysis. Uncertainty es-
timates for NPP demand associated with each SSP were de-
rived from the results of Engström et al. (2016a) and applied
here. In their study, conditional probability ranges were de-
fined for 12 PLUM input parameters (reflecting uncertainties
in SSP interpretation and quantification) in order to estimate
uncertainty in a range of PLUM outputs.

2.3 Study area

The study area covers the African continent between roughly
5 and 25◦ N and stretches from the Red Sea to the Atlantic
Ocean, hereafter referred to as the greater Sahel. Following
Abdi et al. (2014), the area also includes the neighbouring
countries of the Sahel belt (encompassing 21 countries; see
Table 4). Note that this study uses the African country defini-
tion for the year 2000 in which South Sudan was a part of Su-
dan. The actual Sahel belt is described by an annual rainfall
range between 100 and 600 mm (hatched area in Fig. 2). The
Sahel is an arid and semi-arid region that separates the Sahara
Desert from the humid and tropical regions to the south. The
northern parts of the region border the Sahara Desert with
low mean annual precipitation (< 100 mm), while the south-
ern parts of the Sahel belt border the savannas of the tropi-
cal semi-arid biome, permitting increased plant productivity
due to higher mean annual rainfall (∼ 600 mm). The south-
ern parts of the study area cover the tropical semi-arid and
tropical humid biomes with much higher mean annual pre-
cipitation amounts ranging from 600 to 1000 mm, enabling
larger vegetation growth. The study area is one of the poor-
est and most technologically underdeveloped regions on the
African continent (Chidumayo and Gumbo, 2010).
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Figure 3. The per capita NPP supply, demand, and balance for the entire Sahel region over the time period. (a) NPP supply (red) and
demand (blue). The solid curves illustrate the mean of the SSP2-RCP6.0 combination. The dashed blue curves show supply uncertainty
(95 % confidence interval around the mean) based on the five GCM NPP results. The dashed red curves show demand uncertainty (95 %
confidence interval around the mean) based on the uncertainty related to the interpretation and quantification of SSP2. (b) The different
magnitudes of the NPP balance and the varying onsets of shortage across all SSP–RCP combinations. Black dots illustrate years with a
shortage outside of the 95 % confidence intervals. The combinations are grouped according to the socio-economic scenarios (y axis). The
RCPs are ordered from low to high radiative forcing in each SSP group. The temporal trajectory is shown along the x axis and the colouring
indicates the sign of the annual NPP balance. Blue shows a surplus of the NPP supply, while yellow to red represents small to very large
NPP shortages (i.e. the gap between supply and demand). SSP–RCP combinations in bold indicate the most likely SSP–RCP pairs based on
Table 1.

3 Results

In the following the results are presented at the Sahel, coun-
try, and local (grid cell) levels. The results for the different
scenario combinations are reported, but emphasis is given
to the SSP2-RCP6.0 scenario, as this scenario deviates least
from current socio-economic and climate trends at the global
level. Additionally, Fig. 3a provides a basis for interpreting
Fig. 3b.

3.1 Sahel

Per capita demand exceeds supply in the early 2040s for
SSP2–RCP6.0, after which a very high likelihood for short-
falls begins in 2070 (see the black dots in Fig. 3a show-
ing non-overlapping 95 % confidence limits). By 2050, per
capita demand almost doubles, while per capita supply drops
by almost 30 % for the same scenario. Across the scenar-
ios, differences in the timing of the start of persistent supply

shortfalls with high statistical certainty are observed (see the
black dots in Fig. 3b). Three of these high-likelihood short-
falls begin at 2050 or before (SSP5 scenarios; see the black
dots in Fig. 3b), while an additional six display shortfalls
with high certainty by the end of the 21st century (black dots
in Fig. 3a, b). Out of these nine, two scenarios never achieve
a sustained run of shortfalls (SSP2–RCP6.0, SPP2–RCP8.5).
In total, there is a better than an even chance for shortfalls be-
fore 2050 for nine scenarios (exceptions are SSP1–RCP2.6,
SSP1–RCP6.0, and all SSP4 scenarios).

Variations in the timing of the onset and end of supply
shortfalls are generally greater between the SSPs than be-
tween the RCPs (Fig. 3b). For the SSP2 and SSP3 scenarios,
the onsets of high-likelihood supply shortfall range from the
early 2050s to the mid-2070s (with an even chance from the
late 2030s to the early 2050s). The SSP5 family shows the
largest deficits of high-likelihood shortfalls beginning in the
2040s–2050s (with an even chance from the early 2030s) that
after several decades of deepening begin to diminish in the
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2080s. Shortfalls with high certainty never emerge for SSP1
(with an even chance from the early 2050s), while the SSP4
scenarios show sustained but diminishing surplus through-
out.

3.2 Country level

For scenario SSP2–RCP6.0, per capita NPP balances gen-
erally show a decrease for all countries. Eleven countries
(out of 22) experience per capita shortages by 2050, which
is up from two countries (Djibouti and Mauritania) in 2000.
Ethiopia shows the most extreme shortfall, while Togo shows
the greatest surplus. The largest change amongst all countries
is exemplified by Niger, which starts with a surplus in 2000
but has a deficit by 2050. Conversely, Djibouti shows a small
decrease in deficit over the period (Table 4).

Large changes in per capita NPP balance are caused by
the contrasting development of NPP supply and demand, as
analysed in the following two paragraphs. Despite large to-
tal NPP increases between 2000 and 2050 (SSP2–RCP6.0),
per capita NPP supply decreases for almost all countries, the
largest decreases being for Niger and Sudan, while an in-
crease is noted for Liberia.

Since all countries double or even triple their population
counts from 2000 to 2050 (Table 4), large increases in de-
mand occur over the 50-year period, while per capita de-
mand increases. By 2050, the largest increases in demand
per capita are projected for Liberia, Ethiopia, and Ghana (Ta-
ble 4).

Generally, the differences in NPP balances across sce-
narios are high, with the largest variations attributed to the
SSPs as opposed to the RCPs (Table C2), with two countries
(Sierra Leone and Liberia) showing considerable variation
across the scenarios (coefficients of variation > 2.0).

3.3 Local level

For SSP2–RCP6.0, the localities experiencing negative
NPP balance expand and become more connected be-
tween 2000 and 2050. By 2050, a semi-continuous
band of low-magnitude NPP shortage emerges (generally
>−0.2 Mt dry weight yr−1 per grid cell), stretching from
the Atlantic Ocean to the Red Sea between 15 and 20◦ N
(Fig. 4b). In the east, this band extends down along the coast
and wraps around the Horn of Africa. A separate band of sim-
ilar magnitude emerges toward the south just above 10◦ N,
stretching toward the east-south-east into Cameroon. Addi-
tionally, four separate locations of large-magnitude short-
falls (> 1.5 Mt dry weight yr−1 per grid cell) of varying ex-
tents emerge. The first hotspot (relatively small cluster of
large magnitude shortfall) is located along the Nigerian
coast, stretching from the metropolitan areas of Lagos to the
densely populated area of the Niger delta (Fig. 4a, h1). The
second hotspot is located in northern Nigeria close to the city
Kano (Fig. 4a, h2), while the third is located in the Ethiopian

highlands of Eastern Africa (Fig. 4a, h3). Finally, the fourth
covers the area around Khartoum in the Sudan (Fig. 4a,
h4). Elsewhere, very small pockets (e.g. 1 grid cell in size)
of large-magnitude NPP shortages (<−1.0 Mt DW yr−1 per
grid cell) are distributed unevenly across the region.

Both supply and demand increase over most localities
for the SSP2-6.0 scenario from 2000 to 2050 (Fig. 4c, d).
For supply, the largest increases (up to and exceeding
1 Mt dry weight yr−1 per grid cell) occur in areas that al-
ready see large supply in 2000, including the southern parts
of Ivory Coast and Ghana, most of Nigeria, and the southern
part of Niger (Fig. 4c, d). Smaller increases occur through-
out central Sudan and Ethiopia. Large-magnitude increases
(between 1 and > 2 Mt dry weight per year−1 per grid cell)
in demand are seen for distinct geographic regions, the
largest patches covering coastal Nigeria, northern Nigeria to
southern Niger, north-central Sudan around Khartoum, and
Ethiopia (Fig. 4f). By and large, these correspond to the
hotspots of supply shortfall identified in Fig. 4b. Smaller ar-
eas, sometimes no larger than 1 grid cell, are seen scattered
across Sudan, Chad, the western coast, and South Sudan.

The general geographical patterns of NPP shortage remain
persistent across all scenarios, including the four hotspots
identified for SSP2–RCP6.0. The largest-magnitude short-
ages are indicated for SSP5–RCP8.5 (Fig. B1).

4 Discussion

4.1 Sahel level

Worldwide cereal production in 2010 amounted to 2400 Mt,
and current food aid shipments to countries in the Sahel
are below 1 Mt yr−1 (FAOSTAT, 2016). At present about
260 million people are chronically undernourished in Africa
(FAOSTAT, 2015) and this is despite the fact that we also es-
timate a per capita NPP surplus of 860 (±144) kg DW yr−1

(corresponding to 309 (±52) Mt DW yr−1) in the Sahel for
the year 2000. This implies that current challenges are asso-
ciated with other determinants such as access to and the dis-
tribution of resources (Brown, 2016; Olsson, 1993; Pinstrup-
Andersen, 2009). These challenges are set to increase in the
future, particularly for scenarios with high social and eco-
nomic inequalities (SSP4). Furthermore, the majority of all
other scenarios show that by mid-century, the NPP surplus
will be greatly reduced compared to the year 2000. Accord-
ing to the sustainable development goals, hunger and all
forms of malnutrition should be eradicated by the year 2030
(UN, 2016), but under the current trend given by the SSP2–
RCP scenarios, there is a risk that 15–25 % (160–270 million
people) of the population will not be supported with NPP
supply (on the basis of the assumed adoption of diets rich in
animal products, which is consistent with the SSP2 storyline)
and are therefore at high risk for malnutrition by 2050.

Presently, the Sahel has a high reliance on its own land
by producing 90 % of domestic food consumption, resulting
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Figure 4. Maps of NPP shortage (a, b), NPP supply (c, d), and NPP demand (e, f) for the year 2000 (a, c, e,) and SSP2–RCP6.0 year
2050 (b, d, f). The hotspots of large NPP shortage are marked with circles in panel (b), where h1 is in the area around Lagos (Nigeria) and
the Niger delta; h2 is in the Nigerian hinterlands (close to Kano); h3 is in the Ethiopian highlands (close to Addis Ababa); and h4 is in the
area surrounding Khartoum (Sudan). In panel (a) we excluded all areas with a surplus in the NPP balance.

in very little import or export of crops (Abdi et al., 2014).
This implies that agricultural resources from global trade will
need to increase considerably in order to reduce the future
food shortages across the region. Participation in global mar-
kets and investments in infrastructure that enable the trade
of food commodities to ensure food security via trade will
therefore be important (D’Odorico et al., 2014). However, it
needs to be kept in mind that the simulated shortages partly
occur due to steep increases in per capita consumption. For
example, while reducing social inequities is clearly desirable
(as embraced by the SSP5 RCP scenarios), from a sustain-
ability perspective it is questionable if this should mean that
developing countries follow the development path of eco-
nomically developed countries and adopt diets with very high
consumption levels of animal products (O’Neill et al., 2017).
The adoption of sustainable diets (i.e. a reduced contribution
of animal products to diets) has to be envisaged as a strat-
egy consistent with efforts to reduce food demand to healthy
and sustainable levels (Smith, 2013). This would be consis-
tent with the SSP1 (“taking the green road” scenarios) in
which sustainable diets are adopted and statistically signif-
icant shortages never develop (e.g. Fig. 3b).

4.2 Country level

Beyond the import of agricultural products to the Sahel,
the inter-country trade of such resources will also need to
become more important later in the 21st century. Trade
relations between productive and high-demand countries
should be encouraged (Ahmed et al., 2012). For instance,
Cameroon, Ivory Coast, Chad, and Togo produce NPP sur-
plus for SSP2–RCP6.0 by 2050, which could be traded
to neighbouring countries with NPP shortages (e.g. Nige-
ria). Across the scenarios, some countries showed continu-
ous NPP shortfalls (e.g. Mauritania), while Ivory Coast and
Guinea consistently produce NPP surplus (Table C2). The
large range of different climate conditions in the Sahel re-
gion implies that countries within the tropical humid (and
partly in the tropical semi-arid) biome have larger potential
NPP compared to countries in the desert temperate biome.
We note that the closure of yield gaps by 2050 (for sce-
nario SSP2–RCP6.0) would result in a change in mean per
capita NPP balance from −107 kg DW yr−1 (see Table 3) to
9 kg DW yr−1. Though the balance for many countries will
still be negative, the shortfall magnitudes would be reduced.
Decreased supply due to losses of food during harvest, trans-
port, and storage (i.e. household level) should be reduced
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through improvements in agricultural management, infras-
tructure, and educational development (Godfray et al., 2010).
For most countries, however, the different socio-economic
development pathways prescribed by the SSPs lead to high
inter-scenario variability (with positive or negative balances
depending on the scenario) and will determine if countries
have the potential be a net exporter or importer of resources.

4.3 Local level

At the local level, robust NPP shortages across scenarios
were found to be strongly linked to densely populated ar-
eas. For the example of SSP2–RCP6.0, by 2050 the num-
ber of grid cells with high population density (i.e. > 1 mil-
lion per 25 km× 25 km) increased substantially compared
to 2000 (see Fig. B4). For instance, > 1 million people per
grid cell trigger NPP shortages in Ethiopia, while > 2 mil-
lion people per grid cell induce NPP shortfalls in Nigeria
for SSP2–RCP6.0 by 2050. The NPP shortage hotspots in
Nigeria and Ethiopia agree geographically with the consider-
able reported NPP demand expansions in the 2000s (Abdi et
al., 2014) indicating a combination of population growth and
increased consumption as explanatory factors. Furthermore,
the projected deepening and persistent shortages in urban ar-
eas underscore the hypothesis that the urban poor are espe-
cially at risk for food insecurity since they neither have the
means to purchase food on the markets, nor the means to be
self-sufficient due to limited land in densely populated areas
(Lynch et al., 2001). Thus, connecting productive hinterlands
with metropolitan areas will need to be achieved (Owuor,
2007).

The fact that the locations of the hotspots and the overall
patterning of NPP shortfalls remain consistent across all sce-
narios narrows the number of future policy choices in the re-
gion for alleviating environmental insecurity despite the very
different assumptions and uncertainties embedded in the sce-
narios and models (Kwakkel and Pruyt, 2013).

4.4 Additional perspectives

Livestock mobilization is one strategy that local populations
generally employ to manage risk (e.g. Herrmann et al., 2014).
This strategy may help regulate supply shortfalls locally and
over the short term. Even if the Sahel were to continue to
green up (increase in NPP supply), this would not neces-
sarily imply an increase in the amount of usable NPP or
an enhancement in health and well-being. Recent studies in
the Sahel show that much of the recent greening, at least in
some regions, is due to undesirable shifts in species compo-
sition (e.g. Herrmann et al., 2014), reductions in biodiversity,
and an increase in woody biomass (e.g. Brandt et al., 2015).
Campbell et al. (2014) underscore the importance of family
planning and education in the Sahel in order to curb popu-
lation growth. Generating demand for various forms of birth
control and gender empowerment would be two key interven-

tions that would work towards slowing population growth,
improving health, and facilitating income generation. These
interventions would act to curtail supply shortfalls in the fu-
ture.

4.5 Mechanisms of changes in future NPP supply and
demand

4.5.1 NPP supply

In order to isolate the CO2 (rainfall) effect on NPP increase
for RCP6.0, we compared a simulation in which rainfall
(CO2) was held constant with a simulation in which both
were held constant for the period 2000–2050 for all GCMs.
We found that supply increases mostly due to CO2 fertiliza-
tion (see Fig. B2) with very little attributed to rainfall. How-
ever, yield gap closure from SSP2 contributes most to the
increase in simulated NPP supply (Fig. B2).

The CO2 fertilization effect increases with the magni-
tude of climate change and explains the smaller shortages
in the SSP–RCP8.5 scenarios compared to the SSP–RCP4.5
scenarios (Fig. 3b). The decreases in yield gap (applied to
the NPP supply and demand balance through the techno-
logical improvement factor) are simulated with PLUM and
strongly dependent on scenario-driven assumptions for tech-
nological change. High rates of technological change explain
the decreasing shortages at the end of the 21st century for
SSP1–RCPs and the SSP5–RCPs scenarios. For example,
in the SSP1–RCP scenarios, the yield gap decreased from
0.55 in 2000 to 0.43 by 2050 in Nigeria and from 0.69 in
2000 to 0.56 by 2050 in Ethiopia. By contrast, slow tech-
nological change in the SSP3–RCP scenarios leads to very
small decreases in yield gaps, for example to 0.54 for Nige-
ria by 2050, while no improvement at all was simulated
for Ethiopia. Uncertainties in yield improvements driven by
technological development are very large and critically de-
pendent on investments and infrastructural and political de-
velopment in developing countries (Engström et al., 2016a;
Licker et al., 2010; Mueller et al., 2012). Reducing yield
gaps to 0.5 in sub-Saharan countries can be achieved through
intensified nutrient management, while decreases down to
0.25 require increased irrigation and fertilization (Mueller et
al., 2012). However, Elliott et al. (2014) underscore the fact
that fresh water limitations in the drier regions of the globe
could limit agricultural production and even lead to the rever-
sion of irrigated farmland to rain-fed farmland, thereby neg-
atively affecting food production. Conventional agricultural
intensification, however, can result in environmental degra-
dation, vulnerability to pests, and the depletion of aquifers
(Ceccato et al., 2007; Foley et al., 2005). Agricultural man-
agement should consider strategies for sustainable intensi-
fication while simultaneously considering the adaptation of
agriculture to changing climates (Dile et al., 2013; Pretty,
2008, 2011). An additional driver of NPP supply is the sim-
ulated increase in agricultural land area provided by PLUM
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(i.e. grassland and cropland; Fig. B5). However, the simpli-
fied representation of grassland in PLUM potentially under-
estimates the expansion of agricultural land into naturally
vegetated areas and thus the magnitude of total NPP supply.
As with agricultural intensification, the expansion of agricul-
tural land into natural forests and grasslands has the potential
to produce negative impacts on the environment and on cli-
mate (Canadell and Schulze, 2014; Foley et al., 2005; Pugh
et al., 2015).

4.5.2 NPP demand

Despite increases in future NPP supply, according to our re-
sults, the Sahel is likely to experience NPP shortages for
most NPP scenarios due to strong increases in demand. Gen-
erally, the increasing NPP demand in the Sahel region can
be explained by the doubling to tripling population in the
period 2000–2050 across the scenarios (Fig. B3a). How-
ever, changes in economy, lifestyle, and consumption pat-
terns as simulated with PLUM were shown to be the impor-
tant drivers of large total NPP demand. For example, in the
SSP5–RCP scenarios, per capita NPP demand almost triples
(2000–2050; Fig. B3b), driven by the adoption of meat- and
milk-rich diets and processed food as previously pointed out
by Kearney (2010) and Tschirley et al. (2015). Increased per
capita NPP demand coupled with the doubling in population
(2000–2050) leads to almost 7-fold increases in total NPP
demand during the period 2000–2100 for the SSP5–RCP sce-
narios. By contrast for the SSP4–RCP scenarios, the popula-
tion triples (2000–2050), but widening income gaps and no
improvements in diet in the poor population lead to declin-
ing per capita NPP demand (Fig. B3b) with a low increase
(compared to other scenarios) in total NPP demand (doubling
between 2000 and 2050; Fig. B3b). The relatively weak in-
crease in total NPP demand in the SSP4-RCP scenarios is the
underlying reason for a sustained NPP surplus in the scenar-
ios. The NPP surplus is not an indicator for achieved food
security per se, as suggested by the decreasing per capita
demand (described above). By contrast, food insecurity will
likely be more widespread than today according to the SSP4–
RCP scenarios, aggravated by strong inequalities within the
population that are likely to worsen food distribution and
food access for the poor (Pinstrup-Andersen, 2009).

The uneven projected changes in per capita NPP demand
across countries (Table C1) are partly due to contrasts in the
evolution of drivers (e.g. income) for different countries, but
also due to differing initial conditions for the different coun-
tries. In countries with initially higher per capita demand
(e.g. Sudan), the potential to increase per capita demand is
limited, while for countries with lower initial per capita de-
mand (e.g. Ethiopia), the potential to increase demand is
comparatively higher. Finally, the NPP demand estimates are
limited by the assumption of cereals, meat, and milk as prox-
ies for food supply, which for countries with high shares of

pulses and tubers in their average diet particularly underesti-
mates the NPP demand.

4.6 Uncertainties

We show that the deep uncertainties represented by the sce-
narios, i.e. not knowing how drivers (e.g., population, tech-
nological change) will develop in the future (van Vuuren et
al., 2008), are major sources of uncertainty leading to varia-
tions in our results (Fig. 3b). The variability in NPP supply
and demand originating from the five GCMs and uncertain-
ties in SSP interpretation and quantification (see Engström
et al., 2016a, and Tables 1 and B1) allows us to assess with
high statistical confidence when supply shortfalls begin and
are sustained.

Additional uncertainty exists with respect to the total mag-
nitude and trends of simulated NPP supply, given the lack
of ground truth for the region, and that differences in NPP
trends between other models are very large (e.g. Friend et
al., 2014; Körner et al., 2006; Pugh et al., 2016; Rosen-
zweig et al., 2014). Indeed, recent observational evidence
suggests that the effect of CO2 fertilization on plant growth
may be constrained by counteracting feedbacks associated
with increasing atmospheric moisture demand and nutrient
availability (e.g. Smith et al., 2016; Wieder et al., 2015).
For example, NPP is reduced under warmer and drier con-
ditions due to moisture stress, particularly in temperate and
arid ecosystems. Future NPP trends in the Sahel could there-
fore be strongly determined by changes in the frequencies
of wet years versus dry years, with the dry years counteract-
ing the CO2 fertilization effect. Furthermore, nutrient sup-
ply rates may not be able to keep up with the extra demand
associated with CO2 fertilization, leading to a depletion of
soil nutrients as current evidence suggests. This could also
curtail the CO2 fertilization effect, particularly in the more
southerly parts of our study area where nutrients tend to be-
come a limiting factor. We performed a simple experiment
negating the CO2 fertilization effect in order to gauge its im-
pact on supply–demand balance on all scenarios. For SSP2–
RCP6.0, per capita demand has an equal chance of exceeding
per capita supply in 2036 for the SSP2-6.0 scenario as op-
posed to 2043 if CO2 fertilization is included (Fig. B7), with
a very high likelihood of continuous supply shortfall begin-
ning in 2056 as opposed to 2073 with CO2 fertilization. The
effect on all other scenarios is an earlier shift to the onset of
supply shortfalls by about 10 years compared to Fig. 3b (see
Fig. B7). Supply shortfalls with a high likelihood of occur-
rence (black dots showing non-overlapping 95 % confidence
intervals) are similarly shifted and occur with greater con-
sistency and frequency. All of this suggests that the NPP in-
creases found in our current analysis are likely optimistic due
to the potential overestimation of the CO2 fertilization effect
and the fact that BME is based on potential natural vegeta-
tion.

Earth Syst. Dynam., 8, 1191–1221, 2017 www.earth-syst-dynam.net/8/1191/2017/



F. Sallaba et al.: Future supply and demand of NPP in the Sahel 1203

Finally, we note that the country-specific scaling factors
used to convert PLUM output to per pixel changes using the
Hurtt et al. (2011) dataset for the year 2000 did not depart
substantially from 1 (scaling factors for the larger countries
were all within 10 %, and the area-weighted mean of the scal-
ing factors was 0.95), but a few smaller countries in West
Africa diverge by more than 25 % (< 0.80 or > 1.25; see Ta-
ble C1). We expect these to have only a marginal influence on
the results at the regional level, but they could have a larger
impact on localities along the West African coast (Figs. 4
and B1).

Other sources of uncertainty, such as model uncertainty
stemming from the supply and demand models (Alexander
et al., 2016), are not presently taken into account.

5 Conclusions

In the Sahel, population growth and climate change raise the
question of whether the demand for NPP will outstrip supply
during the 21st century. In order to address this question, we
developed a reduced-complexity framework capable of gen-
erating a range of NPP supply–demand trajectories for dif-
ferent Sahel futures at the regional, country, and local levels
of aggregation. These results are based on differing climate,
[CO2], and socio-economic scenarios supplied by different
SSP and RCP combinations.

We conclude that the potential for NPP self-sufficiency in
the Sahel will not likely be attainable later in the 21st century.
The most likely consequence is that hunger and malnutrition
will become more widespread than they are currently, un-
dermining the UN sustainable development goals. This high-
lights the importance of establishing strategies that address
the reduction of NPP demand, increasing its supply, and fa-
cilitating its access, particularly for the urban poor. The con-
sistency of geographical shortfall patterns across all scenar-
ios also suggests that, despite deep uncertainties associated
with assumptions about how the future will unfold and uncer-
tainties associated with NPP supply magnitudes and trends, a
relatively narrow range of policy interventions can be crafted.

Finally, we advance previous research by showing how
NPP supply–demand balance (a key metric for quantifying
resource shortfalls over large regions but applied retrospec-
tively in previous studies) can also be used to explore the im-
pact of changing socio-economic and climate assumptions in
the Sahel to support policy.

Data availability. Data are available for download from https://
dataguru.lu.se/doi:10.18161/sahel_npp.201712.
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Appendix A: Methods

A1 Biome-based meta-model ensemble

In this section, we describe the development of the biome-
based meta-model ensemble (BME) for the Sahel region.
BME consists of rapid NPP meta-models tailored for the
desert temperate, desert tropical, tropical semi-arid, and trop-
ical humid biomes. The BME is based on the dynamic
vegetation model LPJ-GUESS (B. Smith et al., 2014) and
NPP simulations following the methodology of Sallaba et
al. (2015).

A1.1 LPJ-GUESS

LPJ-GUESS (B. Smith et al., 2014) is a mechanistic model of
plant physiological and biogeochemical processes that incor-
porates ecosystem carbon and nitrogen cycles as well as wa-
ter fluxes. The model uses a detailed individual- and patch-
based representation of vegetation structure in which indi-
vidual plants differ in growth form, phenology, life history
strategy and photosynthetic pathway, demography, and re-
source competition. LPJ-GUESS is forced by various cli-
mate (i.e. solar radiation, temperature, and precipitation), at-
mospheric [CO2], and soil characteristics and nitrogen de-
position. Vegetation is represented as plant functional types
(PFTs) with different age cohorts interacting on the patch
level. Ten generalized trees and two generalized grass func-
tional types (i.e. C3 and C4 grass) following B. Smith et
al. (2014) were used for global potential natural vegeta-
tion (PNV). Several patches (here 25) are applied in parallel
within a grid cell with distinguished establishment of vegeta-
tion, fire impacts, random disturbance, and mortality rate of
different age cohorts (Sitch et al., 2003; Smith et al., 2001;
B. Smith et al, .2014). We applied the LPJ-GUESS in co-
hort mode, which represents individual PFTs in different age
classes competing for resources (light, water, and space) in
a patch. We defined disturbance events with an expected re-
turn interval of 100 years following Ahlström et al. (2015).
We spun up each LPJ-GUESS simulation with a 500-year-
long phase of de-trended climate data and a particular [CO2]
(unique for each simulation as outlined in input data) in order
to run the model from bare soil to a vegetation equilibrium
state.

A1.2 Input data

We collected our BME development dataset with a ran-
dom stratified selection of climate data using the major
biome classification (BMC; Reich and Eswaran, 2002) on a
0.5◦× 0.5◦ spatial resolution. The BMC characterizes four
biomes in the greater Sahel region based on soil moisture and
soil temperature regimes (see Fig. 1). We randomly chose 2–
5 % of the total cells in each biome.

We overlaid the sampled cells with CRU TS 3.0 climate
data (Harris et al., 2014; Mitchell and Jones, 2005), which

Table A1. Minimum and maximum stepwise changes in the climate
variables and [CO2]. The magnitudes of increases are related to how
much a variable could be adjusted. Temperature was increased in
four steps and the other variables in five steps resulting in 100 dif-
ferent climate change scenarios.

Change Temperature Precipitation Atmospheric
attributes change (% of CO2

(◦C) baseline) (ppm)

Minimum value 0 50 350
Maximum value 6 150 670
Magnitude
of increase 2 25 80
No. of steps 4 5 5

have the same spatial resolution. CRU data span from 1901
to 2006 and provide monthly data on temperature, precipita-
tion, and cloudiness. Soil texture characteristics were taken
from the FAO global soil dataset (FAO, 1991) as described
in Sitch et al. (2003). Historical monthly nitrogen deposi-
tion rates were taken from the Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP) database
of Lamarque et al. (2010) and processed as described by
B. Smith et al. (2014). We developed climate and [CO2]
scenarios based on a factorial approach in which increas-
ing monthly temperature, [CO2], and changing monthly pre-
cipitation amounts are varied across multiple variables at a
time (Smith and Smith, 2007). We set maximum changes
for each variable (see Table A1) in order to design reason-
able climate and [CO2] scenario limits as described by Sal-
laba et al. (2015). We used CRU TS 3.0 climate data as the
baseline time series and superimposed the climate and [CO2]
scenarios upon the baseline data while we held the nitrogen
deposition rates according to the ACCMIP records. In to-
tal, we developed 100 scenarios (including baseline) for each
CRU grid cell, which were then applied to simulate NPP in
LPJ-GUESS. We assumed that grid cells maintain the biome
membership even though the climate conditions change dur-
ing the LPJ-GUESS simulations since we consider transi-
tions of vegetation biomes to be long term (100 years).

A1.3 Biome meta-models

We followed the assumption that plant growth is controlled
by climate conditions (Sallaba et al., 2015) and defined
biome-specific assumptions of ecosystem–climate interac-
tions. As in Sallaba et al. (2015), we assume that vegeta-
tion growth is controlled synergistically by temperature and
precipitation. Under optimal climate conditions maximum
plant growth can be reached but decreases when tempera-
ture and/or precipitation are not at the optimum. In order to
keep the meta-modelling framework as simple but efficient
as possible, we limited the meta-model to three input climate
surrogates that control plant growth: (1) annual precipitation
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Table A2. Parameter values for maximum temperature f (Tmax) in Eq. (A1) and minimum temperature f (Tmin) in Eq. (A2).

Biomes Temperature Limmin Limmax ∂ β a

function in
f (Tlim)

Desert tropical f (Tmin) 9.00 33.00 2.12 1.22 0.46
Desert temperate f (Tmin) −14.00 28.00 2.06 1.33 0.52
Tropical semi-arid f (Tmin) 4.00 33.00 2.27 1.57 0.52
Tropical humid f (Tmax) 13.00 36 1.47 1.49 0.68

Table A3. Parameter values for cumulative precipitation functions
in Eq. (A2) for the tropical biomes and Eq. (A3) for the desert
biomes.

Biomes k o l m

Desert tropical∗ – – – 0.0009
Desert temperate∗ – – – 0.0014
Tropical semi-arid 1.84 4.29 0.18 –
Tropical humid 1.24 19.69 0.51 –

∗ The asterisk indicates linear precipitation functions.

(Pcum), (2) maximum temperature (Tmax), and (3) minimum
temperature (Tmin) temperature. We followed the method-
ology of Sallaba et al. (2015) by defining the functions of
the climate surrogates that yield maximum NPP at baseline
[CO2] and combining these in a synergistic function and then
adding the CO2 fertilization effect.

For the meta-model development at baseline [CO2], we
scaled the LPJ-GUESS NPP estimates between 0 and 1 (i.e.
NPPmin = 0 and NPPmax = 1) using the highest NPP yield
of each biome and combined them with the climate surro-
gates. The highest NPP yields of the biomes Maxbiome at
baseline [CO2] are given in Table A3. We then extracted
the climate surrogate–NPP value combinations that yield
the highest NPP, assuming that maximum NPP yields can
only be reached under optimal climate conditions (Sallaba et
al., 2015).

For NPP as a function of temperature we assumed
a hump-shaped curve relationship, which is based on
the temperature–photosynthesis relationship (Sallaba et
al., 2015). For Tmax we developed a function that is built upon
the β distribution as given in Eq. (A1):

f (Tmax)

=

(
T−Limmin

Limmax−Limmin

)∂−1(
1−

(
T−Limmin

Limmax−Limmin

))β−1

(
0(∂)0(∂β)
0(∂+β)

) a, (A1)

where f (Tmax) calculates the NPP yield (relative) of the
given temperature surrogate; T is the value (◦C) of Tmax;
Limmin and Limmax are the minimum and maximum tem-
perature limits of the biome normalizing T between 0 and 1;
0 is the gamma function; ∂ and β describe the shape of the

function; and a stretches the function along the ordinate (the
amplitude). For Tmin we developed a function that is identical
to Tmax as given in Eq. (A2).

f (Tmin)

=

(
T−Limmin

Limmax−Limmin

)∂−1(
1−

(
T−Limmin

Limmax−Limmin

))β−1

(
0(∂)0(∂β)
0(∂+β)

) a, (A2)

where f (Tmin) estimates relative NPP and T is the value (◦C)
of Tmin. The function parameters of Eqs. (A1) and (A2) are
provided in Table A2.

For NPP as a function of precipitation we applied two
function types because the dataset shows saturation and lin-
ear NPP growth with increasing precipitation amounts in the
Sahelian biomes. Both function types let NPP increase with
increasing precipitation amounts until NPPmax is reached.
Further increasing precipitation levels only yield NPPmax be-
cause precipitation surplus is assigned as run-off and perco-
lation following the treatment of high precipitation levels in
LPJ-GUESS (Gerten et al., 2004; B. Smith et al., 2014).

In the tropical humid and tropical semi-arid biomes, we
applied a saturation function in which NPP grows rapidly
with increasing precipitation until NPPmax is reached, as
given in Eq. (A3),

g (Pcum)=min
(

1,k−
o

P lcum

)
, (A3)

where g(Pcum) estimates the cumulative precipitation NPP
(relative); Pcum is the annual cumulative precipitation; k is
the maximum relative NPP (here NPPmax = 1) that limits
the growth of the function; o is a constant; l determines the
slope of the function; and min() limits the linear function to
NPPmax = 1. If Pcum is 0 mm then g(Pcum) is set to 0.

In the desert tropical and desert temperate biomes we de-
fined NPP as a simple linear function of precipitation (see
Eq. A4), which is limited to NPPmax = 1 in order to consider
the treatment of precipitation surplus in LPJ-GUESS (Gerten
et al., 2004; B. Smith et al., 2014):

g
(
Pnpp

)
=min(1,mPcum) , (A4)

where g(Pnpp) calculates the cumulative precipitation NPP
(relative); P is the annual cumulative precipitation; m is
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the slope of the linear function; and min() limits the linear
function to NPPmax = 1. All parameter values of Eqs. (A3)
and (A4) are presented in Table A3. For the parameter values
and the determination of the temperature and precipitation
functions, we randomly halved the biome training subsets (at
[CO2]= 350 ppm) into analysis and validation parts and then
applied a non-linear least-squares model fit in Matlab®. We
chose the parameter values that yield the lowest root mean
square error (RMSE) in the validation part following Del
Grosso et al. (2008).

We then combined the climate variable functions and in-
vestigated model complexity. We combined f (Tmin)f (Tmax)
and g(Pcum) into seven groupings ranging from one func-
tion to multiplying all three climate functions to calculate
NPP in each biome. We assessed model complexity with the
Bayesian information criterion (BIC; Burnham and Ander-
son, 2002; Schwarz, 1978) and model agreement with RMSE
and the Willmott index (DR; Smith and Smith, 2007; Smith
et al., 1997; Willmott et al., 2012). We chose the combina-
tions with the lowest BIC and best model agreement. In all
biomes the best results were obtained through a combination
of precipitation with either temperature function (because
Tmax and Tmin are potentially autocorrelated). The combi-
nation of g(Pcum) with f (Tmax) gave the best results in the
tropical humid biome, while g(Pcum) combined with f (Tmin)
yielded the best results in the remaining biomes (see the ap-
plied temperature function in Table A2).

In the next step, we combined the selected functions, con-
verted the synergistic function from relative to absolute NPP
(kg C m−2 yr−1), and rescaled the function to independent
LPJ-GUESS NPP simulations in order to correct for differ-
ences in NPP magnitudes as given in Eq. (A5):

NPPbase = NPPscale ((f (Tlim)g (Pcum))Maxbiome) ,
f (Tlim) ∈

[
f (Tmax) ,f (Tmin)

]
, (A5)

where NPPbase is the estimate (kg C m−2 yr−1) at baseline
[CO2]; f (Tlim) is the temperature function used for the
specific biome (either f (Tmax) or f (Tmin); see Table A2);
Maxbiome is maximum NPP yield of the biome at baseline
[CO2] for converting NPP from relative to absolute units; and
NPPscale is the scaling factor to minimize the magnitude dif-
ference between the LPJ-GUESS and BME estimates. The
scaling factor is a ratio based on the mean of LPJ-GUESS
NPP and the mean of biome meta-model NPP estimates from
1985–2006. In the tropical humid biome, f (Tmin) is set to 1,
and in the remaining biomes f (Tmax) is set to 1 based on the
model complexity analysis. The parameter values are given
in Table A4.

We implemented the CO2 fertilization effect on plant
growth in the final meta-model function (see Eq. A5) by
applying the same methodology as described in Sallaba et
al. (2015) (assuming saturating NPP enhancement with in-
creasing [CO2]) but determined new parameters for each
biome using linear fitting in Matlab® (R2015b). We chose

Table A4. Parameter values of the synergistic function in Eq. (A4).

Biomes Maxbiome NPPscale

Desert tropical 1.25 1.46
Desert temperate 0.86 1.05
Tropical semi-arid 1.46 1.04
Tropical humid 1.56 0.97

Table A5. Parameter values of the CO2 function in Sallaba et
al. (2015) Eq. (5) therein.

Biomes c

Desert tropical −0.19
Desert temperate −0.63
Tropical semi-arid −0.70
Tropical humid −1.03

the parameters that yielded the lowest RMSE, which are
shown in Table A5.

NPPscenario =

(
NPPbaseline

(
c

(
1−

CO2_baseline

CO2_scenario

)
+ 1

))
, (A6)

where NPPscenario is NPP (kg C m−2 yr−1) under elevated
[CO2] (ppm); NPPbaseline is modelled NPP at baseline [CO2];
c is the slope; CO2_baseline is the baseline [CO2] of 350 ppm;
and CO2_scenario is an [CO2]> 350 ppm.

For each biome, we determined CO2 fertilization function
parameter values with a non-linear least-squares model fit in
Matlab® (R2015b) and chose values yielding the lowest root
mean square error (RMSE).

A2 Model evaluation

A2.1 Biome-level model validation

We validate biome-level LPJ-GUESS and BME performance
to estimate the NPP of natural vegetation with NPP field
measurements from Michaletz et al. (2014) and Luyssaert
et al. (2009; see Sallaba et al., 2015) for the major biome
classification of Reich and Eswaran (2002), including the
biomes found in the Sahel (desert temperate, tropical semi-
arid, and tropical humid; no observations were available for
desert tropical). Note that since only two observations were
available for our study area (see Fig. A1), this evaluation
demonstrates the ability of both LPJ-GUESS and BME to
replicate NPP for Sahel biomes found elsewhere in the world.

Before we combined the Michaletz et al. (2014) and Luys-
saert et al. (2009) datasets, we removed sites with no records
of combined above- and below-ground NPP measurements.
After we merged the data, we checked the final assembly of
NPP measurements for duplicates and removed them. The fi-
nal dataset consists of 1561 samples (i.e. 1247 samples from
Michaletz et al., 2014, and 314 samples from Luyssaert et
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Figure A1. Map of the major biome classification based on Reich and Eswaran (2002). The red and green points are the locations of the
NPP field data from Michaletz et al. (2014) and Luyssaert et al. (2009).

al., 2009) representing total NPP measurements across the
terrestrial biosphere (sample sizes are 18, 6, and 12 for Sahel
biomes of desert temperate, tropical semi-arid, and tropical
humid, respectively) from 1959 to 2006. Both LPJ-GUESS
and BME were driven with CRU TS 3.21 climate data (Harris
et al., 2014; Trenberth et al., 2014) that have global coverage
across the time period.

We calculated the mean values of the NPP field measure-
ments and the modelled NPP estimates located in the respec-
tive biomes following B. Smith et al. (2014). We aggregated
to the biome level to account for the difference in scale be-
tween in situ NPP measurements and modelled grid cell NPP
estimates (grid cell averages).

Finally, we determined the overall model performance
biome by biome with the coefficient of determination
(R2 value) and the root mean square error (RMSE). Addi-
tionally, we investigated model agreement with performance
ratios (hereafter referred to as Q) by dividing mean biome
NPP estimates (for both models) with mean biome NPP ob-
servations. Model overestimation in comparison to in situ
NPP measurements is indicated by Q> 1 and underestima-
tion by Q< 1. Good model performance is classified with a
Q range between 0.9 and 1.1, assuming an error of ±10 %
following Sallaba et al. (2015). However, we further defined
an acceptable model performance error range of ±20 % (i.e.
Q = 0.8–1.25) given the limitations of using LPJ-GUESS
standard modelling protocol, PNV and CRU climate obser-
vations, and the simplicity of BME.

LPJ-GUESS performs reasonably well in simulating NPP
at the overall biome level (R2

= 0.71 and RMSE= 0.16), but
the model performance varies notably across the biomes (see
Fig. A2 and Table A6). In general, LPJ-GUESS yields ac-
ceptable model agreement in 7 (with good performance in
4 biomes) out of 13 biomes. At the same time, the model

underestimates NPP in three biomes, while it overestimates
NPP in two biomes (Fig. A2).

For greater Sahel biomes, LPJ-GUESS exhibits good skill
in simulating NPP in the tropical humid biome (Q= 0.96;
see Table A6), and it also satisfactorily captures the variabil-
ity in the NPP measurements. LPJ-GUESS underestimates
NPP for the tropical semi-arid biome (Q= 0.75), showing
reduced NPP variation compared to the observations. Perfor-
mance is reduced for desert temperate (Q= 0.56).

BME performance is acceptable at the overall biome level
(R2
= 0.57 and RMSE= 0.26) but varies substantially for in-

dividual biomes (see Fig. A3). Overall, BME model agree-
ment is reasonable in four biomes (with good performance
in two biomes). At the same time, BME overestimates NPP
in two biomes, while it underestimates plant growth in six
biomes. The variability in the in situ NPP measurements can-
not be captured by BME in the majority of biomes except
in the tropical humid and tundra permafrost biomes (see the
vertical and horizontal lines connected to the diamonds in
Fig. A3).

For greater Sahel biomes, BME yields acceptable agree-
ment in estimating NPP in the tropical semi-arid and tropical
humid biomes (Q= 0.84 and 0.81, respectively) but accu-
racy drops in the more water-limited desert temperate biomes
(Q= 0.28).

Overall, BME mimics the behaviour of LPJ-GUESS
shown by the good model agreement of R2

= 0.71 and
moderate RMSE= 0.12 kg C m−2 yr−1 between the average
biome NPP estimates of BME and LPJ-GUESS. It is no-
table that BME yields less NPP on average in the majority
of biomes compared to the observations.
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Figure A2. Comparison of LPJ-GUESS through NPP estimates and NPP field measurements at the biome level using biome mean NPP
values and their standard deviation. The different colours represent MBC biomes based on Reich and Eswaran (2002). The number of NPP
observations in each biome is given in the legend. Note the Sahel biomes desert temperate, tropical semi-arid, and tropical humid.

Table A6. Comparison between mean biome NPP field measurements, LPJ-GUESS, BME NPP estimates, and their Q as a model perfor-
mance measure. Sahel biomes are italicized.

Biome (sample size) Field data LPJ-GUESS LPJ-GUESS BME BME Q
mean NPP mean NPP Q mean NPP

(kg C m−2 yr−1) (kg C m−2 yr−1) (kg C m−2 yr−1)

TUNDRA permafrost (78) 0.30 0.44 1.46 0.24 0.79
TUNDRA interfrost (62) 0.32 0.56 1.75 0.44 1.36
BOREAL semi-arid (19) 0.54 0.45 0.83 0.49 0.91
BOREAL humid (405) 0.42 0.62 1.48 0.56 1.32
TEMPERATE semi-arid (179) 0.71 0.57 0.80 0.45 0.63
TEMPERATE humid (729) 0.59 0.54 0.91 0.56 0.95
MEDITERRANEAN warm (36) 0.95 0.78 0.83 0.52 0.55
MEDITERRANEAN cold (9) 0.90 0.85 0.94 0.41 0.45
DESERT temperate (18) 0.31 0.17 0.56 0.09 0.28
DESERT cold (13) 0.42 0.20 0.48 0.24 0.57
TROPICAL semi-arid (6) 1.23 0.92 0.75 0.84 0.68
TROPICAL humid (12) 0.97 0.93 0.96 0.81 0.84
Ice (3) 0.50 0.45 0.90 – –

A2.2 BME performance in the Sahel

For the assessment of BME performance in the Sahel, we
chose approximately 4000 CRU TS 3.0 grid cells that cover
the Sahel region with even distribution. We forced LPJ-

GUESS with the CRU climate data and measured [CO2]
spanning from 1970 to 2006 using the same modelling pro-
tocol as described in Sect. A1. The climate data were post-
processed as in Sect. A1 and then applied to BME in or-
der to estimate NPP. We employed several measures to

Earth Syst. Dynam., 8, 1191–1221, 2017 www.earth-syst-dynam.net/8/1191/2017/



F. Sallaba et al.: Future supply and demand of NPP in the Sahel 1209

Figure A3. Comparison of BME NPP estimates and NPP field measurements at the biome level using biome mean values and biome standard
deviation of the means. The different colours represent MBC biomes based on Reich and Eswaran (2002). The number of NPP observations
in each biome is given in the legend. Note the greater Sahel biomes desert temperate, tropical semi-arid, and tropical humid.

gauge BME performance against LPJ-GUESS simulations.
We calculated the BME agreement (i.e. precision) with LPJ-
GUESS simulations with the coefficient of determination
(R2 value) by measuring the strength of the linear associa-
tion between the models; the root mean square error (RMSE)
gives the total difference between the models in NPP units
(NPP kg C m−2 yr−1) and the Willmott index (DR) deter-
mines how well the plot of LPJ-GUESS simulations and
BME NPP fit to a perfect agreement line ranging from −1
to 1 (1= optimal value; Smith and Smith, 2007; Smith et
al., 1997; Willmott et al., 2012).

The comparison between BME and LPJ-GUESS NPP es-
timates (see Fig. A1) shows good agreement (R2

= 0.9 and
DR= 0.87), while the RMSE= 0.1 NPP kg DW m−2 yr−1

shows notable total differences between the models.
We then calculate the annual means of BME and LPJ-

GUESS NPP (i.e. aggregating the entire Sahel region) for
the time period in order to investigate whether BME follows
the inter-annual variation in LPJ-GUESS NPP. As shown in
Fig. A5, BME NPP follows the inter-annual variation in LPJ-
GUESS NPP. Both models yield depleted NPP in 1972–1973
and 1983–1984, showing the impact of devastating droughts
that occurred in these years and resulted in complete crop
failure (Ibrahim, 1988). Furthermore, both models yield a

Figure A4. Comparison between BME and LPJ-GUESS NPP esti-
mates covering the Sahel region.

dip in NPP in 2002 when the latest major drought affected
the region (see Fig. A5; Balogun et al., 2013). In Fig. A5, we
also include runs from LPJ-GUESS C (carbon cycling only),
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LPJ-GUESS ml (managed land), and MODIS-derived NPP
for comparison purposes.

In order to test how effectively the NPP of natural ecosys-
tems can be can be used as a proxy for the NPP of agricul-
tural ecosystems, we ran LPJ-GUESS managed land (Olin
et al., 2015) for the period 1970–2006 and compared this
to LPJ-GUESS (used to develop BME) for the entire Sahel
region. The results (see Fig. A5) of this experiment show
that the mean NPP derived from LPJ-GUESS ml over the
region underestimates the mean NPP derived from BME
by 0.7 % (0.006 dry-weight m−2 yr−1) and LPJ-GUESS by
2.4 % (0.020 kg dry-weight m−2 yr−1), though all models
show similar trends and levels of inter-annual variability (see
Fig. A5). The implication of this experiment is that there is
a demonstrable reduction in NPP when land management is
taken into consideration, but the effect is relatively minor.
Lindeskog et al. (2013) show that LPJ-GUESS managed land
(C version) overestimated the actual yield derived from FAO
country-level crop statistics, and W. Smith et al. (2014) also
report that natural systems are more productive than agricul-
tural systems in sub-Saharan Africa. We conclude that our
results are in the upper range for NPP found in the Sahel.

We also compare total yearly means of NPP from BME
and LPJ-GUESS to NPP derived from the MOD17A3 pro-
cessing stream (using MOD17A3 data obtained from the
NASA Earth Observation System repository at the Univer-
sity of Montana at www.ntsg.umt.edu) for the period 2000 to
2006 for the greater Sahel region (Running et al., 2004). We
averaged resampled MODIS NPP from 1 km to the spatial
resolution of the BME estimates (0.5◦× 0.5◦) and excluded
urban areas. We removed below-ground NPP and plant parts
unable to be consumed by applying the same R :S and har-
vest index as described in Sect. 2.1.1. Lastly, we calculated
the mean values of MODIS NPP estimates from 2000 to 2010
for each grid cell covering the study area. Our results show
that between 2000 and 2006 MODIS-derived NPP underesti-
mates BME-derived NPP by 42 % (difference of 0.38 kg dry-
weight m−2 yr−1) on average (Fig. A5). Ardö (2015) also re-
ports that average annual MODIS NPP underestimates LPJ-
GUESS (C version only; Fig. A5) for Africa for 2000–2010
and attributes this to the fact that autotrophic respiration
is considerably higher for MODIS NPP compared to LPJ-
GUESS due to large temperature sensitivity in the MODIS
algorithm, differences in the biome-specific parameteriza-
tions for MODIS, and the specification of plant functional
types in LPJ-GUESS.

Country-level census yield trends (1989–2008) for four
major crops from Appendix S1 of Ray et al. (2013) for
rice (Benin, Burkina Faso, Chad, Ghana, Guinea, Guinea-
Bissau, Ivory Coast, Liberia, Mali, Nigeria, Senegal, Sierra
Leone, Togo), maize (Benin, Burkina Faso, Cameroon, Chad,
Ethiopia, Ghana, Guinea, Ivory Coast, Mali, Nigeria, Sene-
gal, Togo), wheat (Cameroon, Chad, Eritrea, Ethiopia, Mali,
Mauritania, Niger, Nigeria, Sudan), and soybeans (Benin,
Burkina Faso, Nigeria) range from −5.98 to 2.80 (mean of

−0.002),−0.94 to 4.08 (mean of 1.400),−2.58 to 3.1 (mean
of 1.280), and 1.15 to 3.98 (mean of 2.280) respectively.
Trends for BME, LPJ-GUESS, and MODIS NPP fall within
most of the ranges for crop yield trends, showing yearly in-
creases of 0.55 % (BME), 0.58 % (LPJ-GUESS), and 0.51 %
(MODIS) for the 7-year period of overlap. For the entire
length of each series (1970–2006 for BME and LPJ-GUESS
and 2000–2010 for MODIS), the slopes indicate yearly in-
creases of 0.40, 0.40, and 0.62 % respectively. We note the
number of uncertainties involved in this comparison (e.g.
spatial and temporal sampling and the fact that BME and
MODIS represent natural vegetation and a mix of natural
vegetation and crops, respectively).

A2.3 Concluding remarks for model validation and
evaluation

In sum, a validation involving ground measurements for the
same biomes found in the Sahel (but observations mostly
from other locations) shows that LPJ-GUESS and BME un-
derestimate NPP, while a comparison with MODIS shows
that LPJ-GUESS and BME overestimate the total mean an-
nual NPP in the greater Sahel region (2000–2006). Yet is
widely acknowledged that natural systems are likely more
productive than agricultural systems. We also show that
trends for BME, LPJ-GUESS, and MODIS mostly fall within
the trend ranges for country-level yield statistics (though
sample size is low). We acknowledge that the uncertainties
are significant. Differences in estimates between methods are
due to a combination of spatial aggregation and sampling
issues (e.g. low sample sizes for biomes typically found in
the Sahel, CRU data that do not necessarily represent site-
level climate, and the uncertain assessment of below-ground
and short-lived above-ground plant matter at the site level)
and differing assumptions between the MODIS processing
stream and LPJ-GUESS (particularly respiration). We there-
fore conclude that BME and LPJ-GUESS replicate ground
observations of NPP at similar orders of magnitude at the
biome level, but may be overestimated due to the fact that
natural systems are usually more productive than agricul-
tural systems. This underscores the fact that BME and LPJ-
GUESS should be restricted to biome-level applications (or
coarser), while applications on the grid cell level should be
limited to explorations of patterns and trends, which is the
reason why we emphasize an aggregated level of analysis.

A3 Estimation of NPP supply and demand

In this modelling framework, we followed the NPPdemand
definition of Abdi et al. (2014) as given in Eq. (A7):

NPPdemand = NPPfood+NPPfeed+NPPresidues

+NPPfuel+NPPburned, (A7)

where NPPdemand is the actual amount of annual NPP needed
for human survival; NPPfood is the NPP needed for con-
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Figure A5. Regional NPP annual means of NPP for BME, LPJ-GUESS, LPJ-GUESS C (carbon only), LPJ-GUESS ml (managed land;
1970–2006), and MODIS (2000–2010) for the greater Sahel region.

sumed cereals, meat, and milk production; NPPfeed is the
total amount of fodder to support the livestock population;
NPPresidues describes agricultural by-products (after harvest-
ing); NPPfuel describes fuelwood and charcoal from the re-
gion’s dry woodlands; and NPPburned represents the human-
driven NPP loss from biomass burning of forest resources for
land clearing due to land use change (Abdi et al., 2014).

We adapted Eq. (A6) to the current study’s framework by
dividing the demand into cereal-based (Eq. A7) and grazing-
based (Eq. A8) NPP and PLUM outputs:

NPPcereal_demand = NPPfood+NPPfeed, (A8)

where NPPfood = cerealtotal− cerealfeed (ton country−1);
cerealtotal (ton country−1) is the total cereal consumption of
the human and livestock populations provided by PLUM;
cerealfeed (ton country−1) is the total cereal demand to
sustain the livestock population (a direct PLUM output); and
NPPfeed (ton country−1) is equal with cerealfeed. We then
converted NPPcereal_demand to per capita (kg person−1) using
the country population of the corresponding year in the SSP.

For the amount of NPP needed to sustain livestock through
grazing that cannot be covered with cerealfeed, we applied
Eq. (A9):

NPPgrazing_demand = (1− feedratio) · cerealfeed
/

feedratio , (A9)

where NPPgrazing_demand (ton country−1) is the NPP obtained
from grasslands for sustaining livestock and feedratio ranges
between 0 and 1 (given by PLUM) and provides the pro-
portion of how much cerealfeed can meet the livestock

demand for energy needed to sustain the livestock. Fur-
thermore, we assumed that the Sahelian livestock is kept
close to human-populated areas and we therefore converted
NPPgrazing_demand to per capita (kg person−1) using the coun-
try population of the corresponding year in the SSP.

Furthermore, we eliminated NPPfuel in Eq. (A6) because
we assumed that fuelwood does not directly contribute to the
availability of food resources. Fuelwood is a vital variable
since it is a necessity for processing cereals and meat, but it
cannot provide information about food resource availability.
Moreover, we eliminated NPPburned in Eq. (A6) since it can-
not be counted as an actual food resource in the particular
year in which land clearances occur, but it is an important
indirect factor determining how much food can be produced
in the following years.
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Appendix B: Figures

Figure B1. Spatial distribution of NPP shortage in 2050 for the six most likely SSP–RCP combinations. The future socio-economic and
climatic scenarios are ordered in the panels as follows: (a) SSP1-RCP4.5, (b) SSP1-RCP6.0, (c) SSP2-RCP6.0, (d) SSP3-RCP6.0, (e) SSP4-
RCP6.0, and (f) SSP5-RCP8.5.

Figure B2. The relative contributions of CO2, precipitation, and yield gap closure to the increase in NPP over the greater Sahel region,
2000–2050. Results for CO2 and precipitation are from RCP6.0 and yield gap is from SSP2. Simulated climate and CO2 effects shown here
are mean effects over the five GCMs (GFDL, MIROC, Hadley, NorESM, IPSL).
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Figure B3. (a) Population growth scenarios of the greater Sahel region and (b) mean per capita demand of Sahelian countries.

Figure B4. Distribution of population for SSP2-RCP6.0 for the
years (a) 2000 and (b) 2050. Grid cells with less than one person
per km2 are excluded.

Figure B5. Development of mean technology improvement factor
for all countries for the socio-economic pathways.

Figure B6. Expansion of total agricultural land, including grass-
land and cropland, in the Sahel for the socio-economic pathways.
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Figure B7. Per capita NPP supply, demand, and balance for the greater Sahel (2000–2100) without CO2 fertilization. (a) NPP supply (red)
and demand (blue). The solid curves illustrate the mean of the SSP2-RCP6.0 combination. The dashed blue curves show supply uncertainty
(95 % confidence interval around the mean) based on the five GCM NPP results. The dashed red curves show demand uncertainty (95 %
confidence interval around the mean) based on the uncertainty related to the interpretation and quantification of SSP2. (b) The different
magnitudes of the NPP balance and the varying onsets of shortage across all SSP–RCP combinations. Black dots illustrate years with a
shortage outside of the 95 % confidence intervals. Combinations are grouped according to the socio-economic scenarios (y axis). The RCPs
are ordered from low to high radiative forcing in each SSP group. The temporal trajectory is shown along the x axis and the colouring
indicates the sign of the annual NPP balance. Blue shows a surplus of the NPP supply, while yellow to red represents small to very large gaps
between supply and demand. SSP–RCP combinations in bold indicate the most likely SSP–RCP pairs based on Table 1.
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Appendix C: Tables

Table C1. Per capita NPP supply and demand of countries in the greater Sahel region for 2000 and 2050. Portions of food and feed (including
grazing) are in per capita NPP demand for SSP2-RCP6.0. NPP is given in dry weight (DW). Hurtt :PLUM scaling factors and land areas
(from FAO) are also included.

Country Per capita Per capita Food portions Feed portions Hurtt :PLUM Land area
NPP supply NPP demand in per capita in per capita scaling from

(kg DW yr−1) (kg DW yr−1) NPP demand NPP demand factors FAOSTAT
(kg DW yr−1) (kg DW yr−1)

2000 2050 2000 2050 2000 2050 2000 2050 2000 1000 ha

Benin 1341 607 474 874 99 92 375 782 0.89 11 062
Burkina Faso 933 316 196 169 196 169 0 0 0.90 27 360
Cameroon 2127 1173 387 717 90 82 297 635 1.04 47 271
Chad 1878 1484 658 1157 120 116 538 1041 1.00 125 920
Djibouti 0 0 134 120 134 120 0 0 0.00 2318
Eritrea 333 221 124 130 124 130 0 0 1.10 10 100
Ethiopia 825 779 459 1439 135 157 323 1283 0.98 1 000 000
Gambia 1137 632 706 1082 168 142 539 940 1.58 1000
Ghana 1490 1291 274 1080 68 67 207 1013 1.03 22 754
Guinea 1773 1697 402 1066 123 87 279 979 1.73 24 572
Guinea Bissau 2319 1648 599 934 144 118 455 816 1.25 2812
Ivory Coast 1795 1549 282 811 95 75 188 736 0.98 31 800
Liberia 1186 1312 212 1273 91 109 121 1164 0.91 9632
Mali 1929 1191 1111 1272 191 170 920 1102 0.97 122 019
Mauritania 1129 1043 1530 1555 151 140 1379 1415 0.97 103 070
Niger 3437 1426 1274 1540 210 202 1064 1338 1.01 126 670
Nigeria 1059 719 321 923 139 139 182 784 1.04 91 077
Senegal 925 539 556 837 155 137 401 699 0.74 19 253
Sierra Leone 759 949 194 767 117 125 77 642 0.99 7162
Sudan 2517 1512 1530 1609 126 118 1404 1491 0.98 237 600
Togo 2171 1491 271 653 127 124 144 529 1.10 5439

Mean∗ 1377 957 517 1064 – – – – – –

∗ Weighted mean of per capita NPP measured using total population.
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