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Abstract. Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life.
Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are
determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which
influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different
generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood
frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps
(SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied
to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM
clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which
are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior
to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level
atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes,
including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence
Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are
also found to be associated with these processes. Floods associated with each cluster present different patterns
in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and
subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

1 Introduction

The assumptions of homogeneity, stationarity, and random-
ness in traditional flood frequency studies have been ques-
tioned in numerous studies (e.g., Hirschboeck et al., 2000;
Jain and Lall, 2001; Milly et al., 2002; Alila and Mtiraoui,
2002; Kwon et al., 2008; Villarini et al., 2009, 2013; Smith
et al., 2011; Westra and Sisson, 2011; Vogel et al., 2011;
Neiman et al., 2011; Seo et al., 2012; Merz et al., 2014; Lima
et al., 2015). To make progress on understanding and mod-

eling the real world flood process, one needs to better under-
stand how the complex interactions among weather, climate,
hydrology, basin attributes, and antecedent conditions evolve
over space and time.

Historically, flood studies have followed two distinct re-
search lines: hydrometeorology of floods and flood fre-
quency analysis. Flood hydrometeorology focuses on under-
standing (i) hydrodynamics of the rainfall–runoff process
during flood events, (ii) spatial structure of local rainfall
events that are associated with floods, (iii) soil–atmosphere

Published by Copernicus Publications on behalf of the European Geosciences Union.



1072 C. H. R. Lima et al.: Hydroclimatology of floods in the Upper Paraná River basin, Brazil

response, and large-scale circulation patterns associated with
the forecast and diagnosis of rainfall events (Maddox, 1983;
Kunkel et al., 1994; Pal and Eltahir, 2002; Schumacher and
Johnson, 2005; Amengual et al., 2007; Viglione et al., 2010;
Li et al., 2013). There is also extensive literature related
to the statistical analysis and modeling of flood frequency
from local and regional data of rainfall, streamflow, and wa-
ter basin attributes, including nonstationary approaches (e.g.,
Thomas and Benson, 1970; Stedinger and Cohn, 1986; Ste-
dinger et al., 1993; Kroll and Stedinger, 1998; Kwon et al.,
2008; Lima and Lall, 2010; Cheng et al., 2014; Luke et al.,
2017).

In this study, we investigate floods in the Upper Paraná
River basin (hereafter, UPRB) in southern Brazil using
a hydroclimatology framework to understand the flood-
generating mechanisms (Hirschboeck, 1988). The overar-
ching goal is to link frequency of flood events to flood-
generating mechanisms to provide a better understanding of
the underlying physical processes (Moftakhari et al., 2017).
The underlying assumptions in flood frequency studies can
be enriched by a formal consideration of the physical mecha-
nisms responsible for the generation of extreme floods. This
includes a recognition of the natural climate variability as-
sociated with persistence and oscillatory regimes (e.g., El
Niño) across different timescales (e.g., interannual, decadal)
as well as climatic changes in response to anthropogenic
changes in atmosphere, soil, and land use.

Many studies have investigated the interactions between
basin attributes and atmospheric circulation leading to ex-
treme or exceptional floods (in the context of this work, it
means floods with an exceedance probability of 70 %). How-
ever, there is limited knowledge as to how evolving large-
scale climate modes on the interannual scale change the oc-
currence of local precipitation and soil moisture, thus al-
tering the probability distribution and occurrence of floods
(Sun et al., 2016). It is argued that the frequency of flood
events is very sensitive to modest changes in climate (Knox,
1993; Sun et al., 2016). We explore Hirschboeck’s hypothesis
(Hirschboeck, 1988) that exceptional floods in basins of all
sizes could be related to anomalies in the large-scale atmo-
spheric circulation. This flood hydroclimatology perspective
has been applied to identify the moisture transport and large-
scale climate patterns associated with floods in the United
States (Hirschboeck, 1988; Budikova et al., 2010; Nakamura
et al., 2013; Lu and Lall, 2016; Mallakpour and Villarini,
2016), Europe (Jacobeit et al., 2003; Bárdossy and Filiz,
2005; Prudhomme and Genevier, 2010; Lu et al., 2013), and
other parts of the world (Kahana et al., 2002). However, such
flood studies are rare in South America.

Intuitively, a rainfall system that persists over a given lo-
cale with a continuous and sufficient supply of moisture
(from advection and recycling) has a high likelihood of gen-
erating an exceptional flood. For sufficiently large drainage
areas, an extreme flood may require an external flux of advec-
tive moisture, i.e., local convective processes may not tend to

produce exceptional floods in these basins. Moreover, such
an influx of large-scale advective moisture can lead to an in-
creased potential for large floods as the drainage area and
return period increase. Hirschboeck (1988) and Hirschboeck
et al. (2000) note that the scale of convective storms that can
generate intense short rainfall is typically of 10–102 km2;
therefore, it is unlikely that such convective processes are
the main source of exceptional floods over large areas. Con-
versely, mesoscale convective systems (MCSs), such as a
mesoscale convective complex (MCC) and squall lines, tend
to cover large areas and persist for several hours and are
sources of heavy rainfall in some regions of the USA (Schu-
macher and Johnson, 2005, 2006) and also Brazil (Zipser
et al., 2006; Salio et al., 2007; Durkee and Mote, 2009; Dur-
kee et al., 2009; Marengo et al., 2012), in particular the
MCCs to the east of the Andes that impact the La Plata
basin. However, there is evidence (Maddox, 1983; Corfidi
et al., 1996) that the maintenance and development of such
systems is related to large-scale atmospheric circulation fea-
tures. Thus, tropical and extratropical cyclones and associ-
ated fronts become important in the production of extreme
rainfall over large areas and are directly related to large-scale
atmospheric circulation patterns and to storm paths or well-
defined regions of moisture transport in the atmosphere.

We explore extreme floods in the UPRB through a hydro-
climatic analysis of flood series across 33 nested-basin sites
with drainage areas ranging from 2588 to 823 555 km2. The
spatiotemporal dynamics of daily rainfall over the basin in
the days that preceded the largest flood events is analyzed
and classified into clusters of similar patterns based on a
self-organizing map (SOM) (Kohonen, 2001) clustering al-
gorithm. This way, we intend to take into account the per-
sistence and alignment of the storm path with the drainage
basin that produces a given flood. The associated large-scale
atmospheric circulation for each cluster is then analyzed in
terms of moisture transport and convergence, high-level cir-
culation, and vorticity. Teleconnections with the Atlantic and
Pacific oceans are evaluated using composite analysis of the
sea surface temperature (SST) field. For each rainfall cluster,
the attributes (frequency, magnitude, scaling, and synchro-
nization) of floods across the UPRB are analyzed in order to
produce and characterize a typology for floods in the region
according to the dynamics of rainfall patterns and associ-
ated atmospheric circulation. Floods generated by snowmelt,
tropical cyclones, and storm surges do not affect the UPRB
and are thus not investigated in this study. The paper is orga-
nized as follows. In the next section we present the region of
study and data collection. In Sect. 3 we introduce the cluster-
ing algorithm. In Sect. 4 we present the results, and finally in
Sect. 5 we offer a summary and discussion.
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2 Region of study and hydroclimate data set

2.1 The Upper Paraná River basin, streamflow, and
rainfall data set

The UPRB is located in southern Brazil (Fig. 1) and is part
of the La Plata basin, which is the second largest basin in
South America after the Amazon basin. UPRB concentrates
a large population of Brazil and is of utmost importance
for the country in terms of flood control, hydropower gen-
eration, and agriculture. The rainfall season over UPRB is
mostly marked by a peak during the austral summer (sum-
mer monsoon system) related to the South American mon-
soon system (SAMS) and associated South Atlantic Con-
vergence Zone (SACZ; see Barros et al., 2000; Jones and
Carvalho, 2002; Berbery and Barros, 2002; Carvalho et al.,
2004; Marengo et al., 2012), particularly in the region north
of 20◦ S, where the monsoon system is the dominant forcing
(Berbery and Barros, 2002). Rainfall interannual variability
has been associated with SST anomalies in the tropical Pa-
cific and South Atlantic oceans (Grimm et al., 1998, 2000;
Robertson and Mechoso, 2000; Doyle and Barros, 2002;
Grimm, 2003, 2004; Chaves and Nobre, 2004; Cardoso and
Dias, 2006; Jorgetti et al., 2014). Intra-seasonal and decadal
variability in rainfall and streamflow have also been the sub-
ject of many studies (Robertson and Mechoso, 2000; Robert-
son et al., 2001; Zhou and Lau, 2001; Paegle and Mo, 2002;
Carvalho et al., 2004). Most of the moisture that reaches
UPRB is from the Amazon region (Drumond et al., 2008;
Carvalho et al., 2011), and the rainfall mechanisms are also
associated with MCSs along the South American low-level
jet (SALLJ; see Velasco and Fritsch, 1987; Marengo et al.,
2004; Salio et al., 2007) and transient systems related to ex-
tratropical cyclones and cold fronts (Mendes et al., 2007;
Silva and Ambrizzi, 2010). El Niño events have also been
linked to extreme rainfalls and floods in the UPRB (Camil-
loni and Barros, 2003; Grimm and Tedeschi, 2009; Muza
et al., 2009; Cavalcanti et al., 2015; Antico et al., 2016).

We use mean daily streamflow data from 33 sites in the
UPRB (Fig. 1). These sites are located strategically to pro-
vide the inflow into the main hydropower reservoirs in the
UPRB, which are used not only for generation of electri-
cal energy but also for flood control, water supply, and agri-
culture. The data set is offered by the Electric System Na-
tional Operator (ONS), which defines the operational rules
of all interconnected hydropower reservoirs in the country.
The streamflow data are available from January 1931 to De-
cember 2013, but in order to be consistent with the availabil-
ity of the rainfall data set, we perform all analyses consider-
ing the streamflow data restricted to the 1980–2013 period.
All series have gone through a consistency process from the
ONS and represent naturalized flows from artificial and natu-
ral streamflow gauges, which means that any reservoir oper-
ation upstream of the streamflow gauge is removed from the
original series.

Figure 1. The Paraná River basin (red contour) and streamflow
gauges used in this work (black dots). The elevation is in meters
and the location of the Paraná River basin within Brazil is shown
in the smaller panel in the upper right corner (red line contour).
The thinner red line shows the associated subbasins: (1) Paranaíba,
(2) Grande, (3) Tietê, (4) Paraná, (5) Paranapanema–Paraná, and
(6) Iguaçu.

We limit our analysis to the wet season (November
through March), when over 75 % of the floods occur. For
each site, we obtain partial duration series of floods by tak-
ing the values at which the daily flow exceeds a given thresh-
old. In order to keep a relatively large number of exceptional
flood events in each rainfall cluster, we set this threshold
as the 70th empirical flood quantile for the wet season. We
analyze only independent floods by de-clustering the series
(Lang et al., 1999) and taking events with inter-arrival times
larger than 15 days, which we believe is a consistent interval
to guarantee independence between flood events, consider-
ing the different rainfall mechanisms that cause floods in the
UPRB. From this procedure, we obtain dates and magnitudes
of about 98 flood events (average across all sites, ranging
from 76 to 131 events per site) for each of the sites in UPRB
analyzed here.

Daily gridded rainfall data (0.25◦× 0.25◦) for the period
1980–2013 are provided by Xavier et al. (2016). These data
consist of interpolated daily rainfall observations from 3625
rainfall gauges and 735 weather stations across Brazil avail-
able from different institutions (INMET, ANA, and DAEE).
The interpolation schemes and validation procedures are de-
scribed in Xavier et al. (2016). The rainfall data are delim-
ited by the UPRB boundary as shown in Fig. 1. For each
grid point, daily anomalies of rainfall are obtained after re-
moving, from the observed value, the respective long-term
monthly mean for that grid point based on the 1980–2013
period.
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2.2 Moisture fluxes, vorticity, upper-level winds, and sea
surface temperature

Mean daily data of vertically integrated moisture fluxes and
the associated divergence field (evaporation – precipitation
along an atmospheric column), low- and high-level relative
vorticity, and high-level (500 mbar) winds are obtained from
the ERA-Interim reanalysis data (Dee et al., 2011). They
cover the period from 1980 to 2013 and are retrieved for the
region defined by 15◦ N–60◦ S and 270–330◦W.

We also use daily SST data from the ERA-Interim global
SST archive for the 1980–2013 period. Daily SST anomalies
for each grid point are calculated by subtracting, from the
observed value, the monthly mean for that grid point and re-
lated month based on the 1980–2013 period. The SST field
is delimited by the region 30◦ N–80◦ S and 210◦W–20◦ E.

All data are interpolated for a grid of 2.5◦× 2.5◦.

3 Technical approach

The spatiotemporal dynamics of daily rainfall over the UPRB
in the days that preceded the largest flood events is ana-
lyzed and classified into clusters based on a SOM (Koho-
nen, 2001) clustering algorithm, which is described in the
following subsection. By doing this, we consider the persis-
tence and alignment of the storm path with the drainage basin
that produces a given flood. For each rainfall cluster, the as-
sociated large-scale atmospheric and ocean circulations are
evaluated through composite analysis of moisture transport
and convergence, high-level circulation, vorticity, and the At-
lantic and Pacific SST fields. The attributes (frequency, mag-
nitude, and regional scaling) of floods associated with each
rainfall cluster are also analyzed. We then propose a typol-
ogy for floods in the region according to the rainfall pat-
terns and corresponding atmospheric and ocean circulation.
Finally, we employ the ideas of event synchronization and
complex networks to explore the spatial dynamics of floods
over the UPRB conforming the rainfall clusters. The method-
ology to evaluate the synchronization of flood events is pre-
sented in Sect. 3.2.

3.1 Rainfall clustering

A flood event, defined as a crossing of river stage above its
bank height, can vary in duration from a few minutes to
months and in spatial extent from a few square kilometers
to several millions of square kilometers. A large number of
flood studies have focused on understanding physical pro-
cesses associated with floods in small-scale basins due to the
ease of observing critical events in these basins (e.g., Gupta
and Dawdy, 1995), while over large areas the focus tends to
be on the problem of predicting flood quantiles, with lesser
emphasis on understanding the physical mechanisms asso-
ciated with extreme floods. For instance, the relation of soil
moisture and a given rainfall event in producing some floods

over small areas and homogeneous soils is relatively easy
to evaluate. Conversely, the problem becomes considerably
more complicated as we consider large basins, with drainage
areas over 104 km2 since (i) the potential of a high hetero-
geneity in the initial soil moisture field is high and (ii) the lo-
cation and direction of the storm path along the basin leads to
a significant heterogeneity in the spatial and temporal distri-
bution of the rainfall event. Since the influx of large-scale ad-
vective moisture may be a particular factor to overlie the ini-
tial heterogeneities of the surface conditions for larger basins,
we will assume that the spatiotemporal variability (i.e., mag-
nitude, persistence, and alignment of the storm path with
the drainage basin) in rainfall is the key factor of producing
floods across the UPRB sites evaluated in this work.

Consider that the information regarding the spatiotempo-
ral patterns of rainfall associated with the major flood events
is contained in a rainfall data set represented by a matrix
X= [x1 x2 . . .xT ], where xt is a column vector contain-
ing all the relevant information about the spatial variability
and persistence of daily rainfall over the UPRB along days
t − τ , t − τ − 1 , . . ., t , for some time delay τ . T is the to-
tal number of effective days during the austral wet season
(November–March) over the 1980–2013 period. Our goal is
to extract information about X through clustering. We use the
SOM approach to cluster rainfall information as expressed in
X. SOMs are a particular case of competitive neural networks
and were developed by the machine learning community in
the 1990s (Kohonen, 2001) for cluster analysis and classifica-
tion. They have been successfully applied to find clusters in
climate systems (e.g., Cavazos, 2000; Hewitson and Crane,
2002; Johnson et al., 2008; Lee and Feldstein, 2013; Bao and
Wallace, 2015; Li et al., 2015, 2016; Mioduszewski et al.,
2016; Xu et al., 2016). An extended review of applications
in climate science is provided by Liu and Weisberg (2011).
SOMs are also known as Kohonen neural networks and the
basic idea is to obtain a 2-D topology consisting of nodes
(or neurons) that are associated with the input space X, still
preserving its topological features.

For the sake of clarity and understanding of the SOM prop-
erties and tuned parameters (i.e., parameters that can be sub-
jectively set) used in this work, here we describe the key as-
pects of SOM. We refer the reader to Kohonen (2001) for
more details about SOM. Let us assume that we haveK neu-
rons; then initiallyK representatives (or prototypes, synaptic
weight vectors, reference vectors) are randomly chosen from
the input space X and associated with the K neurons. An in-
put vector xt is randomly selected from the data set X and
the Euclidean distance between xt and each representative
mk , k = 1, . . .,K , is computed. The neuron whose represen-
tative yields the smallest distance to xt is the winner neuron
k∗ or best-matching unit (BMU):

k∗ = arg k
min
{||xt −mk||}. (1)
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In the next step, the neurons that are neighbors (neighbor-
hood set) of the winning node k∗ are found based on the Eu-
clidean distance and a given threshold c. The representatives
corresponding to each grid neighbor of the wining neuron k∗

are then updated according to the rule

mk←mk +α · (xt −mk), k ∈Nc(k∗), (2)

where α, 0≤ α ≤ 1 is the so-called learning rate and Nc(k∗)
denotes the set of points in the neighborhood of k∗ given the
parameter c. The process is then arbitrarily repeated a large
number of times (epochs), since there is no explicit error cri-
terion to minimize (Lee and Verleysen, 2007).

Variants of the update rule in Eq. (2) include a time-
varying learning rate α and weighted distances based on the
proximity of mk and the winning neuron mk∗ :

mk←mk+α(j )·h(||mk−mk∗ ||)·(xt−mk), k ∈Nc(k∗), (3)

where α(j ) is the learning rate at epoch j and h(|| · ||) is a
neighborhood function around the winner neuron k∗. Com-
mon functions for α(j ) include the linear, power, and inverse
functions with a decrease rate over time. A common function
for h(|| · ||) is the Gaussian kernel

h(||mk −mk∗ ||)= exp
{
−
||mk −mk∗ ||

2 · σ 2

}
Ik∈Nc(k∗),

where σ is the width of the kernel (or neighborhood radius)
and I the indicator function.

In the batch version of the SOM, instead of presenting a
single data vector each time, the entire data set X is presented
to the SOM before any weights are updated and the BMU
mk∗ is obtained for each input data xt at each epoch, so that
each data vector xt will belong to a given neuron and the new
neurons are updated as

mk←

∑
t∈Nc(k)wtxt∑
t∈Nc(k)wt

, (4)

where the weight function wt can be a rectangular function,
which is equal to 1 for the neighbors of mk and 0 otherwise,
or be a smooth function h(||mt −mk||). In this sense, each
new neuron is a weighted average of the data samples that
belong to its neighborhood neurons.

For a given number of neurons K , learning rate α, thresh-
old c, and fixed number of epochs, the trained SOM can en-
code any point xt by giving the index k of the closest neuron
mk , where the distance is computed similarly to Eq. (1). In
this way, each data point of the entire data set of rainfall in-
formation X can be assigned (or clustered) into one of the
categories 1, . . .,K .

The final embedding of X can be evaluated by the mean
quantization error (MMQE) of the SOM, which essentially

measures the average distance of each input xt to its repre-
sentative in the output space:

MMQE=
1
T

T∑
t=1
||xt −mxt ||, (5)

where mxt refers to the BMU of the corresponding xt .
In order to capture the spatiotemporal dynamics of the

rainfall field over the UPRB, including the information of
antecedent rainfall for a given day t of the record, we will
concatenate the rainfall field over a time window τ = 5 days:

xt = [r t−5 r t−4 r t−3 r t−2 r t−1 r t ]
′, (6)

where r t is a row vector representing the observed rainfall
field over the Upper Paraná River basin (Fig. 1) at day t , with
a dimension of 1178 (number of grid points), so that xt has
a dimension of 7068.

It is interesting to note that as τ increases, the number of
dimensions of xt increases as well and the associated rain-
fall pattern may not necessarily be connected with the flood
events. Based on the results discussed in the next section and
the lifetime of about 3 days of extratropical cyclones (Sim-
monds and Keay, 2000) and 3 days of SACZ events (Car-
valho et al., 2004), we believe τ = 5 days is an appropriate
choice to extract the relevant information regarding the rain-
fall field during flood events.

To be coherent with the flood data as described in Sect. 2.1,
we focus on the November–March daily rainfall. The data set
covers the period from 1 January 1980 to 31 December 2013
with a total of 5143 data points. After concatenating the rain-
fall field as explained in Eq. (6), the number of data points
reduces to 5138, starting now in 6 January 1980 and ending
in 31 December 2013. This results in a 5138× 7068 input
data matrix X to the SOM.

3.2 Flood event synchronization

The spatial dynamics of floods across the UPRB produced by
each neuron will be qualitatively explored through the con-
cepts of event synchronization and complex networks, which
have been successfully applied in many fields (Quiroga et al.,
2002) and also climate science (Malik et al., 2012; Mar-
wan and Kurths, 2015), including for prediction of floods in
South America (Boers et al., 2014). Following the nomen-
clature of Quiroga et al. (2002), let us define the time series
of flood event dates (obtained from the partial duration se-
ries) for two given streamflow sites x and y as txi and tyj ,
where i = 1, . . .,mx , j = 1, . . .,my andm is the total number
of events. We define two synchronous flood events whenever
the distance between txi and tyj is less than a given time lag
τ . Let cτ (x|y) then be the amount of time in which a flood
event in x follows, within the time lag τ , a flood event in y:

www.earth-syst-dynam.net/8/1071/2017/ Earth Syst. Dynam., 8, 1071–1091, 2017
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cτ (x|y)=
mx∑
i=1

my∑
j=1

J τij , (7)

where

J τij =


1 if 0< txi − t

y
j ≤ τ

1/2 if txi = t
y
j

0 otherwise.
(8)

Similarly, we can calculate cτ (y|x). We will then define a
measure Qτ for the event synchronization:

Qτ =
cτ (x|y)+ cτ (y|x)
√
mx ·my

, (9)

where 0≤Qτ ≤ 1, and Qτ = 1 suggests full synchroniza-
tion.

The delay behavior (or direction of flow) of the flood
events can be measured by

qτ =
cτ (x|y)− cτ (y|x)
√
mx ·my

, (10)

where −1≤ qτ ≤ 1, and qτ = 1 implies that flood events in
x always precede flood events in y.

When combining all streamflow sites, Qτ will be the ele-
ments of a square symmetric matrix while qτ will be the en-
tries of a square antisymmetric matrix. The matrix generated
from Qτ can then be converted into a square binary matrix,
in which entries will represent only relevant connected sites.
This can be accomplished by constructing the adjacency ma-
trix A:

A==
{

1 if Qτ > T

0 otherwise, (11)

where T is a given threshold.
Methods to estimate T usually involve a bootstrap proce-

dure, so that only a certain percentage of the total number of
grid points (e.g. 5 %) are connected (Malik et al., 2012; Boers
et al., 2014). In the particular case of this work, we are more
interested in the gauges that have synchronized flood events
with a specific one. Hence, we will define T = 0.5 so that we
define synchronized gauges when at least 50 % of their flood
events occur simultaneously.

The time lag τ should be less than half the minimum inter-
event distance so that one single flood event is not synchro-
nized with two events at another site. Based on this, a sim-
ple mathematical formulation is presented in Quiroga et al.
(2002). In our case, in order to consider independent flood
events, we have defined the partial duration series so that
flood events are at least 15 days apart. Hence, τ = 7. The
average direction in which the flood event propagates will be
simply evaluated using the sign of qτ .
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Figure 2. (a) Number of hits in each neuron (blue hexagons).
(b) Connecting neighboring neurons (red lines). The colors in the
regions containing the red lines indicate the distances between neu-
rons, where darker colors represent larger distances and lighter col-
ors represent smaller distances. The red numbers correspond to the
number of the neuron.

4 Results

4.1 Rainfall clustering

We chose a 2× 2 hexagonal grid to define the SOM, and the
rainfall field is classified into K = 4 clusters. This choice is
made primarily to associate a relatively large number of flood
events in each rainfall cluster. The neighborhood radius c is
initially set as 3 and monotonically decreases to 1 (equiv-
alent to six neighbors for a central neuron in an hexagonal
grid) when the number of epochs is equal to 100. This is the
so-called ordering phase, in which a global order is achieved
for the map (Kohonen, 2001). From 100 epochs c is set to 1
(tuning phase). Since the SOM grid consists of four neurons,
then only two neighbors will have the size of their neigh-
borhood affected by c (see Fig. 2 and related discussion).
The weight function h in Eq. (4) is the rectangular function.
The total number of epochs is set to 1000, but we do not ob-
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Figure 3. Neuron weights obtained for the SOM. These weights basically represent the rainfall anomalies (in millimeters) over the Upper
Paraná River basin from day t − 5 (top panels) to day t (bottom panels). The black line shows the zero contour.

serve any significant difference in the MMQE after the first
200 epochs. At 1000 epochs we obtained MMQE= 777.69.
We also evaluate MMQE for a 2× 3 hexagonal grid and a
3× 3 hexagonal grid and observe that the values tend to os-
cillate around MMQE= 777.69 as a function of the number
of epochs, so that any significant differences for the 2× 2
grid are observed. The SOM clustering algorithm is obtained
using a commercial Neural Network Toolbox (MATLAB,
2014).

Figure 2 shows the final SOM after 1000 epochs in terms
of hits in each neuron (panel a) and neighbors and weight
distances (panel b). The number of hits is almost evenly dis-
tributed among neurons 1, 2, and 3. Neuron 4 has almost the
double of hits of the other neurons. Due to the hexagonal
grid layout, neurons 2 and 3 are connected to all the remain-
ing neurons, while neurons 1 and 4 are connected only to
neurons 3 and 2 (panel b in Fig. 2). The shortest distance is
obtained between neurons 3 and 4, followed by the distances
between neurons 2 and 4 and neurons 1 and 3.

The analysis above is complemented by looking at the
weights of each neuron (Fig. 3), which basically contain the
information about the rainfall anomaly field over the UPRB

from day t − 5 to day t . Neuron 1 has a north–south seesaw
pattern at day t−5 and progressively moves towards a homo-
geneous field, with a strong rainfall peak at day t−3 centered
in the northeastern part of the basin. The north–south dipole
structure returns more strongly at day t −2 and persists until
day t , but now with a decrease in the rainfall peak. At this
point it is worth mentioning that the negative anomalies in
the rainfall field do not necessarily imply absence of rainfall,
but just that the rainfall at that specific grid point is below
its long-term monthly average. Neuron 2 starts with a nearly
homogeneous rainfall field at times t − 5 and t − 4, from
which negative rainfall anomalies start in the southern part
and cover approximately the entire basin at time t . Neuron 3
starts at time t − 5 with a northeast–southwest dipole struc-
ture with positive anomalies in the southwest, which progress
over time until almost the entire basin is covered by positive
anomalies at time t . Neuron 4 has a homogeneous rainfall
pattern over the entire basin, with negative anomalies from
time t − 5 to time t .

Combining the information from Figs. 2 and 3, we observe
that the rainfall field represented by neuron 4 is somehow
connected to the rainfall patterns expressed by neurons 2 and
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Figure 4. Vertically integrated moisture fluxes (kg (m s)−1, shown by the arrows) and associated divergence field (10−4 kg (m2 s)−1) aver-
aged over each neuron class. The red contour line shows the Upper Paraná River basin. The contour for the divergence field equal to zero is
also shown.

3 through specific regions of negative anomalies of rainfall.
Neurons 2 and 3 also have some connections with neuron 1,
expressed mainly by the rainfall field patterns at times t − 4
and t − 3 for neurons 2 and 1 and at times t − 4 to t − 2 for
neurons 3 and 1, when positive rainfall anomalies occur in
the southwestern portion of the basin.

Considering that each neuron represents a given state of
the rainfall field during the course of 6 days, we estimate
transition probabilities across the states and show them in Ta-
ble 1. We note that there is a general tendency of the rainfall
field to remain in its state (neuron), but the transition proba-
bilities are different among neurons. Neuron 1 is more likely
to transition to neuron 2, which is more likely to transition to
neuron 4. Neuron 3 has the highest probability to transition
to neuron 1, while neuron 4 will more likely stay at its own
state, with just a small probability to transition to neuron 3.
We further discuss and contextualize these transitions in the
next section in which we analyze the atmospheric circulation
associated with each neuron.

Table 1. Transition probabilities among neurons.

From To neuron
neuron 1 2 3 4

1 0.631 0.347 0.020 0.003
2 0.045 0.621 0.117 0.217
3 0.172 0.067 0.690 0.071
4 0.020 0.026 0.110 0.843

4.2 Atmospheric circulation, moisture transport,
and sea surface temperature

The analysis of key atmospheric and ocean variables in each
neuron class is conducted here through a composite analy-
sis considering the days corresponding to each neuron class.
In this sense, the patterns will reflect the average conditions
(climatology) for days t through t − 5 as shown in Fig. 3.

The vertically integrated moisture flux and the associated
divergence field (evaporation – precipitation along an atmo-
spheric column) averaged over each neuron class are shown
in Fig. 4. We can see this as a climatology of the mois-
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Figure 5. Streamlines for the vertically integrated moisture fluxes and low-level (850 mbar) relative vorticity (10−5 s−1) averaged over each
neuron class. The red contour line shows the Upper Paraná River basin.

ture transport associated with the rainfall patterns indicated
in Fig. 3. Neuron 1 shows an intense moisture transport
from the Amazon region, possibly associated with SALLJ
episodes (Marengo et al., 2004). The divergence field is neg-
ative in the northern portion of the UPRB, suggesting intense
rainfall along this region, and slightly positive in the southern
part (dry conditions), extending to 50◦ S. This dipole struc-
ture has been reported in several studies (e.g., Nogués-Paegle
and Mo, 1997; Díaz and Aceituno, 2003; Liebmann et al.,
2004) and is also observed in the rainfall field associated
with neuron 1 at time t (bottom panel of Fig. 3). The cir-
culation is similar to the pattern described by Nogués-Paegle
and Mo (1997), in which convection in the SACZ is enhanced
and more likely to occur during El Niño episodes, while the
SALLJ is weak (Liebmann et al., 2004; Silva and Berbery,
2006). However, note that a negative divergence field only
indicates that rainfall can potentially occur. This is not a suf-
ficient condition and a negative divergence does not neces-
sarily lead to rainfall.

The moisture transport in neuron 2 is dominated by a
north–south meridional flow crossing the entire basin, with
a relatively homogeneous convergence of moisture over the
basin, also resembling the rainfall pattern at time t for neu-

ron 2 (bottom panel of Fig. 3). This pattern seems to be as-
sociated with a weaker SACZ and stronger SALLJ, as de-
scribed in Nogués-Paegle and Mo (1997) for positive events.

The moisture transport in neuron 3 is also affected by a
strong SACZ and moisture fluxes from the Amazon region,
but, when compared with neuron 1 (Fig. 4), the positive di-
vergence (or inhibited precipitation) is far south of the basin
and covers a smaller area. The moisture divergence pattern is
again similar to the rainfall field at time t for neuron 3, with
positive anomalies of rainfall covering almost the entire basin
(bottom panel of Fig. 3). Neuron 4 has a moisture transport
pattern similar to that of neuron 2, but the origin of the fluxes
is more associated with the South Atlantic, with meridional
fluxes west of the basin and a less intense moisture conver-
gence. This reflects the rainfall field for neuron 4 (Fig. 3) and
is likely associated with the average conditions of moisture
transport into the region (Doyle and Barros, 2002; Carvalho
et al., 2004).

The dynamics of the moisture transport associated with
each neuron class is complemented by analyzing the low-
level (850 mbar) relative vorticity (Fig. 5), which can indicate
zones of low pressure and cyclonic rotation. A distinguished
pattern is found for neuron 1, with negative relative vorticity
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Figure 6. Streamlines for the high-level (500 mbar) wind vector and relative vorticity (10−5 s−1) averaged over each neuron class. The red
contour line shows the Upper Paraná River basin.

or cyclonic rotation over the entire basin and positive rela-
tive vorticity centered around 60◦W 30◦ S, which suggests
upper-level wave activity and dynamical forcing (divergence
in the upper levels) associated with neuron 1. This pattern
has been identified in other studies (Liebmann et al., 1999;
Robertson and Mechoso, 2000). Neuron 3 also shows cy-
clonic rotation (negative relative vorticity) in the southern
part of the UPRB, extending up to 30◦ S. Neurons 2 and 4
do not show any sign of intense cyclonic flow over the basin.

The high-level (500 mbar) atmospheric circulation and rel-
ative vorticity associated with each neuron class is shown in
Fig. 6. Neuron 1 shows a trough in the upper-level circula-
tion that extends to the entire UPRB, with negative vortic-
ity over the entire basin and positive vorticity southwest of it
(centered around 45◦W 30◦ S). This pattern confirms our hy-
pothesis that this neuron is also associated with upper-level
wave activities. Neuron 3 also shows a trough over the basin,
but it is weaker and negative vorticity slightly appears only
in the south. Neurons 2 and 4 show more of a zonal type of
circulation south of 20◦ S, which resembles the climatology
of high-level circulation.

Anomalies in the near-surface air temperature associated
with each neuron are shown in Fig. 7. Neurons 1 and 4 have,

respectively, negative and positive anomalies that cover the
entire UPRB. Neuron 3 has a contrast of negative anoma-
lies in the south and positive anomalies in the north, sug-
gesting frontal activities. Neuron 2 also has a sharp contrast
of anomalies but with opposite signs as compared with neu-
ron 3, and the pattern suggests that it results from the advec-
tion of moist and warm air from the Amazon.

Potential SST persistent patterns associated with each neu-
ron are analyzed here by passing a 15-day high-frequency fil-
ter on the daily SST anomalies, which are calculated by sub-
tracting, from the daily SST, the average of the corresponding
month for the January 1980–December 2013 period. The re-
sults are shown in Fig. 8. Neuron 1 and neuron 3 both show
positive anomalies in the El Niño region (eastern tropical Pa-
cific), in the central Pacific and tropical Atlantic. A dipole
structure appears in both neurons along the southern coast
of South America but they are out of phase. The negative
SST anomalies off the South American coast associated with
neuron 1 have been identified in other studies (Doyle and
Barros, 2002) during SACZ activities. It is not clear whether
they are a response to the reduced incoming radiation from
the intense rainfall band that extends from the Amazon to the
South Atlantic or whether they are in fact acting to produce
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Figure 7. Anomalies (◦C) in the near-surface air temperature averaged over each neuron class. The red contour line shows the Upper Paraná
River basin. The zero contour line is also shown.

the observed circulation pattern. The SST pattern of neuron 3
is similar to that of neuron 1, except that the anomalies off
the South American coast near 30◦ S are positive, which is
consistent with the positive rainfall anomalies in the south-
western part of the basin (Fig. 3), as described in Doyle and
Barros (2002). Neurons 2 and 4 show a similar pattern along
the South Atlantic, with positive anomalies in the equatorial
region (up to about 20◦ S), negative in the subtropic (centered
about 30◦ S), and positive south of 40◦ S. The SST pattern in
the Pacific Ocean for neuron 2 is diffuse, with no remarkable
features. Neuron 4 shows positive and negative anomalies
that intercalate across the Pacific, with negative anomalies
along the El Niño region. The SST anomalies in the Atlantic
for neuron 2 are very similar to those observed for neuron 1.

Combining the preceding analyses, we can shed some light
on the transition probabilities, hits, and connectivity among
neurons as displayed in Fig. 2 and Table 1. Neuron 4 in-
dividually has the most hits and likely reflects the average
circulation during the wet season, with a strong persistence
but reduced SACZ activities. Eventually it precedes neu-
ron 3 (probability= 11 %) and most likely succeeds neu-
ron 2 (probability= 22 %), which is expected given the rain-
fall pattern, as shown in Fig. 3, and the atmospheric circula-

tion and SST anomalies in Figs. 4 to 8. Neuron 2 also has a
slight probability (12 %) to precede neuron 3 and most likely
(probability= 35 %) succeeds neuron 1.

When we connect these results with the transition prob-
abilities in Table 1, we can describe the most probable se-
quence of rainfall states. The dynamical forcing and active
SACZ of neuron 1 is most likely preceded by neuron 3 (prob-
ability= 17 %), which is marked by active SACZ, high-level
waves, and cold fronts, and will most likely be followed by
the rainfall pattern of neuron 2 (probability= 35 %), which is
coherent with the surface air temperature march as inferred
from Fig. 7. Neuron 4 will most likely be followed by neu-
ron 3 (Fig. 3). Neurons 1 and 4 are not connected and the
transition probabilities between them are practically zero. In
summary, the most likely sequence of neuron transitions, ar-
bitrarily starting at neuron 3, is 3→ 1→ 2→ 4→ 3. How-
ever, also note that transition probabilities from one neuron
to another are generally smaller than the probabilities to re-
main in the state (see Table 1).

www.earth-syst-dynam.net/8/1071/2017/ Earth Syst. Dynam., 8, 1071–1091, 2017



1082 C. H. R. Lima et al.: Hydroclimatology of floods in the Upper Paraná River basin, Brazil

Figure 8. Showing 15-day filtered sea surface temperature (SST) anomalies (◦C) averaged over each neuron class. The zero contour line is
also shown.

4.3 Flood response

4.3.1 Frequency and magnitude

The total proportion of flood events in neurons 1 to 4 is equal
to 35, 34, 20, and 11 %, respectively. The frequency of floods
in each neuron for the streamflow gauges analyzed here is
shown in Fig. 9. Neurons 1 and 2 dominate most floods
across the UPRB. Neuron 3 dominates the floods along the
gauges located in the Paranapanema subbasin (see Fig. 1),
while neuron 4 is most associated with floods in the gauges
along the Paraná River, particularly with the Itaipu gauge lo-
cated in the basin outlet, which interestingly is not directly
affected by the wave activity of neuron 1 (see following dis-
cussion).

The magnitude of floods associated with each neuron class
is analyzed by calculating, for each site, the empirical ex-
ceedance probability for each data point in the partial dura-
tion series, aggregating all estimates across the sites and then
estimating the density of such probabilities conditional on
the neuron class of the data points. The results are shown in
Fig. 10. Neurons 1 and 2 have the peak and largest density
in small values of exceedance probability, suggesting that the
biggest floods along the UPRB are associated with these pat-

terns of rainfall (Fig. 3) and moisture transport and conver-
gence (Fig. 4). It is worth mentioning that neuron 2 has a
rainfall dynamics that is not associated with El Niño events
(Fig. 8) but still produces large floods. This highlights the
uncertainty and complexity of quantifying the flood hazard
during El Niño–Southern Oscillation events, as described in
Emerton et al. (2017). The pattern of neuron 3 is more asso-
ciated with intermediate magnitude flood events while neu-
ron 4 is associated with the smallest flood events, although
some large flood events are possible, particularly at the sites
where this neuron dominates the frequency of occurrence
(Fig. 9).

4.3.2 Spatial scaling

The literature on the scale of flood properties (e.g. quantiles)
with drainage area (Gupta and Waymire, 1990; Farquharson
et al., 1992; Over and Gupta, 1994; Gupta et al., 1994, 2007;
Gupta and Dawdy, 1995; Pandey et al., 1998) suggests that
the type of precipitation (e.g. convective versus frontal) and
the attributes of the drainage network will jointly determine
the different behaviors of the scaling process of flow and
drainage area. It is not clear whether such scaling relations
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Figure 9. Frequency of flood events in each neuron class for each streamflow gauge. The red dots show the scale for frequencies of 10, 50,
and 90 %.

will hold if a mixture of mechanisms can interact to produce
large floods. Here we explore the scaling of the first and sec-
ond sample moments of the flood events with respect to the
neuron classes.

Since each flood event at a given site can be assigned to
a neuron class, we can easily calculate the sample moments
(mean and variance in our case) in each neuron class for each
gauge and evaluate how the scaling law of flow moments and
drainage area change as a function of the spatiotemporal vari-
ability in the rainfall field. Figure 11 shows the scaling of the
average flood flow and drainage area for each neuron class.
The magnitudes of the slope and intercept coefficients clearly
change as a function of the neuron class, but more remarkable
differences appear between neurons 1–2 and neurons 3–4. In
fact, both slope and intercept estimates of either neurons 1 or
2 are significantly different at the 5 % significance level from
the estimates for neurons 3 and 4 using a standard Student’s
t test.

The magnitude of these coefficients also reflects the in-
tensity of rainfall and the spatial pattern associated with each
neuron, as shown in Fig. 3. As the rainfall intensity increases,
it is expected that the intercept will increase, while the slope
is more related to the spatial homogeneity of the rainfall field:
as it becomes more homogeneous across the basin, we expect
the slope will approach 1. The intercept values as shown in
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Figure 10. Density of exceedance probabilities in each neuron
class.

Fig. 11 increase from neuron 4 to neuron 1, which qualita-
tively agrees with the rainfall patterns shown in Fig. 3, whose
overall magnitude increases from neuron 4 to 1. The slope
estimates suggest that the less homogeneous rainfall fields
occur in neurons 1 and 2, which is consistent with the pattern
displayed in Fig. 3. Neurons 3 and 4 have the largest slope
estimates and thus a more homogeneous rainfall field, which
is again consistent with the results of Fig. 3.
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Figure 11. Scaling of average flood flow series in each neuron class. The least-square estimates of intercept and slope are shown in each
panel. The black line shows the least-squares regression. Here Q represents the flood series while A represents the drainage area (km2) of
the respective catchment.

The scaling of the sample variance with the drainage area
for each neuron class is shown in Fig. 12. As for the average
flow scaling, the largest differences among the coefficients
are observed between the pair of neurons 1 and 2 and the pair
of neurons 3 and 4. Visually, the scaling is clearer for neu-
rons 1 and 2. Neuron 4 shows more dispersed values along
the least-squares regression line, suggesting that the mecha-
nisms by which this rainfall pattern produces a given flood
across the gauges, particularly for small gauges, are different
(see subsequent discussion).

4.3.3 Flood event synchronization

Figure 13 shows a directed network obtained from the ad-
jacency matrix A and the delay behavior matrix qτ consid-
ering all flood events across sites and not taking into ac-
count the neuron classes. The nodes represent the stream-
flow gauges in their geographical position while the edges
(or branches) represent the existence of synchronization be-
tween two sites. The arrow shows the dominant direction of
the flood propagation. The flow patterns generally follow the
drainage basin direction (Fig. 1): east–west and north–south.
However, some exceptions can also be observed, indicating
that the size and movement of the storm path may also affect
how the sites are synchronized.

If we cluster the flood events into the neuron classes, we
can obtain specific adjacency and delay behavior matrices
for each neuron. The resulting directed networks are shown
in Fig. 14. Now we can observe that the rainfall pattern de-
scribed by neuron 1 produces the largest synchronization of
flood events, given by the number of arrows, including inter-
and intra-subbasin connectivity. In general, the cascade of
flood events tends to end up in the outlet of the subbasins
(see Fig. 1 for the name and location of the subbasins). Neu-
ron 2 has a more intra-subbasin connectivity pattern, which
tends to follow the river flow direction and suggest that rain-
fall upstream of the basin is the more likely cause of floods.
The Itaipu site located in the basin outlet is not connected
to any site, suggesting that Itaipu floods in this neuron will
likely result from the routing flow from upstream sites. Neu-
ron 3 has the northern sites disconnected while a connectiv-
ity within and across subbasins is observed. The Tietê sub-
basin seems to be disconnected from all other subbasins. Fi-
nally, neuron 4 shows less connections, and most of them
are within the subbasins. The Itaipu site is again completely
disconnected; thus, most of its floods associated with neu-
ron 4 are due to routing of upstream flow and floods caused
by rainfall of this and other types.
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Figure 12. Scaling of variance of flood flow series in each neuron class. The least-square estimates of intercept and slope are shown in each
panel. The black line shows the least-squares regression. Here Q represents the flood series while A represents the drainage area (km2) of
the respective catchment.

Figure 13. A directed network for the flood events showing syn-
chronization and flow direction (arrows). The dots show the stream-
flow gauges in their geographical location (see Fig. 1).

5 Summary and conclusions

A general, statistical approach to classifying flood generation
mechanisms, the areal scaling of floods, and the synchro-
nization potential of flooding in a large river basin was de-
veloped and demonstrated with data from the Upper Paraná

River basin, Brazil. This is the first attempt to describe such
floods in a broad, hydroclimatic context. A self-organizing
map algorithm was employed to find the spatiotemporal dy-
namics of the rainfall field over the basin in the days that pre-
ceded the major flood events. For each cluster, we analyzed
the large-scale moisture transport into the region as well as
the upper-level structure and teleconnections associated with
SST. The flood response associated with each rainfall pat-
tern was evaluated in terms of magnitude, frequency, spatial
scaling, and event synchronization.

Four distinct patterns of rainfall were observed and associ-
ated with the atmospheric circulation and moisture transport.
The first cluster exhibits strong rainfall concentrated in the
northeastern part of the basin, with a peak 2 days before the
flood events. It was associated with the moisture transport
from the Amazon and intense SACZ, with the presence of
cyclones – a pattern that has also been reported in the litera-
ture (Liebmann et al., 1999; Robertson and Mechoso, 2000).
These events are associated with positive SST anomalies in
the tropical Pacific and Atlantic oceans and a dipole structure
off the eastern coast of South America, which has also been
observed in other studies (e.g., Doyle and Barros, 2002). On
average, 35 % of all floods happen during these conditions.
The Itaipu streamflow gauge located in the basin outlet is
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Figure 14. A directed network for the flood events showing synchronization and flow direction (arrows) as a function of neuron class. The
dots show the streamflow gauges in their geographical location (see Fig. 1).

less affected, at least directly, by this rainfall pattern. These
types of floods are strongly synchronized across all sites.

The third neuron shows features of SACZ episodes associ-
ated with extratropical disturbances, possibly fronts and cy-
clones. The rainfall field is, however, less intense than that
of neuron 1 and peaks in the southwestern part of the basin.
The composite analysis for the SST field has a pattern simi-
lar to that of neuron 1, but the seesaw structure off the east-
ern South American coast is reversed. On average, 20 % of
the floods happen to occur in neuron 3, but this frequency
is larger for sites located in the southern part of the basin,
particularly in the Paranapanema subbasin. The magnitude
of these types of floods is intermediate and there is a syn-
chronization within and across the central and southern sub-
basins, suggesting connectivity due to the storm track exten-
sion and movement and the flood routing along the stream
channels. Both neurons 1 and 3 have positive SST anomalies
in the El Niño–Southern Oscillation region (eastern tropical
Pacific), which has also been associated with extreme rainfall
events in the region (Camilloni and Barros, 2003; Grimm and
Tedeschi, 2009; Cavalcanti et al., 2015). Therefore, about
55 % of floods (i.e., 35 % in neuron 1+ 20 % in neuron 3)

in the UPRB are linked to El Niño-like SST patterns in the
eastern tropical Pacific. Neuron 2 has a rainfall peak in the
northeastern part of the basin, between 4 and 5 days before
the flood event. The average rainfall field is less intense than
neuron 1 but more intense than neuron 3. Neuron 4 shows a
SST pattern similar to La Niña-like conditions, with negative
SST anomalies in the eastern tropical Pacific, suggesting that
about 11 % of floods in the UPRB could be linked with this
large-scale phenomenon.

The moisture path shows warm and moist meridional flow
across the entire basin, resulting in rainfall possibly due to
low-level convergence or eventually frontal activity. The SST
field in the Atlantic Ocean is similar to that of neuron 1, but
the average conditions in the tropical Pacific are neutral. On
average, 34 % of floods are of this type, particularly in the
northern subbasins. Together with floods in neuron 1, these
are the largest floods in the region. The synchronization of
type 3 floods is more intra-subbasin. Finally, type 4 floods are
caused by a homogeneous but persistent rainfall field, with
most moisture transported from the Atlantic Ocean. There is
no evidence of directly extratropical activities and the SST
field revealed negative anomalies in the tropical Pacific and
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positive in the tropical Atlantic. The near-surface air temper-
ature in this cluster showed positive anomalies, suggesting
that local convection might also be an important factor. Al-
though this is the dominant pattern of rainfall, 11 % of the to-
tal floods are of these type. These are the less intense floods,
with a synchronization that occurs along the main river chan-
nels.

The spatial scaling exponents (slope) of floods with
drainage area (Figs. 11 and 12) are similar for floods of
types 1 and 2, and for types 3 and 4, even though the rain-
fall mechanisms are different for each pair. The exponent is
higher for types 3 and 4, reflecting the higher homogeneity
in the rainfall and response pattern. The area exponents for
flood variance are considerably higher than those for mean
scaling, opening the possibility of a multi-scaling approach.
However, once again the exponents are similar for types 1
and 2 and for types 3 and 4. The scaling relationships for
variance are not as well constrained for neurons 3 and 4 types
of events.

Distinct patterns of flood synchronization and movement
are also identified for each neuron. Conditional on the storm
track, i.e., large-scale atmospheric flow, these could be fur-
ther useful to improve analysis and prediction of the potential
flood emergence and for the operation of multi-stage flood
control systems.

The results obtained in this work are a step forward for
flood risk management in the UPRB in two possible ways:
flood design and short-term prediction. Local flood fre-
quency analysis could make use of the different flood cat-
egories and employ, for instance, a mixture-of-distributions
approach (e.g., Alila and Mtiraoui, 2002) for better flood
quantile estimates. Regional flood frequency analysis could
also consider the different scaling laws and develop a
Bayesian approach (as in Lima and Lall, 2010; Cheng et al.,
2014; Lima et al., 2016) to better estimate regional parame-
ters.

Finally, the persistent regions with SST anomalies could
be used to derive climate predictors for short-term flood risk
prediction. The synchronization of the flood events could be
explored in more detail to develop short-term flood forecast
models conditional on the atmospheric and ocean states and
flood situation at nearby sites. Further details of the moisture
transport and high-level atmospheric circulation could also
be analyzed in order to obtain potential climate predictors
for the floods in this region. The proposed method can poten-
tially be used to explore other attributes of floods, the notion
of cumulative hazards (Moftakhari et al., 2017), and simulta-
neous flooding across a basin (Vahedifard et al., 2016), and
will be the theme of our future work. The timing of the floods
along the wet season and a possible association with the neu-
ron classes can be further explored. In future research, we
intend to address some of these topics and also explore how
the tools and methodology employed in this work could help
evaluate the future flood risk in the UPRB region considering
climate changes.
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