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Abstract. A simple conceptual model for the global mean surface temperature (GMST) response to CO2 emis-

sions is presented and analysed. It consists of linear long-memory models for the GMST anomaly response 1T

to radiative forcing and the atmospheric CO2-concentration response 1C to emission rate. The responses are

connected by the standard logarithmic relation between CO2 concentration and its radiative forcing. The model

depends on two sensitivity parameters, αT and αC, and two “inertia parameters,” the memory exponents βT
and βC. Based on observation data, and constrained by results from the Climate Model Intercomparison Project

Phase 5 (CMIP5), the likely values and range of these parameters are estimated, and projections of future warm-

ing for the parameters in this range are computed for various idealised, but instructive, emission scenarios. It is

concluded that delays in the initiation of an effective global emission reduction regime is the single most im-

portant factor that influences the magnitude of global warming over the next 2 centuries. The most important

aspect of this study is the simplicity and transparency of the conceptual model, which makes it a useful tool for

communicating the issue to non-climatologists, students, policy makers, and the general public.

1 Introduction

In spite of five comprehensive reports from the Intergovern-

mental Panel on Climate Change (IPCC), the perception of

the threat of global warming to society remains highly di-

verse among the general public, decision makers, and the

scientific community at large. This is in stark contrast to

the general opinion among those who define themselves as

climate scientists, where some studies suggest that as much

as 97 % recognise human activity as a main driver of global

warming over the last century (Anderegg et al., 2010; Cook

et al., 2013). What distinguishes the climate science com-

munity from other scientists is the strong reliance among

climate scientists on complex earth system models (ESMs),

that is, on atmospheric–ocean general circulation models

(AOGCMs) coupled to models that include biogeochemistry

and cryosphere dynamics. The general skepticism concern-

ing this “model science” is not hard to understand. Mod-

els are complex beyond comprehension, different models are

not independent but consist of many common modules, and

parametrisations are empirical to an extent that makes it le-

gitimate to question whether models are “massaged” to fit

observations. The important point here is not whether this

perception of climate modelling is correct or fair but that the

skepticism exists and in many cases cannot be discarded as

irrational.

The latest IPCC report from Work Group I on the climate

system (IPCC AR5 WG1, 2013) contains a summary for

policy makers that describes findings from observations and

model studies, which many physical scientists find uncon-

vincing and which is not a very easy read for the general pub-

lic. The unconvincing part is the above-mentioned excessive

reliance on complex computer models. Most scientists want

to understand and to be convinced by simple fundamental

principles matched against clear-cut observations. Decision

makers and the informed layman want to see simple, clear

alternatives for the future, not a myriad of incomprehensi-

ble scenarios labelled by acronyms that carry no meaning to

non-experts.

A very readable and important paper on the “The closing

door of climate targets” (Stocker, 2013) was published by
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the Co-Chair of Work Group I alongside the IPCC AR5 re-

port, intended to demonstrate that as mitigation is delayed,

climate targets formulated in international agreements be-

come unattainable. The results were based on the physi-

cal assumption of a linear relationship between the cumu-

lated carbon emissions and peak global warming in scenarios

where the cumulative emission is bounded. This relationship,

and the constant of proportionality, were justified empirically

from numerical experiments performed on a large number

of ESMs which incorporate the global carbon cycle (Allen

et al., 2009; Matthews et al., 2009). Some readers, however,

will find it unsatisfactory that they have to “believe” the mod-

els in order to accept the conclusion of the paper. As a for-

mer plasma physicist, who only relatively recently has taken

up research in earth system dynamics and climate science, I

am often confronted with questions from former colleagues

of the following type: “For half a century we have tried to

model the transport properties of a magnetically confined

plasma for controlled thermonuclear fusion, and we still have

not succeeded very well, even though the physical system is

infinitely simpler than the climate. Why do you think these

horrendously complex climate models perform any better?”.

A major motivation for the present paper is to find ways

to communicate with, and gain support from, the scientists

who ask such questions. I do this by deriving results simi-

lar to those obtained in Stocker (2013) in a more transpar-

ent manner and without resorting to complex ESMs as the

primary justification. The underlying assumptions are justi-

fied from observations, although supporting evidence from

AOGCMs is also discussed. The conceptual models of the

temperature and atmospheric carbon response are linear and

simple enough to be understood by anyone with some back-

ground in elementary calculus and ordinary differential equa-

tions. The scenarios explored are idealised and the results

presented in figures that should be comprehensible for read-

ers without training in mathematics or physical sciences.

Section 2 describes and justifies the conceptual model.

Section 3 presents projections for atmospheric CO2 concen-

tration and global mean surface temperature (GMST) for

some idealised CO2 emission scenarios: one which is very

close to the “business as usual” Representative Concentra-

tion Pathway 8.5 (RCP8.5) scenario employed by the IPCC,

and other scenarios which represent systematic emission re-

duction initiated at different times in the future. This section

also discusses policy implications that may follow from these

projections, and Sect. 4 summarises and concludes the paper.

Six appendices elaborate on the physical interpretation and

justification of the minimal model and on some mathemat-

ical aspects that may appear as paradoxes. This material is

placed in appendices in order to avoid the interruption of the

logical flow that leads to the main results. The Supplement

contains data files and a well-documented Mathematica note-

book with routines that allow readers to replicate and extend

all results presented in the paper.

2 The conceptual model

A closed model for the evolution of the global mean sur-

face temperature (GMST) could consist of (i) a model for the

GMST anomaly response 1T (t) to radiative forcing F (t),

(ii) a model for the evolution of 1C(t), given the CO2 emis-

sion history R(t), and (iii) a well-established constitutive

relation between F (t) and 1C(t). This paper proposes ex-

tremely simple, linear models for the GMST response (i) and

the CO2 concentration response (ii). Each depends on two

parameters characterising the strength and the inertia (mem-

ory) of the response. In order to keep the model sufficiently

simple for a reader to be able to trace the connection between

driver and response and the effect of variation of model pa-

rameters, major simplifying assumptions are made. One is

to neglect all radiative forcing other than CO2. Although the

main reason for this is to maintain simplicity, it is justified

by forcing estimates that conclude that the non-CO2 contri-

butions tend to cancel out over the industrial period (IPCC

AR5 WG1, 2013). Other important simplifications are lin-

earity and stationarity.

2.1 Linearity

Global temperature has been found to respond quite linearly

to forcing in general circulation models (Meehl et al., 2004),

and as long as the climate system is far from a major tip-

ping point, this linearity may also pertain to the response of

atmospheric CO2 content to emissions. The effect of space–

time non-linearity is important primarily in variability on a

scale smaller than the global scale. On the global scale the

response function has an approximate power-law form that

makes the system respond by a scale-invariant stochastic pro-

cess to a white-noise driver. This scale invariance is charac-

terised by a spectral exponent β, which gives rise to a power-

law tail in the response function G(s)∼ sβ/2−1, where s is

the time following an impulse in the forcing. The physical

interpretation of such a response is that the climate system

consists of a number of different interacting subsystems with

different response times. There will be a maximum response

time and hence there will be a cut-off of the power-law tail

in the response function for s larger than this maximal time

constant. The justification, interpretation and implication of

this picture is further discussed in the appendices.

2.2 Stationarity

The response functions are assumed to be translation in-

variant, i.e. G(t, t ′)=G(t − t ′). This means that the GMST

and the CO2 concentration respond the same way in a fu-

ture climate as they do now. For the GMST this is a rea-

sonable assumption as long as the global general circulation

pattern remains the same, i.e. as long as the climate system

does not encounter a major tipping point. Examples of such

tipping points are the glacial–interglacial transitions or the
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Dansgaard–Oeschger events during the last ice age (Bender,

2013). During the present interglacial period, the Holocene,

there was a similar tipping event about 8.2 kyr ago. These

events are believed to be associated with a sudden influx of

freshwater into the North Atlantic from the North American

Laurentide ice sheet and related changes in the overturning

ocean circulation. A number of potential tipping elements

have been identified associated with global warming in the

present Holocene climate (Lenton et al., 2013). Among these

are the complete disappearance of the Arctic sea ice, run-

away melting of the Greenland and West Antarctic ice sheets,

a radical change in the Atlantic thermohaline ocean circula-

tion and the El Niño–Southern Oscillation, shifts in the In-

dian and the western African monsoons, and dieback of the

Amazon and the boreal forests. Transitions associated with

tipping elements of these types can change the global tem-

perature response as well as the carbon-cycle response sig-

nificantly. Even in the absence of tipping points, the station-

arity assumption may be particularly wrong for the CO2 con-

centration, where, e.g., saturation effects in the ocean mixed

layer and the land biosphere may reduce fluxes in a future cli-

mate. It also neglects the coupling between sea surface tem-

perature and the CO2 flux, which will reduce the flux into

the ocean in a warmer climate. However, experiments with

carbon-cycle models subject to sudden CO2 injections into

the atmosphere indicate that the response in the CO2 concen-

tration can be described by a power-law response function.

This response is not stationary in the sense that it will be the

same for a new carbon release in a future climate, but it may

give an adequate description of the response to the present

global warming event. Further details are given in Sects. 2.3

and 2.4 and in the appendices.

2.3 The temperature response

The simplest physics-based model of the GMST response

is the zero-dimensional, linearised energy balance model

(EBM):

d

dt
1T =− 1

τT
1T + S

τT
F. (1)

Here, τT is the time constant for the relaxation of the tem-

perature anomaly and S is the climate sensitivity. The model

is often denoted the Budyko–Sellers model and was first pro-

posed by Budyko (1969) and Sellers (1969). A simple deriva-

tion can be found in Rypdal (2012), where it is also pointed

out that it is impossible to find a single time constant that de-

scribes adequately the response to forcing on all timescales.

The reduction to a linear model from the nonlinear EBM

with the full Stefan–Boltzmann radiation law is found in Ap-

pendix E. This model is not only used for reproducing the

global temperature to known (deterministic) forcing but can

also be formulated as a stochastic differential equation by

introducing a noise component to the forcing F (t), repre-

senting the stochastic energy flux from atmospheric weather

systems to the ocean and land surface (Rypdal and Rypdal,

2014). The solution to this equation can be written as a con-

volution integral

1T (t)=
t∫

0

GT (t − t ′)F (t ′) dt ′, (2)

with an exponential response function

GT (t)= (S/τT )exp(−t/τT ). (3)

The temperature response to a purely stochastic forcing, i.

e., F (t) is represented as Gaussian white noise and is an

Ornstein–Uhlenbeck stochastic process. In discrete time, this

corresponds to a first-order autoregressive (AR(1)) process.

If Eq. (1) provides an adequate description, with F (t) sepa-

rated into a deterministic and a white-noise component, then

the residual obtained after subtracting the deterministic re-

sponse from the observed annual GMST record should be

a realisation of an AR(1) process. The time constant and

the climate sensitivity can be determined by a maximum-

likelihood estimation, and in Rypdal and Rypdal (2014), they

were estimated to be τ ≈ 4.3 years and S≈ 0.32 km2 W−1.

However, the sensitivity obtained is lower than that obtained

from climate models, the fast response to volcanic eruptions

is higher than in the observed record, and the residual does

not conform well with an AR(1) process. Rypdal and Rypdal

(2014) demonstrated that the residual is better described by a

model for persistent, fractional Gaussian noise (fGn). Such a

noise can be produced by Eq. (2) if the exponential response

function is replaced by a power-law function

GT (t)= αT tβT /2−1, (4)

where the memory exponent βT is in the interval 0< βT < 1.

It can be shown that this process has a power spectral den-

sity of the form ∼ f−βT , where f is the frequency (Beran,

1994). Hence, βT = 0 corresponds to white noise, while in-

creasing βT signifies increasing degree of memory (or persis-

tence) in the process. In this response model it replaces the

time constant τT of the simple EBM. The parameter αT re-

places the climate sensitivity S. In Rypdal and Rypdal (2014)

the magnitude of the parameters αT and βT were estimated

from the instrumental GMST record, revealing rather strong

persistence (βT ≈ 0.75). Similar values were also found in

multiproxy data for the Northern Hemisphere, and in Øst-

vand et al. (2014), they were found in data from a number of

millennium-long AOGCM simulations. The long power-law

tail in the response function may be interpreted as an effect of

thermal exchange between the surface (e.g. the ocean mixed

layer) and other components of the climate system with a

higher heat capacity (e.g. the deep ocean). A two-layer ocean

energy balance model, for instance, yields a response func-

tion with two exponentials with different time constants. In

Geoffroy et al. (2013), such a two-layer model was compared
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Figure 1. Panel (a): light blue curve is the instrumental GMST for 1880–2010 AD. Black curve is the instantaneous response to the linearly

extrapolated forcing scenario shown in panel (b). Blue curve is the response according to the model Eq. (2) with βT = 0.35, and the red curve

is the response with βT = 0.75. Panel (b): the straight sloping line is a linearly projected forcing to 2200 AD with the same mean growth

rate as the RCP8.5 scenario in the period 2010–2100 AD. The horizontal line is the stabilisation of this forcing in 2030 AD, the horizontal

orange line in 2070 AD, and the red horizontal line in 2110 AD. Panel (c): GMST responses to the forcing scenarios in (b) with βT = 0.35.

Colours correspond to those in (b). Panel (d): same as in (c) but with βT = 0.75.

to transient simulations of AOGCMs following an abrupt in-

crease in CO2 forcing, and the two time constants estimated

from these data were typically 1–2 years and 1–2 centuries.

In Rypdal et al. (2015), it was shown that a power-law re-

sponse provides an even better fit to the tail of the tran-

sient AOGCM solutions, but the memory exponent is lower

(βT ≈ 0.35) than that found from the residuals in observa-

tions and AOGCM simulations with historical forcing. One

way of reconciling these conflicting results is to assume that

the forcing noise is not white but rather a persistent noise,

which makes a contribution to the βT observed in the resid-

uals. Details are shown in Appendix D. On the other hand, it

will be shown in Sect. 3 that the Coupled Model Intercompar-

ison Project Phase 5 (CMIP5) in the RCP8.5 CO2 concentra-

tion scenario yields results consistent with βT = 0.75. Since

this implies some uncertainty with respect to the correct

value of βT for the temperature response, I shall present pro-

jections for the values βT = 0.35 and βT = 0.75 in Sect. 3,

assuming that βT is likely within this interval.

The significance of the inertia, or long-range memory

(LRM), in the temperature response for GMST projections

is illustrated in Fig. 1. Panel a shows the estimated GMST

response to the forcing scenario consisting of the anthro-

pogenic forcing in the period 1880–2010 as presented in

Hansen et al. (2011), linearly projected to 2200 AD with the

same mean growth rate as the RCP8.5 scenario in the period

2010–2100 AD (Meinshausen et al., 2011); it is shown as the

blue curve in Fig. 1b. The blue and red curves in Fig. 1a are

the responses according to the power-law response models

with βT = 0.35, and βT = 0.75. The projection for an instant

response (τT → 0, leading to1T (t)→ S F (t)) is also shown

as the limit of zero inertia. Also shown as a light blue curve

is the instrumental GMST record as given by Brohan et al.

(2006). These projections have been obtained by computing

the integral
∫ t

0
αT (t − t ′)(βT /2−1)F (t ′) dt ′ with the specified

βT and then estimating αT by regressing to the observed

GMST record for the period 1880–2010 AD. The climate

sensitivity S for the instantaneous response has also been

found by regressing SF (t) to the instrumental data, and is

found to be S ≈ 0.48 km2 W−1, which corresponds to 1.8 K

for a doubling of CO2 concentration. The rising warming

projected for increasing βT is a manifestation of the thermal

inertia in parts of the climate system with high heat capacity

that exchange heat with the surface, and it makes the surface

temperature respond more slowly. The higher surface warm-

ing in the distant future due to this inertia is a manifestation

of the warming in the pipeline (Hansen et al., 2011; Rypdal,

2012).

The forcing path represented by the straight sloping line

shown in Fig. 1b is an idealised business as usual (BAU)

scenario. Beyond 2100 AD there is every reason to believe

that there will be a saturation of the rising trend, even in

the absence of active mitigation policies. In the RCP8.5 this

takes place gradually during the 22nd and the first half of the
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23rd century. This figure also shows some idealised scenarios

where the BAU is modified by mitigation action. One possi-

ble type of action is the sudden reduction in emission that

will stabilise the forcing at the level of the time of action.

In the real world such an action from one year to another

is not possible, but it may be considered an approximation

of a certain annual reduction over a period of 1 decade. For

instance, a 40 % emission reduction can be achieved by an

annual emission reduction of 5 % over 1 decade. In Fig. 1b

forcing scenarios for this type of mitigation action are illus-

trated assuming the onset of action in three different years:

2030, 2070, and 2110 AD. The year 2030 gives the world 15

years to prepare the action. Year 2070 leaves the problem to

those who are born today, i.e. to the next generation. Year

2110 leaves it to unborn generations.

The GMST projections for these scenarios are shown

in Fig. 1c, d for the lower and higher memory exponents

βT . Under the low-inertia assumption in the temperature

response (βT = 0.35), the unmitigated forcing scenario in

Fig. 1a yields approximately 2 ◦C of warming every 40 years

throughout the 21st century and an even higher rate of warm-

ing in the 22nd century. After stabilisation of the atmo-

spheric CO2 concentration, the temperature will continue to

rise about 1 ◦C by the year 2200 AD, independently of when

this stabilisation takes place. This 1 ◦C of additional warm-

ing is the warming in the pipeline. Under the high-inertia

assumption (βT = 0.75), the warming rate is approximately

30 % higher, and the warming in the pipeline is about a 100 %

higher. The high-inertia projection with mitigation action in

2110 AD is very close to the multimodel mean RCP8.5 pro-

jection (Meinshausen et al., 2011), suggesting some con-

sistency between this simple global temperature response

model and the models employed by the IPCC in the CMIP5

project.

Figure 1c, d suggest that the 2 ◦C target is unlikely to be

attained by rapid stabilisation of atmospheric CO2 concen-

tration if this action is started later than 2030 AD. If radical

action is postponed until the GMST has passed the 2 ◦C limit,

it is likely that the global temperature will exceed 3 ◦C by

2100 AD, and if action is postponed until the end of this cen-

tury our descendants may experience a world that is 5–8 ◦C
warmer than before industrialisation.

2.4 The atmospheric CO2 response

The dominant driver of climate change throughout the 20th

century and beyond is anthropogenic radiative forcing, and in

the 21st century, CO2 forcing is expected to be the main an-

thropogenic driver. However, while AOGCMs traditionally

have been driven by prescribing the atmospheric CO2 con-

centration, the policy-relevant quantity is the CO2 emission

rate. The main factor that determines future CO2 forcing in a

given emission scenario is the rate at which CO2 is washed

out of the atmosphere. This is where the carbon-cycle models

incorporated into the ESMs become important. The model

uncertainty is high, but the models suggest the existence of

a hierarchy of timescales, just as we have found in the tem-

perature response (Joos et al., 2011). This hierarchy is not

immediately apparent from the instrumental data records, but

there is some indirect evidence, as will be demonstrated be-

low. However, let us first consider a primitive model with

only one response timescale, analogous to the simple EBM

given by Eq. (1) for the surface temperature. In this model

we assume that the carbon flux out of the atmosphere is pro-

portional to the anomaly 1C of atmospheric carbon content

relative to the preindustrial concentration C0. This assump-

tion follows from a Taylor expansion to first order of the car-

bon flux I (1C)= (1/τc)1C+ . . . around the preindustrial

equilibrium I (C0)= 0. The primitive equation for this per-

turbation is then

d

dt
1C =− 1

τC

1C+R, (5)

where τC is the time constant for the relaxation of CO2 con-

centration to the preindustrial equilibrium. A first-order es-

timate of τC can be made from the estimates of the global

carbon budget (Le Quéré et al., 2014). The annual carbon

emission in the period 1960–2010 grew almost linearly from

4 Gt C yr−1 to 11 Gt C yr−1. We can solve Eq. (5) for this pe-

riod with R = [4+ (7/50)] t Gt C yr−1 in terms of τC and the

initial atmospheric carbon inventory anomaly, 1C1960. The

conversion factor from concentration in part per million to gi-

gatons of carbon in total carbon content is 2.12 (Le Quéré et

al., 2014), which yields 1C1960= (315–280)× 2.12≈ 74 Gt

C if we assume a CO2 concentration of 315 ppm in 1960 and

a preindustrial concentration of 280 ppm. The preindustrial

carbon content, corresponding to 280 ppm, was C0≈ 594 Gt

C. This solution reproduces very well the observed evolution

of the atmospheric CO2 content in this period if one chooses

τC = 33 years, as shown in Fig. 2a, and suggests that 1C(t)

is described by the response function

1GC(t)= (r/τC)exp[−t/τC]. (6)

A calibration factor r has been introduced here because this

response function is certainly too simplistic. For instance,

Taylor expansion to first order does not take into account the

saturation of carbon flux into the ocean, which will invoke a

much longer response time governed by biogeochemical pro-

cesses of the transport of carbon from the mixed layer into

the deep ocean. If we fix τc at value higher than 33 years, r

can be estimated by a simple, linear regression to the historic

CO2 concentration record. For τC = 33 years such regres-

sion yields of course r ≈ 1 but for τC ≥ 300 years, it yields

r ≈ 0.5. This means that the “effective emission rate” in

Eq. (5) is reduced to rR(t). The natural interpretation is that

approximately half of the emitted CO2 is almost instantly re-

moved from the atmosphere and the remainder has a lifetime

of centuries, maybe millennia, i.e. that the response occurs

on one fast and one slow timescale. Model studies, however,
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Figure 2. Panel (a): blue curve shows the atmospheric CO2 concentration as measured by the Mauna Loa observatory. The red curve is

the concentration computed from Eq. (5) with τC = 33 years, 1C1960 = 74 Gt C (corresponding to an anomaly of 315–280= 35 ppm), and

C0= 594 Gt C (corresponding to 280 ppm). Panel (b): black curve is the multimodel mean CO2 response to a pulse of emitted CO2 as given

in Joos et al. (2011). The red, dashed curve is a least-square fit of a function of the form αCt
βC/2−1 with the estimated βC ≈ 1.6. Panel (c):

the residual Mauna Loa signal after subtracting the quadratic polynomial and seasonal trends. Panel (d): the power spectral density of the

residual in (c) estimated by the periodogram presented in a log–log plot. The black, dashed line has negative slope βC = 0.85, and the red,

dashed line has βC = 1.6.

may suggest a hierarchy of timescales for the CO2 concen-

tration response. The large model comparison study of Joos

et al. (2011) reveals a non-exponential tail in the response to

a pulse of emitted CO2. Figure 2b shows that the multimodel

mean is very well approximated by a power law of the form

GC(t)= αCt
βC/2−1, (7)

with βC ≈ 1.6. This power-law response suggests the sim-

ple, linear response model

1C(t)=
t∫

0

GC(t − t ′)R(t ′) dt ′, (8)

where the emission rate R(t) may contain a stochastic con-

tribution, giving rise to a stochastic component to 1C. This

stochastic component of1C is shown in Fig. 2c, as the resid-

ual obtained after subtracting a quadratic, polynomial fit to

the Mauna Loa record (the anthropogenic trend) and the sea-

sonal variation. The power spectral density of this residual

is shown in Fig. 2c and indicates that the spectrum is con-

sistent with a power law with a spectral index βC ≈ 1.6 on

timescales longer than a few years. The short duration of the

record precludes accurate estimates of βC from the spectrum,

but it lends some support to the power-law response model

with a memory exponent in the range 1< βC < 2.

2.5 The constitutive relation

A simple relation between CO2 concentration anomaly and

its radiative forcing is (Myhre et al., 1998)

F = 5.35 ln(1+1C/C0) Wm−2. (9)

Given an emission scenario R(t), Eq. (8) can be used to com-

pute 1C(t), and from Eq. (9) one obtains F (t). Finally, this

forcing is applied in Eq. (2) to compute 1T (t).

3 Projections

3.1 Emission scenarios

Figure 3 shows six different CO2 emission scenarios. The

baseline (unmitigated) scenario is the blue curve, which is an

exponential fitted with the actual emission rates in 1960 and

in 2010 AD. Interpreted as CO2 equivalents of all well-mixed

greenhouse gases, it is close to the RCP8.5 emission scenario

up until 2070 but is higher after this time, since the RCP8.5

emission rates saturate between 2070 and 2100. At 2030,

2070, and 2110 AD, two types of mitigation action are con-

sidered. One where emissions are reduced by 1 % per year

(50 % reduction over 70 years) and one with 5 % per year

(50 % reduction over 13.5 years). The former is considered

politically and economically feasible (Stern, 2007); the lat-

ter is at the limit of what is possible without total disruption
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Figure 3. Blue curve is carbon emission rateR(t) scenario obtained

by fitting the exponential S0 exp(gt) to the emission rate 4 Gt C yr−1

in 1960 and 11 Gt C yr−1 in 2010 AD. The solid, brown, orange,

and red curves are the subsequent R(t) after initiation of a 1 % re-

duction in the emission rate per year. The dashed curves are the

corresponding rates with a 5 % reduction per year.

of the world economy (Elzen et al., 2007). The scenarios are

similar to those considered by Stocker (2013), although they

are prescribed from 1880 AD, not from the present day. This

is important for the response models employed here, since

inertia (long-memory) effects from the historical period of

global emissions and warming influence the future projec-

tions.

3.2 Projections of CO2 concentration

Atmospheric CO2 concentrations 1C(t) for the emission

scenarios described in Fig. 3 are shown in Fig. 4. They

are computed from Eq. (8), using the emission scenarios of

Fig. 3 and subsequently estimating r by regressing to the

historic 1C(t) record. Figure 4a shows the corresponding

concentration scenarios estimated from the exponential re-

sponse kernel with τc = 33 years. Few climate scientists be-

lieve that atmospheric, anthropogenic CO2 is eliminated as

fast as this, but it is interesting to examine, since this is still

claimed by some global warming skeptics (Solomon, 2008).

In Fig. 4b and d the same scenarios are shown, assuming

τc = 300 years and τc =∞, respectively. Here r ≈ 0.5, i.e.

50 % of the emitted CO2, is immediately removed from the

atmosphere and the rest decays exponentially with e-folding

time τC. Figure 4c employs the power-law response kernel

with βC = 1.6. Figure 4b and c are almost identical, indicat-

ing that the immediate removal of half of the emitted CO2,

followed by an exponential decay with τC = 300 years, has

almost the same effect as a long-memory (power-law) re-

sponse with βC = 1.6.

The unmitigated concentration scenarios (blue curves) are

almost the same in all models and are very similar to the

RCP8.5 scenario up to 2100 AD. This is because the calibra-

tion factor r adjusts the scenario to fit the historic record.

However, the evolution after mitigation action has started

varies considerably between the models. The overly opti-

mistic model in Fig. 4a, where τC = 33 years, predicts that

the concentration starts declining a few decades after emis-

sion reduction has started, whereas concentration continues

to rise beyond 2200 AD in the 1 % reduction scenarios. The

scenarios corresponding to the red solid curves in Fig. 4b and

c correspond closely to the full RCP8.5 scenario.

3.3 Projections of the GMST

The forcing F (t) for the various concentration scenarios is

computed from Eq. (9) and inserted into Eq. (2) to obtain the

temperature evolution. Figure 5 shows results for the concen-

tration scenarios obtained from the exponential CO2 concen-

tration model with τC = 33 years and the power-law model

with βC = 1.6, considering these to represent low- and high-

inertia ends of the CO2 response. For each of these cases,

low- and high-inertia ends (βT = 0.35 and βT = 0.75) of the

GMST response are presented in the figure.

The projections for the high-inertia combination βC = 1.6,

βT = 0.75 shown in Fig. 5d is the one that is most consis-

tent with multimodel CMIP5 projections in the RCP8.5 sce-

nario. As mentioned in Sect. 3.2, the red curve in Fig. 4c

is close to the RCP8.5 CO2 concentration pathway, and the

corresponding GMST response shown by the red curve in

Fig. 5d is close to the multimodel mean GMST response

given in Fig. 6 of Meinshausen et al. (2011). The high-end

inertia (βT = 0.75) for GMST response is also more con-

sistent with the analysis of instrumental records and multi-

proxy reconstructions of GMST (Rypdal et al., 2015) and

millennium-long simulations of intermediate and high com-

plexity (Østvand et al., 2014). The high-end inertia for the

CO2 response is also more consistent with complex carbon-

cycle models, and the long-memory nature of the residual

Mauna Loa record, as shown in Fig. 2d.

3.4 Policy implications

The range of the projections corresponding to given emis-

sion scenarios presented in Fig. 5a–d is much wider than the

uncertainty of scientific knowledge reflected in the climate

science literature. However, it may give an indication of the

doubts which are quite common outside the climate science

community. Among these are the belief that CO2 is removed

from the atmosphere within decades (Solomon, 2008), and

that the GMST relaxes to a new radiative equilibrium within

a few years after a sudden perturbation of radiative forc-

ing (Schwartz, 2007). Figure 5a presents projections which

follow from these perceptions. Interestingly, the unmitigated

projections up to 2110 AD (blue curves) are almost identi-

cal in all panels in Fig. 5. Hence, the inertia in the responses

has little influence on the unmitigated response to the BAU

emission scenario, and uncertainty about the magnitude of

the inertia parameters does not contribute much to uncer-

tainty in the response to this scenario. Uncertainty in these

parameters mainly plays a role for the projected effect of the

emission reduction after action has been taken, as can be ob-
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Figure 4. Projections of CO2 concentration under the emission scenarios in Fig. 3 using the modelling explained in Sect. 2. The colours

correspond to those in Fig. 3. Panel (a): τC = 33 years; panel (b): τC = 300 years; panel (c): βC = 1.6; panel (d): τC =∞.
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Figure 5. The evolution of the GMST for the CO2 concentration scenarios shown in Fig. 4a and c. Panel (a): τC = 33 years and βT = 0.35;

panel (b): βC = 1.6 and βT = 0.35; panel (c): τC = 33 years and βT = 0.75; panel (d): βC = 1.6 and βT = 0.75.

served by comparing Fig. 5a and d. The effect of emission

reduction is considerably greater under the optimistic low-

inertia assumptions, but in all circumstances, delayed miti-

gation action increases the GMST in 2200 AD by 1–2 ◦C for

every 40 years of delay.

One implication from this observation is that the global

warming optimists have little reason for their optimism, since

even the projections in Fig. 5a imply that the 2 ◦C climate tar-

get will not be attained unless a radical and consistent emis-

sion reduction regime is initiated within a few decades from

now. If this mitigation regime is delayed and initiated one

generation later, even the optimistic projections indicate that

the temperature will peak close to 3 ◦C during the next cen-

tury, and postponing reduction for yet another generation will

let the temperature rise beyond 4 ◦C. If emission reductions

are raised to the absolute threshold of 5 % per year, the peak
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temperature will not change much, but the temperature will

come down faster after action has been initiated.

Under the more pessimistic, and presumably more realis-

tic, circumstances presented in Fig. 5b and d, the 2 ◦C tar-

get is attainable only if extremely radical reductions (5 %

per year) are initiated within the coming 2 decades. Since

such a strong emission reduction regime probably is polit-

ically infeasible, this target most likely is unattainable, and

the globe will warm 3–7 ◦C before the end of next century.

Where the GMST will end within this range will essentially

depend on the time it takes before radical global emission

reductions is implemented. Hence, the slow socio-economic

response may turn out to be the most detrimental of all inertia

effects which threaten to aggravate global warming.

4 Conclusions

It has been demonstrated that an extremely simple model for

the global temperature response and the elimination of ex-

cess CO2 from the atmosphere is all that is needed to make

reasonable projections of global temperature under idealised

emission scenarios. The model contains only four parame-

ters, characterising sensitivities and inertia in the tempera-

ture and CO2 responses, respectively. All parameters can be

estimated from observation data, although some constrain-

ing from high-complexity ESMs is useful. The model can be

used as a pedagogical tool for students and scientists with

some knowledge of elementary calculus, and projections can

easily be produced under emissions scenarios different from

those presented here.

The simplicity of the model may be perceived as an in-

sult to “real” climate modellers, but as long as one deals only

with global quantities, simplicity does not necessarily mean

lack of accuracy. Global temperature has been found to re-

spond quite linearly to forcing in general circulation models

(Meehl et al., 2004), and as long as the climate system is far

from a major tipping point, this linearity may also pertain to

the response of atmospheric CO2 content to emissions. Un-

der linearity and stationarity assumptions these two quanti-

ties are fully described in terms of their respective response

functions, whose form can be postulated from basic physical

principles and parameters estimated from observation.

For the policy makers of the world it is crucial to know

to what extent an economically and politically painful miti-

gation scenario can be expected to be effective in constrain-

ing global warming. The analysis presented here confirms

the main conclusion drawn by Stocker (2013); the greatest

threat to the stability of the global climate is the inability of

humankind to respond in time.
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Appendix A: Response to step forcing for one-box

model

The linearised one-box model has the form

C1

dT1

dt
=− T1

Seq

+F. (A1)

Here T1 is the perturbation of the mixed-layer temperature

from an imagined equilibrium and F is the forcing relative

to that equilibrium. C1 is the heat capacity per square me-

tre of the mixed layer, and the term T1/Seq is the linearised

expression for the intensity of the outgoing long-wave ra-

diation (OLR). It is determined by the (linearised) Stefan–

Boltzmann (SB) law and the effective emissivity of the at-

mosphere, which also contains the effects of fast feedbacks.

The nonlinear version and the linearisation procedure is de-

scribed in Appendix E. If a new equilibrium is attained with

the forcing F , we have

Seq = T1

F
,

which makes it natural to identify Seq as the equilibrium cli-

mate sensitivity. It is determined from the SB constant and

the effective atmospheric emissivity, i.e. it is determined en-

tirely by the atmosphere. The response function (Green’s

function: the response to F = δ(t)) for the one-box model

is G(t)= 1
C1
e−t/τ1 H (t), where τ1 = C1Seq and H (t) is the

Heaviside unit step function. The response to a step-function

forcing F (t)=H (t) is

T1(t)=
t∫

−∞
G(t − t ′) dt ′ = Seq(1− e−t/τ1 ). (A2)

Appendix B: Response to step forcing for two-box

model

The recent work by Geoffroy et al. (2013) shows that a two-

exponential response can be fitted very well to a number

of 150-year AOGCM runs with step-function forcing. This

raises the question of whether the power-law LRM response

representation is really only an inaccurate expression of a re-

sponse with two exponential timescales or vice versa. There

is also an issue of whether the AOGCMs really capture the

true scaling properties of the observed response. The two-box

model couples the mixed layer to the deep ocean temperature

T2 through a simple heat conduction term

C1

dT1

dt
=− 1

Seq

T1− κ(T1− T2)+F (B1)

C2

dT2

dt
= κ(T1− T2),

where C2 is the heat capacity of the deep ocean and κ is heat

conductivity. In the limitC2� C1, Green’s function for T1(t)

correct to lowest order in the small parameter C1/C2 is very

simple and transparent:

G(t)=
(
Str0

τtr

e−t/τtr + Seq− Str

τeq

e−t/τeq

)
H (t). (B2)

The response to a step-function forcing F =H (t) then be-

comes

T1(t)= Str(1− e−t/τtr )+ (Seq− Str)(1− e−t/τeq ), (B3)

where we have introduced some new parameters,

Str = Seq

1+ κSeq

, τtr = C1Str, τeq = C2Seq

1− Str/Seq

. (B4)

These parameters replace the heat capacities C1,2 and the

heat coupling constant κ , whose physical meaning is easy

to grasp but hard to measure directly. The meaning of the

new parameters is apparent if we consider the response to a

step-function forcing. Since C1/C2� 1, we have τtr� τeq,

and for t � τeq the response is completely dominated by the

first term in Eq. (B3) and hence relaxes exponentially with

the transient time constant τtr to the new quasi-equilibrium

Str, which is referred to as the transient climate sensitivity.

However, when t approaches τeq, the second term comes into

play, and there is a new delayed response with time constant

τeq giving relaxation to the full radiative equilibrium Seq.

From comparing the terms −T1/Seq and −κ(T1− T2) in

Eq. (B1), we observe that κSeq measures the ratio between

the heat flux into the deep ocean and the OLR at the early

stage of the response, i.e. when T2 is still close to 0. From

Eq. (B4) it follows that the part of the sensitivity caused by

the slow response from interaction with the deep ocean is

Seq− Str = (κSeq)Str.

Hence, it appears that κSeq is an important parameter. If

κSeq� 1, the inclusion of the deep ocean has little effect on

the relaxation to equilibrium. If κSeq ' 1 or larger, the slow

response leads to a significant rise in the temperature after the

transient equilibrium has been attained. The fast and the slow

time constants are always well separated if C1� C2 since

τtr

τeq

= C1

C2

κSeq

(1+ kSeq)2
≤ C1

4C2

.
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Appendix C: Response to step forcing in the LRM

model and GCMs

The LRM-scaling response function GT (t)= αT tβT /2−1

yields a response T ∼ tβT /2 to a step in the forcing at time

t = 0, while a linearly growing forcing yields a response

T ∼ tβT /2+1. Since the forcing is logarithmic in the CO2

concentration, the latter corresponds to exponentially grow-

ing concentration. Climate model runs with linearly growing

forcing are of course more realistic than step-function runs,

but both have been conducted as part of the CMIP5 project.

Examples are 150-year-long simulations of the GISS-E2-H

model with a sudden quadrupling of the CO2 concentration

(Fig. C1a) and a 1 % per year increase in the CO2 concentra-

tion (Fig. C1b). A fit of the LRM-scaling response T ∼ tβT /2
to the GISS-model result in Fig. C1a yields βT ≈ 0.32, and

the solution is shown as the red curve in the figure. The so-

lution of the form T ∼ tβT /2+1 is shown as the red curve

in Fig. C1b. The fit to the tail of the step-function response

looks good in the 150-year duration of the simulation, but the

divergence of the solution as t→∞ indicates that the power-

law tail with βT > 0 is unrealistic for sufficiently large times.

There exist few AOGCM simulations that investigate the re-

sponse to such idealised forcing on a millennium timescale.

In Hansen et al. (2011) some figures with results of such

runs are given. Figure C1c is an adaptation of Fig. 3 in

Hansen et al. (2011), which shows a 2000-year-long run of

the GISS ModelE-R, and Fig. C1d shows a plot of the func-

tion ctβT /2+1 with β = 0.32. It demonstrates that at least this

particular AOGCM exhibits the power-law tail in the temper-

ature response on timescales of up to 2 millennia.

Note that the βT ≈ 0.32 obtained for the LRM model

on long timescales is smaller than the βT ≈ 0.75 estimated

from the spectra of the residual of the instrumental data after

the response to the deterministic forcing has been subtracted

(Rypdal and Rypdal, 2014). If we produce such residuals by

subtracting the red curves from the GISS-model curves in

Fig. C1a, b, the result looks like fractional Gaussian noise

(fGn) with a spectral exponent β ≈ 0.65. As mentioned in

Sect. 2.1 an fGn xβ (t) characterised by the spectral exponent

β is produced by the convolution integral Eq. (2) in the main

paper if the response kernel is G(t)∼ tβ/2−1 and the forcing

function F (t) is white Gaussian noise x0(t) (white noise is an

fGn with β = 0). In other words, we have

xβ (t)=
∞∫
−∞

t ′β/2−1
H (t − t ′)x0(t ′) dt ′, (C1)

where H (t) is the unit step function. By using the convo-

lution theorem for the Fourier transform, it is easily shown

(Rypdal et al., 2015) that if F (t) is an fGn with spectral ex-

ponent βF and the response function has exponent βT , then

the convolution will produce an fGn with β = βT +βF :

xβ (t)=
∞∫
−∞

t ′βT /2−1
H (t − t ′)xβF (t ′) dt ′. (C2)

In Rypdal et al. (2015) it was suggested that the discrepancy

between the spectral exponent β of residuals in observed and

simulated GMST records could be explained by assuming

some long-range memory (βF > 0) in the stochastic forcing.

It was pointed out there that this LRM could even be present

in the CO2 forcing, since some recent studies indicate strong

spatiotemporal heterogeneity in the atmospheric CO2 con-

centration, which might give rise to a fluctuating global com-

ponent of the global CO2 forcing with long-memory proper-

ties.
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4 Climate response function

Climate response to human and natural forcings can be sim-
ulated with complex global climate models, and, using such
models, it has been shown that warming of the ocean in re-
cent decades can be reproduced well (Barnett et al., 2005;
Hansen et al., 2005; Pierce et al., 2006). Here we seek a sim-
ple general framework to examine and compare models and
the real world in terms of fundamental quantities that eluci-
date the significance of the planet’s energy imbalance.
Global surface temperature does not respond quickly to a

climate forcing, the response being slowed by the thermal
inertia of the climate system. The ocean provides most of
the heat storage capacity, because approximately its upper
100m is rapidly mixed by wind stress and convection (mix-
ing is deepest in winter at high latitudes, where mixing occa-
sionally extends into the deep ocean). Thermal inertia of the
ocean mixed layer, by itself, would lead to a surface temper-
ature response time of about a decade, but exchange of water
between the mixed layer and deeper ocean increases the sur-
face temperature response time by an amount that depends
on the rate of mixing and climate sensitivity (Hansen et al.,
1985).
The lag of the climate response can be characterized by

a climate response function, which is defined as the fraction
of the fast-feedback equilibrium response to a climate forc-
ing. This response function is obtained from the temporal re-
sponse of surface temperature to an instantaneously applied
forcing, for example a doubling of atmospheric CO2. The
response function for GISS modelE-R, i.e., the GISS atmo-
spheric model (Schmidt et al., 2006) coupled to the Russell
ocean model (Russell et al., 1995), is shown in Fig. 3. The
Russell ocean model conserves water and salt mass, has a
free surface with divergent flow, uses linear upstream scheme
for advection, allows flow in and out of 12 subresolution
straits, and is used here with 13 layers at 4� ⇥ 5� resolution.
The coupled modelE-R has been characterized in detail via
its response to many forcings (Hansen et al., 2005b, 2007).
About 40 percent of the equilibrium response is obtained

within five years. This quick response is due to the small
effective inertia of continents, but warming over continents
is limited by exchange of continental and marine air masses.
Only 60 percent of the equilibrium response is achieved in a
century. Nearly full response requires a millennium.
Below we argue that the real world response function is

faster than that of modelE-R. We also suggest that most
global climate models are similarly too sluggish in their re-
sponse to a climate forcing and that this lethargy has impor-
tant implications for predicted climate change. It would be
useful if response functions as in Fig. 3 were computed for all
climate models to aid climate analysis and intercomparisons.
Also, as shown in the next section, the response function can
be used for a large range of climate studies.
Held et al. (2010) show global temperature change ob-

tained in 100-yr simulations after instant CO2 doubling for

 
Fig. 1.  Climate forcings employed in this paper.  Forcings through 2003 (vertical line) are the same as 
used by Hansen et al. (2007), except the tropospheric aerosol forcing after 1990 is approximated as -0.5 
times the GHG forcing.  Aerosol forcing includes all aerosol effects, including indirect effects on clouds 
and snow albedo.  GHGs include O3 and stratospheric H2O, in addition to well-mixed GHGs.These data 
are available at http://www.columbia.edu/~mhs119/EnergyImbalance/Imbalance.Fig01.txt 
 

 

1 
 

 

Fig. 3. Climate response function, R(t), i.e., the fraction of equi-
librium surface temperature response for GISS climate model-ER,
based on the 2000 yr control run E3 (Hansen et al., 2007). Forcing
was instant CO2 doubling with fixed ice sheets, vegetation distribu-
tion, and other long-lived GHGs.

the Geophysical Fluid Dynamics Laboratory (GFDL) cli-
mate model, a model with equilibrium sensitivity 3.4 �C for
doubled CO2. Held et al. (2010) and Winton et al. (2010)
draw attention to and analyze two distinct time scales in the
climate response, a quick partial climate response with char-
acteristic time about 5 yr and a slow warming on century time
scales, which they term the “recalcitrant” component of the
climate response because it responds so sluggishly to change
of the climate forcing. This decomposition provides useful
insights that we will return to in our later discussion. The
GISS modelE-R yields a similar response, as is more appar-
ent with the higher temporal resolution of Fig. 4a.
Climate response time depends on climate sensitivity as

well as on ocean mixing. The reason is that climate feed-
backs come into play in response to temperature change, not
in response to climate forcing. On a planet with no ocean
or only a mixed layer ocean, the climate response time is
proportional to climate sensitivity. However, with a realistic
ocean that has exchange between the mixed layer and deeper
ocean, the longer response time with higher sensitivity also
allows more of the deep ocean heat capacity to come into
play.
Hansen et al. (1985) show analytically, with ocean mix-

ing approximated as a diffusive process, that the response
time increases as the square of climate sensitivity. Thus a cli-
mate model or climate system with sensitivity 4 �C for dou-
bled CO2 requires four times longer to approach equilibrium
compared with a system having climate sensitivity 2 �C for
doubled CO2.
The response function in Fig. 3 is derived from a climate

model with sensitivity 3 �C for doubled CO2. When the re-
sponse function of other models is evaluated, it would be
most useful if the equilibrium climate sensitivity were also
specified. Note that it is not necessary to run a climate model

Atmos. Chem. Phys., 11, 13421–13449, 2011 www.atmos-chem-phys.net/11/13421/2011/
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Figure C1. Panel (a): LRM response model fit c1t
βT /2 (red) to the GISS-E2-H model response to an abrupt quadrupling of atmospheric

CO2 (grey). The fit yields βT = 0.32. Panel (b): the LRM-response model solution c2t
βT /2+1 with βT = 0.32 (red) and the GISS-E2-H

model response to a 1 % per year increase in atmospheric CO2 concentration. Panel (c): the 2000-year response to a doubling of CO2 in

GISS ModelE-R as taken from Fig. 3 in Hansen et al. (2011). Panel (d): response to the same forcing in the LRM model with βT = 0.32.
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Appendix D: Two-box vs. LRM fitting to GCM results

Geoffroy et al. (2013) have considered 16 runs of different

CMIP5 models with step-function forcing, and fitted the re-

sponse in the two-box model to the CMIP5-model responses.

There are four fitting parameters, and the fits are generally

good. There is, however, a wide scatter in the fitting param-

eters between the different models, which may be an indica-

tion of overfitting. In Fig. D1 the surface temperature solu-

tion to the two-box model,

T1(t)= [Str(1− exp(−t/τtr))

+ (Seq− Str)(1− exp(−t/τeq))]F4×CO2
, (D1)

and to the LRM model,

T1(t)= ctβT /2F4×CO2
, (D2)

have been fitted to simulation results for the GMST of cli-

mate models with step-forcing, F (t)= F4×CO2
H (t). Here

F4×CO2
≈ 8.61 Wm−2 is the forcing associated with a qua-

drupling of the atmospheric CO2 concentration. The fitting

parameters obtained are given in Table 1.

The LRM model in general gives a poorer fit on the short

timescales. This is not surprising, since the LRM response

ctβT /2 has an infinite derivative at t = 0. However, a much

better approximation is obtained if we fit the LRM model

only in the interval (0,100) months, but then βT is raised to

approximately 0.75. If we implement a four-parameter model

with one power law (βT ≈ 0.75) up to 100 months and an-

other (βT ≈ 0.35) for t > 100 months, we obtain fits com-

parable to the two-exponential model. There is a wide scatter

in the model parameters for the two-box model. Note partic-

ularly the huge values for τeq and Seq for the CCSM4 model.

The long timescale tail is not captured by a reasonable expo-

nential but is well approximated by a reasonable power law.

On the other hand, the scatter in the LRM-model parameters

is small. All this indicates that the two-box model may suffer

from overfitting in some cases.

When projections are limited to 2200 CE, there is no prac-

tical difference between using a power-law response kernel

(the LRM model) and the two-exponential kernel (the two-

box model). This is illustrated in Fig. D2, where we compute

the response for the exponential CO2 concentration model

with τC = 33 years and the two-box model parameters cor-

responding to the GISS-E2-H model and the CNRM_CM5

models. The parameters for the two models differ signifi-

cantly, but the projections are almost identical. Moreover,

they are very similar to the projections in Fig. 5a, where

the temperature response is produced by the LRM model

with τC = 33 years and βT = 0.35. This demonstrates that

the mathematical divergence of the solution Eq. (D2) for a

step-function forcing has little impact on the projection up

to 2200 CE for the forcing scenarios considered here. The

advantage of the power-law kernel is that it provides a more

parsimonious description (fewer fitting parameters), which

provides a more precise parameter estimation.
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Table D1. Parameters estimated by fitting Eqs. (D1) and (D2) to the climate model responses to an abrupt quadrupling of atmospheric CO2

shown in Fig. D1. The table shows the parameters obtained by the Mathematica routine FindFit.

Model τ1 (Months) τ2 (Months) Str (km2 W−1) Seq (km2 W−1) c βT

GISS-E2-H 26 663 0.29 0.46 0.14 0.32

BNU-ESM 46 729 0.46 0.69 0.21 0.33

CCSM4 49 4.1× 1010 0.33 3.9× 106 0.10 0.40

CNRM_CM5 38 390 0.37 0.58 0.20 0.31

MPI-ESM-LR 34 1061 0.46 0.75 0.20 0.33
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Figure D1. Blue curves: fit of the two-exponential response to the climate model responses to an abrupt quadrupling of atmospheric CO2

concentration. Red curves: fit of the LRM-scaling response. The expressions fitted are found in the caption of Table 1 and the coefficients

estimated are shown in this table.
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Figure D2. The evolution of the GMST according to the two-box model for the CO2 concentration scenarios shown in Fig. 4a and c. Panel

(a): τC = 33 years and the two-box parameters for the GISS-E2-H given in Table 1. Panel (b): τC = 33 years and the two-box parameters for

the CNRM_CM5 model given in Table 1.
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Appendix E: Divergences, causality and initial

conditions

If G(t) is a power law, the integral over prehistory t ∈
(−∞,0) may lead to paradoxes, such as divergences of the

integral. The solution to the paradox is to interpret the power

law as an approximation, for instance to a superposition of

exponential response kernels. For a white-noise forcing this

corresponds to an aggregation of Ornstein–Uhlenbeck (OU)

processes, which are known to have the potential to produce

a process that is a very good approximation to a fractional

Gaussian noise (fGn) up to the timescale corresponding to

the OU process with the greatest correlation time (Granger,

1980).

The scaling properties on scales of decades and longer

arise from the heat transport within the oceans. This transport

exhibits a maximum response time, which will provide an

upper (exponential) cut-off of the power-law response func-

tion, but the characteristic time of this cut-off may be cen-

turies or millennia. Fraedrich and Blender (2003) state in

their abstract: “Scaling up to decades is demonstrated in ob-

servations and coupled atmosphere–ocean models with com-

plex and mixed-layer oceans. Only with the complex ocean

model the simulated power laws extend up to centuries.”

If we do not treat the power law as an approximation, we

have to deal with the divergences of the integral

1T (t)=
t∫

−∞
G(t − t ′)F (t ′) dt ′, (E1)

where G(s)= sβT /2−1. If we consider the unit step-function

forcing F (t)=H (t) and βT 6= 0, the integral is

1T (t)= lim
ε→0+

t∫
ε

(t − t ′)βT /2−1 dt ′ = lim
ε→0+

t∫
ε

sβT /2−1 s

= lim
ε→0+

2

βT

(
tβT /2− εβT /2

)
. (E2)

Clearly 1T (t) diverges as t→∞ if βT > 0, but it also

diverges if βT < 0 (as ε→ 0+). For βT = 0 there is a loga-

rithmic divergence in both limits.

For physically meaningful results the βT > 0 case requires

some sort of cut-off (e.g. an exponential tail) for sufficiently

large t , and the βT < 0 case requires an elimination of the

strong singularity ofG(s) at s = 0. As shown in Appendix D,

AOGCMs in the CMIP5 ensemble with step-function forc-

ing indicate a power-law response for large s at least up to

150 years (and the GISS-E2-R model up to 2000 years) with

βT ≈ 0.35, so βT > 0 is the case of interest for the global

temperature response. The AOGCMs are also well approxi-

mated by an exponential response in the limit s→ 0 (for s

up to a few years), so an exponential truncation in this high-

frequency limit is also appropriate.

The truncation of the power-law kernels is a physical, and

not a technical mathematical issue. It is an approximation to

a hierarchy of exponential responses. With this interpretation

the divergences evaporate. Below is a more detailed outline

of this philosophy in an energy balance context. Let us take

as a starting point the simple zero-dimensional EBM before

linearisation of the Stefan–Boltzmann law:

C
dT

dt
=−εσST 4+ I (t), (E3)

where T is surface temperature in Kelvin, C is an effec-

tive heat capacity per area of the earth’s surface, σS is the

Stefan–Boltzmann constant, ε is an effective emissivity of

the atmosphere, and I (t) is the incoming radiative flux den-

sity at the top of the atmosphere. Let I0 = I (0) be the ini-

tial incoming flux, F (t)= I (t)− I0 is the radiative forcing,

Teq = (I0/εσS)1/4 is the equilibrium temperature at t = 0,

1T (t)= T (t)− Teq is the temperature anomaly measured

relative to the initial equilibrium temperature, and 1T0 =
1T (0) is this anomaly at t = 0. Note that F here is the per-

turbation of the radiative flux with respect to the initial flux

I0 and not with respect to the flux εσST
4

0 that would be in

equilibrium with the initial temperature T0. The linearised

EBM for the temperature change relative to the temperature

Teq (the one-box model) is

d1T

dt
=−ν1T +F(t), 1T (0)=1T0, (E4)

where ν = 4εσST
3

eq/C, F(t)= F (t)/C. By definition

F(0)= [I (0)− I0]/C = 0. This is Eq. (1) and Eq. (A1)

with slightly different notation. The solution to the initial

value problem (i.v.p.) Eq. (E4), with the initial condition

1T (0)=1T0, takes the form

1Ti.v.p. =
t∫

0

G(t − t ′)F(t ′) dt ′+1T0e
−νt , (E5)

where G(s)= exp(−νs). The generalisation to a linear,

causal response model, where G(s) is not necessarily ex-

ponential, involves extending the integration domain in

Eq. (E5) to the interval (−∞, t):

1Tr.m.(t)=
t∫

−∞
G(t − t ′)F(t ′) dt ′. (E6)

From the initial condition 1T (0)r.m. =1T0 Eq. (E6) yields

1T0 =
0∫

−∞
G(−t ′)F(t ′) dt ′. (E7)

For exponential response G(s)= exp(−νs), it is easy to ver-

ify that 1Ti.v.p.(t)=1Tr.m.(t), and Eq. (E7) yields the fol-

lowing relation between the initial temperature anomaly and
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the forcing F(t) for t ∈ (t,0):

1T0 =
0∫

−∞
eνt
′
F(t ′) dt ′. (E8)

For the exponential response there is no “divergence issue”

in Eq. (E6). Neither is there such an issue for the two-

exponential solution to the two-box model (Geoffroy et al.,

2013). An “N -box model” exhibits a response function for

the temperature in each box which is a superposition of expo-

nentials; G(s)=∑N
i=1ai exp(−νis). For the surface (mixed

layer) box the temperature anomaly takes the form

1Tr.m.(t)=
N∑
i=1

aie
−νi t

t∫
−∞

eνi t
′
F(t ′) dt ′. (E9)

On the other hand, the N -box initial value problem has a

solution of the form

1Ti.v.p.(t)=
N∑
i=1

aie
−νi t

t∫
0

eνi t
′
F(t ′) dt ′+

N∑
i=1

bie
−νi t , (E10)

where the coefficient bi is linearly related to the initial tem-

peratures of each box: bi =∑N
j=1MijT0j . The condition

T̃i.v.p.(t)= T̃r.m.(t) now yields the relations between the ini-

tial temperatures and the prehistory of the forcing:

N∑
j=1

Mij1T0j = ai
0∫

−∞
eνi t

′
F(t ′) dt ′ for i = 1, . . .,N. (E11)

With a white-noise forcing F(t), Eq. (E4) is the Itô stochas-

tic differential equation (in physics often called the Langevin

equation). The solution is the Ornstein–Uhlenbeck (OU)

stochastic process, which in discrete time corresponds to the

first-order autoregressive (AR(1)) process. The power spec-

tral density of this process is essentially a Lorentzian func-

tion, which means that the high-frequency (f � ν) part of

the spectrum has the form∼ f−2 and the low-frequency part

∼ f 0. This means that if the climate response were well

described by a one-box EBM we could use a power-law

response model with βT ≈ 2 on timescales much shorter

than the correlation time τc = ν−1. On these timescales the

stochastic process exhibits the characteristics of a Brown-

ian motion (Wiener process), which is a self-similar process

with spectral index β = 2. This process is non-stationary and

hence suffers from the divergences that we are worried about.

However, even though the Brownian motion diverges, the OU

process does not because of the flattening of the spectrum for

f � ν.

Both observation data and AOGCMs indicate that the one-

box EBM is inadequate, but the considerations above are

equally valid for an N -box model, for which the white-noise

forcing gives rise to an aggregation of OU processes with

different νi . Such an aggregation is known to be able to

produce a process with an approximate power-law spectrum

with 0< β < 2 on timescales τ < ν−1
min (Granger, 1980).

Lovejoy et al. (2013) specifically argue that volcanic forc-

ing may have a scaling exponent βF ≈ 0.4, and hence the

convergence criterion β = βT +βf < 1 then requires βT <

0.6. One remark on this is that the above discussion shows

that the β < 1 criterion is not necessary on timescales shorter

than τ < ν−1
min. However, observation indicates that β < 1, so

this does not invalidate the argument of Lovejoy et al. (2013).

More important is that in recent papers the response to vol-

canic forcing has been subtracted from both instrumental and

multiproxy reconstruction data (Rypdal and Rypdal, 2014)

and from millennium-long AOGCM simulations (Østvand et

al., 2014), and the residuals have been analysed for β without

finding a detectable influence of the volcanic forcing on β.

The same is seen by comparing control runs of the AOGCMs

with those driven by volcanic forcing (Østvand et al., 2014).

The importance of including the prehistory of the energy-

flux imbalance when deriving projections for future change

can be illustrated by considering a prehistory consisting of

volcanic forcing FV (t) only. The particular feature of vol-

canic forcing is that it consists of a succession of negative

spikes in the radiation flux. If we assume that the time t = 0

is in a period with no volcanic forcing, we can for illustra-

tion think of the forcing as a succession of negative forcing

events of short duration, randomly distributed in time with

typically longer waiting times between events than durations.

Let us further assume that the climate response is so slow that

G(t) varies by a small amount over the mean waiting time.

Hence, there exist time intervals of duration 1t which are

short enough for G(t) to be nearly constant over the interval

but long enough to have a sufficient number of large volcanic

eruptions to estimate a mean volcanic forcing FV . This as-

sumption is not very good in practice, but let us use it for

illustration. Under this assumption we can approximate the

integral

t1+1t/2∫
t1−1t/2

G(t − t ′)FV (t ′)dt ′ ≈ G(t − t1)

t1+1t/2∫
t1−1t/2

FV (t ′) dt

=G(t − t1)FV 1t, (E12)

and hence from Eq. (E6) the temperature anomaly due to the

volcanic forcing is
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1TV (t)= FV
t∫

−∞
G(t − t1) dt1

= FV
∞∫

0

G(s) ds
def= −1Tvolc. (E13)

This result is meaningful only if the integral
∫∞

0
G(s) ds is

finite, i.e. if power-law response kernels are properly trun-

cated. The obvious, but still interesting, observation is that

volcanic forcing keeps the temperature, when averaged over

the timescale 1t , on a constant level Teq−1Tvolc, i.e. the

time-averaged temperature is 1Tvolc lower than the temper-

ature at which the climate system is in equilibrium during

times with no volcanic forcing.

Assume some additional (e.g. anthropogenic) forcing

FA(t), for which FA = 0 for t ≤ 0. Then the total temper-

ature anomaly for t > 0 would be

1T (t)=1TV (t)+1TA(t)

=−1Tvolc+
t∫

0

G(t − t ′)FA(t ′) dt ′, (E14)

implying that the temperature starts changing in response to

this forcing from a non-equilibrium initial state. However,

the statistics of volcanic forcing is more challenging than as-

sumed above, and one has to consider the possibility of long

periods with zero forcing, longer than the largest tempera-

ture relaxation time reflected in the response function G(t).

If such a quiet period starts at time tq , then the temperature

for t > tq is

1T (t)= FV
∞∫
t−tq

G(s) ds+
t∫

0

G(t − t ′)FA(t ′) dt ′, (E15)

and since the integral over the tail of G(s) is assumed to

be finite (there exists a maximum relaxation time constant

τmax), the first term on the right of Eq. (E15) will vanish if

t > tq + τmax. In other words, if the time of observation has

been preceded by a very long period of weak volcanic forc-

ing the additionally forced temperature change may be unaf-

fected by the non-equilibrium imposed by volcanic forcing.

If we consider, as another example, that “normal” volcanic

forcing is resumed at t = 0 after a pause of the length of

|tq |> τmax, then1T according to Eq. (E15) grows from zero

towards the expression in Eq. (E14) as t grows beyond tmax.

Hence, during the transient period t ∈ (0,τmax) there may be

a volcanic cooling that counteracts anthropogenic warming,

provided there was a long pause in volcanic forcing preced-

ing the era of anthropogenic forcing.

The discussion made here serves to illustrate that the non-

equilibrium of the radiative flux balance at t = 0 may influ-

ence the subsequent temperature evolution and that volcanic

forcing may be the source of such an imbalance. Knowl-

edge about the history of volcanic forcing in the time interval

(−τmax, t) can be helpful in assessing the influence of vol-

canic forcing on the long-term temperature evolution in the

Anthropocene. In the present paper the implicit assumption

has been made that Eq. (E14) is valid, i.e. that there is no

long pause in volcanic forcing in the period extending from

1880−τmax to 2200 CE. Hence, this forcing only represents a

constant downshift of the temperature. This assumption may

deserve closer scrutiny.

Appendix F: Non-stationarity of the CO2 response

In Sect. 2.2 we found (by comparing Fig. 4b and c) that the

LRM CO2 response with βC = 1.6 gives approximately the

same evolution of CO2 concentration up to 2200 CE as a re-

sponse where 50 % of the emitted CO2 is absorbed by the

surface almost immediately and the remainder decays expo-

nentially with a time constant τC = 300 years. This is analo-

gous to the situation with the temperature response, where an

LRM response gives very similar results to a two-exponential

response with appropriate fitting of model parameters (see

Appendix D). The most important difference is that the βC

parameter is larger than unity. A step-function emission rate

R(t)=H (t) will give rise to a CO2 concentration that grows

like (2αT /βC)tβC/2. This non-stationarity (divergence) of the

response as t→∞ is reasonable, since the surface will not

be able to absorb a sufficient fraction of the constantly emit-

ted CO2 to establish a new equilibrium. The exponential re-

sponse kernel Eq. (6), on the other hand, yields the response

r[1− exp(−t/τC)] to the step forcing. This implies the es-

tablishment of a new equilibrium CO2 concentration after

t � τC. This has little consequence as long as we consider

projection only up to 2200 CE (and τC ≈ 300 years). On a

millennium timescale we have the positive ice-age feedback,

by which warming may lead to net release of CO2 to the

atmosphere, and hence lead to a continuing growth of CO2

concentration. It is assumed to be important in the trigger-

ing of glacial–interglacial transitions, although it is not very

well understood. On timescales of hundreds of kiloyears, we

have the negative carbon-weathering-cycle feedback that will

eventually lead to a carbon-cycle equilibrium. The most in-

teresting feature of this feedback in the present context is that

it suggests that the anthropogenic global warming event may

last for such a long time in the absence of effective carbon

sequestration measures (Archer, 2010).

A more problematic non-stationarity of the carbon-cycle

response arises from stochastic forcing. In this case the

power-law response function will give rise to a fractional

Brownian motion (fBm) with power-spectral index βC ≈
1.6. This is a non-stationary stochastic process in the sense
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that the variance increases with time as tβC−1, which is not

physically reasonable for sufficiently large t . Here, we may

be saved by an exponential cut-off of the power-law tail, but

this requires some sort of negative carbon-cycle feedback. It

is difficult to assess the magnitude of the natural stochastic

component of the CO2 emission rate. If it is small enough,

the weathering-cycle feedback may be sufficient.
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