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Abstract. Monthly near-surface temperature anomalies from several gridded data sets (GISTEMP, Berkeley

Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and compared with regard to the pres-

ence of components attributable to external climate forcings (associated with anthropogenic greenhouse gases,

as well as solar and volcanic activity) and to major internal climate variability modes (El Niño/Southern Oscil-

lation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and variability

characterized by the Trans-Polar Index). Multiple linear regression was used to separate components related to

individual explanatory variables in local monthly temperatures as well as in their global means, over the 1901–

2010 period. Strong correlations of temperature and anthropogenic forcing were confirmed for most of the globe,

whereas only weaker and mostly statistically insignificant connections to solar activity were indicated. Imprints

of volcanic forcing were found to be largely insignificant in the local temperatures, in contrast to the clear vol-

canic signature in their global averages. Attention was also paid to the manifestations of short-term time shifts in

the responses to the forcings, and to differences in the spatial fingerprints detected from individual temperature

data sets. It is shown that although the resemblance of the response patterns is usually strong, some regional

contrasts appear. Noteworthy differences from the other data sets were found especially for the 20th Century Re-

analysis, particularly for the components attributable to anthropogenic forcing over land, but also in the response

to volcanism and in some of the teleconnection patterns related to the internal climate variability modes.

1 Introduction

Temporal variability within the climate system results from

a complex interaction of diverse processes, both exogenous

and arising from internal climate dynamics. To identify and

quantify the effects of individual climate-forming agents,

two complementary approaches are typically employed (e.g.,

IPCC, 2013): numerical simulations based on general circu-

lation models (GCMs) and statistical techniques. While the

statistical methods do not offer the physical insight provided

by the GCM-based simulations, they are potentially able to

capture relations omitted or distorted within GCMs due to

the need for simplified representation of the relevant phys-

ical processes. A number of authors have investigated the

presence of relations between climate forcings and time se-

ries of climate variables by statistical means, often involving

multivariable regression analysis or related techniques. The

resulting studies typically show a strong link between tem-

perature and anthropogenic forcing (e.g., Pasini et al., 2006;

Lean and Rind, 2008; Schönwiese et al., 2010; Rohde et al.,

2013b; Canty et al., 2013; Chylek et al., 2014b), although

linear change with time is also often used to approximate the

long-term temperature evolution (e.g., Foster and Rahmstorf,

2011; Gray et al., 2013; Zhou and Tung, 2013). Imprint of so-

lar activity is usually quite weak in the near-surface temper-

ature series (e.g., Lockwood, 2012, and references therein)

and the spatial patterns of eventual response tend to be quite

complex (Lockwood, 2012; Gray et al., 2013; Hood et al.,

2013; Xu and Powell, 2013). Major volcanic eruptions typi-
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cally manifest by temporary cooling in the globally averaged

temperature, although its magnitude differs somewhat among

individual temperature data sets as well as between ocean

and land (Canty et al., 2013) and the geographic fingerprint

of the temperature response is far from trivial (Stenchikov et

al., 2006; Driscoll et al., 2012; Gray et al., 2013).

Compared to the often pan-planetary reach of the exter-

nal forcings, major manifestations of internal climate vari-

ability modes tend to be more localized, though sometimes

with ample projection of weaker influences through telecon-

nections. Relatively well understood is the El Niño/Southern

Oscillation (ENSO) system, dominating in the tropical Pa-

cific, but also affecting various aspects of weather patterns in

many regions across the globe and leaving a distinct imprint

in globally averaged temperature as well (e.g., Trenberth et

al., 2002). The effect of the North Atlantic Oscillation (NAO)

is prominent particularly in the areas around the northern

Atlantic (e.g., Hurrell et al., 2003). The Northern Atlantic

is also the primary area of activity of Atlantic Multidecadal

Oscillation (AMO), with potential imprints noticeable in lo-

cal temperatures as well as their global means (e.g., Tung

and Zhou, 2013; Zhou and Tung, 2013; Rohde et al., 2013b;

Muller et al., 2013; Chylek et al., 2014b; van der Werf and

Dolman, 2014; Rypdal, 2015). A related (pseudo)oscillatory

system manifests in the northern Pacific in the form of Pa-

cific Decadal Oscillation (PDO: Zhang et al., 1997), although

its direct link with global temperature seems to be less pro-

nounced than AMO’s (e.g., Canty et al., 2013). Other po-

tentially influential variability modes can be identified in the

climate system, though their exact mechanisms and effects

are not always completely known. Selection and prepara-

tion of explanatory variables representing individual climate-

forming factors is a critical part of statistical attribution anal-

ysis; more details on their choice and specific form in our

tests are provided in Sect. 2.1.

Of the descriptors of the climate system, temperature-

related characteristics are arguably the most intensely inves-

tigated. Over the recent years, various research groups have

developed and gradually evolved data sets of near-surface

global gridded temperature (including MLOST: Smith et al.,

2008; GISTEMP: Hansen et al., 2010; HadCRUT4: Morice

et al., 2012; Berkeley Earth: Rohde et al., 2013a, b), which

now provide more than a century of mid-to-high resolution

data for a substantial portion of the globe. In addition to

these temperature analyses, created primarily by interpola-

tion and/or averaging techniques, reanalysis data are also

used to approximate past climate. Of particular interest re-

garding the longer-term variability is the 20th Century Re-

analysis (20CR: Compo et al., 2011), currently providing

global gridded data from the mid-19th century on. While all

these data sets approximate the same historical evolution of

the climate system and share much of their basic temporal

variability on pan-planetary scale (e.g., Hansen et al., 2010;

Foster and Rahmstorf, 2011; Compo et al., 2013; Rohde

et al., 2013b), the respective temperature fields do differ to

some, regionally dependent, degree. In this paper, we aim to

investigate and compare selected aspects of spatio-temporal

variability in several gridded data sets of monthly tempera-

ture, introduced in Sect. 2.2, with emphasis on identification

of temperature responses attributable to climate forcings and

major modes of internal climate variability.

Our methodology of attribution analysis is largely based

on multiple linear regression, as detailed in Sect. 3. Basic

match of temporal variability between the temperature data

sets is quantified through linear correlations, with results

shown in Sect. 4.1. Presence, magnitude and statistical sig-

nificance of components attributable to individual explana-

tory variables in globally averaged temperatures are inves-

tigated in Sect. 4.2, including an analysis of potential time-

delayed responses. An analysis of the geographical response

patterns is then carried out in Sect. 4.3, followed by an as-

sessment of local time-delayed responses in Sect. 4.4 and

discussion of the results in Sect. 5. Only the key outcomes

of our analysis are presented in the paper itself – additional

materials are provided in the Supplement, particularly results

derived for shorter sub-periods of the time series studied.

2 Data

2.1 Explanatory variables

Although many of the statistical attribution studies pursue

a similar goal and share much of their basic methodology,

substantial diversity exists in the selection of the explanatory

factors employed and their specific variants. Here, we used

eight predictors with proven or reasonably suspected influ-

ence on climate on global or continental scale, representing

effects of various external forcings and climatic oscillations

(Fig. 1).

Among the external influences on the climate system,

role of the greenhouse gases (GHGs) is relatively well un-

derstood (e.g., IPCC, 2013). Due to their positive contri-

bution to radiative forcing, man-made GHGs are believed

to be responsible for much of the near-surface global tem-

perature rise during the later stages of the instrumental pe-

riod. Anthropogenic influences to climate do also manifest

through formation of various aerosols, including sulfates

or black carbon, or by production of tropospheric ozone,

although the uncertainties regarding their direct and espe-

cially indirect impacts are still profound (e.g., Skeie et al.,

2011; IPCC, 2013). Furthermore, due to the limited lifes-

pan of the aerosols, their amounts are highly variable in

time and space, unlike the concentrations of the relatively

long-lived GHGs. From the perspective of statistical anal-

ysis, the often strong temporal correlation of the amounts

of GHGs and aerosols is also problematic, making it diffi-

cult for a regression mapping to distinguish between their

respective effects. For these reasons, anthropogenic aerosol

forcings were not directly considered here, and global CO2-

equivalent GHG concentration was used as the sole anthro-
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(a) CO2-equivalent concentration of GHGs

(h) Trans-Polar index (TPI)

(c) Stratospheric volcanic aerosol optical depth

(e) North Atlantic Oscillation index (NAOI)

(g) Paci�c Decadal Oscillation index (PDOI)

(b) Solar irradiance

(d) Southern Oscillation index (SOI)

(f) Atlantic Multidecadal Oscillation index (AMOI)

Figure 1. Time series of the explanatory variables employed in the attribution analysis. Bars to the right of individual panels illustrate the

pre-selected characteristic variations of the predictors, used for calculation of the temperature responses: increase of CO2-equivalent GHG

concentration between 1901 and 2010 (+141 ppm); increase of solar irradiance by 1 Wm−2; Mt. Pinatubo-sized volcanic eruption (aerosol

optical depth +0.15); increase of SOI, NAOI, AMOI, PDOI and TPI by four times the standard deviation of the respective time series.

Thicker, darker lines represent a 13-month moving average of the series.

pogenic predictor, in the version provided by Meinshausen et

al. (2011; http://www.pik-potsdam.de/~mmalte/rcps/), inter-

polated onto monthly time resolution. Note that the tempera-

ture responses obtained with this GHG-only predictor would

be virtually identical to those derived for total global anthro-

pogenic forcing, as further discussed in Sect. 5.

Global monthly series of stratospheric aerosol optical

depth provided by NASA GISS at http://data.giss.nasa.gov/

modelforce/strataer/ (Sato et al., 1993) was employed as a

proxy for volcanic forcing. The effects of variable solar activ-

ity were characterized through monthly values of solar irradi-

ance, based on the reconstruction by Wang et al. (2005) and

obtained from http://climexp.knmi.nl/data/itsi_wls_mon.dat.

Extension of the series beyond year 2008 was done by

the rescaled SORCE-TIM measurements from http://lasp.

colorado.edu/home/sorce/data/tsi-data/ (Kopp et al., 2005).

In addition to the external forcings tied to exogenous

factors, temporal variability of the climate system is also

shaped by various internal oscillations. Southern Oscilla-

tion index (SOI), provided by CRU at http://www.cru.uea.

ac.uk/cru/data/soi/ (Ropelewski and Jones, 1987), was used

to characterize the phase of ENSO, the dominant variabil-

ity mode in the tropical Pacific. North Atlantic Oscillation

(NAO) was represented by its index (NAOI) by Jones et

al. (1997), defined from normalized pressure difference be-

tween Reykjavik and Gibraltar (CRU: http://www.cru.uea.ac.

uk/cru/data/nao/). A great deal of attention has recently been

devoted to the effects of Atlantic Multidecadal Oscillation

(AMO), a climatic mode possibly exhibiting periodicity of

about 70 years (Schlesinger and Ramankutty, 1994) and typ-

ically characterized by indices derived from north Atlantic

SST (e.g., Enfield et al., 2001; Canty et al., 2013). Presence

of AMO-synchronized components in temperature series has

been demonstrated at both global (e.g., Canty et al., 2013;

Rohde et al., 2013b; Zhou and Tung, 2013; Chylek et al.,

2014b; Rypdal, 2015) and local (e.g., Enfield et al., 2001;

Tung and Zhou, 2013; Chylek et al., 2014a; Mikšovský et

al., 2014) scales, although discussion still continues regard-

ing AMO’s exact nature and optimum way of its represen-

tation (Mann et al., 2014; Zanchettin et al., 2014; Lewis,

2014; Knudsen et al., 2014; Ting et al., 2014). In this anal-

ysis, AMO’s phase has been characterized through a lin-

early detrended index (AMOI) based on the prevalent def-

inition by Enfield et al. (2001) and downloaded from http:

//www.esrl.noaa.gov/psd/data/timeseries/AMO/. Note that a

non-smoothed version of the index was used, involving both

long-term and shorter-term SST variability in the north-

ern Atlantic. An AMO and ENSO-related phenomenon in

the north Pacific area, Pacific Decadal Oscillation (PDO –

Zhang et al., 1997), is typically characterized through a se-

ries of the first principal component of north Pacific SST.

Here, the variant calculated by KNMI Climate Explorer at

http://climexp.knmi.nl/ from ERSST data was employed as

predictor, further referenced as PDOI. Lastly, to explore pat-

terns of temperature variability in the southern extra-tropical

regions, Trans-Polar index (TPI) was also used as an ex-

planatory variable. The respective series, calculated as nor-

malized pressure difference between Hobart (Tasmania) and

Stanley (Falkland Islands), is available from CRU at http:

//www.cru.uea.ac.uk/cru/data/tpi/ (Jones et al., 1999) for the
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1895–2006 period. Beyond the year 2006, sea-level pressure

data from the 20th Century Reanalysis were used to extend

the CRU-supplied series.

Not all of the predictors here can be considered mutu-

ally independent, from neither physical nor statistical per-

spective. In Table 1, formal similarity of the series of indi-

vidual explanatory variables is illustrated through values of

Pearson correlation coefficient r , and degree of collinearity

is also quantified by variance inflation factor for each pre-

dictor. The positive correlation between GHG amount and

solar irradiance (r = 0.37 for our version of the predictors,

over the 1901–2010 period) stems from similarity of the

long-term components of these signals (lower values in the

early part of the 1901–2010 period, higher towards the end);

their causal link over the time period studied here is un-

likely though. Noteworthy links can also be seen for PDO,

which is considered to be partly driven by ENSO (New-

man et al., 2003), resulting in anticorrelation of the PDOI

and SOI series (r =−0.37). A relation also exists between

PDOI and AMOI: although the connection is weak for syn-

chronous series (r = 0.01), distinct time-delayed correlations

exist (e.g., Zhang and Delworth, 2007; Wu et al., 2011). Cor-

relation between AMOI and solar irradiance (r = 0.16) and

volcanic aerosol optical depth (r =−0.27) may be an indi-

cation of possible external forcing of AMO (Knudsen et al.,

2014); similarity between GHG and AMOI series (r = 0.22)

may stem from use of linear detrending in the calculation of

AMOI (see Canty et al., 2013, for a broader discussion of the

related matters). Anticorrelation between volcanic aerosol

optical depth and SOI (r =−0.17) results mainly from co-

incidence of some of the major volcanic events with the El

Niño phases of ENSO. While the correlations within our set

of predictors are mostly mild, there are some potential impli-

cations of this shared variability, as discussed in Sect. 5.

2.2 Temperature data sets

Monthly series of near-surface temperature on a

(semi-)regular longitude-latitude grid from four temperature

analyses and one reanalysis were studied:

– GISTEMP of NASA’s Goddard Institute for Space

Studies, available at http://data.giss.nasa.gov/gistemp/

(Hansen et al., 2010). The data set provides temper-

atures since 1880; it was employed here in the ver-

sion on a 2◦× 2◦ grid, with 1200 km smoothing, using

ERSSTv3b as the source of sea surface temperatures.

Tests were also carried out with the version employing

250 km smoothing; however, due to substantially more

limited data coverage, and just small differences be-

tween the resulting temperature response patterns, the

outcomes for the 250 km variant are only provided as

an additional material in the Supplement (Fig. S5).

– Temperature analysis of the Berkeley Earth group, ob-

tained from http://berkeleyearth.org/data (Rohde et al.,

2013a, b). While the data set is primarily created for

land, a variant with coverage of oceanic areas by re-

interpolated HadSST3 (Kennedy et al., 2011a, b) is also

provided. We used this combined data set here; for

brevity, it is referred to as BERK. The data are avail-

able in the spatial resolution of 1◦× 1◦, for years from

1850 on.

– Merged Land-Ocean Surface Temperature Analysis

(MLOST) by NOAA, from http://www.esrl.noaa.gov/

psd/data/gridded/data.mlost.html (Smith et al., 2008).

Defined on a 5◦× 5◦ grid, from 1880 on.

– HadCRUT4, a combined land (CRUTEM4) and sea

(HadSST3) temperature data set by Climatic Research

Unit (University of East Anglia) and Hadley Centre

(UK Met Office) from http://www.cru.uea.ac.uk/cru/

data/temperature/ (Morice et al., 2012). Defined on a

5◦× 5◦ grid, from 1850 on.

– 20th Century Reanalysis (20CR) by NOAA ESRL

PSD, obtained in version V2 from http://www.esrl.

noaa.gov/psd/data/20thC_Rean/ (Compo et al., 2011).

For this study, monthly means of 2m temperature

in T62 Gaussian grid were used (resolution approxi-

mately 1.75◦ longitude× 2◦ latitude). Note that, unlike

the above analysis-type data sets, 20CR does not uti-

lize temperature measurements from land-based sta-

tions and recreates the temperature characteristics over

continents from other types of data assimilated into the

model (pressure measurements) or used as boundary

condition (sea surface temperature). As a reanalysis,

20CR provides a complete coverage of the globe and

data for various pressure levels, in a sub-daily time step

(although only monthly averages were analyzed here).

Assessment of the usability of 20CR as a source of data

for study of spatiotemporal variability of temperature is

one of the focal points of this paper.

All four gridded temperature analysis data sets (GISTEMP,

BERK, MLOST, HadCRUT4; hereinafter also referred to as

observational data sets) are natively provided as monthly

anomalies, and were analyzed as such. For 20CR tempera-

tures, anomalies were constructed by subtracting mean an-

nual cycle for the period 1951–1980. In addition to gridded

temperatures, global temperature means (representing either

land-only or fully global spatial averages) were also studied.

The respective global monthly series were obtained from the

web pages of the individual research groups, with the excep-

tion of 20CR, for which global average was calculated as a

latitude-adjusted weighted mean from the gridded data for

the full globe or for the area between 60◦ S and 75◦ N (i.e.,

excluding the poleward-most regions with the most incom-

plete temperature coverage by the observational data sets).
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Table 1. Pearson correlation coefficient between series of individual predictors (Fig. 1) in the 1901–2010 period. The upper-right segment

of the matrix contains values for the original concurrent series, the lower-left segment values for their time-shifted versions (as specified in

Fig. 4’s caption). The bottom-most row shows values of the variance inflation factor (VIF) for individual time-shifted predictors, calculated

as 1/(1–R2), where R2 is the coefficient of determination obtained from regression of the given explanatory variable on the rest of the

predictors. See Table S1 in the Supplement for correlations over the sub-periods 1901–1955 and 1956–2010.

GHG Solar Volc. SOI NAOI AMOI PDOI TPI

GHG 0.37 0.10 −0.07 −0.08 0.22 0.07 0.06

Solar 0.37 0.01 −0.01 0.02 0.16 0.05 −0.01

Volc. 0.11 −0.02 −0.17 0.08 −0.27 0.15 −0.01

SOI −0.08 −0.01 −0.12 −0.01 0.00 −0.37 −0.02

NAOI −0.08 0.02 0.06 0.00 −0.15 −0.04 −0.04

AMOI 0.22 0.16 −0.30 −0.07 −0.15 0.01 0.00

PDOI 0.07 0.05 0.19 −0.39 −0.04 0.01 0.00

TPI 0.06 −0.01 0.00 0.00 −0.04 0.00 0.00

VIF 1.26 1.18 1.19 1.20 1.04 1.22 1.22 1.00

3 Regression analysis setup

Despite the inherently nonlinear and deterministically

chaotic nature of the climate system, the interaction of ex-

ternal climate forcings in temperature signals can often be

approximated quite well by a simple linear superposition

(e.g., Shiogama et al., 2013). Even when effects of internal

climatic oscillations are studied in the frame of multivari-

able statistical attribution analysis, nonlinearities are gener-

ally not dominant, albeit sometimes detectable (e.g., Pasini et

al., 2006; Schönwiese et al., 2010; Mikšovský et al., 2014).

Further considering the increased computational costs and

more complicated interpretation for the nonlinear regression

techniques, only multiple linear regression (MLR) was ap-

plied here to separate contributions from individual predic-

tors, subject to a calibration procedure minimizing the sum

of squared regression residuals.

Although application of MLR-based mappings is quite

straightforward in itself, potential challenges await when es-

timating the statistical significance of the regression coeffi-

cients, particularly due to non-Gaussianity and serial correla-

tions in the data. For construction of the confidence intervals

in Sect. 4.2, bootstrapping was used. Since the basic form of

bootstrap (resampling data for individual months as fully in-

dependent cases) does not account for autocorrelation struc-

tures in the data, which cannot be ignored in the monthly

temperatures (e.g., lag-1-month autocorrelations in the re-

gression residuals ranged between 0.32 and 0.61 for different

versions of globally averaged temperature), moving-block

bootstrap was used (e.g., Fitzenberger, 1998).

In an effort to alleviate the high computational costs of

full bootstrap, an alternative approach to assessment of sta-

tistical significance was also explored: Monte Carlo-style

tests designed to estimate thresholds of the regression co-

efficients, consistent with the null hypothesis of the ab-

sence of regressor-related component(s) in the regressand.

Our experiments have shown that the effect of autocorre-

lation structures on the coefficient thresholds is approxi-

mated quite well by the predictor-specific expansion factors

((1+apar)/(1−apar))
1/2, with ap and ar representing AR(1)

autoregressive parameters for the predictor series and for

the series of the regression residuals, respectively. This fac-

tor resembles the one occasionally employed in estimation

of statistical significance of correlations between series with

AR(1)-type autocorrelation structure (e.g., Bretherton et al.,

1999); its use allows for a numerically inexpensive approx-

imation of statistical significance provided that the structure

of the regression residuals conforms to a AR(1) model. While

such assumption is not completely valid for the temperature

data (e.g., Foster and Rahmstorf, 2011), the results obtained

proved to be close to those from moving-block bootstrap,

with noticeable differences only appearing in the presence

of the strongest residual autocorrelations. These predictor-

specific inflation factors (applied to the coefficient signifi-

cance thresholds derived for predictand data free of serial

correlations) were therefore used for approximation of the

significance of the regression coefficients in the tests involv-

ing gridded temperature data in Sects. 4.3 and 4.4.

The analysis has been carried out over the 1901–2010

period, chosen as a compromise between maximizing the

length of the signals studied and limited availability and re-

liability of data for the earlier parts of the instrumental pe-

riod. Additional results for the first (1901–1955) and second

(1956–2010) half of the target period are provided in the Sup-

plement. To facilitate comparison of the contributions from

individual explanatory variables mutually and to temperature

variability itself, outcomes of the regression analysis are pre-

sented in the form of temperature responses to pre-selected

characteristic variations of individual predictors, illustrated

in Fig. 1 and specified in its caption. To limit biases due to

incompleteness of the temperature series in some locations

and data sets, only results for predictands with less than 10 %

of missing values are shown.
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Figure 2. Pair-wise Pearson correlation coefficients between local monthly temperature anomaly series from different data sets for the

1901–2010 period. See Fig. S1 for correlations during the 1901–1955 and 1956–2010 sub-periods.

4 Results

4.1 Local temperature correlations

Ideally, all the temperature data sets should follow the same,

historical, trajectory of the climate system. In reality, dif-

ferences appear among individual representatives of the cli-

matic past, due to variations in the structure of the source data

and specifics of their processing. While we obviously cannot

make a comparison to a perfect embodiment of the past states

of the atmosphere, the existing temperature approximations

can be compared mutually, to assess which regions and/or

periods exhibit a higher degree of match (signaling lower

uncertainty due to the data set choice), and where stronger

contrasts emerge. The basic structure of these differences is

illustrated in Figs. 2 and S1 (in the Supplement) through pair-

wise Pearson correlations (r) between monthly series of tem-

perature anomalies from different data sets. Unsurprisingly,

a vast majority of locations exhibit positive correlations, for

any data set couple, but magnitude of this link varies sub-

stantially among different regions. Over continents, a par-

ticularly good match is indicated for Europe and (especially

eastern) North America, regions with high density of reliable

observations spanning the entire target period. On the other

hand, in central Africa, central South America and south-east

Asia, the resemblance of temperature series is weakened. The

mismatch is also more noticeable when only the first half of

the analysis period (1901–1955) is considered (Fig. S1). The

1956–2010 period then shows generally higher correlations,

though it should be noted that the presence of stronger long-

term trend in the later 20th century, largely shared by all the

data sets and most locations, amplifies the values of correla-

tions in this sub-period.

The above-specified general tendencies in regional corre-

lation patterns also hold for the relation between the analysis-

type data sets and 20CR (bottom row in Fig. 2): a relatively

good match of the temperature anomalies in Europe and east-

ern US contrasts with more profound differences in the tropi-

cal parts of Africa and much of South America. The question

remains whether the disparities detected can be attributed to

misrepresentation of any specific source(s) of temperature

variability – an issue that is further investigated in the fol-

lowing sections.

4.2 Forcing imprints in global mean temperature

Much of the existing research of temperature variability and

its attribution by statistical means focuses on globally aver-

aged data. Aside from limiting the number of signals to be

analyzed (and thus allowing for more detailed examination

of each of them), the world-wide averaging suppresses re-

gional variations and allows factors associated with global-

reaching forcings to become more reliably detectable. On the

other hand, effects contributing responses of opposite sign in

different regions (such as ENSO or NAO) may be obscured

in pan-planetary representation. In this section, global and

global land temperature signals are investigated for the pres-

ence of the imprints of individual internal and external forc-

ing factors.

It has been shown on various occasions that responses

in climate variables (including temperature) are not neces-

sarily perfectly synchronized with the variables representing
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Figure 3. Temperature responses (◦C) to characteristic variations of the explanatory variables (specified in Fig. 1), obtained by multiple

linear regression carried out with one predictor shifted in time by 1t , while keeping the others at 1t = 0.

the climate forcings, and time-offset relations may manifest

(e.g., Canty et al., 2013 and references therein). In Fig. 3,

this is illustrated via application of MLR mappings with in-

dividual predictors offset by 1t ranging between −24 and

+24 months. Results from the full range of 1t are shown

for all predictors, to illustrate the fact that regression analy-

sis may indicate formal links even in the absence physically

meaningful dependencies (such as the connections between

temperature and volcanic forcing for highly negative 1t).

For GHG concentration, the lack of short-term variability re-

sults in near-invariance of the temperature response. Some

1t-related variability is indicated for solar irradiance influ-

ence, though the dependence seems largely governed by ir-

regular fluctuations and no distinct extremum appears. A de-

layed response is clearly noticeable in the component asso-

ciated with volcanic activity – a distinct, though rather flat,

maximum of anticorrelation between about 5 to 10 months

is indicated for all the analysis-type data sets. In the case of

SOI, the strongest response occurs for time lags between ap-

proximately 0 and 6 months. The effect of NAOI, on the other

hand, is generally instantaneous. The response of global tem-

perature to AMOI and PDOI also shows maximum at, or

close to, 1t = 0. For TPI, the imprint in global temperature

series is weak regardless of the predictor’s shift.

All four analysis-type data sets exhibit high degree of

similarity of the features in the globally averaged series.

On the other hand, some noteworthy distinctions appear for

20CR. Most notably, the volcanism response curve is simi-

lar in shape to the ones characterizing the observational data,

but shifted towards positive values. Furthermore, NAO re-

sponse peaks at +1 month instead of 1t = 0 and weaker-

than-observed connection to GHG is indicated over land.

These differences can be partly ascribed to the specifics of

calculation of mean temperature for the observational data

sets, particularly variable level of data coverage for the ob-

served data. However, different spatial response patterns are

also likely responsible, as shown in Sect. 4.3.

To facilitate mutual comparability of the results, and also

to consider that the physical links between predictors and

temperature should be the same for all data sets, a unified

set of time shifts was employed for the tests in Sects. 4.2

and 4.3. Lead time of +1 month was used with the solar

irradiance, as previously done by Lean and Rind (2008) or

Canty et al. (2013), although very similar outcomes would

have been obtained with 1t = 0, too. The time shift was set

to +2 months for SOI, same as in Canty et al.’s setup, and

volcanic forcing was used with 1t =+7 months (close to

Lean and Rind’s and Canty et al.’s shift of +6 months). The

rest of the predictors entered the regression mappings with-

out a time offset, due to just a small difference compared

to a setup with 1t = 0, or absence of a distinct, physically

justified extremum within the analyzed range of time delays.

In Fig. 4, the results of the analysis are shown in the form

of temperature responses to the characteristic variations of

the predictors, with their 99 % confidence intervals generated

by moving-block bootstrap. The regression fits of individual

temperature series are also visualized in Fig. S4.

Our analysis suggests the GHG-attributed rise in global

temperature to be approximately 0.8 ◦C over the 1901–2010

period, within the range usually associated with anthro-

pogenic forcing (IPCC, 2013). Over land, values between

1.05 and 1.2 ◦C are typical in the analysis-type data, and

somewhat lower for 20CR. Positive temperature responses

to solar irradiance increase are indicated in the global tem-
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peratures (equivalent to roughly 0.05 ◦C per Wm−2 of so-

lar irradiance), borderline statistically significant at α = 0.01.

Global land temperatures, on the other hand, show no such

warming component – a behavior previously reported by

Rohde et al. (2013b) for Berkeley Earth land temperature,

whereas the analysis by Canty et al. (2013) suggested minor

temperature rise related to irradiance increase. Results for in-

dividual sub-periods provide an even more varied picture of

the irradiance–temperature relationship (Figs. S2, S3). Small

negative responses are indicated for 1901–1955, possibly due

to higher correlation between the predictors characterizing

GHG and solar activity (r = 0.46), and thus greater potential

for misattribution. Positive responses then appear for 1956–

2010, when the trend in solar irradiance (as well as its cor-

relation to GHG concentration) is negligible. Warming ef-

fect of the increase of solar irradiance is therefore possible in

land-only temperature averages, too, but weak and obscured

when all 110 years are analyzed. In any case, imprint of solar

irradiance upon globally averaged temperature seems rather

minor, especially compared to the GHG influence.

The response of global temperature to volcanic forcing

is clear, statistically significant and of similar magnitude

in all analysis-type data sets: drop of 0.36 to 0.44 ◦C in

global land temperature is indicated for Mt. Pinatubo-sized

event, slightly stronger than the values reported by Canty et

al. (2013). The response range is lowered to about 0.16 to

0.19 ◦C when the oceanic areas are included, close to Canty

et al.’s results. As already shown in Fig. 3, 20CR tempera-

ture behaves in a somewhat different fashion, with a smaller,

statistically insignificant temperature response. A look at the

results for individual sub-intervals reveals that this positive

bias may be stemming from the relations indicated for the

first half of the 20th century (which, however, contains just

a very limited set of volcanic events, with the strongest of

them – Novarupta eruption of 1912 – being extratropical and

thus atypical regarding its world-wide effects). For the 1956–

2010 period, 20CR global volcanic response is more in line

with the behavior of the observational data sets.

While our results show the well-known tendency towards

higher global temperature anomalies during the El Niño

phases of ENSO (e.g., Trenberth et al., 2002), the respective

components tested close to the threshold of statistical signifi-

cance at α = 0.01. A response of comparable magnitude was

found for NAO, with a positive link indicated between all

temperature signals and NAOI, though, again, at rather low

levels of statistical significance in most cases.

Conforming to several previous studies concerned with as-

sociation between global temperature and AMO (e.g., Rohde

et al., 2013b; Zhou and Tung, 2013; Chylek et al., 2014b) and

using similar (i.e., linearly detrended) version of its index,

our results suggest formally strong link of detrended mean

North Atlantic temperature and its global counterpart, dis-

tinct for land-based temperatures as well. The question re-

mains, however, of how representative AMOI really is of in-

ternal variability in the climate system, as further discussed

in Sect. 5.

The imprint of PDO in global temperature is quite clear

and, for our combination of predictors, actually about as

strong as SO’s. It should be considered though that SOI and

PDOI series are not independent and, as predictors, they

partly compete for the same variability component in the

temperature signals. When included alone among the ex-

planatory variables (i.e., either SOI or PDOI, but not both),

the respective responses are generally strengthened, as is

their statistical significance. Considering that SOI and PDOI

are only partly collinear and that their temperature response

patterns do differ in many regions (Sect. 4.3), both were in-

cluded as formally independent predictors in our analysis.

The final predictor considered in our setup, TPI, does not

project much influence upon global temperature, though the

respective component is borderline statistically significant

for some of the data sets. Just as in the case of SOI, NAOI or

PDOI, the relatively weak global response can be traced to

the presence of mutually opposite contributions from differ-

ent regions, as demonstrated in the next section.

4.3 Forcing imprints in local temperatures

Even clear and strong presence of a component associated

with a particular forcing factor in globally averaged temper-

ature does not automatically imply its universal relevance

on a local scale. Conversely, locally dominant factors may

be marginal in a global perspective. Here, we present an

overview of geographic patterns of temperature response to

external and internal forcing, for the set of eight predictors

identical to that in Sect. 4.2. Only results for the data sets

with mostly complete data coverage in the 1901–2010 period

(GISTEMP, BERK, 20CR) are shown (Fig. 5); see the Sup-

plement (Fig. S5) for the full set of results including MLOST

and HadCRUT4.

While positive correlation between GHG concentration

and temperature is typical for most regions of the world, the

strength of the component formally attributed to greenhouse

gases (or, more generally, to anthropogenic forcing) varies

substantially, and insignificant links or even anticorrelations

appear in some smaller areas. Most prominently, the oceanic

region south of Greenland, known for a negative tempera-

ture trend since 1901 (e.g., IPCC, 2013), displays high con-

trast to the rest of the world. Relatively good match between

the analysis-type data sets is found in most regions. How-

ever, notable differences between the gridded observations

and 20CR appear in a few geographically limited locations.

Aside from mild contrasts in some oceanic regions (partic-

ularly central and eastern equatorial Pacific), distinctly neg-

ative temperature responses appear over land in the eastern

Mediterranean, central South America and Texas. On the

other hand, warming response over northern China is over-

estimated in 20CR. A similar pattern of discrepancy between

the observed data and 20CR has already been reported and
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Figure 4. Regression-estimated responses (◦C) of global (blue) or global land (green) monthly temperature anomalies to pre-selected char-

acteristic variations of individual explanatory variables (specified in Fig. 1). Time shift of +1 month (predictor leading temperature) was

applied for solar irradiance, +7 months for volcanic aerosol amount, +2 months for SOI. The boxes illustrate the 99 % confidence intervals,

calculated by moving-block bootstrap (12-month block size). The 20CR-based results are shown for the series averaged over the 60◦ S to

75◦ N area. Obtained for the 1901–2010 period; see Figs. S2 and S3 for results over the 1901–1955 and 1956–2010 sub-periods; Fig. S4 for

visualization of individual temperature series and their regression-based fits.

discussed by Compo et al. (2013) in their analysis of linear

trends in the temperature series for 1901–2010, with various

potential explanations suggested. Generally, although long-

term components (whether expressed by match with anthro-

pogenic forcing, or by linear trends) in 20CR are character-

ized consistently with the analysis-type data in many regions,

their representativeness cannot be assumed universally.

The local temperature responses to solar irradiance are ar-

ranged in a complex pattern, encompassing both positive and

negative links, combining in a near-neutral contribution to

global land average. Statistically significant responses are

rarely indicated and influence of solar variability therefore

seems largely inconclusive at a local scale (Figs. 5b, S5b).

Nonetheless, sign and magnitude of the links appear to be

similar across individual data sets, including 20CR. From the

results for the oceanic areas, it is revealed that main con-

tributions to the borderline significant link between global

temperature and irradiance come from southern extratrop-

ical areas and the northern Pacific. The response patterns

shown by Lean (2010), Zhou and Tung (2010) or Gray et

al. (2013) do differ somewhat from our results; however, di-

rect comparison is problematic due to distinctions between

time periods analyzed as well as detection methodology em-

ployed. The outcomes for the 1901–1955 and 1956–2010

sub-periods (Fig. S6) suggest some degree of stability of the

response patterns, though with enough differences to explain

the mismatch in contributions to globally averaged land tem-

perature (Sect. 4.2). Overall, our analysis confirms that so-

lar activity does not leave a strong, unambiguous imprint in

lower tropospheric temperature.

While the cooling effect of volcanic forcing was clearly

apparent in global mean temperature, its local influence is

less ubiquitous (Figs. 5c, S5c). Regions with negative re-

sponse do slightly prevail in the observational data sets, but

positive contributions are detected in several areas, too. Only

few locations show statistically significant responses of ei-

ther sign. The pattern revealed bears basic resemblance to the

ones shown by Lean and Rind (2008) and Lean (2010), with

post-eruption cooling indicated in North America and warm-

ing over northern Asia. Some differences emerge, however,

emphasizing the sensitivity of the forcing response patterns

to the analysis details such as specific choice of the predic-

tor(s) or time period considered. In the 20CR, positive re-

sponses are more numerous and stronger in magnitude, push-

ing the global mean volcanism-attributed signal towards pos-

itive values and statistical non-significance. This tendency

is noticeable especially during the first half of the analysis

period (Fig. S6), although it should be noted again that the

relative lack of global-reaching volcanic events renders the

results rather uncertain for the 1901–1955 period.

The canonical pattern of temperature response associated

with SO/ENSO activity (e.g., Trenberth et al., 2002; Lean

and Rind, 2008; Gray et al., 2013) also emerged in our analy-

sis, including the teleconnections extending beyond the trop-

ical Pacific region (Figs. 5d, S5d). While some minor differ-

ences exist among individual data sets, the resemblance of

the respective patterns is high; some minor exceptions are

found for 20CR over land, such as weaker projection of SOI

influence over eastern Africa. The effect of North Atlantic

Oscillation, too, is shown very clearly for its primary area of

www.earth-syst-dynam.net/7/231/2016/ Earth Syst. Dynam., 7, 231–249, 2016



240 J. Mikšovský et al.: Imprints of climate forcings

Figure 5. Geographic patterns of regression-estimated contributions to local temperature (◦C) from pre-selected characteristic changes of

the explanatory variables (specified in Fig. 1). Time shift of +1 month (predictor leading temperature) was applied for solar irradiance, +7

months for volcanic aerosol amount, +2 months for SOI. Areas with response statistically significant at the 99 % level are highlighted by

hatching. See Fig. S5 for results derived from the MLOST and HadCRUT4 data sets as well as from GISTEMP data with 250 km smoothing;

Fig. S6 for results over the 1901–1955 and 1956–2010 sub-periods.

activity encompassing much of Eurasia and North America

(Figs. 5e, S5e). 20CR data show a generally good match with

the gridded observations, though minor differences emerge,

such as weakened teleconnections to easternmost Asia or al-

tered links to southern Africa.

Unlike the multipolar geographical responses associated

with SO and NAO, the regression coefficients between

AMOI and local temperature are predominantly positive

worldwide, and significant connections extend across the

globe (Figs. 5f, S5f). This largely unidirectional link, pre-
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viously pointed out through correlation analysis by Muller et

al. (2013), results in much stronger AMO-correlated compo-

nent in global temperature. On the other hand, it also raises

a question of what exactly the relation between temperatures

worldwide and those in the northern Atlantic is (beyond the

obvious fact that Atlantic SST is one of the components av-

eraged into global temperature, and thus not completely in-

dependent). While many of the recent studies employed the

(linearly detrended) AMO index in the role of an indepen-

dent explanatory variable, arguments have been made for use

of different forms of the index (see Canty et al., 2013 and the

references therein) or questioning the nature of AMO itself

(e.g., Booth et al., 2012; Mann et al., 2014). In our analysis,

we focused rather on formal connections in the data stud-

ied and mutual (in)consistency of various data sets; the is-

sue of exact physical nature and stability of AMO was not

central. The imprint of AMOI is similar across individual

data sets; noticeable differences appear especially over cen-

tral and eastern Eurasia.

PDO’s influence pattern shows both positive and negative

connections, strongest in the Pacific area (e.g., Deser et al.,

2010), but with some significant teleconnections extending

to more distant regions as well (including Africa or Scan-

dinavia). PDO’s imprint in 20CR is relatively close to that

in the analysis-type data; differences appear especially over

parts of Africa (Figs. 5g, S5g).

The relation between temperature and TPI manifests in a

semi-regular pattern of alternating positive and negative sec-

tors over the southern oceans and nearby continents, though

only in the segments near South America and Australia do

the relations test as statistically significant (Figs. 5h, S5h).

The 20CR-based response resembles the observational pat-

tern in shape, but is generally stronger magnitude-wise.

4.4 Delayed responses in local temperatures

The homogeneously timed predictors employed in Sect. 4.3

do provide a robust basis for an assessment of the superpo-

sition of their effects in globally averaged temperature, but

overlook the possibility of geographically dependent delays.

To reveal the characteristic patterns of locally specific asyn-

chronous responses to the explanatory variables, regression

analysis of local temperature was also carried out with indi-

vidual predictors shifted in time by1t ranging between−24

and +24 months. Figures 6 and 7 summarize the outcomes

by displaying the strongest local temperature response de-

tected, along with the corresponding1t . Note that the statis-

tical significance thresholds have been calculated to account

for the fact that the strongest response within the−24 to+24

months range is used. As a result, they are generally higher

(i.e., a stronger response is required to be deemed significant

at the given significance level) than in the setup with fixed1t

in Sect. 4.3. Only the three data sets with least missing values

– GISTEMP, BERK and 20CR – were analyzed in this case.

For the GHG amount, the results exhibit little sensitivity

within our time window, and the magnitude of temperature

responses is virtually identical to the 1t = 0 setup, due to

the absence of short-term variations in the predictor series.

Likewise, the strongest responses to solar forcing are quite

similar to the ones for the pre-set delay of 1 month (Fig. 5b),

while the maximum seems to be rather randomly positioned,

arguably reflecting the stochastic components in the time se-

ries. For volcanism, even with the variable time delay option,

still only a handful of gridpoints show a significant response

and the pattern of time delays associated with maximum-

strength components does not show any distinct regularity.

The spatiotemporal variability of temperature response to

ENSO phase is well known (e.g., Trenberth et al., 2002) and

reflected in our results as well: the occurrence of the strongest

temperature response leads SOI by a few months in the east-

ern equatorial Pacific, whereas largely concurrent variabil-

ity is indicated for the western Pacific. In the Indian Ocean,

strongest temperature response lags by a few months behind

SOI and delay of 6 to 8 months is indicated around south-

east Asia as well as in northern Australia. 20CR reproduces

these patterns quite well over the oceans, but noticeable dif-

ferences appear for teleconnections over land, most notably

in less consistently expressed links to Africa and the southern

part of South America.

The strongest statistically significant temperature re-

sponses to NAO are instantaneous in most areas, or delayed

by 1 month (mostly over northern Atlantic). The pattern de-

tected from the observational data sets is reproduced quite

well in 20CR, with the most notable exception again being

the breakdown of transcontinental teleconnection over east-

ern Asia and appearance of a link to southern Africa. The rea-

son for the temporal shift of NAO-attributed signal in 20CR

global temperature (Fig. 3) therefore does not seem to be

the misrepresentation of timing of the local temperature re-

sponses. Rather, it can be traced to the perturbed balance be-

tween the opposite-in-sign responses from different regions

(note especially the overly negative contribution from north-

ern Africa). Though these deviations are relatively small,

they vary for different1t , enough to alter the relatively weak

globally averaged signal and bring forth a spurious delay in

global response.

There is a distinct connection between the AMO index and

local temperature in many regions of the world even with-

out a time shift (Fig. 5f), but the timing of the maximum

strength of this association varies distinctly within our ±24

months testing range. Concurrence is indicated in much of

the northern Atlantic, delay of 2 to 5 months in the north-

ern part of the Indian Ocean and adjacent land, and around

4 to 10 months in a large portion of the western equatorial

Pacific. On the other hand, in the eastern and northern part

of the Pacific, temperatures at −12 to −6 months show the

strongest association with AMOI, whereas delays between

−5 to −1 month are typical in much of Canada and north-

ern US. Over oceans, 20CR maintains the observation-based
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Figure 6. Geographic distribution of the predictor offset time1t for which the strongest local temperature response was detected, within the

±24 month range. Positive values of 1t correspond to setups with predictor leading temperature; only grid points with response statistically

significant at the 99 % level are shown. See Fig. 7 for the corresponding values of the temperature response.

pattern with only minor differences. More distinctions ap-

pear over land, especially in southern Asia. Similar behavior

is also indicated for PDO: quite a realistic representation of

the delayed responses over oceans and areas adjacent to the

northern Pacific by 20CR breaks down somewhat for more

remote land areas (most notably Africa), though some of the

teleconnections seem to be maintained quite well (Scandi-

navia).

Finally, in the case of TPI, the results indicate concurrence

of the oscillations or delay of 1 month for most locations with

a statistically significant response. The pattern is reproduced

quite well by 20CR, though magnitude of the temperature

variations is somewhat exaggerated again.
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Figure 7. Geographic distribution of the strongest temperature response (◦C) to individual explanatory variables within the±24 month range

of the temporal offset of the predictor. Areas with the response statistically significant at the 99 % level are highlighted by hatching.

5 Discussion and conclusions

The primary objective of our analysis was twofold. Firstly,

we aimed to provide a unified outlook into the local tempera-

ture responses associated with activity of multiple climate-

forming agents, exogenous and endogenous, and the way

they combine in pan-planetary temperature signals. While

various past studies already dealt with a similar kind of sta-

tistical attribution analysis, their scope was typically more

focused, phenomenon- or region-wise, but also regarding the

temperature data source. Our second objective therefore con-

sisted in assessing the robustness of the attribution analysis

results among several commonly employed representations

of monthly temperature throughout the 20th and early 21st

century. To this end, four observational temperature data sets

and one reanalysis were studied through linear regression,
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extracting components synchronized with temporal variabil-

ity of eight predictors representing external climate forcings

and internal variability modes.

The basic correlation analysis in Sect. 4.1 revealed the

general geographical patterns of temperature (mis)match

among different observational data sets. Unsurprisingly, the

best agreement was found for regions with the best cov-

erage by measurements (most notably Europe and eastern

North America, where the Pearson correlations of monthly

temperature anomalies typically exceeded 0.9), leaving rel-

atively little room for uncertainty in the gridded data. Re-

gions with sparser observations, such as interiors of Africa

or South America, exhibited more disparity, and coverage by

the gridded data was often incomplete in these locations. Of

even greater interest was the resemblance between analysis-

type data sets and the 20th Century Reanalysis (20CR). Since

20CR does not directly utilize the temperature measurements

over land, greater deviations from “reality” may be expected,

especially for the continental areas. While the correlation

analysis indeed indicated somewhat loosened relation to the

analysis-type data, the match was still quite good in most re-

gions, with the poorest agreement again found in Africa and

South America. Major differences between the temperature

anomaly series were seldom observed over oceans (the most

notable exception being the higher latitudes of the southern

hemisphere). Since all the data sets (including 20CR) em-

ploy sea surface temperature as inputs, temperatures are tied

more closely to the historical trajectory of the climate system

and eventual contrasts can be largely ascribed to differences

among individual SST representations (assessed in detail by

Yasunaka and Hanawa, 2011).

While the correlation analysis pointed out the basic pat-

terns of differences between individual data sets, the ques-

tion remains how much these can affect the outcomes of

the attribution analysis. Match among the GHG-attributed

temperature changes was generally strong in most loca-

tions, but certain smaller regions were highlighted in 20CR

where this trend-like component diverged substantially from

the analysis-type data. These local discrepancies, previously

pointed out by Compo et al. (2013), also somewhat de-

crease the magnitude of the GHG-attributed component in

the global land temperature for 20CR. Furthermore, when

drawing conclusions from the results presented, it is essen-

tial to consider the limitations of the statistical approach to

the attribution analysis. First of all, even formally statistically

significant connections are not proof of physically meaning-

ful relations, as the regression analysis only seeks formal

similarities among the time series, unable to verify causality

of the links. For the attribution of the temperature trends to

GHGs, this is particularly critical. Although the significance

level is generally high for the GHG-related regression coeffi-

cients, it would be such for any explanatory signal of similar

structure (including a plain linear trend). While it is physi-

cally justified to associate the increase in GHGs with warm-

ing tendencies, there are other potential anthropogenic forc-

ing factors sharing similar temporal evolution, yet intention-

ally omitted in our analysis. Various man-generated aerosols

can contribute to either local warming (e.g., black carbon) or

cooling (e.g., sulfate aerosols; see, e.g., Skeie et al., 2011).

In many areas, the temporal progression of aerosol-related

predictors closely mimics that of GHG concentration (for in-

stance, the Pearson correlation between GHG concentration

and regional SO2 emissions is over 0.5 in most of the world

and often exceeds 0.9 locally, based on the SO2 data by Smith

et al., 2011). Our GHG-based predictor should therefore be

considered an approximate (and simplified) characterization

of the anthropogenic forcing in general, rather than of green-

house gasses alone. Note also that very similar values of tem-

perature response would have been obtained for a predictor

representing total global anthropogenic forcing rather than

GHGs alone, due to very high temporal correlation of the

respective series (exceeding 0.99 over our analysis period

when using the forcing data by Meinshausen et al., 2011)

and due to the fact that the responses are scaled by the end-

to-end increase in the predictor series here. Naturally, this

near-invariance in the given statistical setup should not be in-

terpreted as equivalence of the respective forcings in a phys-

ical sense. A more accurate view of the issue could perhaps

be gained by an analysis employing local-specific descriptors

of anthropogenic activity, but the challenges attached (such

as high collinearity of the anthropogenic predictors, limiting

the ability of the regression mappings to distinguish among

their effects) make such a task less suitable for approach-

ing by purely statistical means. General circulation models

may represent a more suitable tool for capturing the related

links, even though the associated uncertainties are still sub-

stantial (e.g., IPCC, 2013). This also applies to the evaluation

of other complex aspects of the climate system dynamics,

such as effects of long-term memory or climatic feedbacks,

intentionally omitted in our simplified regression-based ana-

lytical frame.

Of the natural forcings, the imprints of solar activity seem

to be represented in quite a similar manner by all the data sets

studied, including 20CR. The component attributed to varia-

tions of solar irradiance (involving both the 11-year cycle and

longer-term variability) was quite weak, in most individual

regions as well as in globally averaged temperature. These

results are largely consistent with previous assessments of

the impacts of solar activity on temperature (e.g., Lockwood,

2012; Gray et al., 2013). Still, the spatial patterns of solar

influence exhibit some degree of temporal stability, suggest-

ing that even though the fingerprints detected do largely not

test as statistically significant, they are not just an artifact of

stochastic components in the temperature series.

An interesting contrast between the results for globally av-

eraged temperature series and for their local counterparts was

found in the case of the effects of volcanic activity. The well-

known near-surface cooling following major volcanic erup-

tions was clear in all versions of globally averaged observed

temperature, but a rather complex pattern emerged from the
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gridded temperature data. Post-eruption warming was indi-

cated in several regions. There might be dynamical reasons

for such behavior (e.g., Stenchikov et al., 2006; Driscoll et

al., 2012), but the structures detected were quite ambiguous,

exhibiting both poor temporal stability and low statistical sig-

nificance (an uncertainty partly ascribable to distinctiveness

of individual volcanic events and their relatively brief periods

of effect within the time frame of our analysis). Furthermore,

aliasing of volcanic and ENSO activity (with major late-20th

century eruptions coinciding with El Niño phases of ENSO)

also needs to be considered when attributing the volcanic ac-

tivity, as well as the possibility of its influence on the AMO

phase (Knudsen et al., 2014). Interpretational pitfalls aside,

there was a strong agreement between the observational data

sets in their representation of the volcanism-attributed spa-

tial pattern. 20CR data showed tendency toward more posi-

tive post-eruption temperature anomalies in several regions,

resulting also in a more neutral response to volcanism in the

globally averaged 20CR data (largely due to the anomalous

response of 20CR-based global land temperature during the

first half of our analysis period).

The temperature variability patterns related to the cli-

mate oscillations considered (SO, NAO, AMO, PDO, TPI)

were generally captured similarly by individual data sets.

This also applies to 20CR for the most part, though there

seem to be some break-downs in the representation of trans-

continental and trans-oceanic teleconnections in the reanaly-

sis data, most noticeable in the influence of NAO over eastern

Asia, AMO over northern parts of Eurasia or weakened links

to SO and PDO in parts of Africa. One might speculate that

this distinction is rooted in the specific behavior of the reanal-

ysis engine, distorting the complex mechanisms propagating

the teleconnections. However, an unrealistic representation

of the long-distance links by the 20CR cannot be blamed au-

tomatically. Note that the differences detected are generally

more prominent in the first half of the analysis period, and

less striking (though still noticeable) during the later half-

period (Fig. S6). The reanalysis may thus simply struggle to

recreate the observed patterns in regions where the assimil-

able data are rare and relatively unreliable, just as the proce-

dures generating the analysis-type gridded data are burdened

with increased errors when faced with a lack of reliable in-

puts. Neither of these data sources can thus be considered

consistently superior and increased attention to the effects of

data uncertainty is needed when investigating climate vari-

ability in regions and periods with sparse observations. Keep-

ing these limitations and specifics in mind, the 20th Century

Reanalysis seems to provide a satisfactory approximation of

the past temperatures during the 20th and early 21st century,

and thus a suitable tool for studies concerned with validity of

climate simulations.

Potential pitfalls related to the attribution of tempera-

ture changes to trend-like predictors were already discussed

above, but even interpretation of the components associated

with faster variable explanatory factors needs to be done with

caution. Some of the internal climate oscillatory modes are

interconnected, and their respective indices partly collinear.

Variability assigned to a certain predictor does therefore not

need to originate from the respective forcing factor alone –

for instance, the relationship between SO/ENSO and PDO

implies that effects of the variability modes in the Pacific area

cannot be entirely separated, on neither physical nor statisti-

cal level. The issue of interdependent predictors is not lim-

ited to pair-wise relationships: it has been shown that vari-

ous variability modes in the climate system are intertwined

in quite complex networks, with nontrivial time-delayed re-

lations among oscillations in different regions (e.g., Wyatt et

al., 2012). Intricacy of such structures becomes even more

apparent when generalized links are studied, unrestricted to

just the conventional variability modes (e.g., Hlinka et al.,

2013, 2014a, b).

Caution is also needed when interpreting the outcomes of

the tests of statistical significance. The AR(1) model of resid-

ual autocorrelations, assumed here when assessing signifi-

cance of predictors’ connections to the gridded temperatures,

provides basic approximation of the short-term persistence.

Often, such an approach seems sufficient, especially over

land where the residual autocorrelations generally rapidly ap-

proach zero. In other cases (particularly for tropical oceans

and global averages encompassing oceanic areas), longer-

term autocorrelations of various shapes appear in the resid-

uals. Their presence is indicative of unaccounted-for com-

ponents in the data, long-term memory and/or presence of

biases and inhomogeneities, potentially infesting tempera-

ture analyses and reanalyses alike (e.g., Cowtan and Way,

2014; Ferguson and Villarini, 2014). To further assess the

validity of our significance tests, bootstrap-based estimates

of statistical significance for the gridded temperature data

were also implemented, using a variable-sized moving block,

reflecting the magnitude of residual autocorrelation (Politis

and White, 2004; Bravo and Godfrey, 2012). Little differ-

ence in the regression outcomes was found compared to the

other test designs in this paper. Artifacts of annual cycle were

also often found in the residuals, traceable (at least in part) to

non-stationary representation of the seasonal variations (Fos-

ter and Rahmstorf, 2011). A treatment by inclusion of com-

ponents approximating the 12-month periodicity among the

predictors was attempted, but resulted in no major changes

to the regression coefficients or their significance.

Another important aspect shaping the outcomes of the

regression mappings is the choice of the explanatory vari-

ables. Most of the predictors applied here exist in alter-

native variants, differing in their definition or method of

(re)construction. A sizable discussion could be devoted to

the specifics of each of them. While we did not study this

issue in such depth, partial experiments were carried out to

assess the degree of variability of the analysis outcomes if

alternative predictors were used. First, robustness of the im-

prints of volcanic forcing was assessed, with GISS aerosol

optical depth (Sato et al., 1993) substituted with Crowley and
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Unterman’s (2013) data. The resulting change to the global

temperature response and the corresponding spatial finger-

prints proved to be minor, generally smaller than uncertain-

ties associated with the regression coefficients themselves.

Use of hemisphere-specific volcanic aerosol amounts instead

of their global representation also induced just minor changes

to the respective response patterns.

Of the multiple definitions of the indices characterizing

the climatic oscillations studied, we prioritized the forms not

directly involving temperature itself, to avoid explicit con-

tribution of the temperature signal to the explanatory vari-

ables. This was not a problem for NAO and TPI, as their

descriptors are derived from the baric characteristics. In the

case of ENSO, the pressure-based SOI was preferred over

the SST-based NINO indices or multivariate ENSO index.

On the other hand, the usual forms of AMOI and PDOI are

calculated from areal SSTs, and thus likely interrelated with

the temperature signals. For PDOI, which exhibits compar-

atively weaker correlation with globally averaged tempera-

tures (at least partly due to the fact that PDOI is, by its defi-

nition, detrended by global sea-surface temperature), this is-

sue seems less serious. However, it is still worthwhile to see

how much the outcomes change from employing another ver-

sion of the index. Use of the PDO index from JISAO (http:

//research.jisao.washington.edu/pdo/PDO.latest) resulted in

generally weaker PDO imprint in global temperature (though

still largely within the confidence intervals shown in Fig. 4),

but nonetheless very similar spatial response pattern (with

the relatively strongest distinction being somewhat stronger

negative link over northern China). In the case of AMO, the

issue of predictor selection and interpretation of its effects is

more critical. Our AMO index of choice (linearly detrended,

as per the prevalent definition by Enfield et al., 2001) seems

to be formally associated with rather strong component in

global temperature, as well as in local temperatures in var-

ious regions across the globe. While this may indeed sug-

gest existence of trans-planetary teleconnections involving

AMO-related variability, there is a danger in overly formal-

istic interpretation of the patterns detected. Firstly, several

definitions of AMO index exist, embodying different views

of the phenomenon (see, e.g., Canty et al., 2013). Use of a

differently defined AMOI affects magnitude of the tempera-

ture response detected, and potentially also strength of com-

ponents tied to other predictors, including the volcanic ac-

tivity or the long-term trends (Canty et al., 2013; van der

Werf and Dolman, 2014). Some of our tests were therefore

repeated for AMOI series based on detrending the north At-

lantic SST by global anthropogenic forcing, proposed by

Canty et al. (2013) to limit the aliasing of anthropogenic

long-term temperature trend and AMOI. Little impact on

the outcomes of the attribution analysis resulted from such

change. Greater differences would likely arise from applica-

tion of AMOI detrended by mean sea surface temperature

(Trenberth and Shea, 2006) or global mean temperature (van

Oldenborgh et al., 2009), although it has been argued that

such method of detrending removes part of the target signal

(Canty et al., 2013). Secondly, the associations revealed do

not directly provide a conclusion to the still disputed ques-

tion of the existence and stability of AMO as a natural oscil-

latory phenomenon. The AMOI-related patterns have exhib-

ited relatively strong resemblance between the first and sec-

ond half of the analysis period, especially over the oceanic

areas. This suggests a fair degree of stability of the rela-

tions between north Atlantic SST and local temperature in

more distant areas, but does not confirm stationarity of AMO

as such. It should also be considered that the 55-year-long

subperiods do encompass less than one cycle of the approxi-

mately 70-year-long supposed main cycle of AMO, and that

the relations detected are in large part due to synchroniza-

tion of shorter-term variability in AMOI and temperature. Fi-

nally, attribution of temperature components to AMOI may

also be partly spurious due to aliasing with other predictors,

or with explanatory factors omitted in our analysis setup.

In particular, changes in amounts of anthropogenic aerosols

have been suggested as a cause for temperature variations in

the northern Atlantic (Booth et al., 2012), though their re-

sponsibility for the bulk of multidecadal variability has been

consequently disputed (Zhang et al., 2013). Possible forcing

of AMO by combined natural forcings (volcanic and solar)

has also been shown (Knudsen et al., 2014), while Ting et

al. (2014) suggested AMO to be a product of natural mul-

tidecadal variability and anthropogenic forcing. Altogether,

the question of AMO’s nature and degree of its influence re-

mains still open.

Finally, it should be accentuated once again that the issue

of attribution of climate variability cannot be completely re-

solved by statistical approach alone. Statistical solutions to

this multifaceted problem therefore need to be considered

alongside the GCM-based simulations, conceptually more

universal than purely statistical approaches, yet still only

partly successful in completely reproducing the observed

features of the climate system (IPCC, 2013). Our results here

hope to contribute to future efforts in this field: by show-

ing the character and variability of temperature components

formally attributable to various forcings across several data

sets, their robustness (or lack thereof) was illustrated, provid-

ing a picture of the respective fingerprints, as well as support

guidelines for the use of the respective data in validation of

the climate models.
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