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Abstract. To keep the Earth system in a desirable region of its state space, such as defined by the recently

suggested “tolerable environment and development window”, “guardrails”, “planetary boundaries”, or “safe (and

just) operating space for humanity”, one needs to understand not only the quantitative internal dynamics of the

system and the available options for influencing it (management) but also the structure of the system’s state space

with regard to certain qualitative differences. Important questions are, which state space regions can be reached

from which others with or without leaving the desirable region, which regions are in a variety of senses “safe”

to stay in when management options might break away, and which qualitative decision problems may occur as a

consequence of this topological structure?

In this article, we develop a mathematical theory of the qualitative topology of the state space of a dynamical

system with management options and desirable states, as a complement to the existing literature on optimal

control which is more focussed on quantitative optimization and is much applied in both the engineering and

the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the

state space and perform a detailed formal classification of the possible states with respect to the possibility of

avoiding or leaving the undesired region. Our results indicate that, before performing some form of quantitative

optimization such as of indicators of human well-being for achieving certain sustainable development goals, a

sustainable and resilient management of the Earth system may require decisions of a more discrete type that

come in the form of several dilemmas, e.g. choosing between eventual safety and uninterrupted desirability, or

between uninterrupted safety and larger flexibility.

We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevo-

lutionary Earth system modelling, economics, and classical mechanics, and discuss their potential relevance for

the climate and sustainability debate, in particular suggesting several levels of planetary boundaries of qualita-

tively increasing safety.
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1 Introduction

The sustainable management of systems mainly governed

by internal dynamics for which one desires to stay in

a certain region of their state space, such as a “tolera-

ble environment & development (E & D) window” or within

“guardrails” in a model of the Earth system (Schellnhuber,

1998; Petschel-Held et al., 1999; Bruckner and Zickfeld,

1998), requires first and foremost an understanding of the

topology of the system’s state space in terms of what regions

are in some sense “safe” to stay in, and to what qualitative

degree, and which of these regions can be reached with some

degree of safety from which other regions, either by the in-

ternal (“default”) dynamics or by some alternative dynam-

ics influenced by some form of management. In the con-

text of Earth system analysis for studying anthropogenic cli-

mate change (Schellnhuber, 1998, 1999), management op-

tions may correspond to global climate policies for mitiga-

tion of greenhouse gas emissions (IPCC, 2014) or techno-

logical interventions such as geoengineering (Vaughan and

Lenton, 2011) and much debated criteria for desirability in-

clude the resemblance of a Holocene-like state or the pro-

vision of certain levels of human well-being. In this setting,

it may be very hard to advance the definition of meaningful

“planetary boundaries” and a corresponding “safe operating

space for humanity” (Rockström et al., 2009a; Steffen et al.,

2015) and relate them to sustainable development goals with-

out such an in-depth analysis.

Also, the question of whether it suffices to influence the

system by active management for only a limited time to

reach a safe region, or whether it might be necessary to re-

peat active management indefinitely or even continue it un-

interruptedly in order to avoid undesired state space regions,

which is closely related to the “sustainability paradigms” of

Schellnhuber (1998), seems quite relevant in view of urgent

problems such as the climate policy debate. For example, if

suitable climate change mitigation policies such as certain

forms of energy market regulation can transform the eco-

nomic system in a way that allows one to eventually deregu-

late the market again, then for how long can one delay mit-

igation until this feature is lost and only permanent regula-

tion can help? Or, if certain adaptation or geoengineering op-

tions might be cheaper than mitigation but require an unin-

terrupted management or lead to a less well-known region

of state space (Kleidon and Renner, 2013), which of these

qualitatively different properties is preferable?

We will see that such questions about a “safe” or “safe

and just operating space” (Rockström et al., 2009b; Raworth,

2012; Scheffer et al., 2015; Carpenter et al., 2015) may lead

to decision dilemmas that cannot as easily be analysed in a

purely optimization-based framework, but that are highly rel-

evant for the design of resilient Earth system management

strategies. A summary of these dilemmas is contained in Ta-

ble 1 (the possible examples from Earth system management

mentioned there are discussed in the next section).

The paradigm of optimal control, which is much applied

in the engineering, on the one hand does not provide suf-

ficient concepts for such a qualitative analysis and on the

other hand typically requires quite a lot of additional knowl-

edge, in particular, some or other form of quantitative eval-

uation of states, e.g. in terms of indicators of human well-

being. Of course, the integrated assessment literature, al-

though also using optimization as a basic tool, has long real-

ized that the spatiotemporal distribution of wealth and the

diversity and uncertainty of impacts imply that the prob-

lem is hard to frame in terms of a single objective function

and has used several techniques to deal with this multi-issue

multi-agent decision problem, including certainty-equivalent

discount rates and hyperbolic discounting (Dasgupta, 2008),

cost–efficiency instead of cost–benefit analyses (Edenhofer

et al., 2010), lexicographic preferences (Ayres et al., 2001),

and many-objective decision making (Singh et al., 2015), to

name only a few, but although qualitative constraints appear

in many of them, the actual analyses then typically still focus

on quantitative assessments.

In this article, we will complement the above-mentioned

set of assessment tools by deriving in a purely topologi-

cal way a thorough and precise qualitative classification of

the possible states of a system with respect to the possibil-

ity of avoiding or leaving some given undesired region by

means of some given management options. Our results in-

dicate that in addition to (or maybe rather before) perform-

ing some form of quantitative (constrained) optimization, the

sustainable and resilient management of a system may re-

quire decisions of a more discrete type, e.g. choosing be-

tween eventual safety and permanent desirability, or between

permanent safety and increasing future options. This appears

even more so in the presence of strong nonlinearities, mul-

tistable regimes, bifurcations, and tipping elements (Lenton

et al., 2008; Schellnhuber, 2009; Keller et al., 2005), where

small state changes due to random perturbations or deliberate

management may not only have large consequences but can

also lead to qualitative and possibly irreversible changes.

To indicate the wide scope of applicability of our con-

cepts in various subdisciplines of Earth system science, we

illustrate the concepts and dilemmas with conceptual models

from climate science, ecology, coevolutionary Earth system

modelling, economics, and classical mechanics.

In contrast to the somewhat related but more formal ap-

proach of sequential decision problems in discrete-time sys-

tems (Botta et al., 2015), we focus on the more easily ap-

plicable class of continuous-time systems and their mod-

els here. Our classification is based on a distinction be-

tween default and alternative trajectories of a system, and

suitably adapted reachability concepts from control theory

and the important but vast field of viability theory (Aubin,

2009; Aubin et al., 2011; Aubin and Saint-Pierre, 2007;

Frankowska and Quincampoix, 1990; Martin, 2004; Rougé

et al., 2013). Since physical models of global-scale processes

or other macroscopic systems are usually of a statistical
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Table 1. Preview of dilemma types discussed in the article.

Name Option 1 Option 2 Possible example

“Glade” dilemma higher desirability/flexibility safety adaptation/mitigation

“Lake” dilemma uninterrupted desirability eventual safety great transformation

“Port” dilemma higher flexibility higher desirability land-use change

“Harbour” dilemma uninterrupted desirability eventually higher desirability/flexibility space colonization

“Dock” dilemma uninterrupted safety eventually higher desirability/flexibility new technologies

physics nature in the sense that they represent the aggregate

effects of many micro-scale processes by suitable approxi-

mations, their proper interpretation typically requires one to

expect small (actually or seemingly) random perturbations.

We take this into account here by strengthening the usual no-

tion of reachability to one of stable reachability, and by re-

quiring the featured subsets of state space to be topologically

open (instead of closed) sets, so that infinitesimal perturba-

tions cannot kick the system out of them.

In the next subsection (“Metaphorical framework”), we

will briefly summarize our main concepts with the help of a

metaphorical illustration, before introducing the correspond-

ing formal notation in Sect. 2 in a concise way, reserv-

ing a more detailed formal treatment for Appendix A. The

framework is then exemplified at the hand of several low-

dimensional, conceptual models from various subdisciplines

of Earth system science including climate science, ecology,

and coevolutionary social–environmental Earth system mod-

elling (Sect. 3) in order to indicate the wide scope of appli-

cability of our concepts. A thorough analysis of more realis-

tic and thus higher-dimensional models of the Earth system

is something we have to leave for future studies since that

would require further improvement of the numerical meth-

ods and algorithms employed for finding region boundaries.

We conclude with a discussion and outlook in Sect. 4.

1.1 Metaphorical framework

As a start, let us take the common metaphor that “we’re all

in the same boat” literally and represent the state of the Earth

system with all its natural and socio-economic parts at each

point in time by a single small boat floating or being rowed

somewhere on a rather complex system of waters such as in

Fig. 1.

The boat can only be on water, not on land, and will gen-

erally float along with the stream that represents the inherent

dynamics of the Earth system over hundreds and thousands

of years (the “default trajectory”), but it may also be rowed

in more or less different directions depending on how strong

the current of the stream is, and this possibility of rowing rep-

resents humankind’s agency in deliberately influencing the

Earth system’s course to some extent by some or other form

of what we will call “management” below. Let us assume

that the main qualitative distinction with regard to where hu-

manity wants their boat to be is represented by a division of

Figure 1. Metaphorical summary of concepts introduced in Sect.

1.1 (“Metaphorical framework”) inspired by Schellnhuber (1998).

It depicts a river flowing from the mountains to the sea while go-

ing through sunny (left) and dark parts (right) where humanity can

float and row on a boat. In the shelter, no rowing is needed to re-

main in the sun. One can row against the stream direction in slowly

flowing parts, shown with long thin arrows, but in fast parts marked

with swirls this is not possible. This setting gives rise to a number

of qualitatively different regions of the system’s state space that can

be found in any manageable dynamical system as well: upstream

regions such as glades and lakes from where the shelter can be

reached, downstream regions such as the backwaters from where

one can at best stay in the sun by management, and several types of

worse regions, all labelled here and explained in the text. See also

Figs. 2 and 3.

www.earth-syst-dynam.net/7/21/2016/ Earth Syst. Dynam., 7, 21–50, 2016



24 J. Heitzig et al.: Topology of sustainable management in the Earth system

the whole region into a desirable, “sunny” region on the left

and an undesirable, “dark” region on the right, both contain-

ing several parts of the waters that may be connected in any

imaginable ways, and with the natural water flow possibly

drawing the boat back and forth between these two regions.

The sunny region is meant to consist of all those possible

states of the natural and socio-economic parts of the Earth

system in which some generally agreed environmental and

living standards are met, such as those defined by the human

rights charter or the sustainable development goals (global

goals) recently adopted by the United Nations. An alterna-

tive definition of the sunny region has been put forward in

the planetary boundary framework (Rockström et al., 2009a;

Steffen et al., 2015), where states lying within the corridor

of Earth system variability during the Holocene that human

societies are adapted to are considered as desirable.

We will show in this article that in such a setting, no mat-

ter how the waters look exactly, the general situation is in

a certain sense always equivalent to the situation depicted

in Fig. 1. There will in general be a certain sunny water re-

gion where one does not need to row at all in order to stay

in the sun forever but can simply lean back and let the boat

float around inside that region. In the picture, this region is

the top-left tranquil tarn, but in general this region may also

consist of several disconnected parts which we will call the

shelters to emphasize their desirable and safe nature. Indeed,

we will argue below that these shelters may be the most nat-

ural candidates for being called a “safe and just operating

space for humanity”, only that we may not yet be in them.

In the Earth system, there may be several such shelters, one

of which might correspond to resilient states of the world

(Folke et al., 2010) where humanity lives reconnected to the

biosphere (Folke et al., 2011) and no active intervention or

constant large-scale management is needed.

Connected to the shelter(s), there will in general also be

other parts of the sunny region where it would not be safe to

just lean back since the flow would then draw the boat into

the dark after some time, but from where the shelters can still

be reached by some suitable rowing, as show to the left of the

“danger” sign in the image. For their “almost-safe” character,

we will call such regions glades. If the glade is for some

reason more desirable or offers more flexibility in terms of

where one may row, one may face a dilemma when in a glade,

i.e. a qualitative decision problem, namely whether to prefer

staying in the safety of the shelter or in the more desirable

but unsafe glade.

The shelters may also be reached by rowing from some

places within the dark region (e.g. to the right of the “danger”

sign) or through such a dark region from some other sunny

places (such as those above the “keep out” sign). Among

these latter sunny places from where the shelters can be

reached only through the dark, there will generally be some

places where one may alternatively stay forever in the sun

by continuous rowing instead of passing through the dark

and leaning back eventually. Such special places as the one

above the “keep out” sign will be called lakes here, and they

are characterized by a moderate current towards a dark place

that one can row against and by the decision dilemma that

results from the question of whether one should indeed do so

or rather row to a shelter through the dark.

All these regions together will be called the upstream re-

gion for reasons that should become clear soon. In any sys-

tem’s state space, the upstream consists of all states from

which the shelters can be reached by management, and it is

partitioned into one or several shelters, glades, dark upstream

parts, lakes, and some remaining sunny upstream parts where

it is not possible to stay in the sun forever. In Fig. 1, the up-

stream ends where the rapids left of the “keep out” sign be-

gin since there the stream becomes so strong that it becomes

impossible to row against it in order to eventually reach a

shelter. Once the boat has left the upstream via such a rapid,

there is no hope of leaning back eventually and staying in

the sun, and for this reason the borders of the upstream may

be called the “no-regrets planetary boundaries”, forming a

middle level of a hierarchy of planetary boundaries we will

suggest in Sect. 4.

Further down the stream there will typically be places

where it is still possible to stay in the sun forever, only that

one has to row over and over again to do so, such as in the

slow-moving side branch below the “keep out” sign in the

picture. Such regions, called backwaters here, are similar to

lakes, only without the option of rowing to a shelter, so that

the lake dilemma does not occur since the only chance one

has is to row against the slow current to stay in the backwa-

ter. While the upstream was defined by being able to reach

a shelter, the downstream is now defined as all places from

where a backwater but not a shelter can be reached, includ-

ing the backwaters, some dark parts such as the slow-moving

dark part just right of the backwater in the picture, and maybe

some remaining sunny downstream parts from where one

may reach a backwater only through the dark. An example

of a backwater could be a “machine world” where humanity

can fully control nature to its very minute detail. While they

can stay within the sunny region for infinite time through this

management, there is no way of reaching a shelter anymore

because the ecosystem has been changed irreversibly.

The waterfall in Fig. 1 indicates that besides the upstream

and downstream regions, where it is possible to stay in the

sun eventually, there will in general be further, less hopeful

places the system may be in, from where one cannot avoid

entering the dark over and over again. In some of those, one

can at least make sure that one also spends some time in the

sun over and over again, as depicted by the kayak in the pic-

ture. Since this is typically connected to some form of cyclic

motion, we will call such regions eddies. In some eddies, fail-

ing to row correctly may push the boat into an even less de-

sirable region, called an abyss, from where one can no longer

avoid ending up in the dark forever eventually, as in the ring-

shaped abyss shown inside the eddy in the figure. Finally, the
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dark region from where there is no escape, depicted in the

centre of the abyss, will be called a trench.

This completes our main partitioning of the Earth system’s

or any other manageable system’s state space into qualita-

tively different regions: upstream and downstream, defined

by being able to reach shelters or backwaters; abysses, de-

fined by not being able to avoid ending up in a trench; and

eddies in between, defined by being at least able to switch

between sun and dark forever. Figure 2 summarizes all these

regions in the form of a decision tree, where one can identify

the region the system is in by answering a small number of

questions. That our partitioning is indeed complete and can

be given a suitable and unambiguous mathematical form for

all kinds of systems is shown in the next section.

While in Fig. 1, each of the introduced set of system states

is just one topologically connected region, in general most of

these sets are composed of several disjoint regions, so there

may be several shelters, glades, lakes, etc. On a finer level,

these may be analysed further by looking at which parts may

be reached from which other parts, and this leads to a finer,

hierarchical partition into ports, rapids, harbours, docks, etc.

and to several new types of dilemmas, as shown in Fig. 3.

All of the five types of dilemmas listed in Table 1 can

easily occur in the collective “management” or governance

of the Earth system by humanity. A glade dilemma may oc-

cur if adaptation is seen as preferable to mitigation for wel-

fare reasons but turns out to be a riskier option due to a

higher uncertainty of the corresponding climate impacts. A

lake dilemma can arise if a great transformation of the global

energy system towards a carbon-free economy would tem-

porarily lead to welfare losses in poorer countries. A port

dilemma may come from the option of increasing welfare

by extending industrial agriculture causing biodiversity loss

(decreasing flexibility) due to the related large-scale land-use

change. A harbour dilemma could occur in the future when

colonization of other planets (increasing flexibility) becomes

feasible but extremely costly. Finally, a dock dilemma arises

whenever a very promising new technology with some un-

known risks and side effects (such as genetically engineered

food production) could be introduced on a planetary scale.

2 Formal framework

We will now put all of the above on thorough mathematical

footing. Let us assume a manageable dynamical system with

desirable states, given by the following components:

i. a dynamical system with a state space X, default dy-

namics represented by a family of default trajecto-

ries τx(t), and some basic topology on X (e.g. the Eu-

clidean topology; see Appendix A1 for more detail);

ii. a notion of desirable states represented by an open set

X+⊆X, called the sunny region, whose complement

X−=X−X+ we call the dark;

iii. a notion of management options represented by a family

Mx of admissible trajectories µ for each x ∈X.

We assume that one can switch immediately to any trajec-

tory µ∈Mx whenever in state x. We say the system floats

when it follows a default trajectory, and that we may row the

system along any other admissible trajectory.

Note that although, formally, we consider deterministic

autonomous systems only, non-deterministic systems can

be incorporated by considering probability distributions as

states, time-delay systems can be treated similarly, and exter-

nally driven or otherwise explicitly time-dependent systems

can be covered by including time t as a variable with ṫ = 1

into the state vector. Also, if management involves some

form of inertia, e.g. if not the propelling vector v of a boat

but only its acceleration v̇ can be changed discontinuously,

the proper way to model this in our framework would be to

treat v as part of the state.

2.1 Qualitative distinction of regions with regard

to sustainable manageability of desirability

The main idea of the coarsest of our classifications of states

is to first identify (i) a safe region where management is un-

necessary, called the shelters S, and (ii) a less safe but larger

manageable region M where one can permanently avoid the

dark at least by management. Then we classify all states

with regard to whether and how X+, S, and M can be sta-

bly reached from the current state by management. For each

state, we ask the following questions. (iii) Can S be stably

reached, and if so, can the dark be avoided on the way? (iv) If

not, can M be stably reached? (v) If not, can we stably reach

X+ over and over again, or at least once again? We will see

that these criteria lead to a partition of state space into a “cas-

cade” consisting of five main regions: upstream U , down-

stream D, eddies E, abysses ϒ , and trenches 2. Each of

these will then be split up further into sets such as glades G,

lakes L, and backwaters W by asking further qualitative

questions. In choosing these figurative terms, we try to avoid

a too technically sounding language and rather extend the

useful and common metaphor of “flows” and “basins” in a

natural way without trying to match their common-language

meanings too accurately.

To acknowledge the fact that all real-world dynamics and

management will be subject to at least infinitesimal noise and

errors, we base the formal definition of these state space re-

gions on certain notions of invariant open kernel, sustain-

ability, and stable reachability, whose symbolic mathemat-

ical definitions and algebraic properties are detailed in Ap-

pendix A2.

2.2 Shelters, manageable region, upstream, and

downstream

The invariant open kernel of a set A⊆X, denoted Aι◦, is the

largest open subset of A that contains the default trajecto-
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Figure 2. Decision tree summarizing the partition of a manageable dynamical system’s state space with regard to stable reachability of the

desired region or the shelters (main cascade), and the finer partition of the manageable region. The colour scheme (grey undesired regions,

green upstream regions, yellow downstream regions, red eddies, and abysses, with lighter meaning better) is also used in the remaining

figures.

ries of all its own points. The shelters are the invariant open

kernel of the sunny region,

S =
(
X+

)ι◦
. (1)

S contains all sunny states whose default trajectories stay in

the sunny region X+ forever without any management even

when infinitesimal (or small enough) perturbations occur. In

other words, when inside S, one will “stably” stay in X+ by

default.

We call an open setA sustainable (in the basic sense of the

word, simply meaning that it can be sustained) iff it contains

an admissible trajectory for each of its points. The sustain-

able kernel of a set A⊆X, denoted AS , is the largest sus-

tainable open subset of A. We call the sustainable kernel of

the sunny region the manageable region:

M =
(
X+

)S
⊇ S. (2)

In other words, when insideM , one can stably stay in X+ by

management.

In Appendix A2, we introduce a suitable notion of stable

reachability to overcome two problems with the classical no-

tion of (plain) reachability known from control theory. For

now, let us assume we know what we mean when saying that

a state y or a set Y ⊆X is stably reachable from some state x

through some set A⊆X, denoted x A y or x A Y . Using

this notion of stable reachability for the choice A=X (other

choices of A will be used in the next section), we can now

define the upstream U as the set of states from where the

shelters S can be stably reached at all. Likewise, the down-

stream D consists of all states from which the manageable

region M but not the shelters can be stably reached:

U = ( XS)⊇ S, (3)

D = ( XM)− ( XS)= ( XM)−U ⊇M −U. (4)

Earth Syst. Dynam., 7, 21–50, 2016 www.earth-syst-dynam.net/7/21/2016/
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Figure 3. Illustration of port, harbour, and dock dilemmas intro-

duced in Sect. 1.1 (“Metaphorical framework”). As in Fig. 1, hu-

manity can float in and row a boat on a complex waterway. From

the upper port city (upper dark-blue region), one can get to some

unknown region to the left and to another, nicer port city (lower

dark blue) at the shore through a rapid (hatched blue) which cannot

be traversed in the other direction. This choice between desirabil-

ity and flexibility forms a port dilemma. The nicer port city has

two harbours (middle blue regions), of which the right one is more

desirable, and between which one can switch only through an unde-

sired region where pirates loom (circular area). Boats in the left har-

bour face the harbour dilemma of choosing between either avoiding

the undesired region by all means or eventually reaching a place of

higher desirability. Finally, in the left harbour there are two safe

docks (light-blue regions), of which the top one is more desirable,

and between which one can switch only through an unsafe part of

the harbour from which one may be drawn into the undesired region

if the engine fails. Boats in the bottom dock face the dock dilemma

of choosing between uninterrupted safety and eventual higher de-

sirability.

2.3 Trenches, abysses, eddies, and the main cascade

On the other, dark end of what we will call the main cascade,

we first define the trenches 2 as that region in the dark from

which one cannot stably reach the sunny region even once,

2=X−
(
 XX

+
)

(5)

(this concept approximately corresponds to the “catastrophe

domains” of Schellnhuber, 1998).

Now we turn to the region from where one cannot avoid

ending up in the trenches. We define the abysses ϒ as the

closure of this region, minus the trenches:

ϒ = {x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}−2. (6)

The closure is taken since even an infinitesimally small per-

turbation from a point in this closure can make the trenches

unavoidable.

Finally, the eddies E are the remainder of X, i.e. the part

from where the manageable region cannot be stably reached

but the trenches can be avoided:

E =X−U −D−ϒ −2

= (X− ( XM))∩ (X− (ϒ +2)). (7)

Thus, when in the eddies, even though one can reach the

sunny part over and over again, one cannot stay there forever

but has to visit the dark repeatedly.

A connected component of 2, ϒ , or E will be called an

individual trench, abyss, or eddy, and the latter two typically

have sunny and dark parts.

The system C={U ,D, E, ϒ ,2} is a partition of X which

we call the main cascade because of the following mutual

reachability restrictions:

¬(2 ϒ),¬(ϒ E),¬(E D),¬(D U ). (8)

In other words, one might at best be able to go in the “down-

stream” direction by default or by management, from up-

stream to downstream to the eddies to the abysses to the

trenches, but not in the other, “upstream” direction (see also

Fig. 2).

2.4 The glades and lake dilemmas, backwaters, and the

manageable partition

Some of the states in the manageable region M may be in

U = ( XS) but not in ( X+S). This motivates the definition

of two subsets of M via the relation of sunny stable reacha-

bility, X+ , namely (i) the gladesG, from where the shelters

can be stably reached through the sun, and (ii) the lakes L,

from where the shelters can be stably reached only through

the dark:

G= ( X+S)− S, (9)

L=M ∩U − ( X+S)=M ∩U − S−G. (10)

Glades and lakes are two particularly interesting types of

regions since in both one has a qualitative decision prob-

lem. The glade dilemma occurs if a glade is for some reason

more desirable than its shelter, since then one has to decide

whether to stay in the more desirable but unsafe glade or row

to the less desirable but safe shelter. The lake dilemma ex-

ists in every lake: shall one stay in the sun by rowing over

and over again, but risking to float into the dark if the paddle

breaks, or shall one move into a shelter, accepting a tempo-

rary passage through the dark, to be able to recline in safety

eventually? In other words, the lake dilemma is a choice

between uninterrupted desirability and eventual safety. Be-

low we will encounter more qualitative dilemmas of this and

other types.

While {S, G, L} is a partition of M ∩U , the downstream

D may also contain a manageable part, the backwaters W .

This is the region where one may stay in the sun forever by
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rowing over and over again, but where one may not stably

reach the shelters at all, not even through the dark:

W =M ∩D =M −U. (11)

This completes the manageable partition

M = S+G+L+W. (12)

Also, bothU andD may contain points outsideM , which we

call the dark upstream/downstream,

U− = U ∩X−, D− =D ∩X−, (13)

and the remaining sunny upstream/downstream,

U (+)
=
(
U ∩X+

)
−M, D(+)

=
(
D ∩X+

)
−M, (14)

leading to the upstream and downstream partitions

U = S+G+L+U (+)
+U−,

D =W +D(+)
+D−. (15)

Finally, one can divide the eddies and abysses into sunny and

dark parts:

E± = E ∩X±, ϒ± = ϒ ∩X±. (16)

All the sets introduced so far are summarized in Fig. 2 in

the form of a decision tree that allows for a fast classification

of individual states.

2.5 Finer distinction of regions with regard to mutual

reachability of different types

In addition to the glade and lake dilemmas introduced above,

there exist at least three further types of qualitative decision

problems, all related to the question of which parts or subre-

gions of the above introduced regions may be stably reached

from which other parts, and whether corresponding transi-

tion pathways exist that do not leave the shelters or at least

the sunny region, or only through the dark. In order to study

these questions, we introduce three additional, successively

finer partitions derived from the reachability relations  X

(stable reachability) and  X+ (stable reachability through

the sun) that we used already above, and from the even more

restrictive relation S (stable reachability through the shel-

ters).

2.5.1 The ports-and-rapids partition and network, and

the port dilemma

While from each state in U , one can stably reach some part

of S, one cannot in general navigate freely inside S or U or

any other member of the main cascade C. Let us call a max-

imal region in which one can navigate freely a port (see Ap-

pendix A3 for more thorough formal definitions and proofs

of the claimed properties). Each port is completely contained

in one of the sets U , D, E, ϒ−, 2, and none can intersect

ϒ+, so the notion of ports fits well into the hierarchy of re-

gions that began with the main cascade and the manageable

partition. But there are also transitional states not belonging

to any port since one cannot return to them. Thus, to extend

the system of all ports into a partition of all of X, we also

have to classify these non-port states, and we do so by ask-

ing which ports they can reach and from which ports they

can be reached. States that are equivalent in this sense form

what we call a rapid. It turns out that U and D are then par-

titioned into ports and rapids, and so is each individual eddy,

abyss, and trench. The reachability relations between ports

and rapids form a directed network that concisely summa-

rizes the overall structure of all management options.

Figure 1 shows the very simple case of a linear network:

the whole upstream is one port, the sunny downstream and

the adjacent fast-moving part of the dark downstream form

a rapid, the backwater and the slow-moving part of the dark

downstream form another port, the waterfall is another rapid,

the eddy is a port again, and the abyss and the trench are

rapids. In the examples below, we will, however, see that

much more complex ports-and-rapids networks may occur in

models, and one can prove that any acyclic graph may occur

as the ports-and-rapids network of some system.

The ports-and-rapids partition is helpful in the discussion

of a certain type of dilemma that results from two different

objectives which may not be easily balanced: (i) the objective

of being in or reaching a state with high intrinsic desirability,

e.g. as measured by some qualitative preference relation finer

than the mere distinction between “desirable” and “undesir-

able”, or even by some quantitative evaluation such as a wel-

fare function, and (ii) the objective of retaining an amount of

flexibility as large as possible by being in or reaching a state

from which a large part of state space is reachable. Flexi-

bility may be important in particular in situations in which

there is some uncertainty about future management options

and/or future preferences (Kreps, 1979). We call this a port

dilemma.

2.5.2 The harbours-and-channels partition and network,

and the harbour dilemma

Since they do not take into account the definition of the desir-

able region X+ at all, ports and rapids are not directly com-

patible with the regions from the manageable partition M
since their members may overlap in complex ways. However,

we can construct a very similar but finer partition based on

stable reachability through the sun ( X+ ) instead of (plain)

stable reachability, restricted to the sunny region, and the re-

sult turns out to be compatible with M.

A maximal region in which one can freely navigate with-

out leaving the sun is called a harbour. A region of states

that do not belong to any harbour but from which the same

harbours can be reached through the sun and which can be
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reached from the same harbours through the sun is called a

channel. Since each harbour or channel lies completely in a

port or a rapid, the harbours and channels form a finer par-

tition than the ports and rapids and form a finer layer of the

reachability network in which the links represent reachability

through the sun instead of mere reachability.

The harbours-and-channels partition allows one to identify

decision problems involving (i) the objective of staying in a

desirable state and (ii) the objective of eventually reaching a

state with higher desirability or flexibility, which is called a

harbour dilemma here.

2.5.3 The docks-and-fairways partition and network,

and the dock dilemma

Note that although the harbours-and-channels partition is

finer than that into ports and rapids, there is still one impor-

tant region that can have nontrivial overlaps with harbours

and channels, namely the shelters S. In order to complete our

hierarchy of partitions and networks of regions, we there-

fore introduce a third and finest partition and network level,

restricted to S, based on the notion of stable reachability

through the shelters, S .

In complete analogy to the above, a maximal region of

states that are mutually reachable through S is called a dock,

and the non-dock states in S are classified into so-called fair-

ways with regard to their reachability of these docks. Again,

each dock or fairway lies completely in a harbour or channel,

and they form a third layer of the reachability network whose

links now represent the safest form of reachability, namely

through the shelters.

Finally, the docks-and-fairways partition is helpful in the

discussion of dilemmas involving (i) the objective of staying

in a safe state (i.e. in the shelters) and (ii) the objective of

eventually reaching a state with higher desirability or flexi-

bility. We call this a dock dilemma.

2.6 Summary of the introduced hierarchy of partitions

and networks

To summarize, we have now a hierarchy of ever-finer parti-

tions of the system’s state space at our hands. We began with

the main cascade C={U , D, E, ϒ , 2}, its refinement into

the partition {S, G, L, U (+), U−, W , D(+), D−, E+, E−,

ϒ+, ϒ−,2} (see Fig. 2), and the further refinement by topo-

logical connectedness into individual shelters, glades, lakes,

backwaters, eddies, abysses, and trenches. These partitions

represent the qualitative differences in stable reachability of

the shelters or the manageable set, thus allowing for a first

classification of states with regard to the possibilities of sus-

tainable management, and may reveal decision problems of

the type of glade or lake dilemma which will occur in many

of the examples below, where one has to choose between

higher safety and higher desirability or flexibility or between

uninterrupted desirability and eventual safety.

A different refinement of C into the ports-and-rapids net-

work is still based on stable reachability alone but contains

other details suitable for the identification and discussion

of possible port dilemmas that involve a choice between

higher desirability and higher flexibility. Inside the desirable

region X+, this partition can be refined into the harbours-

and-channels network suitable for the discussion of harbour

dilemmas that involve a choice between uninterrupted desir-

ability and eventually higher desirability or flexibility, and

further into the docks-and-fairways network suitable for the

discussion of dock dilemmas that involve a choice between

uninterrupted safety and eventually higher desirability or

flexibility (Table 1).

These three networks may also be interpreted as a three-

level “network of networks” with nodes representing state

space regions of different quality and size. A network-

theoretic analysis of it using methods such as the node-

weighted measures of Heitzig et al. (2012) may especially

be interesting in the context of varying system parameters

and bifurcations such as those in Fig. B2, but this is beyond

the scope of this article.

3 Examples

In this section, we will apply the introduced framework to

several illustrative examples from natural and coevolutionary

Earth system modelling, ecology, socio-economics, and clas-

sical mechanics. The examples have been chosen not for their

realism but for their simplicity in order to show the broad

scope of potential applicability of our concepts, as well as

the relevance of the identified types of decision dilemmas in

both the natural and socio-economic components of the Earth

system.

3.1 Carbon cycle and planetary boundaries

Our first example is from natural Earth system modelling and

illustrates which of the above-introduced regions occur most

often for systems that possess only a single, globally stable,

and desirable attractor.

Anderies et al. (2013) proposed a conceptual model of the

global carbon cycle capturing its main features while keeping

the model sufficiently low-dimensional to be able to discuss

the planetary boundaries concept with it. We use their model

for pre-industrial times, which has three dynamical variables

cm, ct and ca= 1− cm− ct representing the maritime, terres-

trial, and atmospheric shares of the fixed global carbon stock.

The dynamics are of the form

ċm = am (ca−βcm) , ċt = f (ca,ct)−αct,

where am and β are diffusion parameters, f is a function

representing photosynthesis and respiration, and α governs

the human offtake rate from the terrestrial carbon stock. See

Anderies et al. (2013) for details and parameter values.
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Since the parameter α can be considered the natural hu-

man management option for this system, we assume the de-

fault flow has a value of α=α+= 0.5, while management

can reduce it by half to α=α−= 0.25, which results in the

trajectories shown in Fig. 4. Both have a unique stable fixed

point in the interior of the state space which is globally at-

tractive for all states with ct> 0.

In order to roughly represent the planetary boundaries re-

lating to climate change, biosphere integrity, and ocean acid-

ification (Rockström et al., 2009b; Steffen et al., 2015), we

require a “sunny” state to have sufficiently low atmospheric

carbon, at least a minimum value of terrestrial carbon, and

not too large maritime carbon, leading to a dark region of the

shape shown in Fig. 4 in grey. If, as shown, the unmanaged

fixed point is sunny, one obtains a purely upstream situation

with a shelter surrounding the fixed point, a glade, and a re-

maining sunny upstream U (+) as shown in the figure. For

our (quite arbitrarily) chosen parameter values, a trajectory

starting in the sunny upstream is likely to first cross the cli-

mate boundary and then the biosphere boundary before get-

ting back into the sunny region, whereas it seems quite un-

likely to cross the acidification boundary.

In this example, all non-upstream regions are empty, and

so is the lake region; hence, no lake dilemma occurs. On the

other hand, if one considers a higher ct to be preferable, we

get an example of the glade dilemma since the managed fixed

point in the less safe glade has higher ct than the unmanaged

fixed point in the safer shelter. Note that this is neither a port,

harbour, or dock dilemma since both points are in the same

port and harbour and only the unmanaged one is in a dock.

If, instead, we had chosen the minimum value for ct to

be larger than the unmanaged equilibrium value, the shelter

would be empty and the whole situation would change from

upstream-only to either a downstream-only or an abyss-and-

trench situation. This type of topological bifurcation will be

studied in Sect. 3.4. In the next example, we will see a lake

dilemma instead of a glade dilemma.

3.2 Competing plant types and multistability

The second example, from ecology, demonstrates how the

lake dilemma may occur in a multistable system with a sunny

and a dark attractor.

In this fictitious example, two plant types (1 and 2) com-

pete for some fixed patch of land, modify the soil, and are

harvested. Their growth follows logistic-type dynamics, with

land cover proportions x1,2 ∈ [0, 1] following the equations

ẋ1 = x1

(
K1

(
x1,2

)
− x1

)
−h1x1,

ẋ2 = rx2(K2(x1,2)− x2)−h2x2.

In this, r > 1 is a constant productivity quotient, h1,2

are the harvest rates, and the two dynamic capacities

K1(x1,2)=
√
x1(1− x2)6 1 and K2(x1,2)=

√
x2(1− x1)6 1

represent the fact that each type modifies the soil quickly

Figure 4. Phase portrait of the pre-industrial carbon cycle model

of Anderies et al. (2013). Arrows indicate default/unmanaged dy-

namics (pale blue) and alternative/managed dynamics (dotted dark

blue) from reducing the human offtake rate by half. Filled dots: cor-

responding stable fixed points. Grey area: undesired region defined

by (i) upper bounds for maritime carbon cm (white horizontal line,

representing a planetary boundary related to ocean acidification)

and atmospheric carbon 1− ct− cm (white diagonal line, related to

a climate change boundary) and a lower bound for terrestrial carbon

ct (white vertical line, representing an ecosystem services planetary

boundary). Coloured areas and labels: derived state space partition

(see text); colours as defined in Fig. 2: a shelter S around the glob-

ally stable fixed point of the default dynamics, a gladeG from where

S can be reached by management without violating the bounds, and

a remaining sunny upstream U (+) from where one cannot avoid vi-

olating the bounds temporarily.

to its own benefit but to the other type’s disadvantage (see

Supplement 1 for a discussion of the model design based on

Bever (2003), Kourtev et al. (2002), Kulmatiski et al. (2011),

Levine et al. (2006), Poon (2011), and Read et al. (2003).

For our illustration, we assume that, on the default trajecto-

ries, both harvest rates h1,2 equal some rather high value h+,

leading to low equilibrium harvests. We assume management

can repeatedly choose between this default and two types

of alternative trajectories. Type 1 has a lower value for both

harvest rates, h1,2=h−<h+, representing management by

restricting harvests politically in order to yield higher long-

term harvests, but without aiming to change the plant mix,

as depicted in Fig. 5 (left panel). Type 2 management option

has harvest rates h2= 0 and h1= 2h+, representing manage-

ment by temporarily protecting type 2 in order to change the

plant mix to the higher productivity plant; we assume that

this moratorium results in more intense harvesting of type 1,

as depicted in Fig. 5 (right panel). We assume that both op-

tions exist simultaneously at all times (the separate plots of

Fig. 5 are only for better discernibility of the trajectories). We
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Figure 5. Competing plant types example, showing all upstream regions and illustrating the lake dilemma. A bistable system of two com-

peting plant types with two simultaneous management options (depicted in separate plots only for discernibility). Management by a general

harvesting quota (dotted arrows shown left) can ensure desirable long-term harvests of the less productive type x1 (lake L). Management

by temporary protection of the more productive type x2 (dashed arrows shown right) can cause a transition to the desirable fixed point (in

the shelter S), but only through the undesired region of low harvests (grey region). The state space partition boundaries resulting from both

options together (white curves) and a desirable minimum harvest boundary (white diagonal) follow some admissible trajectory at each point.

set the desirable region to where x1+ x2>` for some `> 0

in order to ensure some minimum harvests.

For the choice r = 2, h+= 0.2, h−= 0.1, `= 0.65 of the

figure, the desirable high-productivity stable fixed point of

the default dynamics at≈ (0, 0.79) is in the sunny region and

is thus contained in a shelter S. The latter is delimited by the

default trajectory that meets the boundary to the undesired re-

gion tangentially. S can be stably reached from all states with

x2> 0, and hence the upstream is U ={(x1, x2)|x2> 0}. The

border of the gladeG next to S can be found by backtracking

the “widest” admissible trajectory that meets the boundary to

the undesired region tangentially; this turns out to be a type

2 management trajectory as seen in Fig. 5 (right panel). This

shows how the boundaries of regions may often be found

by identifying tangential or otherwise significant points and

backtracking the default and alternative trajectories leading

to them.

The lower-productivity stable fixed point of the default dy-

namics (with h1,2=h+) at ≈ (0.52, 0) is undesired for this

choice of X+. From it one cannot only navigate to S but can

also (and faster) get to the higher productivity stable fixed

point of the first type of managed dynamics with h1,2=h−,

at ≈ (0, 0.79), and stay there as long as management holds.

Hence the region around (0, 0.79) is part of the manageable

region M . The exact boundary of this region (which soon

turns out to be a lake, L) is the “widest” admissible trajectory

that meets the boundary to the undesired region tangentially;

in this case, this trajectory turns out to be a type 1 manage-

ment trajectory as seen in Fig. 5 (left panel). To get from

this type 1-dominated region to the type 2-dominated shel-

ter S via the other management option of protecting type 2,

one has to cross the undesired middle region in which both

types coexist at a low level due to soil conditions that are

suboptimal for both types. Hence the region around (0, 0.79)

is a lake. The associated lake dilemma is similar to a glade

dilemma in that staying in a lake is unsafe as in a glade, but

it differs in the reason why one may want to stay there: while

staying in a glade may be attractive simply because the glade

may be more desirable than the shelter in some quantitative

sense, staying in a lake may seem attractive since that avoids

having to pass through the dark to reach safety.

This form of the lake dilemma can also occur in other mul-

tistable systems when one of the attractors is in the dark but

sufficiently close to the sunny region so that constant man-

agement can sustain the system in a sunny place near that

attractor, and when other management options may push the

system towards another, sunny attractor after crossing the

dark.

Note that, in this example, the lake dilemma falls together

with a port dilemma since after leaving the lake for the shel-

ter, one cannot return. If we choose a slightly larger sunny

region by lowering ` to `= 0.45, the unmanaged fixed point

with y= 0 gets into X+ and the former lake around it now

becomes a second shelter, which might be called a shelter–

lake transition. But from this shelter the other, more desirable

shelter can still only be reached through the dark. Since the

two shelters correspond to two harbours in the reachability

network, this means the former lake dilemma has been con-

verted into a harbour dilemma.

www.earth-syst-dynam.net/7/21/2016/ Earth Syst. Dynam., 7, 21–50, 2016



32 J. Heitzig et al.: Topology of sustainable management in the Earth system

0.0 0.2 0.4 0.6 0.8 1.0

z1 =
x1

0.3 +x1

0.0

0.2

0.4

0.6

0.8

1.0
z 2

=
x

2

0.
3

+
x

2

S

U−

Θ
U( +)G

Υ+

Figure 6. Substitution of a dirty technology. Coevolution of the

cumulative production of a dirty technology (x1) and a clean one

(x2) without (pale-blue curves) and with (dotted dark-blue curves)

a subsidy for the clean technology. Undesired region with too high

future usage of the dirty technology coloured in grey. Knowledge

stocks x1,2 were transformed to z1,2= x1,2/(0.3+ x1,2) in order to

capture their divergence to +∞.

The example also shows that the more management op-

tions exist, the less trivial it is to find the boundaries be-

tween regions even in two-dimensional systems. For higher

dimensions, one will usually have to rely on specialized nu-

merical algorithms such as the viability kernel algorithm of

Frankowska and Quincampoix (1990) from viability theory.

3.3 Substitution of a dirty technology

Our third example concerns a purely socio-economic part of

the Earth system that bears some similarity to the preced-

ing example but features regions from both ends of the main

cascade: upstream and abyss/trench, without having the in-

termediate regions of downstream and eddies.

Instead of plants, in this example a certain produced good

(e.g. electric energy) comes in two types which are econom-

ically perfectly substitutable but whose production processes

use two different technologies – one “dirty” and one “clean”

(e.g. conventional and renewable energy). The production

costs C1 and C2 are convex functions of production output

per time yi and decrease over time via learning-by-doing dy-

namics that are similar to Wright’s law (Nagy et al., 2013):

Ci (yi)= γiy
1+σi
i / (1+ σi)x

αi
i .

In this, xi is cumulative past production (with ẋi = yi), γi are

cost factors, σi > 0 are convexity parameters, and αi > 0 are

learning exponents. We assume that demand D depends lin-

early on price, D(p)=D0− δp, δ > 0; that demand equals

production,D = y1+y2 (“market clearance”); and that price

equals marginal costs, p= ∂C/∂yi = γi y
σi
i /x

αi
i , due to per-

fect competition among producers. One can then uniquely

solve for the produced amounts yi , getting some formula

yi = fi(x1, x2). This results in a two-dimensional dynamical

system with state variables x1, x2 and equations

ẋi = fi (x1,x2) .

Let us put D0= 1, δ= 1, σi ≡ 1/5, αi ≡ 1/2, and assume

that the default dynamics have γi ≡ 1, so that the long-term

default behaviour is p(t)→ 0, D(t)→ 1. If the dirty tech-

nology (1) is the traditional one, so that x1(0)>x2(0), we

have x1(t)→∞, x2(t)→ x̂2<∞, y1(t)→ 1, and y2(t)→ 0,

i.e. usage of the clean technology (2) will die out. If instead

x1(0)<x2(0), technology 1 will die out. Hence the system is

bistable as in the plant example, but with attractors at infin-

ity. To depict the diverging behaviour, we used the transfor-

mation zi = xi/(0.3+ xi) in Fig. 6.

The main dynamical difference to the plant example is,

however, not the diverging behaviour, but has to do with the

choice of management options. While in the plant example,

the choice of management options led to an upstream-only

situation in which the more desirable fixed point could be

reached from everywhere, in this example we will get regions

from which the desirable fixed point cannot be reached and

which are thus non-upstream. We consider the management

option of lowering γ2 to a value of, say, 1/2 by subsidis-

ing the clean technology to induce a technological change

(Jaffe et al., 2002; Kalkuhl et al., 2012). This leads to the al-

ternative dynamics depicted in Fig. 6, showing that for some

initial states with x1 > x2 one can now get x2(t)→∞ and

y1(t)→ 0. The goal of keeping the usage of the dirty technol-

ogy below some limit, y1<`< 1, corresponds to a desirable

region in terms of x1, x2, whose border can be computed as

x2= x1(1/`− 1− 1/`4/5√x1)2/5 (see Fig. 6). That goal is

automatically fulfilled in the top-left shelter region, can also

be sustained by management (subsidies) in the glade region

below it, and can at least be reached eventually from the re-

maining sunny upstream U (+) below the glade and from the

dark upstream U−, which is delimited by the management

trajectory that meets the upper right corner.

But from below the latter trajectory, the shelter cannot be

reached. In other words, when in U−, one has to act fast in

order not to lose the option of reaching S. From the dark

part denoted 2, not even the sunny region is reached, and

hence that region is a trench, while the sunny part to its left

is the abyss leading to that trench. There are no intermediate

regions (downstream or eddies) between upstream and abyss

in this example.

3.4 Combined population and resource dynamics

Our fourth example models the coevolution (in the sense of

joint time evolution) of a natural Earth system component
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Figure 7. Combined population and resource dynamics. Coevolution of a population x and a resource stock y. In all cases, φ= 4,

r = 0.04. When the globally stable fixed point of the default dynamics (pale blue) falls into X+, only upstream regions occur (top-left

panel, γ0= 4× 10−6>γ1= 2.8× 10−6, δ=−0.1, κ = 12 000, xmin= 1000, ymin= 3000). When it falls into X− instead, but the sta-

ble fixed point of the alternative management trajectory (dotted dark blue) is in X+, then only downstream regions occur (top-right

panel, γ0= 8× 10−6<γ1= 13.6× 10−6, δ=−0.15, κ = 6000, xmin= 1200, ymin= 2000). Otherwise (bottom panels, γ0= 8× 10−6<γ1,

δ=−0.15, κ = 6000, xmin= 4000, ymin= 3000), the analysis depends on whether one can repeatedly reach X+ by switching between de-

fault and alternative trajectories: for γ1= 16× 10−6 (bottom-left panel), only eddies occur, while for γ1= 11.2× 10−6 (bottom-right panel),

only abysses and trenches occur.

coupled with a socio-economic Earth system component and

shows how different parameters may qualitatively move the

resulting state space topology through the whole main cas-

cade, from an upstream-only situation via downstream-only

and eddies-only to an abyss-and-trench situation.

The model was used in Brander and Taylor (1998) to ex-

plain the rise and fall of the native civilization on Rapa

Nui (Easter Island) before western contact, but it may also

be interpreted as a conceptual model of global population–

vegetation interactions. It is derived from simple economic

principles and leads to a modified Lotka–Volterra model with

a finite resource. The human population x is preying on the

island’s forest stock y, which itself follows logistic growth

dynamics:

ẋ = δx+φγ xy, ẏ = ry(1− y/κ)− γ xy

for some parameters γ , δ, κ , φ, and r representing growth

and harvest rates and the stock’s capacity.

We assume management will either reduce the default har-

vest rate γ0 to some smaller value γ1<γ0 to avoid over-

exploitation of the resource or increase it to a larger value

γ1>γ0 to avoid famine. Our choice of the sunny region re-

lies on two principles. The absolute population should not

drop below a threshold xmin and the relative decline in popu-

lation under the default dynamics, −ẋ/x, should not exceed

a value of `. Hence X+={x >xmin and y >ymin=max(0,

−(`+ δ)/φ γ0)}.

The resulting state space partition is depicted in Fig. 7

for φ= 4, r = 0.04 and different choices of γ0, γ1, δ, κ ,

xmin, ymin. One either gets an upstream-only situation, a

downstream-only one, an eddy-only one, or an abyss-and-

trench situation, depending on whether the unmanaged and
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Figure 8. Gravity pendulum fun ride with management by one-

sided acceleration and undesirable fast rotations. The 2π -periodic

coordinate θ is the pendulum’s inclination angle. If its angular ve-

locity ω exceeds ±`, people get sick (grey region). Since staying in

L (balancing almost upright) orG (balancing somewhat inclined) is

more exciting than in S (resting downward), we have both a glade

and a lake dilemma.

managed fixed points belong to the desired or undesired re-

gion. In Appendix B2, these kinds of transitions are more

formally interpreted as bifurcations.

An interesting case occurs when the whole state space is a

single eddy as in Fig. 7 (bottom-left panel): one can then re-

peatedly visit the sunny region by suitably switching between

a low default harvest rate and a managed higher harvest rate,

but one cannot avoid getting back into the undesired region

of a low or fast declining population. An “optimal” manage-

ment strategy would then lead to slowly but strongly oscillat-

ing behaviour.

3.5 Gravity pendulum fun ride

While in the above examples typically only some of the pos-

sible regions were non-empty for each parameter combina-

tion, the following example from classical mechanics dis-

plays a rich diversity of state space regions that coexist at

a single choice of parameter values. Despite extremely sim-

ple dynamics, it features both a glade and a lake dilemma, an

eddy, and a trench at the same time.

In the model, people sit in a fun ride resembling a gravity

pendulum with angle θ and angular velocity ω and default

dynamics given by

θ̇ = ω, ω̇ =−sinθ.

An optional additional clockwise acceleration of the pendu-

lum of magnitude a > 0 (“management”) leads to alternative

admissible trajectories on which for some time interval(s)

one has ω̇=−sin θ − a. The sunny region is where |ω|<`,

for some `> 0 representing a safety speed limit above which

people might get sick.

The unique shelter S is delimited by the default trajectory

leading through the points θ = 2kπ , ω=±` that surrounds

the stable resting state of θ =ω= 0 (see Fig. 8). If a state lies

on a default trajectory that has ω> 0 (anticlockwise pendu-

lum motion) at least some of the time, then there is an ad-

missible trajectory from it leading into the shelter, generated

by the management strategy of “braking” whenever ω> 0.

Hence the upstreamU equals the region strictly above the de-

fault trajectory with ω< 0 that connects the unstable saddle

point at θ = (2k+ 1)π , ω= 0 (pendulum balancing upright)

with itself.

Just left of the shelter is the unique gladeG. Depending on

the parameter values, the stable fixed point of the managed

dynamics (hanging pendulum inclined by constant acceler-

ation) may either belong to the shelter or to the glade. In

the latter case (Fig. 8), we have a glade dilemma since the

inclined position is preferred to the resting position by the

riders but is unsafe since if the engine breaks, people will get

sick.

An even more exciting position is close to the upright bal-

ancing saddle point, at θ slightly larger than (2k+ 1)π and

ω� 1, where there is an admissible trajectory that stays close

to there (by braking repeatedly for short intervals while stay-

ing almost upright), so that this point is in the manageable

region M . This is a typical example of how a region close

to a saddle point of the default dynamics may become man-

ageable due to an alternative feasible trajectory that has a

slightly shifted saddle point, so that in the diamond-shaped

region between the two saddle points, one can concatenate

unmanaged and managed trajectories into periodic orbits.

However, for choices such as a= 0.6 and `= 0.5 (Fig. 8),

there is no admissible trajectory leading from the exciting

region with θ ≈ (2 k+ 1)π , ω≈ 0 into the shelter without

entering the region with |ω|>`. In that case the diamond-

shaped region is a lake and we have a lake dilemma.

Finally, the region below and including the default trajec-

tory that touches the line ω=−` from below is the trenches

since one cannot brake in that direction, and the region be-

tween the trench and the upstream is the eddies. Downstream

and abysses are empty in this example.

3.6 Bifurcations with manageable parameter

This final example system is designed to illustrate the rela-

tionship of reachability and bifurcations of a dynamical sys-

tem that can be managed through a parameter and shows bi-

furcations of the type typically associated with tipping ele-

ments of the Earth system (Schellnhuber, 2009).

It has a two-dimensional state space X={(r , y)}, where

the “fast” variable y ∈R has default dynamics

ẏ = h(y|r)=−
(

4+ r2
)3

y3
+

(
2r2
− 1

)(
4+ r2

)
y+ er

− 10,

which cannot be managed directly, and r ∈R is a “slow”

variable with (approximately) no default dynamics (ṙ = 0)
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Figure 9. Bifurcations with manageable parameter. Loci of sta-

ble (solid black lines) and unstable (dotted lines) fixed points

of ẏ=−(4+ r2)3 y3
+ (2r2

− 1)(4+ r2)y+ er
− 10. Leftmost and

rightmost admissible management trajectories (dashed arrows) and

their starting points (dots). Border (grey line) between sunny region

y >−1/3 and the dark. See Fig. 10 for an analysis.

which, however, can be changed by management up to a

velocity at most 100 and with arbitrarily large acceleration,

leading to admissible trajectories with ṙ ∈ [−100, 100] and

ẏ=h(y|r). We assume that values of y 6−1/3 are undesir-

able.

If r is instead interpreted as a parameter of the one-

dimensional system ẏ=h(y|r), the set X can be interpreted

as its bifurcation space in which one can plot a bifurcation di-

agram consisting of the loci of stable (solid lines) and unsta-

ble (dotted lines) fixed points, as shown in Fig. 9. As one can

see, there are three saddle-node bifurcations at r1≈−2.2,

r2≈ 1.735, and r3≈ 4.9 with monostable parameter regimes

r1<r < r2 and r > r3, and bistable parameter regimes r < r1
and r2<r < r3. Individual and paired saddle-node bifurca-

tions (which often result from fold bifurcations) occur fre-

quently in bistable Earth system components such as the hys-

teretic thermohaline circulation (Stommel, 1961; Rahmstorf

et al., 2005), monsoonal soil–vegetation feedbacks (Janssen

et al., 2008), or other tipping elements (Schellnhuber, 2009).

Hysteresis also occurs on other spatial and temporal scales,

e.g. in local hydrology (Beven, 2006) and in long-term

glacial climate dynamics (Ganopolski and Rahmstorf, 2001).

The main part of the resulting network of ports and rapids

of our example system is depicted in Fig. 10. On its coars-

est level, there are two ports, each containing one of the two

connected loci of stable/unstable fixed points, and a rapid in

between through which one can pass from the left to the right

port but not back. If the right port seems more attractive,

e.g. because it allows a higher value of y, we have a port

dilemma since by leaving the left port for the right one, we

lose flexibility in terms of reachable regions.

The right port contains two harbours, similarly connected

by a narrow “internal” channel, as well as another “exit”

channel leading from the right harbour to the dark region.

Note that on the leftward-pointing dashed management tra-

jectory in the middle of the bifurcation diagram, there is a

leftmost point from where one can still “turn around” and

reach (if only unstably) the right part without entering the

dark region; this point is a corner of the right harbour (but not

belonging to it, for stability reasons), and below it is a chan-

nel leading to another harbour in the bottom left. Again, if

the right harbour seems more attractive, we have a dilemma,

this time a harbour dilemma, since in order to reach the right

harbour from the left one, we have to pass through the dark.

Finally, the right harbour contains two docks again con-

nected by a fairway, plus some more fairways. Again, we get

a dilemma if the top-right dock is more attractive than the

top-left one: the dock dilemma is that, in order to reach the

top-right dock from the top-left one, one has to pass through

the unsafe middle region and risk ending up in the dark if

management breaks down.

4 Discussion and conclusions

We have presented a formal classification of the possible

states of a dynamical system such as the Earth system into re-

gions of state space which differ qualitatively in their safety,

the possibilities of reaching a safe state, the possibilities of

avoiding undesired states, and in the amount of flexibility for

future management.

Based on an assumed main division of the system’s states

into only two classes, desirable (“sunny”) and undesirable

(“dark”), we have constructed a hierarchy of partitions of a

system’s state space, whose member regions we suggested

to name by metaphorical names either corresponding to the

general image of a boat floating or rowing on a complex

water system, such as “upstream”, “downstream”, “eddy”,

“abyss”, “trench”, “lake”, and “backwater”, or correspond-

ing to the image of a “shelter” surrounded by a “glade”. To

capture the nature of and relationships between the different

regions, we have introduced the notion of stable reachabil-

ity and the corresponding three-level reachability network of

“ports”, “harbours”, “docks”, “rapids”, “channels”, and “fair-

ways”, and illustrated our concepts with conceptual example

models from climate science, ecology, coevolutionary Earth

system modelling, economics, and classical mechanics. Most

of the different regions can readily be found in most models

for either most or at least selected parameter settings. A no-

table exception is the “eddies”, which, due to their circular

nature, can be expected to occur much more rarely in real-

world, non-conservative systems, especially when thermody-

namic or otherwise irreversible processes are involved, such

as soil degradation. Section 3.4, however, illustrates how ed-

dies may occur in coevolutionary systems and might incen-

tivize management cycles that lead to undampened periodic
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Figure 10. Main part of the three-level reachability network of ports and rapids (top panel), harbours and channels (middle panel), and

docks and fairways (bottom panel, and related dilemmas in the bifurcation example. Arrows indicate stable reachability (top panel), stable

reachability through the sun (middle panel), and stable reachability through the shelters (bottom panel). Some further arrows between rapids,

channels and fairways have been omitted here.
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ups and downs. It must remain an open question here whether

this effect might be an additional explanation for empirically

observable cycles such as business or resource cycles when

management is involved.

The introduced concepts have then been used to point out

a number of qualitatively different decision problems: the

glade, lake, port, harbour, and dock dilemmas. In our opin-

ion, one particularly nasty form of decision problem is the

lake dilemma, where one has to choose between uninter-

rupted desirability and eventual safety, and Sect. 3.2 indicates

that this dilemma may easily occur at least in ecological sys-

tems or other multistable systems with a sunny attractor and

another one slightly in the dark. Since the transformation of

socio-metabolic processes or complex industrial production

systems may resemble the soil transformation of Sect. 3.2,

one may also expect the lake dilemma to occur in the socio-

metabolic and economic subsystems of the Earth, e.g. in the

context of a great transformation leading to decarbonisation

of the world’s energy system. The form of lake seen near

the saddle point in the pendulum (Sect. 3.5) can also occur in

other nonlinear oscillators, e.g. the Duffing oscillator or mod-

els of glacial cycles that resemble it such as Saltzman et al.

(1982) and Nicolis (1987), when a management option exists

that has a slightly shifted saddle point. This indicates that the

lake dilemma may also occur in purely physical subsystems

of the Earth system.

We argue that our concepts may be especially useful in

the context of the current debate about planetary bound-

aries (PBs), a possible safe and just operating space (SAJOS)

for humanity, and the necessary socio-economic transitions

to reach it or stay in it. We suggest that the region delimited

by some identified set of PBs in the sense of Rockström et al.

(2009a) and Steffen et al. (2015) and some similar socio-

economic limits, e.g. those relating to the United Nations sus-

tainable development goals (Raworth, 2012), should be inter-

preted in our framework as a natural choice for the desirable

region X+, although their definitions already contain some

reasoning about the consequences for the respective sub-

systems when the boundaries are violated. Such boundaries

might be called the ultimate planetary boundaries (UPBs),

and they are typically defined by some simple thresholds for

relevant indicators as in Rockström et al. (2009a) and Stef-

fen et al. (2015), not taking into account the overall system’s

inherent dynamics much. In this sense, UPBs are typically

“non-interacting”. Based on the UPBs, one may then try to

identify one or more smaller shelter regions S that can be

considered a SAJOS in the sense that, once there, no further

large-scale management in the form of global policies is nec-

essary to stay within the limits for all times (or at least for

a sufficiently long planning horizon). The borders of these

shelters are also a form of PBs but are much more restrictive

than the UPBs we started with, and we suggest to call them

safe planetary boundaries (SPBs).

If it turns out that the current state of the Earth is out-

side the shelters, one should then aim next at trying to decide

whether it is in the upstream. If so, knowledge about whether

it is in a glade or lake or not, and which safe docks can be

stably reached, will be necessary in order to choose a man-

agement path. In the glade case, one can still reach the shelter

without ever violating the UPBs by appropriate management;

hence we suggest to refer to the border of shelters and glades

together as the provident planetary boundaries (PPBs).

In the lake case, one has to decide instead whether a tem-

porary violation of the UPBs can be justified by the eventual

safety of the shelters. In addition, a port dilemma may ne-

cessitate a decision between higher desirability and higher

flexibility at this point. Only after these qualitative decisions

have been made does it seem advisable to optimize the cho-

sen type of management pathway by means of more tradi-

tional control and optimization theory, hopefully using ac-

curate enough quantitative estimates of the involved options,

costs, and benefits. Once in the shelters, one may start car-

ing about improving the state further by moving between

docks to either improve desirability or flexibility, but this

may require a risky temporary passage through a sunny but

unsafe region (which poses a dock dilemma) or even a pas-

sage trough the dark (which poses a harbour dilemma). Of

course, many combinations of these qualitative and quantita-

tive criteria may appear in the actual global decision process,

e.g. in the form of lexicographic preferences, decision trees,

or more sophisticated welfare measures or other quantitative

objective functions that take the topology suitably into ac-

count and that may relate to some form of market (or other

game-theoretic) equilibrium or else be governed by some

suitable policy instruments, as kindly suggested by an anony-

mous referee.

If we are not in the “upstream” of the Earth system,

prospects are worse. Violating the limits can then only be

avoided by management, either eventually forever (if in the

downstream), or only repeatedly but with repeated violations

occurring (if in the eddies), or even only for a limited time

with an ultimate descent into the undesired region (if in the

abysses or already in the trench). We suggest to call the up-

stream borders the no-regrets planetary boundaries (NRPBs).

If the diagnosis reads “eddy”, “abyss”, or “trench”, one

may repeat the analysis with a less ambitious, “second best”

definition of the desirable region by choosing less restrictive

UPBs, or revert to quantitative optimization, e.g. to mini-

mize some damage function along the system’s trajectory.

On the other hand, as long as one is in the “manageable re-

gion” M (shelters, glades, lakes, and backwaters), the UPBs

need never be transgressed if managed wisely; hence we

propose to call the borders of M the foresighted planetary

boundaries (FPBs).

This completes our suggested hierarchy of PBs from the

relatively looser UPBs via the successively narrower FPBs

and NRPBs, then the PPBs, to the narrowest SPBs that de-

fine the SAJOS. While UPBs are “non-interacting”, FPBs,

PPBs, NRPBs, and SPBs will typically have a more complex

geometry in the system’s state space and are thus “interact-

www.earth-syst-dynam.net/7/21/2016/ Earth Syst. Dynam., 7, 21–50, 2016



38 J. Heitzig et al.: Topology of sustainable management in the Earth system

ing boundaries”. This means that they cannot be expressed

as a simple “threshold” for individual indicators but as con-

ditional thresholds for several indicators that depend on each

other as shown by the curved region boundaries in the exam-

ples, e.g. in the carbon cycle model of Anderies et al. (2013)

in Sect. 3.1. Obviously, the real world is less black and white

than suggested by the idealized division into “desirable” and

“undesirable”, so the actual location of these bounds will in

reality be somewhat vague, but this does not change the fact

that the different bounds and regions represent qualitatively

different states of the system, not just quantitative shades of

grey.

It should be noted that one strategy to decide the dilem-

mas described throughout this work is to follow certain “sus-

tainability paradigms” such as those suggested by Schellnhu-

ber (1998). For example, the “pessimization paradigm” is

based on the basic precautionary principle of “avoiding the

worst” and, hence, can be interpreted as suggesting to stay

in or aim for the shelter. In this way, the “pessimization

paradigm” decides the glade and lake dilemmas in favour

of safety. In turn, the “optimization paradigm” could be in-

terpreted to decide all but the harbour dilemma in favour of

uninterrupted or (eventually) higher desirability. The “stabi-

lization paradigm”, which seems to fit best the popular no-

tions of “sustainable development”, reflecting a “longing for

stable equilibria” in the coevolutionary dynamics of human

societies and the biophysical Earth system (Schellnhuber,

1998), might imply staying in a lake favouring uninterrupted

desirability over eventual safety in the sense of this work.

Finally, the “equitization paradigm” might imply choosing

higher flexibility, e.g. in terms of a larger set of remaining

options for future generations in the sense of intergenera-

tional justice, in all dilemmas but the lake dilemma. As also

argued by Schellnhuber (1998), the remaining “standardiza-

tion paradigm” is entirely based on static choices of norms or

development corridors instead of dynamical systems or “geo-

cybernetic” principles and, hence, cannot directly decide any

of the dilemmas. However, this paradigm can be viewed as a

way for identifying desirable domains in the Earth system’s

state space in the first place and, thereby, facilitate a subse-

quent topological classification of state space structure.

Contemplating sustainability paradigms gives rise to other

relevant qualitative decision problems. For what might be

called an “optimization/pessimization dilemma”, consider

the debate on geoengineering by solar radiation management

(Lenton and Vaughan, 2009; Vaughan and Lenton, 2011) as a

strategy for averting some of the consequences of global cli-

mate change that are induced by anthropogenic emissions of

greenhouse gases (Stocker et al., 2013). According to the re-

cent update of the planetary boundary framework by Steffen

et al. (2015) and the corresponding definition of desirability

(see Sect. 1.1, “Metaphorical framework”), the Earth system

is currently in the dark region of its state space, because core

planetary boundaries such as those related to climate change

and biosphere integrity have likely already been transgressed.

Following current assumptions on the feasibility of manage-

ment options (IPCC, 2014), assume further that the Earth

system is currently in the dark upstream. In this situation,

efforts for mitigation of greenhouse gas emissions, e.g. by

means of global energy market regulations, as well as con-

servation and restoration of biosphere integrity, would corre-

spond to navigating the Earth system from the dark upstream

towards the shelters following the “pessimization paradigm”.

In turn, massive investments in solar radiation management

as an alternative to mitigation could be seen as manoeu-

vring the Earth system into the glades or lakes going along

with a severe loss of resilience, since interruption of these

efforts due to global crisis or technological failure would

lead to very rapid and catastrophic climate change (Barrett

et al., 2014). In short, starting in the dark upstream, does

one choose to navigate to a glade or lake because this ap-

pears economically cheaper on the shorter term or politically

more feasible (“optimization paradigm”) or does one aim for

the shelters right away, even if this is more expensive on

the shorter term (“pessimization paradigm”)? Note, however,

that geoengineered Earth system states within the glades or

lakes would be expected to have a considerably reduced de-

sirably in the long-term compared to the shelters, since cur-

rent proposals for solar radiation management can only con-

trol a very small set of Earth system properties such as global

mean temperature, while regional temperature patterns and

the hydrological cycle would change strongly (Kleidon and

Renner, 2013; Kleidon et al., 2015), going along with corre-

sponding climate impacts.

We hope that the theoretical considerations outlined here

may be of some help to sharpen the important debate of

how a transition to a safe desirable state of the Earth sys-

tem can be managed. To this end, future studies should ap-

ply the proposed framework for comparing different Earth

system governance strategies in the form of various manage-

ment options (e.g. mitigation of greenhouse gas emissions vs.

geoengineering) and different notions of desirability (e.g. re-

semblance of a Holocene-like state or satisfaction of a cer-

tain standard of human well-being) in terms of their feasi-

bility and resilience. Furthermore, the structural stability of

future development pathways generated by integrated assess-

ment models through optimizing utility functions based on

certain notions of human well-being could be evaluated. For

achieving these aims, performant computer algorithms need

to be developed for automatically generating the proposed

topological charts also for higher-dimensional Earth system

models given a set of management options and desirabil-

ity criteria, e.g. building on algorithms from viability theory

(Frankowska and Quincampoix, 1990), the graph-theoretical

analysis of phase space transition networks (Padberg et al.,

2009), and flow networks from fluid dynamics (Ser-Giacomi

et al., 2015; Froyland and Padberg-Gehle, 2015). While the

examples discussed in this work have been limited to two dy-

namical variables for facilitating the visualization of the cor-

responding topological charts, investigation of more detailed
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models of Earth system dynamics calls for advanced visu-

alization techniques (Nocke et al., 2015) as well as the ap-

plication and further development of quantitative measures

of the size (Menck et al., 2013; Hellmann et al., 2015; van

Kan et al., 2015) and shape (Mitra et al., 2015) of the phase

space regions of interest. The fact that the introduced state

space partitions depend on qualitative rather than quantitative

properties of states may also make them a natural tool for the

analysis of complex but qualitative or “generalized” models

in the spirit of Kuipers (1994) and Petschel-Held et al. (1999)

or Lade et al. (2013, 2015b, a).
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Appendix A: Formal derivation of partitions and

properties

We use sloppy set theoretic notation when no confusion

arises: union A+B =A∪B, difference A−B =ArB,

power set 2A={B ⊆A}. Proofs only require an understand-

ing of general topological spaces, in particular of openness

and continuity, but not of any higher-level concepts from dif-

ferential topology or the like.

A1 Assumptions and notation

For a more formal treatment than in the main text, we assume

a manageable dynamical system with desirable states, made

of the following ingredients.

A state space X 6= 0 with some Hausdorff topology T ⊆
2X (i.e. a system of open sets that separate each two points)

on it whose elements we call states or points (e.g. X⊆Rn
with Euclidean topology). X may be compact or unbounded,

finite- or infinite-dimensional, etc.

A flow (i.e. deterministic continuous-time autonomous dy-

namical system) on X (e.g. a model of human-nature coevo-

lution or any other Earth system model) given by a fam-

ily of continuous (“business-as-usual” or) default trajecto-

ries τx : [0,∞)→X with τx(0)= x and ττx (t)(t
′)= τx(t + t ′)

for all initial conditions x ∈X and all relative time points t ,

t ′ > 0. We do not require further smoothness properties of

the flow, like differentiability, to avoid having to assume a

richer topological structure for X than just a general topo-

logical space, and to avoid unnecessarily complicated no-

tions and familiarity with, for example, differential geometry.

Although flows are often represented by ordinary differen-

tial equations, their solutions are sometimes not unique, and

hence our notion of flow is in terms of trajectories instead so

as to allow us to distinguish, for example, a 1-D flow with

ẋ=
√
x and τ0(t)≡ 0 from the flow that also has ẋ=

√
x but

τ0(t)= t2/4.

An open nonempty set X+ ∈ T of desirable states, called

the sunny region, e.g. defined by means of some notion of

“tolerable E & D window” (Schellnhuber, 1998). We call the

complement X−=X−X+ 6= 0 the dark (region). We re-

quire openness for convenience so that infinitesimal pertur-

bations cannot lead from the sunny to dark part, and trajec-

tories cannot touch the sunny region without entering it for

a strictly positive amount of time. Although in most of our

examples, X+ is a simply shaped, connected, convex, and

often bounded set, none of these properties is required for

the theory presented here except topological openness.

To represent “management options”, a family of nonempty

sets Mx of admissible trajectories from each x ∈X that in-

cludes τx and is closed under switching between trajectories

at any time, i.e. if µ∈Mx , t > 0, x′=µ(t), and µ′ ∈Mx′ ,

then the trajectory defined by µ′′(t ′′)=µ(t) for t ′′ 6 t and

µ′′(t ′′)=µ′(t ′′− t) for t ′′> t is also in Mx . This require-

ment corresponds to the so-called semigroup axiom of math-

ematical control theory (Sontag, 1998). Note that we do not

allow any explicit time dependency of flow or management,

but such dependencies can as usual be encoded by including

time as a state variable. Also, if management can change a

parameter of the model, that parameter has to be transformed

to a (slow) state variable with zero default dynamics of its

own to meet our framework.

A2 Open invariance, sustainability, and stable

reachability

The invariant open kernel of a set A⊆X, denoted Aι◦, is the

largest open subset of A that contains the default trajectories

of all its own points. Its existence and uniqueness is nontriv-

ial and will be proved below. Note that Aι◦ may be empty.

Each (topologically) connected component of S= (X+)ι◦ is

called an individual shelter.

We call an open set A∈ T sustainable iff, for all x ∈A,

there is µ∈Mx with µ(t)∈A for all t > 0. Again, the

openness requirement ensures a minimal form of stability

against small perturbations. The sustainable kernel of a set

A⊆X, denoted AS , is the largest sustainable open subset of

A. Again, existence and uniqueness will be proved below. In

viability theory (Aubin, 2001), AS roughly corresponds to

the “viability kernel” of A (see the discussion in Supplement

3). Also, AS may be empty.

Lemma 1 (Existence and uniqueness) For all A⊆X:

1. There is a unique largest (default-trajectory-) invariant

and open subset Aι◦⊆A, containing all other such sets.

2. Every invariant and open set is sustainable. In particu-

lar, S is.

3. There is a unique largest sustainable subset AS ⊆A
with AS ⊇Aι◦, containing all other such sets.

Proof.

1. Let I(A) be the system of all open subsets B ⊆A for

which τx(t)∈B for all x ∈B, t > 0. The proposition is

proved by showing that I(A) is a kernel system, i.e. con-

tains the empty set (which is trivial) and contains the

union
⋃
B of any of its subsets B⊆ I(A). The latter

follows from the fact that the system of all open sets,

T , is a kernel system by definition, and if x ∈
⋃
B,

then x ∈B ∈B, and hence τx(t)∈B ⊆
⋃
B for all t > 0.

Now Aι◦=
⋃
I(A)∈ I(A).

2. This follows because τx ∈Mx .

3. Similarly, the system S(A) of all sustainable subsets

B ⊆A is a kernel system: if x ∈
⋃
B, then x ∈B ∈B,

and hence there is µ∈Mx with µ(t)∈B ⊆
⋃
B for

all t > 0. Now AS =
⋃
S(A)∈S(A). Point 2 implies

AS ⊇Aι◦.

Q. E. D.
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Next, we introduce a suitable notion of stable reachability

to overcome two problems with the classical notion of (plain)

reachability known from control theory, where a state y is

reachable from another state x iff it lies on some admissible

trajectory starting at x (Sontag, 1998).

First, we want a stable fixed point y of the default dy-

namics to be counted as stably reachable from a (sufficiently

small) neighbourhood of itself, although one might only get

arbitrarily close to y instead of getting to y in finite time.

Second, we want stable reachability to imply that small

perturbations along the way cannot render the target un-

reachable. To solve this conceptual task in a mathematically

convenient way, we define stable reachability here via the

following binary relation between sets. We call an open set

C ∈ T a forecourt for some set Y ⊆X, denoted C Y , iff

one can approach Y arbitrarily closely from everywhere in C

without leaving C, or, more precisely, iff for all x ∈C, there

is µ∈Mx so that, for all open sets Z ∈ T with Z⊇Y , there

is t > 0 with µ(t)∈Z and µ(t ′)∈C for all t ′ ∈ [0, t]. Now,

for a state x ∈X and some set A⊆X, we say that another

state y ∈X or another set Y ⊆X is stably reachable from

x through A, denoted x A y or x A Y , iff x is in some

subset of A that is a forecourt for {y} or Y , respectively. The

set of states from where Y can be stably reached through A

is denoted ( AY ). (This is a stable version of what Aubin,

2001, would call a “capture basin” of Y .) Note that in these

definitions, the order in which the logical quantifiers “for

all” and “there exists” appear is critical for some of the

resulting properties. If Y is open, the definitions can be

somewhat simplified:

Proposition 1 (Stable reachability)

For all A, A′, C, Y , Z⊆X and x, y, z∈X:

1. If Y is open, then (i) C Y iff, for all x ∈C, there

is µ∈Mx so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t], and (ii) x A Y iff there is

and open C⊆A with x ∈C and for all x′ ∈C, there

is µ∈Mx′ so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t].

2. If x A Y , then x is in the interior (i.e. largest open

subset) of A, A◦, and there is an open set B 3 x with

x′ A Y for all x′ ∈B. Hence, each set of the form

( AY ) is open.

3. Transitivity:

x Ay A′Z H⇒ x A+A′Z,

x Ay A′zH⇒ x A+A′z.

In particular,  A is a transitive (but not necessarily

reflexive) relation.

4. If A is open, it is stably reachable from each of its ele-

ments. In particular, since S= (X+)ι◦⊆ (X+)S =M is

open, S is also included in U = ( X S).

Proof.

1. (i) Assume C Y ∈ T and let x ∈C. Then, by defini-

tion of forecourts, there is µ∈Mx so that, for all open

sets Z ∈ T with Z⊇Y , there is t > 0 with µ(t)∈Z and

µ(t ′)∈C for all t ′ ∈ [0, t]. Since Y is open, it is such a

Z, proving the first direction.

For the other direction, assume that for all x ∈C, there

is µ∈Mx so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t]. Let x ∈C, choose such a

µ∈Mx and t > 0, and let Z ∈ T with Z⊇Y be an open

set. Then µ(t)∈Y ⊆Z as required.

(ii) By definition of stable reachability, x A Y iff there

is an open B ⊆A with x ∈B Y . By (i), B Y iff for

all x′ ∈B, there is µ∈Mx′ so that there is t > 0 with

µ(t)∈Y and µ(t ′)∈B for all t ′ ∈ [0, t].

2. Assume x A Y . Then x ∈X for some openB ⊆A, and

hence x ∈B ⊆A◦. Also, B Y and hence x′ A Y for

all x′ ∈B. Hence ( A Y ) contains an open neighbour-

hood of each of its points and is thus open itself.

3. We show this by concatenating suitably chosen ad-

missible trajectories between points close to x, y,

Z. Let x A y A′ Z, choose open sets B ⊆A,

B ′⊆A′ with x ∈B {y} and y ∈B ′ Z, and put

B ′′=B +B ′⊆A+A′, then x ∈B ′′ and B ′′ is open. To

show that B ′′ Z, we let x′′ ∈B ′′ and show that there

is µ∈Mx′′ so that, for all open W ′′⊇Z, there is t > 0

with µ(t)∈W ′′ and µ(t ′)∈B ′′ for all t ′ ∈ [0, t].

If x′′ ∈B ′, there is such a µ with µ(t ′)∈B ′⊆B ′′ for all

t ′ ∈ [0, t] since B ′ Z.

If x′′ 6∈B ′ instead, x′′ ∈B {y}, and hence we find

ν ∈Mx′′ so that, for all open W ⊇{y}, there is t > 0

with ν(t)∈W and ν(t ′)∈B for all t ′ ∈ [0, t]. Since B ′ is

such a W , we find t ′′> 0 with ν(t ′′)∈B ′ and ν(t ′)∈B

for all t ′ ∈ [0, t ′′]. For y′= ν(t ′′)∈B ′ Z, we then find

ν′ ∈Mx′′ so that, for all open W ′′⊇Z, there is t > 0

with ν′(t)∈W ′′ and ν′(t ′)∈B ′ for all t ′ ∈ [0, t]. Now

define µ by putting µ(t ′)= ν(t ′) for t ′ ∈ [0, t ′′] and

µ(t ′)= ν′(t ′− t ′′) for t ′ > t ′′. Then µ∈Mx′′ because of

our assumptions on M, and for all open W ′′⊇Z, there

is t > 0 with ν′(t)∈W ′′ and ν′(t ′)∈B +B ′=B ′′ for all

t ′ ∈ [0, t], as required.

The z case follows from putting Z={z}. Transitivity is

the special case of A′=A.

4. For x ∈A∈ T , we show x AA by showing A A.

Let x′ ∈A. By (1), we have to find µ∈Mx′ and t > 0

with µ(t ′)∈A for all t ′ ∈ [0, t]. Since A is open and τx′

is continuous, τx′ is such a µ.

Q. E. D.
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A3 Partitions

A topologically connected component of

2=X−
(
 XX

+
)
,

ϒ = {x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}−2,

or

E =X−U −D−ϒ −2

will be called an individual trench, abyss, or eddy, and the

latter two typically have sunny and dark parts. Some further

properties of these introduced partition sets are as follows.

Proposition 2 (Main cascade).

1. U = ( X S) and the unionD+U = ( XM) are open,

2=X− ( XX
+) and ϒ +2 are closed, the union

E+D+U =X−ϒ −2 is open, and the system {U ,

D, E, ϒ , 2} forms a partition of X.

2. For all u∈U , d ∈D, e∈E, y ∈ϒ , θ ∈2, we have

¬(θ Xy), ¬(y Xe), ¬(e Xd), ¬(d Xu).

3. If W =∅, also D=∅.

Proof.

1. Openness follows from Proposition 1, the par-

tition covers X by definition of E, and the

only nontrivial disjointness is that between the

open set D+U = ( XM) and the closed set

ϒ +2={x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}. If x is in

both sets, there is also x′ ∈ ( XM)∩ {x ∈X|∀µ∈

Mx ∃ t > 0 :µ(t)∈2}, but then there is µ′x ∈Mx ,

t ′> 0 with µ′x(t ′)∈M , and by definition of M there is

then also some µ∈Mx with µ(t)∈X+ for all t > t ′.
But, by assumption, there is t > 0 with µ(t)∈2. Since

2∩X+= 0, we have t < t ′, but by definition of 2, this

contradicts µ(t ′)∈X+. Hence such an x cannot exist.

2. Because of transitivity and (1), d X u∈U = ( X S)

would imply d X S and thus d ∈U ∩D=∅;

e X d ∈D= ( XM)−U would imply e XM and

thus e∈ (U +D)∩E=∅. If one could reach the eddies

from the abysses, one could avoid the trenches: assume

y X e 6∈ϒ +2={x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}.

Since the latter is closed, its complement is open, so

there is µ∈My and t > 0 with µ(t) 6∈ϒ +2. For

x=µ(t), we find µ′ ∈Mx and t ′′> 0 with µ′(t ′) 6∈2

for all t ′> t ′′. Concatenating µ with µ′ gives a similar

member of My , in contradiction to y ∈2. Finally, if

θ X y and θ ∈2, then y ∈2 by definition of 2, and

hence y 6∈ϒ .

3. This follows from ( XM)−U =D= ( XW ).

Q. E. D.

Note that in the (pathological) no-management case

in which Mx ={τx}, the upstream U = ( X S) is basi-

cally (i.e. up to boundary effects due to our openness re-

quirement) the basin of attraction of S, the downstream

D= ( XM)− ( X S) is then empty, the trenches basically

equal the invariant kernel of X−, the abysses basically equal

the rest of the basin of attraction of the trenches, and the ed-

dies are basically the union of those trajectories that will for-

ever alternate between X+ and X−. In that case, some of the

finer regions may coincide or be empty as well, and one can

also represent their relationship by means of symbolic dy-

namics (beim Graben and Kurths, 2003): assign each state x

a symbolic sequence representing the sequence of its trajec-

tory’s transitions between the sunny (+) and dark (−) re-

gions, and use the wildcard ∗ to denote repetitions of zero or

more symbols. Then (up to peculiarities that may occur for

boundary states)

S =M = (+),

U− = (−)(+− )∗(+),

U (+)
= (+−)(+− )∗(+),

G= L=D = ∅,

E+ = (+− )∞,

E− = (−+ )∞.

ϒ+ = (+)(−+ )∗(−),

ϒ− = (−+)(−+ )∗(−),

and

2= (−).

To formally define the ports-and-rapids partition, we say

that a set P ⊆X is portish iff it has x X y for all x, y ∈P ; is

topologically connected; and does not intersect two different

eddies, abysses, or trenches. A maximal portish set is called

a port.

We show below that all ports are disjoint; each port is

completely contained in one of the sets U , D, E, ϒ−, 2;

none can intersect ϒ+; and each returnable state (i.e. an x

with x X x) is in a port, but no transitional state (x with

¬(x Xx)) is.

In the pendulum example of Fig. 8, the returnable points

are those in U +D because of the periodic frictionless de-

fault flow and the possibility of counteracting small pertur-

bations by braking or acceleration at some later point of the

perturbed trajectory. In the eddies and below, this is not pos-

sible after an accelerating perturbation; hence those regions

are transitional. In the plant types example of Fig. 5, there are

also transitional regions, e.g. to the top and right, where all

admissible trajectories lead down and left, and in the techno-

logical change example of Fig. 6, all points are transitional

because of the positive growth of the knowledge stocks.
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To extend the system P of all ports into a partition of

all of X that is finer than the main cascade C, we say that

two non-port states x, y are port-equivalent iff they are

in the same member of C; do not lie in two different ed-

dies, abysses, or trenches; and fulfil x X P ⇔ y X P and

P  X x⇔P  X y for all P ∈P . Each maximal topologi-

cally connected set of port-equivalent states is now called a

rapid. This ensures that not only U and D are partitioned

into ports and rapids but also each individual eddy, abyss,

and trench. The ports and rapids together form the ports-and-

rapids partition, PR, which is finer than C.

A set H ⊆X is harbourish iff it has x X+ y for all x,

y ∈H ; is topologically connected, does not intersect two dif-

ferent lakes, eddies, or abysses; and does not intersect two

different connected components of S+G. A maximal har-

bourish set is called a harbour. Let H be the system of all

harbours. Two non-harbour states x, y ∈X+ are harbour-

equivalent iff they (i) are in the same member of {S+G,

L, U (+), W , D(+), E+, ϒ+}; (ii) do not lie in two differ-

ent lakes, eddies, or abysses; (iii) do not lie in two different

connected components of S+G; and (iv) fulfil the equiv-

alences x X+ H⇔ y X+ H and H X+x⇔H X+ y

for all H ∈H. Each maximal topologically connected set of

harbour-equivalent states is called a channel and lies com-

pletely in either one port or one rapid (see below for a proof),

and hence the resulting harbours-and-channels partition of

X+, HC, is finer than PR.

A set O ⊆X is dockish iff it has x S y for all x,

y ∈O, is topologically connected and does not intersect two

different shelters. A maximal dockish set is called a dock.

Let O be the system of all docks. Two non-dock states x,

y ∈ S are called dock-equivalent iff they belong to the same

shelter and x S O⇔ y S O and O S x⇔O S y for

all O ∈O. Each maximal topologically connected set of

dock-equivalent states is called a fairway and lies completely

in either one harbour or one channel, and hence the resulting

docks-and-fairways partition of S, OF , is finer than HC.

Proposition 3 (Ports, rapids, harbours, etc.).

1. Each two ports [or harbours or docks] are disjoint.

2. Each port lies completely in one of U ,D, E, ϒ−,2, no

port intersects ϒ+.

3. Each harbour [or dock] lies completely in one port [or

harbour].

4. Each channel [or fairway] lies completely in one mem-

ber of PR [or HC].

5. These partitions are successive refinements of each

other: C, PR, HC, OF .

6. If a harbour H intersects some of the regions S+G,

L, U+,W , orD+, it is already completely contained in

that region.

Proof.

1. Assume y ∈A∩A′ for two different maximal por-

tish (or harbourish or dockish) sets A, A′ and put

B =A+A′. But then B is itself portish (or harbour-

ish or dockish) because stable reachability is transitive.

This contradicts the maximality of A and A′.

2. By Proposition 2, if x P y P x then x and y must

belong to the same member of C, and hence each port

lies completely in one of them.

To show that a port P ⊆ϒ is already in ϒ−, assume

x ∈P ∩ϒ+⊆X+ ∈ T . We will now construct a contra-

diction by constructing an admissible trajectory from

x that avoids 2 forever. Since x X x and X+ is

open, there is an open set A⊆X+ with y X x for

all y ∈A. Since τx is continuous and A open, we find

t0> 0 with τx(t)∈A for all t ∈ [0, t0]. Let y= τx(t0)

and pick a µ∈My that returns arbitrarily closely to x.

Let A be the set of all open A⊆X+ with x ∈A, and

choose a tA> 0 with µ(tA)∈A for all A∈A (this re-

quires the axiom of choice, which we will assume here).

Let t1= infA∈A supB∈A,B⊆A tB > 0. Since y ∈ϒ +2,

there is t ′> 0 with µ(t ′′)∈2 for all t ′′> t ′, and hence

tA 6 t ′ for all A∈A and thus t1 6 t ′. Next we show that

µ(t1)= x. If µ(t1)= y 6= x, one can choose A∈A and

C ∈ T with y ∈C and A∩C=∅ (this is the only point

where we need the Hausdorff property). Since µ is con-

tinuous, there are tl < t1 and tu> t1 with µ(t ′)∈C for

all t ′ ∈ [tl , tu]. By definition of t1, there is A′ ∈A with

supB∈A,B⊆A′ tB ∈ [t1, tu]. Putting A′′=A∩A′ ∈A, we

then also have supB∈A,B⊆A′′ tB ∈ [t1, tu], and hence

there is B ∈A with B ⊆A′′⊆A and tB > tl and hence

µ(tB )∈C by choice of tl . But µ(tB )∈B ⊆A by choice

of tB . Hence µ(tB )∈A∩C=∅, a contradiction. Thus

µ(t1)= x after all. Finally we concatenate τx[0, t0] and

µ[0, t1] infinitely many times and get an admissible tra-

jectory from x that avoids 2 forever.

3. This follows because  S refines  X+ , which refines

 X.

4. Since dock equivalence refines harbour equivalence,

which refines port equivalence.

5. Follows from points 2–4.

6. This follows directly from the definitions of S+G, L,

U+, W , and D+ by means of  X and  X+ and the

transitivity of those relations.

Q. E. D.

A4 Remarks

– In general, Aι◦ may be properly smaller than both the

interior (Aι)◦ of the largest invariant subset Aι of A and
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the largest invariant subset of A◦, (A◦)ι. The three sets

can only be shown to be equal under additional smooth-

ness assumptions on τ and µ∈Mx .

– The set of all states that are stably reachable from x need

not be closed or open and need not contain any of the

intermediate states that lie on the trajectories µ∈Mx

used in stable reachability.

– x A Y does not imply x y for any y ∈Y , since, after

a perturbation, other points in Y may be reachable than

before.

– For two points x,y in the same port, harbour, or dock

A, one may still not have x A y since the intermedi-

ate states on the trajectories from x to y may not be

stably reachable from x and thus may not belong to A.

In other words, perturbations may still push the system

temporarily out of a port, harbour, or dock, but one can

then return to the same port, harbour, or dock. For this

reason, the directed reachability network is typically

acyclic but may contain reachability cycles in patholog-

ical situations.

– Any attractor A with the return property (e.g. a sta-

ble fixed point or limit cycle, and most strange and

chaotic attractors) of the default dynamics lies com-

pletely within one port, and hence within one member

of C. If A⊆X+ then already A⊆ S, and A lies com-

pletely within one dock.

– The scope of possible connection topologies that may

occur as the reachability network of a managed system

contains at least all acyclic finite or countably infinite

directed graphs, as can be seen by the following con-

struction: given an acyclic directed graph, one can con-

struct a topologically equivalent network of water bowls

which are connected by water tubes leading from a ded-

icated “drain” at the bottom of the source ball to a com-

mon entrance at the top of the target ball. Let water flow

into all balls without incoming tubes and out of all out-

going tubes through grilles, determining the default dy-

namics of a small submarine floating in the water. Then

assume the submarine can be propelled strongly enough

to move freely inside each ball and to each drain, but not

strongly enough to leave the ball through the entrance at

the top, against the direction of the water flow. By mak-

ing parts of the balls and tubes opaque and moving some

of the drains from the bottom to the sides of the ball, the

construction can be extended to show that also all inter-

nally consistent three-level acyclic networks can occur

as the three-level network of ports, harbours, and docks.

Appendix B: Further examples

B1 One-dimensional potential function

This simple model shows how almost all of the introduced

state space regions (except eddies and dark abysses) may al-

ready occur in a one-dimensional system ẋ=−df/dx that

is defined by a potential function f (x) and already for sim-

ple desirable regions such as X+= ]0, ∞[, as depicted in

Fig. B1.

Our example has default dynamics along the blue line

downwards at a speed proportional to slope, but management

is able to move upwards instead on the thin blue lines where

the slope is small enough (for |df/dx|< 3/2). The chosen

undesirable region of x 6 0 is indicated in grey. The shelter

consists of the two segments just left of point a and it can

be stably reached from everywhere properly left of a; hence

that whole region constitutes the upstream. The manageable

region is the union of shelter, glade, lake, and backwater,

and it can be stably reached from everywhere properly left

of point b; hence the downstream is the right-open interval

from a to b.

That there are no eddies and no dark abysses in this exam-

ple is typical for systems without any circular flows and with

a sufficiently simply shaped X+.

There are two ports, i.e. the two closed intervals where

the default flow is slow: one in the upstream and one in the

downstream. Note that the latter is only partially contained

in the backwater. One rapid lies to the left of the left port, an-

other between the left port and point a, and these two rapids

are port-equivalent since both can reach the left but not the

right port. Similarly, the right port is surrounded by two port-

equivalent rapids. Finally, there is a singleton rapid consist-

ing only of the point a and a last one formed by point b and

all that is to the right of it; from these two port-equivalent

rapids, no port can be stably (!) reached.

B2 Bifurcations of a directly manageable flow

If a system passes through a bifurcation, the classification

of states by the criteria outlined above will typically change.

Let us examine some archetypical cases that can occur in the

exemplary case where management can directly affect the

flow by changing the default derivative ẋ=F (x) of a one-

dimensional system by at most one unit, so that the admissi-

ble trajectories are those with ẋ ∈ [F (x)− 1, F (x)+ 1]. (See

Sect. 3.6 above for the case where management is via chang-

ing a parameter instead.)

Assume X+={|x|<`} for some `� 1, and the de-

fault flow has a subcritical pitchfork bifurcation, say

F (x)= x3
− r x, where for r > 0 the stable fixed point

x0= 0 is surrounded by two unstable ones at x±=±
√
r

and becomes unstable itself for r 6 0, as depicted by the

solid and dotted pale-blue lines in Fig. B2a. Then for

r > 0, we have a shelter-and-glade situation with a shelter
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S= ]−
√
r ,
√
r[ and two glades G= ]−g(r), −

√
r]+ [

√
r ,

g(r)[ where g(r)>
√
r is the upper solution to the equation

F (g(r))− 1= 0, indicating the limit above which also the ex-

treme management with ẋ=F (x)− 1 cannot move the sys-

tem downwards (dashed dark-blue lines). But for r 6 0, the

shelter disappears and the glades merge and are converted

into a backwater W = ]-g(r), g(r)[. In both cases, this is sur-

rounded by two sunny abysses ϒ+= ]−`, −g(r)]+ [g(r),

`[ and two trenches 2= ]−∞, `]+ [`, ∞[ (outside the de-

picted area). One may call this transition a backwater/glade

bifurcation. As an early warning signal of an imminent

breakdown of a shelter in such a backwater/glade bifurca-

tion, one may consider the volume of the shelters Vol(S) in

terms of some natural measure on X as a measure of “shelter

stability”, similar to the concept of basin stability for unman-

aged systems without desirable region (Menck et al., 2013; Ji

and Kurths, 2014; Schultz et al., 2014; van Kan et al., 2015)

and to the recently introduced survivability measure for un-

managed systems with a desirable region (Hellmann et al.,

2015).

The port surrounding the unstable fixed point x= 0,

P0= ]−g(r), g(r)[, where g(r) is the solution to

F (g(r))+ 1= 0, eventually also splits into three ports

P0 and P±, separated by two rapids R±; their borders are

depicted by the dashed red lines. But this happens only at a

larger value of r , namely at r = 3/
3
√

4≈ 1.9, after which the

two unstable fixed points x± can no longer be reached from

each other. The corresponding ports-and-rapids network has

these arrows: ¬(P− X)¬(R− X)P0 X R+ X P+.

One may call this transition a port pitchfork bifurcation.

An interesting case is a saddle-node bifurcation such as

the one in Fig. B2b, with F (x)=−r − x2 and a critical pa-

rameter value r = 0 at which the stable and unstable fixed

points at x=±
√
−r collide and disappear. First, at the crit-

ical point, the shelter caused by the stable fixed point and

its glade are transformed into a backwater. Then, somewhat

later (at r = 1), the maximal value of ẋ achievable by man-

agement becomes negative and the backwater ceases to exist

so that only the sunny abyss remains. One may call this a

glade–backwater–abyss transition.

If a stable fixed point approaches and eventually enters

deeply into the dark region, this may also be called a form

of “bifurcation” that causes a similar transition in the clas-

sification of states. If F (x)=−r − x and X+={x > 0}, as

in Fig. B2c, then again two changes occur: at r = 0, the

shelter-and-upstream situation of r < 0, with S= ]0,∞[ and

U−= ]−∞, 0], converts into a backwater-and-downstream

situation withW = ]0,∞[ andD−= ]−∞, 0]. Then at r = 1,

this further converts into an abyss-and-trench situation of

r > 1 with ϒ+= ]0,∞[ and2= ]∞, 0]. One could thus call

this a shelter–backwater–abyss transition.

Finally, a transition with three steps is caused if the fixed

point passes through a narrower strip of dark, as in Fig. B2d,

where again F (x)=−r − x but now X+={|x|> 1/4}. Here

the shelter is again first transformed into a backwater at

r =−1/4, but then into a lake L when the fixed point leaves

the dark again at r =+1/4, and even later into a remaining

sunny upstreamU (+) once the maximally achievable value of

ẋ at the upper boundary of the dark, i.e. at x= 1/4, becomes

negative. We suggest to call this a shelter–backwater–lake–

upstream transition.
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Figure B1. A system moves along the blue line: downward by default (pale-blue arrows), but in some regions management can move it in the

opposite direction (dark-blue arrow) in order to avoid the undesired “dark” region. Shelters, manageable region, upstream, and downstream

(boldface, Sect. 2.2) and other regions from the main cascade (top line, Sect. 2.3). Regions from the finer manageable partition (below,

Sect. 2.4). See Fig. 2 for a systematic summary of these concepts. Bottom: three-level reachability network (Sect. 2.5).
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Figure B2. Parameter changes can change the quality of states due to bifurcations. Top-left panel: backwater/glade bifurcation and later

port pitchfork bifurcation caused by a subcritical pitchfork bifurcation of the default flow (similar in the supercritical case). Top-right panel:

glade–backwater–abyss transition caused by a saddle-node bifurcation, with the second critical value marked in red. Bottom-left panel:

shelter–backwater–abyss transition caused by the transition of a stable fixed point into the deep dark. Bottom-right panel: shelter–backwater–

lake–upstream transition caused by the transition of a stable fixed point through a dark strip.
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