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Abstract. In order to evaluate whether the initialization of soil moisture has the potential to improve the pre-

diction skill of earth system models (ESMs) on seasonal to decadal timescales, an elaborate experiment was

conducted. For this task a coupled land–atmosphere model with prescribed ocean was utilized. The experiment

design considered soil moisture initialization in different seasons and years and yielded information about the

lifetime (memory) of extreme yet realistic soil moisture perturbations. Our analyses were focused on root zone

soil moisture (RootSM) as it comprises the part of the soil that directly interacts with the atmosphere via bare-

soil evaporation and transpiration. We found that RootSM memory differs not only spatially but also depends on

the time of initialization. A long memory of up to 1 year is evident mostly for dry soil moisture regimes after

heavy precipitation periods or prior to snow covered conditions. Short memory below 2 weeks prevails in wet

soil moisture regimes and prior to distinct precipitation periods or snowmelt. Furthermore, RootSM perturba-

tions affect other land surface states, e.g. soil temperature and leaf carbon content, and even induce anomalies

with specific memory in these variables. Especially for deep-layer soil temperature, these anomalies can last for

up to several years. As long as RootSM memory is evident, we found that anomalies occur periodically in other

land surface states whenever climate conditions allow for interactions between that state and RootSM. Addition-

ally, anomaly recurrence is visible for RootSM itself. This recurrence is related to the thickness of the soil layer

below the root zone and can affect RootSM for several years. From our findings we conclude that soil moisture

initialization has the potential to improve the predictive skill of climate models on seasonal scales and beyond.

However, a sophisticated, multilayered soil hydrology scheme is necessary to allow for the interactions between

RootSM and the deep-soil layer reservoir.

1 Introduction

Until recently, the main application for earth system models

(ESMs) was the reproduction or projection of long-term cli-

mate statistics over periods of 30 years or longer (K. E. Tay-

lor et al., 2012). However, during the last decade this focus

was expanded towards decadal (Meehl et al., 2009) and sea-

sonal predictions (Palmer et al., 2004). On such timescales,

it is not only the quality of model physics and the external

forcing that play a major role but also an appropriate ini-

tialization of state variables (Pohlmann et al., 2009; Müller

et al., 2014). In the climate community, the potential of ini-

tialization is investigated focusing mostly on decadal predic-

tions and the state of the ocean (e.g. Keenlyside et al., 2008;

Pohlmann et al., 2009; Matei et al., 2012). However, espe-

cially for short-term simulations such as numerical weather

forecasts or reanalysis, the land surface has also been iden-

tified as an interesting target for initializations. Initialization

experiments focusing on snow cover (Douville and Royer,

1996; Jeong et al., 2013) and soil moisture (Atlas et al., 1993;

Betts, 2004; Fischer et al., 2007; Beljaars et al., 1996; Small,

2001; Kim and Hong, 2007; Koster and Suarez, 2003) are

shown to affect the climate state, and therefore their initial-

ization can be expected to enhance the predictive skill of an

ESM.
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The reason for the importance of initialization is the inter-

action between land surface and atmospheric states, which

is rather complex and results in a number of feedbacks (e.g.

Bony et al., 2006). Of those, one of the most investigated

processes are soil moisture feedbacks (e.g. Dirmeyer and

Shukla, 1993; Eltahir, 1998; Seneviratne et al., 2010). They

rely on the important role that soil moisture plays in both the

terrestrial water balance as well as the energy balance. On

the one hand, soil moisture determines the separation of in-

coming water fluxes into surface runoff and infiltration. Sur-

face runoff is transported into rivers and leaves a given re-

gion. Infiltrated water adds to the soil moisture and might

be available for evapotranspiration again. Thus, soil mois-

ture strongly affects the regional water balance. On the other

hand, both energy and water balance, can be affected simul-

taneously via the evapotranspiration flux. Depending on the

state of soil moisture, incoming short wave radiation is sepa-

rated into latent and sensible heat flux. This affects both the

water and the energy balance as the latent heat flux transports

not only energy but also water to the atmosphere. From this,

two major soil moisture feedbacks arise. The first feedback is

between soil moisture and temperature. Wet or dry soil mois-

ture anomalies directly affect the partition between latent and

sensible heat flux. Wetter (drier) soils lead to increased (de-

creased) latent heat flux and evapotranspiration, therefore ex-

tracting more (less) water from the soil, which might result

in compensating for the soil moisture anomaly and thus form

a negative feedback loop. However, the associated changes

in sensible heat flux and latent cooling lower (increase) sur-

face temperature and thus also decrease (increase) evapora-

tive demand. If the effect of changes in evaporative demand

on evapotranspiration is stronger than the direct effect of the

changed soil moisture state, the soil moisture–temperature

coupling can result in a positive feedback. Thus, the soil

moisture anomaly can be stabilized or even enhanced. A sec-

ond feedback is based on the coupling between soil moisture

and precipitation. Here precipitation anomalies result in sub-

sequent anomalies in soil moisture which then affect evapo-

transpiration. At this point, the feedback loop can be already

interrupted if the precipitation anomaly is smaller than the

change in evapotranspiration and cannot sustain the anomaly

in the soil. Otherwise, the evapotranspiration anomaly can

effect precipitation either locally or in downwind regions.

An alternative to the direct recycling of evaporated water as

precipitation, it was also proposed that the effect on precip-

itation happens rather because anomalous soil surfaces im-

pact the distribution of boundary layer moist static energy

(Eltahir, 1998). More detailed information about soil mois-

ture interactions and feedbacks can be found in Seneviratne

et al. (2010) and references therein.

A large number of studies exist which investigate the im-

pact of soil moisture anomalies on the terrestrial climate on

different temporal and spatial scales. One objective of these

studies is the reproduction of specific seasonal climate con-

ditions and the analysis of their dependence on soil moisture

states (Atlas et al., 1993; Ferranti and Viterbo, 2006; Fis-

cher et al., 2007). These studies demonstrate that extreme

climate conditions are more likely to occur if extensive soil

moisture anomalies existed in the past season. Additionally,

there are several sensitivity studies investigating the effect

of soil moisture anomalies on different regions such as the

North American (Beljaars et al., 1996; Small, 2001; Betts,

2004), African and/or Asian monsoon regions (Douville et

al., 2001; Kim and Hong, 2007) and Europe (Rowntree and

Bolton, 1983; Jaeger and Seneviratne, 2011). Often, but not

always, prescribing positive soil moisture anomalies is corre-

lated with the simulation of enhanced precipitation in the fol-

lowing season and vice versa. The persistence of soil mois-

ture anomalies is also investigated in several studies, e.g.

Manabe and Delworth (1990), Huang et al. (1996), Koster

and Suarez (2001), Betts (2004), Wu and Dickinson (2004),

Seneviratne et al. (2006), Dirmeyer et al. (2009), and Hage-

mann and Stacke (2015). Estimates for soil moisture memory

range between 1 and 6 months but differ based on the meth-

ods and models used to investigate it. Manabe and Delworth

(1990) found short memory of 1–2 months for low latitudes

with increases of up to 5 months in high latitudes, peaking

in a memory of up to 10 months in northern Siberia. For

Europe they found a memory of 2–3 months, which agrees

well with Ferranti and Viterbo (2006). Some similarities ex-

ist also with the results of Hagemann and Stacke (2015), es-

pecially for regions with short memory. However, they found

a shorter memory for northern Siberia and a memory longer

than 1 year for desert regions. Most studies, however, do not

explicitly compute the soil moisture memory but rather es-

timate its length based on a prescribed decay function of

the soil moisture autocorrelation coefficient for a given lag

(often 1 month) (Huang et al., 1996; Koster and Suarez,

2001; Betts, 2004; Wu and Dickinson, 2004; Seneviratne et

al., 2006). The resulting soil moisture memory ranges be-

tween 1 and 10 months and shows a spatial pattern with long

memory in arid regions and high latitudes and short memory

for monsoon-influenced regions. Seasonal variations in soil

moisture memory were analysed by Dirmeyer et al. (2009).

Looking at daily statistics they found considerably shorter

memory, which exceeds one season only for desert or energy-

limited regions during the respective seasons. Soil moisture

memory estimates based on observations are extremely rare

but are roughly in the same order of magnitude as most mod-

elling studies. Based on 50 measurement sites across the for-

mer USSR, Vinnikov and Yeserkepova (1991) computed a

soil moisture memory ranging from 1 to 5 months, while

Shinoda and Nandintsetseg (2011) found a seasonally vary-

ing memory of between 1.5 and 8 months for 24 stations in

Mongolia.

Most of these studies have in common that they investi-

gated the effect of soil moisture perturbations or soil mois-

ture memory for a very limited time period, usually focus-

ing on the next season. Although the results indicate that soil

moisture memory might be much longer for several regions,
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only little information exists about the maximum time pe-

riod for which soil moisture perturbations can be expected

to affect climate simulations. Considering recent projects fo-

cusing on seasonal to decadal prediction systems (see MiK-

lip (Mittelfristige Klimaprognosen) http://www.fona-miklip.

de/en/ and SPECS (Seasonal-to-decadal climate Prediction

for the improvement of European Climate Services) http:

//www.specs-fp7.eu/), it would be valuable to learn more

about the potential of soil moisture initialization. Particu-

larly, information about the persistence of soil moisture per-

turbations in ESMs can contribute to decisions about the ne-

cessity to initialize soil moisture in short- or even long-term

predictions.

For this reason we set up an experiment to investigate

the lifetime of soil moisture perturbations for different sea-

sons. In contrast to previous work by Hagemann and Stacke

(2015), the focus is not on the general impact of soil rep-

resentation on soil moisture autocorrelation length. Instead,

we analyse the impact of root zone soil moisture (RootSM)

initialization for different seasons and regions. In our pa-

per we first describe the model characteristics, experiment

set-up and the analysis methods applied. Following this we

present the distribution of soil moisture memory and its vari-

ance throughout the year. Next, the origin of soil moisture

memory is investigated, and its relation to different soil prop-

erties and climate variables is discussed. Finally, we contrast

our findings against knowledge gained from previous studies

and give directions for further research.

2 Experiment set-up and analysis methods

The soil moisture initialization experiment uses the cou-

pled atmosphere–land model ECHAM6/JSBACH (Stevens

et al., 2013; Raddatz et al., 2007) with prescribed ocean

fields (PCMDI AMIP2) of sea surface temperature and sea

ice concentration for the appropriate time periods (Taylor

et al., 2000). All simulations are conducted with a hori-

zontal resolution of T63 (≈ 1.8◦) and 47 vertical levels for

the atmosphere. While most of the set-up is identical to the

CMIP5 (Coupled Model Intercomparison Project Phase 5)

set-up (Giorgetta et al., 2013), the standard JSBACH soil

module is replaced with the new five-layer soil hydrology

scheme (Hagemann and Stacke, 2015). In contrast to the

former bucket scheme, this scheme separates the soil into

five distinct layers to a maximum depth of about 10 m or the

bedrock. The topsoil layer is the reservoir for bare-soil evap-

oration. The accumulated moisture in the upper layers within

the rooting depth is defined as RootSM and is subject to tran-

spiration. The layers below are associated with the deep-zone

soil moisture (DeepSM). As the latter is not directly accessi-

ble by plants, it can loose water only by drainage or diffusion

into upper soil layers. Thus, the deep layers are often equiv-

alent to long-term water storage and were shown to improve

the representation of soil moisture memory in JSBACH com-

Figure 1. Schematic of the soil moisture initialization experiment

set-up. The grey bar indicates the time line of REF while the blue

and red lines indicate the extreme wet and dry INI, respectively.

pared to the standard bucket scheme (Hagemann and Stacke,

2015). It is important to note that the applied version of JS-

BACH does not consider any melting and freezing processes

within the soil. Thus, there is no interaction between water

and energy states within the soil column, and soil moisture

anomalies can effect soil temperature only via the pathway

of evapotranspiration and surface temperature.

The soil moisture initialization experiment is composed

of two sets of simulations. The first set consists of one ref-

erence simulation (REF) for the period 1995–2008. Its ini-

tial states were taken from an earlier spin-up simulation run-

ning over several decades. For every year and month, restart

data are generated by the model and 6-hourly averages of the

RootSM and of the soil moisture for the individual soil lay-

ers (LaySM) are stored. From these data, extreme wet and

dry soil moisture states are extracted as initial conditions for

the second set of initialized simulations (INI). The INI are

restarted at the start of every season for the years between

December 1996 and September 2005, running freely for 3

years (see Fig. 1). No INI are started prior to December 1996

as this time is regarded as additional spin-up for the model

to adapt to minor differences in the forcing between the REF

and the spin-up simulation. Thus, this experiment yields en-

sembles consisting of nine members (one for each year) per

restart month (4) and initialization state (2), accumulating to

9×4×2 simulations resulting in a data set of 216 simulation

years.

In contrast to previous soil moisture initialization experi-

ments (e.g. Betts, 2004; Ferranti and Viterbo, 2006; Fischer

et al., 2007; Jaeger and Seneviratne, 2011), the initial soil

fields are not defined as a fixed percentage of the reference

value nor set to a known critical state such as wilting point or

maximum soil water holding capacity. Instead the 6-hourly

output for the period of±15 days around a given restart time

was extracted for every year from REF and merged into one

time series. From the time series, the 99th and 1st percentiles

of RootSM were identified. These percentile fields serve as

extreme wet and dry RootSM initializations, respectively.

For LaySM initialization, data from the same time steps were

used to be consistent with the RootSM fields. Following this

procedure, restart fields were computed for the 1st of De-

cember, March, June, and September. While the absolute val-

ues of the initialization data are identical for the respective

months for every year, it has to be noted that their differ-

ences to the reference state vary from year to year. Instead of
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constant soil moisture perturbations, a distribution of pertur-

bations is generated with minimum perturbation in the year

where the reference state is close to the respective percentile

and maximum perturbation when the reference climate con-

ditions are opposite to the initial state. In this way, the per-

turbations range within model-realistic bounds because they

are based on model data. Thus, we avoid unrealistic pertur-

bations that would result in causing spin-up behaviour (large

model drifts) rather than triggering soil moisture memory.

Furthermore, the ensemble does not only consider the inter-

nal variability within the model but additionally takes inter-

annual climate variations into account. This is also true for

the majority of state variations in our ocean-surface forcing

except for small parts of the North Atlantic region. There, our

experiment cannot sample the full cycle of state variations

and a tendency towards warm surface temperature anomalies

remains.

The analysis is focused on the evaluation of soil moisture

memory. In our study we diagnose memory for those time

steps where the ensemble mean anomaly (EnsMean) – orig-

inating from the initial perturbation – exceeds the ensem-

ble standard deviation (EnsStd). This is determined by the

signal-to-noise ratio (SNR) for a given time step i as

SNR(i)=
E
[
1θj (i)

]√
E
[(
1θj (i)−E

[
1θj (i)

])2] , (1)

where 1θj is the difference in the respective target variable

between daily means of INI and REF for an ensemble mem-

ber j and E[ ] indicates the mean over all ensemble mem-

bers. From this, two different memory quantities are derived.

First, the initial perturbation length (τ0), which we define as

the period between the first occurrence of memory until the

time step at which the initial perturbation is forgotten, and

the INI ensemble mean state cannot be distinguished from

the REF state any more. Some variables such as DeepSM

may have a time lag (τlag) before the perturbation reaches the

layer and memory occurs. This has to be accounted for in the

definition of τ0. The second quantity is the overall memory

(τmax) which is the sum of all time steps showing memory.

These memory quantities are given as

τlag = min
i=1...n

(i : SNR(i)> 1) , (2)

τ0 = min
i=1...n

(
i : SNR(i)≤ 1∩ i ≥ τlag

)
− τlag, (3)

and

τmax =

n∑
i=1

k(i), where k(i) :=

{
1 if SNR(i)> 1

0 if SNR(i)≤ 1,
(4)

where n= 1095 is the maximum number of time steps equiv-

alent to the 3-year simulation period. Further important met-

rics are the initial perturbation (1θ0) and extreme anomaly

(1θmax) of a time series. The former is the peak anomaly

in the initial memory period and for RootSM usually evi-

dent at the first time step. The latter is the 99th percentile in

the anomaly time series during all memory periods. As the

ensemble size of j = 9 for a given season and initialization

is rather small, our analyses are usually based on combined

ensembles where either all seasons for a given initialization

(j = 36) or both initializations for a given season (j = 18)

are merged.

The memory analysis is demonstrated in Fig. 2 for

RootSM in an arbitrary grid cell and seasonal ensemble. In

this example τ0 for the extreme wet initialization is almost

1 month while the dry perturbation lasts distinctively longer,

up to about 2.5 months.

Several analyses in this study are based on the spatial cor-

relation between τ0 and other quantities, e.g. 1θ0. As τ0 is

usually not normally distributed, neither spatially nor tem-

porally, we apply the Spearman’s rank correlation for those

analyses, computed as

ρ =

∑
i

(
R(xi)−Rx

)(
R(yi)−Ry

)√∑
i

(
R(xi)−Rx

)2√∑
i

(
R(yi)−Ry

)2 . (5)

Furthermore, the spatial correlation between variables is af-

fected by the spatial autocorrelation within the individual

variables, resulting in too significant a correlation coefficient.

We account for this effect by using a subsampling technique,

where consecutively only a small, randomly chosen sample

of locations is analysed at a time until eventually the full field

is sampled. As the size of these samples is much smaller than

the full field, we assume that the selection of autocorrelated

locations within an individual sample is very improbable.

Nonetheless, we repeat this analysis up to 10 000 times or

until the variation in the resulting significance is smaller than

5 %.

3 Soil moisture memory

The evaluation of the soil moisture initialization experiment

is focused on a global analysis of memory distribution as

well as a comparison of its characteristics for different re-

gions and seasons. Additionally, relations between memory

and anomalies are investigated.

Figure 3 displays statistics for soil moisture 1θ0 and τ0.

The wet and dry initial perturbations are of similar magni-

tude for the respective soil moisture layers with no strong

variations among the seasons. The initial ensemble mean per-

turbations for RootSM reach almost ±0.2 m. Variations are

smallest (±0.01 m) for the uppermost layer, which is also the

least thick (0.07 m). The 1θ0 increase with increasing soil

depth and layer thickness and reach a maximum of ±0.25 m

in the fourth layer. They decrease again for the fifth layer be-

cause this layer is often cut off by the bedrock and thus its

global average is less thick than that of the third and fourth

layer. In many cases, the lowest layers are often not perturbed

Earth Syst. Dynam., 7, 1–19, 2016 www.earth-syst-dynam.net/7/1/2016/



T. Stacke and S. Hagemann: Lifetime of simulated soil moisture perturbations 5

Figure 2. Example for soil moisture perturbation on grid cell scale (June ensemble; grid cell near Hamburg, Germany). The thick blue and

red lines indicate the ensemble mean wet and dry perturbation, respectively. The thin lines are single ensemble members and the filled area

displays the ensemble standard deviation.

Figure 3. Initial perturbation 1θ0 (upper panels) and perturbation length τ0 (lower panels) statistics subdivided into seasonal ensembles

(left) as well as into wet and dry initialized ensembles (right). Metrics are shown for soil layer moisture (SM-L1–5]) and the root zone soil

moisture (SM-R) for all land surface grid cells. The whiskers indicate the 1st and 99th percentiles, the box indicates the interquartile range,

and the notch indicates the median. Note the quadratic axis for τ0.

directly, as they can lie below the root depth and, thus, are not

necessarily in a similarly extreme state. Consequently, only

for the RootSM the wet and dry initialized simulations cor-

respond perfectly to wet and dry initial perturbations, while

the single layers show much more variance for this. Already

for the topsoil layer, a small number of grid cells exist with

initially wet perturbations for an overall dry root zone and

vice versa. This effect increases with depth to about 20 % of

grid cells in the fifth layer which show the opposite perturba-

tion signal from the RootSM. Analysis of memory time series

show that in such cases the initial RootSM perturbations need

some time to propagate into the deeper layers. This effect is

negligible for layers within the root zone but results in a per-

turbation delay of over 30 (10) days for 25 % of fifth-layer

cells for wet (dry) initialization.

The lifetimes τ0 of these perturbations vary strongly de-

pending on the respective soil layer, initialization season, and

state. For RootSM the interquartile range of τ0 varies be-

tween 0.5 and 2 months for March and between 0.65 and

3.5 months for December. Single grid cells (99th percentile)

for all seasons show a memory of up to 10 months. The

memory for soil layer moisture increases with depth. The top

layer only reaches median values of about 1 week although

for individual grid cells the perturbation signal can be visi-

ble for up to 4 months (June and December). The median τ0

increases to about 5 months in the fifth layer while the in-

terquartile range increases exponentially. Thus, a large ratio

of grid cells is still affected by the perturbation after three

seasons in the fourth layer and even after 2 years in the fifth

layer. Down to the third layer, the longest τ0 is found for De-

cember initialization shifting to September for deeper layers.

www.earth-syst-dynam.net/7/1/2016/ Earth Syst. Dynam., 7, 1–19, 2016



6 T. Stacke and S. Hagemann: Lifetime of simulated soil moisture perturbations

Figure 4. τ0 for RootSM in dry (left) and wet (right) initialized simulations. The letters d, m, and y indicate days, months, and years,

respectively.

For the RootSM and the upper three layers wet initializations

correspond to a slightly longer τ0 than dry ones, but for lower

layers dry perturbations become much more persistent.

The spatial pattern of the RootSM τ0 is investigated first

by dividing the simulations into two (dry and wet initialized)

ensembles (see Fig. 4) including all different seasons. A sim-

ilar large-scale pattern can be found for both initialization

states, indicating a generally higher sensitivity for soil mois-

ture perturbations in some parts of the world. A short mem-

ory of between 2 and 4 weeks is evident for larger parts of

Asia, central Australia and northwestern North America. Re-

gions with a medium memory of between 1 and 6 months are

found for the eastern USA, central and eastern South Amer-

ica, most of Europe, central Africa, and southeastern Asia.

However, there are distinct differences for the more extreme

values. A long memory of up to 1 year and more is found for

wet initialization in the Congo region and the eastern USA,

while it is much more sparse for dry initialization with two

spots south of the Amazon catchment and in northeastern

China. In return, areas without any memory are more com-

mon for dry than for wet initializations. While wet initial-

ization shows no memory for parts of the high northern lati-

tudes as well as the Amazon basin, dry anomalies cannot per-

sist for the southwestern USA, the Sahel zone, South Africa,

the Arabian peninsula, southeastern Asia, and western Aus-

tralia. These regions coincide very well with dry conditions.

There, dry perturbations have the lowest impact as the soils

are usually in a dry state anyway. Thus, the perturbations are

relatively small and fall within the climate variability. Wet

perturbations are much larger and can result in τ0 of several

months.

In a second step, the simulations were sorted with respect

to the initialization season but not separated according to

wet and dry initial perturbations. As already indicated by

Fig. 3, the resulting τ0 distributions show much more vari-

ance between seasons than between wet and dry initializa-

tion (see Fig. 5). The most prominent features are found for

the Northern Hemisphere. For most parts of the high north-

ern latitudes and central Asia, τ0 is shorter than 1 month for

March to September initializations. However, with the on-

set of the boreal winter, τ0 becomes much more persistent

and reaches values of up to 6 months and more. This pattern

seems to be related to the regional climate conditions. For

March to September, the initialization often precedes periods

of higher soil moisture variability. Thus, the computed initial

states for the simulations are relatively small compared to the

variability of the following season, and the perturbation sig-

nal decays fast. In contrast, the initial December states are

still impacted by the summer soil moisture variability result-

ing in a large perturbation, which by far exceeds the mois-

ture variability during winter. This perturbation is then con-

served by the snow cover on the soil which hampers the ex-

change of water and energy between land and atmosphere.

Thus, the initial perturbations can persist until next year’s

snowmelt. Another prominent feature are some regions along

a band reaching from the African west coast towards India

and then following the Asian coast in a northeasterly direc-

tion. In the September ensemble, they show a memory of up

to 1 year. Almost the same regions are associated with 3 and

6 months shorter memory in the December and March en-

sembles, respectively, and this memory shortens to less than

2 weeks in the June ensemble. Similar behaviour is visi-

ble for South Africa, starting with the March ensemble, and

South America starting with the June ensemble, although

the latter shows a shorter memory of τ0 ≤ 6 months. Most

of those regions closely resemble areas impacted by mon-

soon circulation as outlined by Lin et al. (2014). Monsoon

periods are characterized by heavy precipitation during one

season, which amounts to over 50 % of the annual precipita-

tion. Such precipitation results in a very high soil moisture

content that completely removes all memory of previous wet

or dry anomalies. However, in the seasons after monsoon,

precipitation is much lower, resulting in low soil moisture

variability and longer persistence of anomalies. This is well

reflected in the derived memory distribution. For the North-

ern Hemisphere, monsoon usually occurs during the summer

season; thus, almost no memory is seen in the June ensem-

ble for western Africa and India. The next season (Septem-

ber ensemble) shows the longest memory of about 9 months

that lasts until the next monsoon period, while every follow-
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Figure 5. Ensemble mean τ0 for all (dry and wet) simulations initialized in a given season.

ing seasonal ensemble has a memory of 3 months less than

the previous one. The same reasoning holds for the Southern

Hemisphere. There the South African monsoon lasts from

November till March, resulting in no memory for the De-

cember ensemble. The South American monsoon often lasts

even longer, until April, resulting in a short memory for the

December and March ensemble as well as a respective cut in

the long memory evident in the June ensemble. This analy-

sis reveals that not only the initialization state (e.g. wet ver-

sus dry) but also the time of initialization has a large impact

on the resulting memory. This connection between precipita-

tion variability and soil moisture memory is also in a more

generalized form described in Koster and Suarez (2001) and

Seneviratne and Koster (2012).

In order to identify more general systematics behind

the spatial τ0 distribution, regions of similar soil moisture

regimes were defined using the classification described in

Seneviratne et al. (2010). The regimes are computed from

REF climatology for all four seasons based on the state of

soil moisture θ in relation to the wilting point θwilt, below

which no transpiration may occur, and the critical soil mois-

ture θcrit, above which transpiration occurs at the potential

rate and is not limited by soil moisture anymore. The regimes

are classified into dry (θ ≤ θwilt), wet (θ ≥ θcrit), and transi-

tional (θwilt < θ < θcrit) regimes (see Fig. 6). The grid cells

are not distributed equally between the regimes. Instead, grid

cells in transitional regimes exceed those in others by a factor

of 5 (wet cells) to 20 (dry cells).

In spite of the strong differences in sample size, the par-

tition into the three soil moisture regimes appears to be

reasonable as they show distinctively different characteris-

tics of soil moisture τ0 (see Fig. 7). For all seasons, the

longest τ0 is found in dry regimes and the shortest τ0 in

Figure 6. Soil moisture regimes based on REF climatology. Tran-

sient colours mark grid cells switching between the transitional and

wet/dry regimes seasonally while the others remain in their category

for the whole year.

wet regimes. While the dry and wet distributions within the

regimes are quite symmetric for the March ensemble, the

other ensembles show longer memory for wet perturbations

in dry regimes, a symmetric shape for the transitional regime,

and longer memory for dry perturbations in wet regimes. In

contrast to the memory distribution, the 1θ0 distributions

show a different relation to the soil moisture regimes. There,

the smallest perturbations are evident for dry regimes and

the largest for the transitional regimes for all seasons (not

shown). This already indicates that the size of the initial per-

turbation cannot be the dominant driver for the initial soil

moisture memory. This is confirmed by analysing the spatial

correlation between soil moisture τ0 and 1θ0 for the differ-

ent regimes and seasons as shown in Fig. 8 (lower panel). The

correlations differ for the regimes as well as for seasons and

show highest values of up to ±0.7 for June and September

in the transitional regime. Similarly high values are found
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Figure 7. Violin plots of τ0 distribution for dry (red) and wet (blue) initialization in the three soil moisture regimes for the four seasonal

ensembles. The horizontal grey lines indicate the mean (solid) and the median (dashed) of the distributions. All land surface grid cells of a

given regime are included.

Figure 8. Bar plot for different soil moisture regimes and seasons,

indicating correlation coefficients for spatial rank correlations. The

upper panel shows the correlation between the pattern of wet τ0 and

dry τ0. The lower panel shows the correlation between the pattern

of wet and dry τ0 and the respective 1θ0. Significant correlations

below the 5 % level are indicated by solid bars.

for June and September in the wet regime, although there

they are not significant (p > 5 %). Thus, at most 50 % of the

spatial variance in memory pattern can be explained by the

size of the initial perturbations. Furthermore, correlations be-

tween wet and dry memory are even lower with maximum

values of 0.4 in the December ensemble for the transitional

regime and no significant correlations for the other seasons

and regimes at all (Fig. 8, upper panel). This indicates that for

a given time step and grid cell, the soil might be susceptible

to either wet or dry perturbations but rarely for both. Thus,

the strength of soil moisture memory seems to depend about

equally on the initial soil moisture perturbation as well as

on dynamically changing land–atmosphere interactions and

static soil or land cover properties.

In order to verify whether the next largest impact is due

to static soil and land properties or due to seasonal climate

dynamics, the spatial correlations between soil moisture τ0

and surface properties are computed (see Tables 1–4). The

investigated parameters are related to surface properties (for-

est fraction, orographic standard deviation, maximum vege-

tation fraction), soil moisture state thresholds (maximum soil

water capacity, rooting depth, soil depth until bedrock), and

parameters determining water movement within the soil col-

umn (Clapp and Hornberger exponent, saturated hydraulic

conductivity, saturated matrix potential, soil pore size distri-

bution index, volumetric soil field capacity, volumetric soil

porosity, volumetric wilting point). For most parameters cor-

relations are low, varying between −0.25 and 0.25 during

most seasons and are rarely significant. In particular for wet

and dry soil moisture regimes as well as for the December

ensemble in all regimes, no significant spatial correlations

exist at all.

For the transitional regime, the strongest correlations are

found for maximum soil water capacity and rooting depth

ranging between 0.4 and 0.6 in the March to September en-

sembles. Since these seasons coincide with the seasons of

high memory–perturbation correlation (see Fig. 8), it can be

assumed that the higher rooting depth and maximum soil wa-

ter capacity allow for larger perturbations that cause a longer

memory. For the June ensemble, weak but significant corre-

lations are also seen for the soil depth until bedrock. This

is probably related to the rooting depth and soil water ca-

pacity correlations, as deep soils are often associated with

a thicker root zone. Furthermore, a significant correlation is

Earth Syst. Dynam., 7, 1–19, 2016 www.earth-syst-dynam.net/7/1/2016/



T. Stacke and S. Hagemann: Lifetime of simulated soil moisture perturbations 9

Table 1. Spatial March ensemble rank correlation coefficients between soil moisture τ0 and static soil properties for different soil moisture

regimes and initializations. Bold font indicates significant correlation (p < 0.05).

Dry initialization Wet initialization

dry trans. wet dry trans. wet

Clapp and Hornberger exponent b −0.08 0.23 0.2 −0.05 0.16 0.1

Forest fraction – 0.16 0.03 – 0.11 −0.3

Saturated hydraulic conductivity 0.13 −0.11 −0.26 0.19 0.06 −0.13

Maximum soil water capacity 0.08 0.26 0.23 0.16 0.4 −0.23

Saturated matrix potential −0.13 0.17 0.25 −0.18 0.03 0.11

Orographic standard deviation −0.14 −0.01 −0.06 0.06 0.02 0.1

Soil pore size distribution index 0.1 −0.22 −0.24 0.16 −0.12 −0.11

Rooting depth 0.15 0.27 0.09 0.2 0.44 −0.32

Soil depth until bedrock 0.1 0.06 −0.04 −0.03 0.14 −0.15

Volumetric soil field capacity −0.11 0.07 0.23 −0.16 −0.05 0.12

Volumetric soil porosity −0.13 0.04 0.22 −0.18 −0.1 0.17

Maximum vegetation fraction −0.1 0.18 0.13 0.0 0.29 −0.21

Volumetric wilting point −0.1 0.14 0.23 −0.14 0.02 0.12

Table 2. Spatial June ensemble rank correlation coefficients between soil moisture τ0 and static soil properties for different soil moisture

regimes and initializations. Bold font indicates significant correlation (p < 0.05).

Dry initialization Wet initialization

dry trans. wet dry trans. wet

Clapp and Hornberger exponent b −0.13 0.19 0.11 −0.17 0.12 0.06

Forest fraction – 0.36 −0.02 – 0.07 0.05

Saturated hydraulic conductivity −0.11 −0.07 −0.1 −0.08 0.08 −0.04

Maximum soil water capacity 0.15 0.47 0.06 0.04 0.55 0.12

Saturated matrix potential 0.05 0.12 0.05 0.03 −0.02 0.05

Orographic standard deviation −0.04 −0.1 −0.07 −0.09 −0.02 0.23

Soil pore size distribution index −0.08 −0.16 −0.09 −0.07 −0.06 −0.05

Rooting depth 0.14 0.46 −0.08 0.02 0.57 0.09

Soil depth until bedrock 0.27 0.34 0.03 0.23 0.44 0.24

Volumetric soil field capacity 0.06 0.1 0.08 0.08 −0.05 0.07

Volumetric soil porosity 0.07 0.05 0.09 0.05 −0.13 0.05

Maximum vegetation fraction 0.04 0.41 −0.08 −0.07 0.46 0.15

Volumetric wilting point 0.03 0.13 0.11 0.05 0.0 0.05

found for the forest fraction (0.35) with dry initialization and

for the maximum vegetation fraction (0.41–0.46) with both

initializations. The forest fraction correlation is related to the

generally deeper roots of trees compared to other plant types.

The deep roots transpire water from a larger fraction of the

soil column, effectively sustaining dry anomalies which in

other grid cells are quickly compensated for by percolating

water. In contrast, the correlation with the maximum veg-

etation fraction is significant for both wet and dry initial-

izations. Here, the higher vegetation cover results in higher

transpiration. We assume that depending on the location of

the grid cells within the transitional soil moisture regime, in-

creased transpiration can either sustain dry anomalies as it

removes water from the soil column or, for regions where

relative humidity is already high, the additional transpiration

may trigger convection, resulting in additional precipitation,

and therefore sustain the wet anomalies. However, it should

be noted that positive soil moisture–precipitation feedback is

considered to be rare in reality on the local scale (C. M. Tay-

lor et al., 2012), and Guillod et al. (2015) also found that pre-

cipitation events tend to be located over drier patches. Still,

those patches generally need to be surrounded by wet con-

ditions (Guillod et al., 2015) so that positive temporal and

spatial soil moisture–precipitation relationships are driven by

large-scale soil moisture distribution. Additionally, positive

soil moisture–precipitation feedback might be overestimated

in the model due to its coarse resolution and the parametriza-

tion of convection (Hohenegger et al., 2009).

Together with the observed seasonal dynamics in soil

moisture memory, these correlations demonstrate the limi-
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Table 3. Spatial September ensemble rank correlation coefficients between soil moisture τ0 and static soil properties for different soil

moisture regimes and initializations. Bold font indicates significant correlation (p < 0.05).

Dry initialization Wet initialization

dry trans. wet dry trans. wet

Clapp and Hornberger exponent b −0.04 0.18 0.18 −0.16 0.07 0.09

Forest fraction – 0.35 0.07 – 0.23 0.04

Saturated hydraulic conductivity −0.05 −0.12 −0.13 0.18 0.05 −0.15

Maximum soil water capacity 0.1 0.44 0.22 0.02 0.51 0.28

Saturated matrix potential −0.0 0.13 0.07 −0.17 −0.01 0.11

Orographic standard deviation 0.1 −0.22 −0.27 −0.02 −0.24 −0.05

Soil pore size distribution index −0.05 −0.15 −0.16 0.19 −0.04 −0.09

Rooting depth 0.13 0.42 0.08 0.14 0.53 0.15

Soil depth until bedrock 0.09 0.17 0.05 0.07 0.31 0.26

Volumetric soil field capacity 0.03 0.15 0.13 −0.17 −0.04 0.18

Volumetric soil porosity 0.04 0.12 0.12 −0.19 −0.08 0.17

Maximum vegetation fraction −0.01 0.28 −0.0 −0.1 0.39 0.14

Volumetric wilting point 0.01 0.17 0.21 −0.16 −0.01 0.15

Table 4. Spatial December ensemble rank correlation coefficients between soil moisture τ0 and static soil properties for different soil moisture

regimes and initializations. Note that all correlations during this season are insignificant (p > 0.05).

Dry initialization Wet initialization

dry trans. wet dry trans. wet

Clapp and Hornberger exponent b −0.15 0.18 0.13 0.04 0.15 0.27

Forest fraction – 0.18 0.18 – 0.04 −0.3

Saturated hydraulic conductivity −0.04 −0.27 −0.1 −0.02 −0.12 −0.34

Maximum soil water capacity 0.06 0.02 0.24 0.09 0.17 0.02

Saturated matrix potential 0.03 0.24 0.07 0.03 0.14 0.33

Orographic standard deviation −0.14 −0.07 −0.13 −0.06 0.01 0.02

Soil pore size distribution index −0.03 −0.22 −0.1 −0.01 −0.15 −0.3

Rooting depth 0.07 −0.02 0.08 0.13 0.16 −0.24

Soil depth until bedrock 0.1 −0.2 0.07 −0.03 −0.1 −0.02

Volumetric soil field capacity 0.02 0.21 0.13 0.02 0.1 0.29

Volumetric soil porosity 0.04 0.24 0.14 0.02 0.1 0.32

Maximum vegetation fraction −0.06 0.01 0.18 0.07 0.17 −0.0

Volumetric wilting point – 0.22 0.14 0.04 0.11 0.3

tations in explaining soil moisture memory with static soil

properties alone. Instead, the contribution of favourable cli-

mate states together with the size of the initial perturbation

appear to be much more important for the formation of per-

sistent anomalies.

4 Interaction of perturbations between soil moisture

and other state variables

As already pointed out in earlier studies (Seneviratne et al.,

2006; Rowntree and Bolton, 1983; and others), soil mois-

ture anomalies also lead to alterations in other – originally

not perturbed – state variables due to feedback mechanisms

(see Sect. 1). However, it is not yet clear to what extent the

memory within a state variable is affected by such feedbacks.

While assuming that memory is a specific characteristic for a

given state, the overall memory of a coupled system of inter-

acting states might differ distinctly from the sum of its parts.

For this reason, the induced anomaly and memory statistics

in other land surface states are analysed in the following.

The largest impact of soil moisture perturbations is ex-

pected for surface and soil temperatures due to the tight

coupling of water and energy fluxes via the latent heat–

evapotranspiration flux. Indeed, induced perturbations are

evident there (Fig. 9, left). The 1θ0 values are largest for the

surface and top layer, with median values of 1.1 K (−1.4 K)

for dry (wet) initialization, which decrease towards 0 in the

deepest layer. The extremes range between −10 and 9.5 K

for the surface and still reach ±0.5 K near the bottom of the

soil column. While the interquartile range of the anomaly is
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Figure 9. Global statistics for 1θ0 (left) and τ0 (right) in soil layer (ST-L1–5) and surface temperatures (T-Surf) in the wet (blue) and dry

(red) initialized ensemble simulations for all land surface grid cells. The whiskers indicate the 1st and 99th percentiles, the box indicates the

interquartile range, and the notch indicates the median. Note the quadratic axis for the memory statistics.

Figure 10. Scatter plots of induced anomaly–memory relation in surface states for all land surface grid cells. The colours indicate the soil

moisture regime. The symbols refer to the soil moisture initialization state and the memory metric.

consistent with the initial soil moisture perturbation for all

layers, e.g. warm anomalies for dry initialization and cold

anomalies for wet initialization, extreme values with oppo-

site anomalies exist. The memory in soil layer temperature is

much shorter than for moisture. Starting from few a days at

the surface, the median τ0 and its interquartile range increase

with increasing depth towards a median of about 0.5 months

in the fourth layer (Fig. 9, right). In the fifth layer, the value

decreases again as a large fraction of the grid cells does not

show any initial memory. The extremes, however, increase

exponentially from 3 weeks at the surface to over 2 years in

the lowest layer. Wet and dry initialized ensembles behave

similar to each other; however, the interquartile range for the

fourth and fifth layer is respectively about 0.5 and 1 months

longer for wet initializations than for dry.

Induced perturbations are not only evident for sur-

face and soil temperature but also occur in other land

surface variables. Concerning the initial memory period

(see Fig. 10, crosses and plus symbols) induced pertur-

bations result in anomalies in the range of ±1 hPa for

surface pressure, ±0.005 m for snow water equivalent,

−0.001 to 0.002 kgm−2 for specific surface humidity, −2.5

to 9.5 kgm−2 for vertically integrated water vapour, and

±0.003 kgm−2 for the leaf carbon content (see Table 5 for

details). However, the τ0 associated with these anomalies is

rather short for all states but leaf carbon content where τ0
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Table 5. Range of area-weighted mean values of 1θ0 (upper part) and 1θmax (lower part) for different soil moisture regimes and initializa-

tions. The semicolon separates minimum and maximum values occurring for different seasons and hemispheres.

Dry regime Transitional regime Wet regime

Dry Wet Dry Wet Dry Wet

Leaf carbon (kg m−2)
−2.5× 10−4; 8.7× 106; −3.6× 10−3; 5.6× 10−4; −1.1× 10−3; −2.5× 10−4;

1.8× 10−5 4.5× 10−4
−9.4× 10−4 42.7× 10−3 3.4× 10−4 9.4× 10−5

Surf. pressure (hPa)
−1.56; 0.11; −0.96; −0.29; −0.97; −0.30;

0.21 0.59 0.66 0.69 2.03 0.70

Snow cover (m)
−3.9× 10−4; −4.8× 10−3; −2.9× 10−5; 0.0; −1.3× 10−3; −1.2× 10−3;

0.0 5.7× 10−4 2.5× 10−3 2.6× 10−3 5.9× 10−3 3.2× 10−3

Spec. surf. humidity (kg kg−1)
−7.9× 10−4; 6.2× 10−4; −9.9× 10−4; 6.6× 10−4; −3.5× 10−4; −2.5× 10−4;

3.1× 10−4 1.7× 10−3
−4.2× 10−4 1.3× 10−3 5.1× 10−5 1.3× 10−4

Atmosp. water vapour (kg m−2)
−2.43; 0.62; −1.77; 0.48; −1.27; −1.99; 1.01

9.36 1.85 −0.23 1.23 1.43 1.01

Leaf carbon (kg m−2)
−9.3× 10−5; 2.4× 10−5; −4.1× 10−3; 1.0× 10−3; −9.7× 10−4; −1.1× 10−3;

4.0× 10−4 1.2× 10−3
−1.0× 10−3 3.2× 10−3 5.5× 10−4 7.7× 10−4

Surf. pressure (hPa)
−0.66; −1.17; −0.98; −0.85; −2.23; −1.06;

2.64 1.40 0.22 1.81 2.52 3.95

Snow cover (m)
−2.4× 10−3; −5.7× 10−3; 4.0× 10−4; 3.4× 10−4; −7.6× 10−5; 2.3× 10−4;

2.6× 10−4 1.4× 10−3 5.1× 10−3 7.3× 10−3 0.01 0.01

Spec. surf. humidity (kg kg−1)
−4.5× 10−4; 5.7× 10−4; −1.2× 10−3; −1.6× 10−4; −8.0× 10−4; −1.5× 10−3;

2.1× 10−3 2.6× 10−3
−1.5× 10−4 8.2× 10−4 4.0× 10−4 1.4× 10−4

Atmosp. water vapour (kg m−2)
−2.59; 0.60; 10.05 −3.30; −2.79; −4.25; −5.40;

8.47 10.05 1.31 2.26 3.79 0.22

Table 6. Range of area-weighted mean values of τ0 (upper part) and τmax (lower part) in months for different soil moisture regimes and

initializations. The semicolon separates minimum and maximum values occurring for different seasons and hemispheres.

Dry regime Transitional regime Wet regime

Dry Wet Dry Wet Dry Wet

Leaf carbon 0.02; 0.42 0.05; 0.76 1.14; 3.74 1.39; 3.88 0.12; 0.93 0.06; 0.41

Surf. pressure 0.04; 0.07 0.03; 0.10 0.06; 0.13 0.07; 0.18 0.04; 0.12 0.05; 0.13

Snow cover 0.0; 0.03 1.6× 10−3; 0.07 0.0; 0.06 0.0; 0.05 7.0× 10−3; 0.09 0.0; 0.09

Spec. surf. humidity 0.04; 0.13 0.08; 0.57 0.06; 0.14 0.09; 0.18 0.04; 0.07 0.04; 0.05

Atmosp. water vapour 0.04; 0.11 0.07; 0.10 0.05; 0.08 0.05; 0.09 0.04; 0.05 0.04; 0.04

Leaf carbon 0.02; 0.65 0.47; 2.14 2.23; 5.63 2.67; 6.21 0.50; 2.44 0.28; 1.67

Surf. pressure 0.71; 0.95 0.74; 0.91 0.76; 1.04 0.79; 1.12 0.69; 0.99 0.75; 0.95

Snow cover 0.0; 0.10 1.6× 10−3; 0.14 0.0; 0.15 0.0; 0.15 0.01; 0.38 0.0; 0.29

Spec. surf. humidity 0.69; 0.98 0.75; 2.07 0.89; 1.06 0.89; 1.29 0.73; 0.93 0.64; 0.96

Atmosp. water vapour 0.55; 0.83 0.68; 0.92 0.76; 0.91 0.77; 0.88 0.70; 0.86 0.68; 0.84

lasts for up to 4 months (see Table 6). In order to identify a

systematic behaviour in these effects, the anomaly–memory

relations are divided into wet and dry initializations. It be-

comes visible that the dry and wet perturbations in dry and

transitional soil moisture regimes mostly result in either pos-

itive or negative anomalies. For the wet soil moisture regime,

however, positive as well as negative anomalies are visible

for any perturbation. The τ0 does not seem to be related

to the 1θ0 for any state but leaf carbon content. Here the

largest anomalies correspond to the longest memory and oc-

cur in the transitional regime, while both dry and wet regimes

show shorter memory and smaller anomalies. For the dry

regime this is probably due to the low amount of plant cover,

whereas in the wet regime, there is no water limitation and

therefore leaf carbon content becomes insensitive to varia-

tions in soil moisture.

Taking into account the full time series (Fig. 10, filled

symbols), the change in memory indicates that there are not
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Figure 11. Global statistics for extreme anomalies 1θmax during the full time series (top panels) and accumulated memory τmax (bottom

panels) in soil layer moisture (left side) and temperature (right side) in the wet (blue) and dry (red) initialized ensemble simulations. All land

surface grid cells are included.

only initial, induced perturbations with an associated mem-

ory but that anomalies recur again at later time steps. For

some variables, these anomalies show even larger magni-

tudes than the initial ones. The accumulated memory τmax

for most variables rises from a few days to about 1 month,

and the memory for leaf carbon content doubles to 6 months.

Snow water equivalent τmax stays low for around 1 week for

all regime–initialization combinations as does the leaf car-

bon content τmax for dry perturbations in the dry soil mois-

ture regime. While the sign of the anomalies corresponds to

the expectations for some variables, e.g. wet initialization re-

sulting in positive anomalies for leaf carbon content and neg-

ative anomalies for surface temperature and vice versa, other

variables (snow cover, surface pressure) react with anoma-

lies in both directions. More details on the overall mem-

ory and anomalies in soil moisture and temperature are dis-

played in Fig. 11 and are compared to the statistics of the

initial perturbation and memory (see Fig. 3 for soil moisture

and Fig. 9 for soil temperature) in the following discussion.

For soil moisture, there are almost no differences between

the magnitudes of 1θ0 and 1θmax. Thus, anomalies during

later memory periods are usually smaller than at the begin-

ning, indicating that no positive feedbacks or new equilibria

are triggered by the initial perturbations. However, τmax for

all layers is increased by 1–1.5 months for the median and

up to 4 months for the 75th percentile. The largest increase

is visible for the upper extreme of RootSM memory with

15 months. Extreme anomalies for soil temperature behave

similarly to initial anomalies and become smaller for deeper

soil layers. Changes in magnitude range between−5 and 3 K

for the surface and vary around ±0.3 K in the deep layers.

The separation between positive and negative anomalies in

response to the initial soil moisture perturbation is not as dis-

tinct anymore for the upper three layers. The accumulated

median memory is at least 1 month for all layers, and the

interquartile range as well as extremes increase even more

strongly than for the initial memory. For the 75th percentile,

τmax exceeds τ0 by 1 (8) month for the first (fifth) layer.

The differences between wet and dry initialization are less

extreme compared to τ0 statistics but still a slightly longer

memory is found for wet initialization in the lowest layer.

These analyses demonstrate that memory occurrence and

anomaly recurrence are not limited to soil moisture and the

closely linked soil temperature. Instead, the soil moisture

perturbations affect most of the land surface system although

to a different extent. However, the mechanism responsible for

the recurrence of anomalies in the different variables cannot

be identified from these analyses.

5 Anomaly interaction pathways between state

variables

In technical terms, the recurrence of state variable anoma-

lies indicates that the anomaly mean and the anomaly stan-

dard deviation for a given location are not just two steadily

decreasing and increasing curves at whose intersection the

memory ends. Instead one or both of them show tempo-

ral variations which result in the anomaly becoming visible

(SNR≥ 1) again. In the following, this possible recurrence

is explored on a grid cell level by investigating the SNR

time series relationship (see Eq. 1) between different state

variables. Here, we focus on leaf carbon content and (deep-

layer) soil temperature as the longest accumulated memory

was computed for these variables. In order to find suitable

grid cells for the analysis, we applied a number of conditions,

namely the difference between τmax and τ0 being> 600 days
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and the amount of recurring memory periods ≥ 3. Only such

grid cells were analysed that comply with these conditions.

Additionally, they were ranked according to the similarity be-

tween the length of their memory periods as we expect more

robust results for regularly recurring anomalies.

For all state variables except soil moisture, the anomaly re-

currence is simple to explain. For example, soil moisture per-

turbations affect leaf carbon content and can result in anoma-

lies with a distinct memory (see Sect. 4). However, leaf car-

bon content follows a yearly cycle and can become insen-

sitive to soil moisture anomalies during certain time periods,

i.e. when soil moisture is below the wilting point or above the

critical soil moisture. The latter case occurs for the leaf car-

bon content shown in Fig. 12 (right). Here, the anomaly van-

ishes during periods of maximum leaf carbon in the reference

simulation. If the soil moisture perturbation still exists after

the peak, a new anomaly is triggered and leaf carbon mem-

ory recurs. A connection between the memory pattern of soil

moisture and vegetation is also proposed by an observation-

based study by Shinoda and Nandintsetseg (2011). Similarly,

soil temperature anomalies do not depend on soil moisture

anomalies alone but also on evapotranspiration anomalies.

These are only triggered when several climate conditions

(e.g. downward radiation, surface humidity) are favourable

(not shown). Thus, temperature anomalies emerge as long as

these conditions apply but, as surface temperature memory

is short, are interrupted whenever the favourable conditions

fade. In both cases, the recurrence of state memory is pos-

sible only because soil moisture memory lasts long enough

until conditions for anomalies become favourable again.

As there is no state variable that demonstrated a longer

memory than soil moisture, another explanation is needed for

its memory recurrence. Still, there are several possible expla-

nations for this phenomenon: the first hypothesis is based on

feedbacks between different state variables. As shown in the

previous section soil moisture perturbations induce anoma-

lies in other variables. However, the induction may have a

certain lag time and furthermore the memory of the anoma-

lies differs between the various states. Thus, it would be

possible that a soil moisture anomaly induces a temporally

lagged anomaly in another state with a different memory.

While the soil moisture anomaly is already decayed, the in-

duced state anomaly might still exist and – if there is a feed-

back loop between both – induce a secondary anomaly in soil

moisture. This effect would be visible as wave-like variations

in the ensemble anomaly mean. Additionally, stored mem-

ory might already exist in other land surface variables such

as snow cover or vegetation prior to the soil moisture pertur-

bation and could amplify or mitigate the initial soil moisture

memory using the same process chain. The second hypoth-

esis is that the soil moisture anomalies might be stable over

long time periods, but its memory could be temporally hid-

den during periods with pronounced variability in interact-

ing variables. This would become visible as a rather steady

and slow decline of the anomaly mean curve, which would

be overlain by periodical increases in the ensemble anomaly

standard deviation.

For soil moisture, the best example is found for a grid cell

at −2.8◦ N and 13.12◦ E (west Africa, Republic of Congo)

during wet initialization in September. Its ensemble mean

anomaly and SNR time series are shown in Fig. 13 for soil

moisture and soil temperature in the different soil layers. At

this location the depth of the bedrock is prescribed with 5.6 m

while root depth extends down to 2.8 unitm. This means that

the water content of the lowest soil moisture layer as well

as of about 50 % of the fourth layer is not directly accessi-

ble to plants for transpiration. Consequently, the SNR soil

moisture curves (Fig. 13, right) exhibit very different tem-

poral dynamics for the soil layers. In the upper three layers,

which are within the root zone, the initialized perturbation

decays within 1 (2) months for the first (third) layer. It re-

curs at yearly intervals for a 3-month period, although only

the recurrence after 12 months shows memory for all three

layers, while for later recurrences, SNR stays below 1. In

between these intervals, the SNR curves are subject to high-

frequency variations. The increasing length of memory and

the less variable SNR signal reflect the increasing soil layer

thickness with depth in these layers. The root zone moisture

as a whole also reflects the yearly intervals of increased SNR

but shows much less high-frequency variability. The SNR is

above 1 for most of the time series. In contrast to the up-

per layers, the fourth and fifth layer, which represent the wa-

ter reservoir below the root zone, show the slowly decay-

ing SNR signal of the initial perturbation without any short-

term variability. Comparing the SNR curves to the anomaly

time series (Fig. 13, left), the same slow decay is visible for

the anomalies in the two lowest layers. Above, distinct wet

anomalies mark the annual recurrence of memory while, in

between, small wet and dry anomalies are visible. The intra-

annual anomalies usually show a small time lag for deeper

layers indicating that the anomaly is migrating from the top

layer into the deeper layers. However, the annual anomalies

are already visible in the third layer before they start in the

second or first one. Therefore, the wet anomalies could be

related to water percolating downwards that is retained here

due to the higher water content of the lower layers. Alterna-

tively, it is even possible that water is migrating upwards via

diffusion due to the positive water anomaly in the lower lay-

ers leading to an strengthened gradient between those layers.

For the actual grid cell, the second case is more probable as

the wet anomalies coincide with the minima of the REF pre-

cipitation climatology. Thus, the anomaly and memory recur-

rence within the RootSM results from interactions with the

uninterrupted period of memory in the deep moisture layers

below the root zone.

Additionally, the vertical profile of soil temperature mem-

ory is analysed for the same grid cell (Fig. 13, bottom). Sim-

ilar to soil moisture memory, variability for soil tempera-

ture is higher for the thin top layers and lower for the thick,

deep layers. Three events of increased memory are visible
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Figure 12. Ensemble mean anomaly (coloured lines) and standard deviation (shaded area) for root zone soil moisture (left) and carbon

content in leaves (right) with the respective climatologies (grey) from the reference simulation. Blue colours indicate wet initialization and

red colours indicate dry initialization. Time series are from a grid cell at −2.8◦ N and 13.12◦ E.

Figure 13. Time series of ensemble mean1θ0 and SNR for a grid cell at−2.8◦ N and 13.12◦ E (Republic of Congo) of the wet initialization

September ensemble. The upper and lower panels show soil moisture and soil temperature, respectively, for all soil layers. The anomaly

notation is mirrored for the soil temperature. Note, that the SNR colour spacing is logarithmic in order to display the ratio similar to a normal

distribution. All yellow and red patches in the right panels indicate time periods defined as memory.

that correspond to the memory recurrence in soil moisture.

Even though variability in the top layer is very high, a dis-

tinct downward movement of the memory signal is visible,

starting with short periods of a few days in the topsoil layer.

The downward movement shows a short time lag in memory

occurrence for every layer together with a longer memory of

the single events due to the increasing layer thickness. Ad-

ditionally, the accumulation of anomaly and memory is vis-

ible in the lower two layers. Here, the vertical structure of

the signal reflects the migration of the induced temperature

anomalies from the top layer downwards. As the memory in-

creases with depth and layer thickness, the rather short-lived

anomalies of the top layer accumulate to a distinct and steady

anomaly in the lower two layers. This top–down movement

is not only supported by the pattern of the anomaly time se-

ries (Fig. 13, left) but follows from the model physics. In

this version of JSBACH, phase changes in moisture within

the ground are not considered and there is no interaction be-

tween moisture and temperature within the soil column. The

only existing link between both is the latent heat flux or evap-

otranspiration at the soil surface. Thus, the first part of the hy-

pothesized anomaly and memory transport between variables

is realized here, as changes in RootSM induce anomalies and

memory in the deep-layer soil temperatures. However, there

is no feedback evident from the temperatures to the moisture

state. Thus, in this experiment the recurring soil temperature

anomalies are most likely caused by recurring soil moisture

memory but not vice versa.

The grid cell analysis demonstrates the possibility of mem-

ory interactions between variables although no indication

was found for a closed memory interaction loop that feeds

back into soil moisture again. Instead, anomaly recurrence in

RootSM seems to depend on the existence of deep-soil lay-

ers below the root zone. In order to conclude whether this

is true for the model in general or just for the one grid cell,

we divided all grid cells into three groups depending on the

thickness of the soil column below the root zone. For these

groups, the frequency distribution of memory recurrence was

calculated for every soil moisture regime and is displayed in

Fig. 14. Indeed the curves differ distinctively between grid

cells without any deep-soil layers and grid cells with either

thin (≤ 1 m) or thick deep-soil layers. It can be seen, that
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Figure 14. Normalized cumulative frequency of grid cells with recurring memory (τmax–τ0) for different soil moisture regimes (upper,

middle, and lower panels). The regimes are further subdivided depending on the thickness of the deep-soil zone below the root zone (orange,

green, and blue colours). Wet (dashed lines) and dry (solid lines) initial states and seasons are merged in the panels.

memory recurrence is generally more frequent for dry soil

moisture regimes than for wet ones. Additionally, the im-

pact of the deep-soil thickness is strongest for dry regimes

and almost not visible for the wet regimes. The figure also

shows the impact of different seasons and initializations on

the memory recurrence. The seasonal variations are mostly

not distinguishable, but the wet initialization shows system-

atically less memory recurrence than the dry initialization.

For the transitional regime, the major part of the impact is

seen for the recurrence range of 5–200 days where all three

sets of deep-layer thickness are well separated. In the dry

regime there are no differences between thin or thick deep-

soil layers, but there is a large offset to the cells without any

deep-soil layers. Consequently, the deep-soil moisture stor-

age seems to play a prominent role for the memory charac-

teristics within the RootSM in all but the wet soil moisture

regime. Still, there is a significant part of the land surface

where memory recurrence is caused by other processes, e.g.

in the wet soil moisture regimes and all the grid cells without

any deep-soil layers. There are indications that the second

hypothesis, the steadily declining anomalies interrupted by

periods of high variability, is realized as well. An example on

grid cell scale is shown in Fig. 12 (left). Here the anomaly is

above the mean level of ensemble standard deviation over the

whole 3 years. It even increases periodically due to recharge

from the deep-soil layer. However, during the rainy seasons,

the ensemble standard deviation increases strongly and over-

lays the mean, thus dividing the memory signal into several

separate periods. However, a more comprehensive analysis

of this effect and other possible reasons for memory recur-

rence on a global scale is beyond the scope of this study as it

would need a different experiment set-up.

6 Summary

The presented soil moisture initialization experiment was de-

signed to reveal information about the lifetime of extreme –

yet realistic – soil moisture perturbations in a coupled climate

model. For the root zone, those lifetimes range from days up

to 1 year and, thus, are consistent with the range of mem-

ory found by other studies (e.g. Manabe and Delworth, 1990;

Hagemann and Stacke, 2015; Ferranti and Viterbo, 2006).

The distribution of memory shows a systematic relation

with soil moisture regimes and is consistent with large-scale

physical characteristics. A prominent example is the soil

moisture memory for monsoon regions, which is extremely

low during the monsoon period as any soil moisture per-

turbations are negligible in face of the heavy precipitation.

A similar result was reported by Seneviratne et al. (2006),

who computed the global soil moisture autocorrelation pat-

tern based on an ensemble of eight atmospheric general cir-

culation models. Their simulations started in June and led to

a memory pattern very similar to the pattern of the June en-

semble in our study. However, memory in the period after the

monsoon is among the longest found globally and lasts until

the next year’s monsoon season starts again. Thus, monsoon
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regions are actually regions of significant memory if consid-

ered after the main precipitation period. Similarly, we see

long memory in the high northern latitudes in the Decem-

ber ensemble as perturbations are preserved because land–

atmosphere interactions are hampered by snow cover. These

regions coincide with the long memory regions identified by

Manabe and Delworth (1990). However, again, the date of

initialization is critical, since snowmelt and summer precipi-

tation reduce the memory after the winter period, as seen in

the other seasonal ensembles. Only limited agreement can be

found between our memory pattern and the soil moisture au-

tocorrelation length shown by Hagemann and Stacke (2015),

although the same ESM was used. While for South America

and the high northern latitudes some similarities are visible,

the extremely long memory exceeding 1 year for most arid

regions cannot be confirmed. This might be due to their use

of autocorrelation diagnostics, which the authors themselves

report to be problematic in very dry and very wet regions.

On average, the longest memory is visible for dry soil mois-

ture regimes and the shortest for wet regimes. Within these

regions it shows only a low dependency on the type (dry or

wet) of the initial perturbation. In terms of temporal variance,

long memory is more common in dry periods following dis-

tinct rainy seasons and during extensive periods with snow

cover.

Although soil moisture memory is often associated with

static soil properties such as soil depth (e.g. Asharaf and

Ahrens, 2013; Hagemann and Stacke, 2015) we find that soil

moisture memory is a dynamical feature, which strongly de-

pends not only on the size of a given anomaly but also on

favourable climate conditions. The size of the initial pertur-

bations can explain up to 50 % of the spatial pattern of mem-

ory while static parameters such as maximum soil water ca-

pacity, rooting depth, or forest fraction are only important for

some regions and seasons. Thus, a large part of pattern vari-

ance remains and can be assumed to be related to seasonal

climate conditions.

Furthermore, soil moisture perturbations affect other land

surface states due to different interactions. The strongest im-

pacts are seen for leaf carbon content whose anomalies are

associated with a memory of up to 6 months in transitional

soil moisture regimes. While the effect on surface temper-

ature is very short-lived and shows much high-frequency

variation, the respective anomalies migrate through the soil

column into deeper layers and there accumulate to a con-

siderable memory that can even exceed the simulation pe-

riod of 3 years. Likewise, for most other surface variables,

such as humidity and pressure, only a short memory is di-

agnosed. Soil moisture control seems strong enough to in-

duce some anomalies; however, memory of them is quickly

dissipated by strongly non-linear processes in the interacting

atmospheric states. Alternatively, it might be possible that

anomalies are transported by the atmosphere and might influ-

ence the memory in downwind grid cells. Recently, a combi-

nation of spatial and temporal feedbacks between soil mois-

ture and precipitation was proposed by Guillod et al. (2015);

however, this effect cannot be captured by our analysis and

its potential influence on soil moisture memory remains open

for further study.

A related example for memory recurrence is presented by

Guo et al. (2011, 2012), who found that the predictability of

atmospheric states due to realistic land surface initialization

can recover from a decrease even after one season. This is

caused by the existence of persistent land surface anomalies

whose impact on the atmosphere increases due to an increase

in land–atmosphere coupling strength.

We also find that RootSM memory itself can emerge again

after the initial memory had already been lost. In most cases

this is related to the existence of a deep-soil moisture stor-

age below the root zone. As all soil layers interact with each

other, anomalies which had already faded in upper layers

might recur. This is caused by anomalies still existing in

lower layers that either modify percolation or – in the case

of wet anomalies – can even migrate via upward diffusion.

This effect is most common in dry and transitional soil mois-

ture regimes but is quite insensitive to the initialization date

and type. Examples of similar processes of interaction be-

tween short-term shallow and longer-term deep anomalies

exist from earlier studies. These are in particular the transi-

tion of temperature signals through several soil layers in the

context of force–restore soil schemes (Dickinson, 1988) as

well as the propagation from precipitation perturbations into

groundwater anomalies (Entekhabi et al., 1992).

From our study, we can conclude that memory is not just

the property of a single variable but that it is modified by the

interactions of states in a coupled system. Between different

states, only one interaction direction is clearly visible in our

simulation, from soil moisture to soil temperature and leaf

carbon content. However, we do see two-sided interactions

between soil moisture in different layers, namely root zone

and deep soil. As deep-soil memory exists for the full 3-year

simulation period for some regions and feeds back to root

zone memory, the predictive potential of soil moisture ini-

tialization might be much greater than previously expected.

Thus, soil moisture has the potential to play an important

role in seasonal predictions. However, there are some lim-

itations to our study which have to be noted. First, in the

current version of JSBACH, phase changes within the soil

column are not yet considered and, thus, water and energy

balances are not connected. However, this process is imple-

mented in the next version (Ekici et al., 2014). It leads to a

tight moisture–temperature coupling and might result in sig-

nificant two-sided memory interactions within the two long-

memory states. Whether this will result in long-term stabi-

lization or rather in a quick compensation for anomalies is

difficult to predict and needs to be tested. Second, as we

initialize all simulations with extreme states, we artificially

synchronize extreme events in terms of their temporal occur-

rence. This could affect soil moisture memory via remote ef-

fects between extremes. In order to avoid such interactions
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it would be necessary to preserve a natural pattern of ex-

tremes. However, this would require a much larger number

of simulations beyond the computational capacities available

for this study. Finally, it has to be noted that the results are,

of course, model dependent and the exact numbers will differ

for individual modelling frameworks. Nonetheless, as long as

critical land surface parametrizations exist, namely the sepa-

ration of the soil column into several layers containing a root

zone and a deep-soil layer, we expect similar soil moisture

memory characteristics to emerge. Thus, the potential for im-

proved climate predictions should exist for all state-of-the-art

modelling frameworks.
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