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Abstract. On scales of ≈ 10 days (the lifetime of planetary-scale structures), there is a drastic transition from

high-frequency weather to low-frequency macroweather. This scale is close to the predictability limits of deter-

ministic atmospheric models; thus, in GCM (general circulation model) macroweather forecasts, the weather is

a high-frequency noise. However, neither the GCM noise nor the GCM climate is fully realistic. In this paper we

show how simple stochastic models can be developed that use empirical data to force the statistics and climate

to be realistic so that even a two-parameter model can perform as well as GCMs for annual global temperature

forecasts.

The key is to exploit the scaling of the dynamics and the large stochastic memories that we quantify. Since

macroweather temporal (but not spatial) intermittency is low, we propose using the simplest model based on

fractional Gaussian noise (fGn): the ScaLIng Macroweather Model (SLIMM). SLIMM is based on a stochastic

ordinary differential equation, differing from usual linear stochastic models (such as the linear inverse modelling

– LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly assumes that there is no low-

frequency memory, SLIMM has a huge memory that can be exploited. Although the basic mathematical forecast

problem for fGn has been solved, we approach the problem in an original manner, notably using the method of

innovations to obtain simpler results on forecast skill and on the size of the effective system memory.

A key to successful stochastic forecasts of natural macroweather variability is to first remove the low-

frequency anthropogenic component. A previous attempt to use fGn for forecasts had disappointing results

because this was not done. We validate our theory using hindcasts of global and Northern Hemisphere tempera-

tures at monthly and annual resolutions. Several nondimensional measures of forecast skill – with no adjustable

parameters – show excellent agreement with hindcasts, and these show some skill even on decadal scales. We

also compare our forecast errors with those of several GCM experiments (with and without initialization) and

with other stochastic forecasts, showing that even this simplest two parameter SLIMM is somewhat superior. In

future, using a space–time (regionalized) generalization of SLIMM, we expect to be able to exploit the system

memory more extensively and obtain even more realistic forecasts.

1 Introduction

Due to their sensitive dependence on initial conditions, the

classical deterministic prediction limit of GCMs (general cir-

culation models) is about 10 days – the lifetime of planetary-

sized structures (τw). Beyond this, the forecast weather

rapidly loses any relationship with the real weather. The anal-

ogous scale (τow) for near-surface ocean gyres is about 1 year

(Lovejoy and Schertzer, 2012b), so that even the ocean com-

ponent – important in fully coupled climate models (referred

to simply as GCMs below) – is poorly forecast beyond this.

When using long GCM runs for making climate forecasts,

we are therefore really considering a boundary value prob-

lem rather than an initial value problem (Bryson, 1997).
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For these longer scales, following Hasselmann (1976), the

high-frequency weather can be considered as a noise driving

an effectively stochastic low-frequency system; the separa-

tion of scales needed to justify such modelling is provided

by the drastic transitions at τw, τow. In the atmosphere, the

basic phenomenology behind this has been known since the

earliest atmospheric spectra (Panofsky and Van der Hoven,

1955) and was variously theorized as the “scale of migratory

pressure systems of synoptic weather map scale” (Van der

Hoven, 1957) and as the “synoptic maximum” (Kolesnikov

and Monin, 1965). Later, it was argued to be a transition

scale of the order of the lifetime of planetary structures that

separated different high-frequency and low-frequency scal-

ing regimes (Lovejoy and Schertzer, 1986). More recently,

based on the solar-induced energy rate density, the atmo-

spheric scale τw was deduced theoretically from turbulence

theory (Lovejoy and Schertzer, 2010), and τow was derived

in Lovejoy and Schertzer (2012b). The same basic picture

was also confirmed in the Martian atmosphere in Love-

joy et al. (2014), including a correct prediction of the low-

and high-frequency spectral exponents and Martian transi-

tion scale τMw (= 1.8 sols). Although it is only plausible at

midlatitudes, the competing theory from dynamical meteo-

rology postulates that the transition scale τw is the typical

scale of baroclinic instabilities (Vallis, 2010); see the critique

in Lovejoy and Schertzer (2013, ch. 8).

Independent of its origin, the transition justifies the idea

that the weather is essentially a high-frequency noise driving

a lower-frequency climate system, and the idea is exploited

in GCMs with long integrations as well as in Hasselmann-

type stochastic modelling, now often referred to as linear in-

verse modelling (LIM; sometimes also called the “stochas-

tic linear forcing” paradigm), e.g. Penland and Sardesh-

muhk (1995), Newman et al. (2003), Sardeshmukh and

Sura (2009); analogous modelling is also possible on much

longer timescales using energy balance models. For a review,

see Dijkstra (2013); for a somewhat different Hasselmann-

inspired approach, see Livina et al. (2013).

In these phenomenological models, the system is regarded

as a multivariate Ohrenstein–Uhlenbeck (OU) process. The

basic LIM paradigm is based on the stochastic differential

equation(
d

dt
+ωw

)
T = σγ γ (t), (1)

where T is the temperature, ωw= τ
−1
w is the “weather fre-

quency”, σγ is the amplitude of the forcing and γ (t) is a “δ-

correlated” Gaussian white noise forcing with

〈γ (t)γ (s)〉 = δ(t − s); 〈γ (t)〉 = 0. (2)

Angle brackets indicate ensemble averaging and δ(t − s) is

the Dirac function; t and s are two different times. This uses

the convenient physics notation for the generalized function

γ (t); alternatively one may take γ (t) dt = dW , where W is a

Wiener process.

Fourier transforming Eq. (1) and using the rule

F. T.[
dn f
dtn
] = (iω)n F. T.[f ], where F. T. indicates Fourier

transform, the temperature spectrum is thus

ET (ω)= 〈|T̃ (ω)|2〉 ≈
σ 2
γ

ω2+ω2
w

, (3)

where ω is the frequency, the tilde indicates Fourier

transform, and, at respectively low and high frequencies,

ET (ω)≈ω−β with βl= 0, βh= 2. A spatial LIM model (for

regional forecasting) is obtained by considering a vector

each of whose components is the temperature (or other at-

mospheric field) at different (spatially distributed) “pixels”,

yielding a system of linear stochastic ordinary differential

equations of integer order. A system with 20 degrees of free-

dom (involving> 100 empirical parameters) currently some-

what outperforms GCMs for global-scale annual temperature

forecasts (Newman (2013); Table 2, Fig. 2).

The basic problem with the LIM approach is that although

we are interested in the low-frequency behaviour, for LIM

models it is simply white noise and this has no memory (put

d/dt = 0 in Eq. 1); by hypothesis, LIM models therefore as-

sume a priori that there is no long-term predictability. How-

ever, ever since Lovejoy and Schertzer (1986), there has been

a growing literature (Koscielny-Bunde et al., 1998; Huybers

and Curry, 2006; Blender et al., 2006; Franzke, 2012; Rypdal

et al., 2013; Yuan et al., 2014, and see the extensive review in

Lovejoy and Schertzer, 2013) showing that the temperature

(and other atmospheric fields) are scaling at low frequencies,

with spectra significantly different than those of Orenstein–

Uhlenbeck processes, notably with βl in the range of 0.2–

0.8 with the corresponding low-frequency weather regime (at

scales longer than τw≈ 10 days) now being referred to as

“macroweather” (Lovejoy, 2013). At a theoretical level, for

regional forecasting, a further shortcoming of the LIM ap-

proach is that it does not respect the property of space–time

statistical factorization (Lovejoy and Schertzer, 2013, ch. 10;

Lovejoy and de Lima, 2015).

While the difference in the value of βl might not

seem significant, the LIM white noise value βl= 0 has

no low-frequency predictability, whereas the actual values

0.2<βl< 0.8 (depending mostly on the land or ocean loca-

tion) correspond to potentially enormous predictability (see,

e.g., Fig. 1a–e). Although this basic feature of “long-range

statistical dependency” has been regularly pointed out in the

scaling literature and an attempt was already made to ex-

ploit it (Baillie and Chung, 2002b; see below), the actual ex-

tent of this enhanced predictability has not been quantified

before now (see, however, Yuan et al., 2014). This justifies

the development of the new ScaLIng Macroweather Model

(SLIMM) that we present below. We argue that, even in its

simplest two parameter version, it already is comparable to –

or better than – GCMs.
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Figure 1. (a) Forecast skill for nondimensional forecast horizons λ= t/τ = 1, 2, 4, 8, . . . 64 (left to right) as functions of H . For reference,

the rough empirical values for land, ocean and the entire globe (the value used here; see below) are indicated by dashed vertical lines. The

horizontal lines show the fraction of the variance explained (the skill, Sk ; Eq. 46) in the case of a forecast of resolution τ data at a forecast

horizon t = τ (λ= 1; corresponding to forecasting the anomaly fluctuation one time unit ahead). (b) The theoretical skill with infinite memory

for various ratios of nondimensional forecast horizons λ over the range 0≥H ≥−0.35 (top to bottom in steps of 0.05). The limiting value

H =−1/2 corresponds to Gaussian white noise with zero skill. The empirically relevant range for the whole earth (H ≈−0.20± 0.03) is

in red; the thick line represents the best estimated parameter (H =−0.20). (c) This illustrates the potentially huge memory in the climate

system (especially the ocean). It gives the λmem value such that Sk,λmem
(1)/Sk,∞(1)= 0.9. When H =−1/2, there is no memory and λmem

is not defined; it diverges when H → 0. (d) The theoretical skills for hindcasts with infinite (Eq. 46) and finite memory (Eq. 49) for the

empirically relevant parameter range (H =−0.23, brown, bottom; H =−0.17, red, top). The flat (constant skill) at the top are the curves for

the anomaly forecasts (i.e. with forecast horizon, t is equal to the resolution τ so that λ= 1); the bottom curves are for constant resolution τ

with forecast horizon. In each case a triplet of curves is shown corresponding to varying lengths of memories used in the forecast: infinite,

180 and 20 (the latter two corresponding to those used for the monthly and global forecasts analysed here). (e) The skill of λ= t/τ = 1

forecasts using the full memory (black, Eq. 46, from a), the corresponding classical persistence forecast (red), Sk = 1–4 (1–22H ) and the

corresponding “enhanced persistence” result (blue; for this λ= 1 case, this is the same as the AR(1) (autoregressive order 1) model forecast)

with Sk = (22H+1
− 1)2. With classical persistence the skill becomes negative for H <≈−0.2, so it is not shown over the whole range.
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Figure 2. ENSEMBLES experiment, LIM and SLIMM hindcasts

for global annual temperatures for horizons of 1 to 9 years. The

light lines are from individual members of the ENSEMBLE ex-

periment; the heavy line is the multimodel ensemble adapted from

Fig. 4 in García-Serrano and Doblas-Reyes (2012). This shows the

RMSE comparisons for the global mean surface temperatures com-

pared to NCEP/NCAR (2 m air temperatures). Horizontal reference

lines indicate the standard deviations of Tnat (bottom panel) and of

the linearly detrended temperatures (top panel). Also shown are the

RMSE for the LIM model (from Table 1 in Newman, 2013) and the

SLIMM.

2 Stochastic models and fractional Gaussian noise

2.1 Linear and nonlinear stochastic atmospheric models

We have discussed the phenomenological linear stochastic

models introduced in atmospheric science by Hasselmann

and others from 1976 onwards. Yet there is an older tradition

of stochastic atmospheric modelling that can be traced back

to the 1960s: stochastic cascade models for turbulent inter-

mittency (Novikov and Stewart, 1964; Yaglom, 1966; Man-

delbrot, 1974; Schertzer and Lovejoy, 1987). Significantly,

these models are nonlinear rather than linear, and the nonlin-

earity plays a fundamental role in their ability to realistically

model intermittency. By the early 1980s it was realized that

these multiplicative cascades were the generic multifractal

processes, and they were expected to be generally relevant

in high-dimensional nonlinear dynamical systems that were

scale invariant over some range. By 2010, there was a consid-

erable body of work showing that atmospheric cascades were

anisotropic – notably with different scaling in the horizon-

tal and vertical directions (leading to anisotropic, stratified

cascades) – and that this enabled cascades to operate up to

planetary sizes (see the reviews Lovejoy and Schertzer, 2010,

2013). While the driving turbulent fluxes were modelled by

pure cascades, the observables (temperature, wind, etc.) were

modelled by fractional integrals of the latter (see below): the

Fractionally Integrated Flux (FIF) model. The analysis of in

situ (aircraft, dropsonde) and remotely sensed data, reanaly-

ses as well as weather forecasting models showed that at least

up to 5000 km, the cascade processes were remarkably accu-

rate, with statistics (up to second order) typically showing

deviations of less than ≈±0.5 % with respect to the theoret-

ical predictions (see Lovejoy and Schertzer (2013, ch. 4) for

an empirical review).

The success of the cascade model up to planetary scales

(Lw) showed that the horizontal dynamics were domi-

nated by the solar-induced energy flux (ε≈ 10−3 W kg−1

sometimes called the “energy rate density”), and it im-

plies a break in the space–time cascades at about

τw= ε
−1/3L

2/3
w ≈ 10 days discussed above. The logical next

question was therefore what happens if the model is ex-

tended in time and the cascade starts on an outer timescale

much longer than τw? In Lovejoy and Schertzer (2013,

Appendix 10A), some of the mathematical details of this

Extended Fractionally Integrated Flux (EFIF) model were

worked out, and it was shown that at frequencies below τ−1
w

there would a nonintermittent (near-) Gaussian, (near-) scal-

ing regime with generic exponents βl in the observed range.

Although this (temporally) extended space–time cascade

model well reproduces the basic space–time weather statis-

tics (for scales<τw) and the temporal macroweather statis-

tics (for scales>τw), by itself it was not able to repro-

duce the spatial macroweather statistics that characterize cli-

mate zones and that were strongly intermittent, so that an-

other, even lower-frequency climate process was necessary.

(In quantitative terms, empirically, the basic intermittency

parameter C1 that characterizes the intermittency near the

mean is typically low – around 0.01–0.02 – in time, whereas

it is typically high – around 0.15–0.2 – in space.) It was pro-

posed that – following the basic mathematical structure of the

rest of the model – the new climate process was also multi-

plicative in nature. This factorization hypothesis was empiri-

cally verified on macroweather temperature and precipitation

data (Lovejoy and Schertzer (2013, ch. 10) and Lovejoy and

de Lima (2015) respectively).

To summarize, there are three key empirically observed

macroweather characteristics that models should respect: low

temporal intermittency, high spatial intermittency and sta-

tistical space–time factorization. According to the analysis

in Lovejoy and de Lima (2015), the CEFIF (Climate EFIF

model) approximately satisfies these properties but has some

disadvantages. A practical difficulty is that it – much like

GCMs – requires the explicit modelling of fine temporal

(weather-scale) resolution. This is computationally waste-

ful since for macroweather modelling, the high frequencies

are subsequently averaged out in order to model the lower-

frequency macroweather. An arguably more significant dis-

advantage is that CEFIFs theoretical properties – including

its predictability – are nontrivial and are largely unknown.

SLIMM is an attempt to directly model space–time

macroweather while respecting the factorization property

and while using the comparatively simple, nonintermittent

scaling process – fractional Gaussian noise (fGn) – to repro-
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duce the low-intermittency temporal behaviour. In the tempo-

ral domain, it is thus based on a linear stochastic model (fGn)

with reasonably well-understood predictability properties

and predictability limits. The strong spatial macroweather

variability can be modelled either by using multifractal spa-

tial variability (representing very low-frequency climate pro-

cesses), or alternatively – in the spirit of LIM modelling –

it can be modelled as a system of (fractional-order) ordinary

differential equations. In the former case, developed in Love-

joy and de Lima (2015), it turns out to be sufficient to take

the product of a spatially nonlinear (multifractal) stochastic

model, with a space–time fGn process. The result is a model

that is well defined at arbitrary spatial resolutions and with

temporal scaling exponents that are the same at every spa-

tial location (this restriction is somewhat unrealistic). In the

latter LIM-like case, one fixes the grid scale (the spatial res-

olution) and then treats each grid point as a component of

an N component system of (fractional) ordinary differential

equations. In this version of space–time SLIMM, each grid

point can have a different temporal scaling exponent corre-

sponding to a different fractional order of differentiation. Al-

though the result is formally closer to the LIM model (albeit

with radically different predictability properties), it has the

disadvantage that the model properties are not well defined

under changes in spatial resolution – they potentially depend

strongly on the grid that is used for the spatial discretiza-

tion. As a final comment, we note that empirically, it is found

that macroweather temperature probability distributions have

“fat tails” so that statistical moments of the order of ≈ 5 di-

verge (Lovejoy and Schertzer, 2013, ch. 5; Lovejoy, 2014b,

2015b; see also Lovejoy and Schertzer (1986). However, for

the (low-order) statistics (e.g. near the mean and variance –

first and second order), the deviations from Gaussianity are

small enough that fGn can be used as an approximation.

2.2 From LIM to SLIMM

In this paper, we concentrate on the simplest scalar SLIMM,

and we illustrate this by hindcasting global-scale temperature

series. The key change to the LIM model is thus a modifica-

tion of the low-frequency scaling: rather than βl= 0 (white

noise), the SLIMM has 1>βl> 0. This can be effected by a

simple extension of Eq. (1) to yield the fractional differential

equation

dH+1/2

dtH+1/2

(
ωw+

d

dt

)
T = σγ γ (t), (4)

where H + 1/2 is a fractional order of differentiation. Using

F. T.[
dH+1/2f

dtH+1/2 ]= (iω)H+1/2F. T.[f ]; this yields the tempera-

ture spectrum:

ET (ω)≈ ω−(2H+1)
σ 2
γ(

ω2+ω2
w

) . (5)

Hence, the low- and high-frequency SLIMM exponents are

βl= 2H + 1, βh= 2H + 3. Note that for the global temper-

ature series analysed below, we have βl≈ 0.6 and H ≈−0.2

(see Fig. 4a and b).

Alternatively, Eq. (4) can be solved in real space directly.

First, operate on both sides of the above by (ωw+
d
dt

)−1 to

obtain

dH+1/2

dtH+1/2
T = γs(t); γs(t)= σγ

t∫
−∞

e−ωw(t−t ′)γ (t ′)dt ′. (6)

Since the autocorrelation of γs is

〈γs(t)γs(t −1t)〉 = e
−ωw1tσ 2

γ,s; σ 2
γ,s =

σ 2
γ

2ωw

, (7)

we see that, for lags 1t�ω−1
w , γs is essentially an uncorre-

lated white noise: γs is simply γ smoothed over timescales

shorter than τw=ω
−1
w .

If we are only interested in frequencies lower than ωw, we

can introduce the white noise smoothed at resolution τ and

simply solve the following:

dH+1/2

dtH+1/2
T = σγ γτ (t). (8)

The LIM paradigm is recovered as the special case with

H =−1/2. Although physically, the weather scales are re-

sponsible for the smoothing at τ = τw, in practice, we typ-

ically have climate data averaged at even lower resolutions:

for example monthly or annually. Therefore, it is simpler to

consider a “pure” process (with pure white noise forcing γ

rather than the smoothed γτ ) and then introduce the resolu-

tion and/or smoothing simply as an averaging procedure.

Formally, the solution to Eq. (8) with τ = 0 is obtained by

Riemann–Liouville fractional integration of both sides of the

equation by order H + 1/2:

T (t)=
σγ

0(1/2+H )

t∫
−∞

(t − t ′)−(1/2−H )γ (t ′)dt ′;

− 1/2<H < 0. (9)

(0 is the gamma function.) T (t) is a “fractional Gaussian

noise” (fGn) process. By inspection, the statistics are invari-

ant under translations in time (t→ t +1t) so that this pro-

cess is stationary. Although basic processes of this type were

first introduced by Kolmogorov (1940), since Mandelbrot

and Van Ness (1968), the usual order-1 integral of Eq. (9) has

received most of the mathematical attention and is known as

“fractional Brownian motion” (fBm). An interesting math-

ematical feature of fBm and fGn is that they are not semi-

Martingales and hence the standard stochastic Itô and Strata-

tovitch calculi do not apply (see Biagini et al. (2008) for a

recent mathematical review). In the present case, this is not

important since we only deal with Wiener integrals (i.e. inte-

grals of deterministic functions with respect to fGn). The FIF

www.earth-syst-dynam.net/6/637/2015/ Earth Syst. Dynam., 6, 637–658, 2015
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model mentioned earlier has the same mathematical struc-

ture: it suffices to replace γ in Eq. (9) by a turbulent flux

from a multiplicative cascade model; this overall model has

the same fluctuation exponentH but is intermittent with mo-

ments other than first order potentially having quite different

scaling.

While below we use simple averaging to obtain small-

scale convergence of fGn, for many purposes, the details of

the smoothing at resolution τ are unimportant and it can be

useful to define the particularly simple “truncated fGn” pro-

cess:

Ttrun(t)=
σγ

0(1/2+H )

t∫
−∞

(t + τ − t ′)−(1/2−H )γ (t ′)dt ′;

− 1/2<H < 0, (10)

where the singular kernel is truncated at scale τ . It can be

shown that for large enough lags 1t , the fluctuation and au-

tocorrelation statistics for truncated fGn are the same as for

the averaged fGn, although, when H approaches 0 (from be-

low), the convergence of the former to the latter becomes

increasingly slow. In practice, the truncated model is often a

convenient approximation to the slightly more complex aver-

aged fGn process.

2.3 Properties of fGn

2.3.1 Definition and links to fBm

Fractional Brownian motion has received far more attention

than fractional Gaussian noise, and it is possible to deduce

the properties of fGn from fBm. However, since we are ex-

clusively interested in fGn, it is more straightforward to first

define fGn and then – if needed – define fBm from its inte-

gral.

The canonical fractional Gaussian noise process GH (t)

with parameter H , can be defined as

GH (t)=
cH

0(1/2+H )

t∫
−∞

(t − t ′)−(1/2−H )γ (t ′)dt ′

− 1<H < 0, (11)

where cH is a constant chosen so as to make the expression

for the statistics particularly simple; see below. First, taking

ensemble averages of both sides of Eq. (11), we find that the

mean vanishes: 〈GH,τ (t)〉= 0. Now, take the average of GH
over a resolution τ ,

GH,τ (t)=
1

τ

t∫
t−τ

GH (t ′)dt ′, (12)

and define the function FH , which will be useful below, as

FH (λ)=

λ−1∫
0

(
(1+ u)H+1/2

− uH+1/2
)2

du; λ≥ 1 (13)

(u is a dummy variable) with the particular value

FH (∞)= π−1/22−(2H+2)0(−1−H )0(3/2+H ) (14)

and the asymptotic expression for λ� 1:

FH (λ)= FH (∞)−
(H + 1/2)2

−2H
λ2H
+ . . . . (15)

If cH is now chosen such that

cH =
0(H + 3/2)[

FH (∞)+ 1
2H+2

]1/2

=

(
π

2cos(πH )0(−2H − 2)

)1/2

, (16)

then we have〈
GH,τ (t)2

〉
= τ 2H

; −1<H < 0. (17)

This shows that a fundamental property is that in the small-

scale limit (τ → 0), the variance diverges and H is the scal-

ing exponent of the root mean square (RMS) value. This

singular small-scale behaviour is responsible for the strong

power law resolution effects in fGn. Since <GH,τ (t)>= 0,

we see that sample functions GH,τ (t) fluctuate about 0 with

successive fluctuations tending to cancel each other out; this

is the hallmark of the macroweather regime.

It is more common to treat fBm whose differential dBH ′ (t)

is given by

dBH ′ =GH (t)dt; H ′ =H + 1; 0<H ′ < 1 (18)

so that

1BH ′ (τ )= BH ′ (t)−BH ′ (t − τ )

=

t∫
t−τ

GH (t ′)dt ′ = τGH,τ (t) (19)

with the property〈
1BH ′ (1t)

2
〉
=1t2H

′

. (20)

While this defines the increments of BH ′ (t) and shows that

they are stationary, it does not completely define the process.

For this, one conventionally imposes BH ′ (0)= 0, leading to

the usual definition due to (Mandelbrot and Van Ness (1968)

BH ′ (t)=
cH ′

0(H ′+ 1/2)

0∫
−∞

(
(t − s)H

′
−1/2
− (−s)H

′
−1/2

)
γ (s)ds

+
cH ′

0(H ′+ 1/2)

t∫
0

(t − s)H
′
−1/2γ (s)ds. (21)

Whereas fGn has a small-scale divergence that can be elim-

inated by averaging over a finite resolution τ , the fGn inte-

gral
t∫
−∞

GH (t ′)dt ′ on the contrary has a low-frequency diver-

gence. This is the reason for the introduction of the second
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term in the first integral in Eq. (21): it eliminates this diver-

gence at the price of imposing BH ′ (0)= 0 so that fBm is non-

stationary (although its increments are stationary; Eq. 19).

A comment on the parameter H is now in order. In treat-

ments of fBm, it is usual to use the parameter H confined

to the unit interval, i.e. to characterize the scaling of the

increments of fBm. However, fBm (and fGn) are very spe-

cial scaling processes, and even in low-intermittency regimes

such as macroweather, they are at best approximate models

of reality. Therefore, it is better to define H more generally

as the fluctuation exponent (see below); with this definition

H is also useful for more general (multifractal) scaling pro-

cesses although the interpretation of H as the “Hurst expo-

nent” is only valid for fBm. When −1<H < 0, the mean

at resolution τ (Eq. 12) defines the anomaly fluctuation (see

below), so that H is equal to the fluctuation exponent for

fGn; in contrast, for processes with 0<H< 1, the fluctua-

tions scale as the mean differences and Eq. (20) shows that

H ’ is the fluctuation exponent for fBm. In other words, as

long as an appropriate definition of fluctuation is used,H and

H ′= 1+H are fluctuation exponents of fGn and fBm re-

spectively. The relation H ′=H + 1 follows because fBm is

an integral order 1 of fGn. Therefore, since the macroweather

fields of interest have fluctuations with mean scaling expo-

nent −1/2<H < 0, we use H for the fGn exponent and

1/2<H ′< 1 for the corresponding integrated fBm process.

Some useful relations are

〈dBH ′ (t)dBH ′ (s)〉 = 〈GH (t)GH (s)〉dsdt = |t − s|2H dsdt (22)

and

〈(BH ′ (t2)−BH ′ (t1)) (BH ′ (t4)−BH ′ (t3))〉

=
1

2

(
(t4− t1)2H ′

+ (t3− t2)2H ′
− (t3− t1)2H ′

− (t4− t2)2H ′
)
, (23)

valid for 0<H ′< 1 and t1< t2≤ t3< t4 (e.g. Gripenberg

and Norros, 1996).

The relationship Eq. (23) can be used to obtain several use-

ful relations for a finite resolution fGn. For example,〈
GH,τ1

(t)GH,τ2
(t −1t)

〉
=

1

2τ1τ2

(
(1t + τ2)2H+2

+(1t − τ1)2H+2
−1t2H+2

− (1t + τ2− τ1)2H+2
)
;

1t ≥ τ ; −1<H < 0. (24)

A convenient expression for the special case at the fixed res-

olution τ = τ1= τ2 is

RH,τ (1t)=
〈
GH,τ (t)GH,τ (t −1t)

〉
=
τ 2H

2

[
(λ+ 1)2H+2

+ (λ− 1)2H+2
− 2λ2H+2

]
;

λ=
1t

τ
≥ 1; −1 < H < 0. (25)

The nondimensional lag, i.e. measured in integer resolution

units, is λ=1t/τ . This is convenient since real data are dis-

cretized in time, and this shows that as long as we correct for

the overall resolution factor (τ 2H ), that the autocorrelation

only depends on the nondimensional lag.

Since H < 0, the large-1t limit is

RH,τ (1t)≈ (H + 1)(2H + 1)1t2H ; 1t � τ ;−1<H < 0. (26)

The autocorrelation falls off algebraically with exponent 2H .

2.3.2 Spectrum and fluctuations

Since fGn is stationary, its spectrum is given by the Fourier

transform of the autocorrelation function. The autocorrela-

tion is symmetric (RH,τ (1t)=RH,τ (−1t)), so that for the

Fourier transform, we use the absolute value of1t . Also, we

must take the limit of the autocorrelation of small resolution,

which is the same as using the large-λ formula (Eq. 26). In

this case, we obtain

E(ω)=
0(3+ 2H ) sinπH

√
2π

|ω|−β; β = 1+ 2H. (27)

The relation between β and H is the standard monofractal

one. It is valid as long as intermittency effects are negligi-

ble, i.e. if we ignore the multifractal “corrections”. However,

sometimes – as here for high-order statistical moments or in

the case of precipitation even for low-order moments – these

can give the dominant contribution to the scaling.

The spectrum is one way of characterizing the variability

as a function of scale (frequency); however, it is often im-

portant to have real space characterizations. These are useful

not only for understanding the effects of changing resolution,

but also on a given timescale 1t for studying the full range

of variability (i.e. statistical moments other than second or-

der, probability distributions, etc.). Wavelets provide a gen-

eral framework for defining fluctuations; we now give some

simple and useful special cases.

Anomalies

An anomaly is the average deviation from the long-term av-

erage, and since 〈GH 〉= 0, the anomaly fluctuation over time

scales 1t > τ is simply GH at resolution 1t rather than τ :

(
1GH,τ (1t)

)
anom
=

1

1t

t∫
t−1t

GH,τ (t ′)dt ′ =GH,1t (t). (28)

Hence, using Eq. (25),〈(
1GH,τ (1t)

)2
anom

〉
=1t2H . (29)

Anomaly fluctuations were referred to with the less

intuitive term “tendency” fluctuation in Lovejoy and

Schertzer (2012a). While this definition of fluctuation is fine

for fGn, it is not appropriate for processes with H > 0 since

these “wander”, i.e they do not tend to return to any long-

term value. We therefore need other definitions of fluctua-

tion.
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Differences

The classical fluctuation is simply the difference (the “poor

man’s wavelet”):(
1GH,τ (1t)

)
diff
=GH,τ (t)−GH,τ (t −1t). (30)

Hence,〈(
1GH,τ (1t)

)2
diff

〉
= 2τ 2H

(
1+ λ2H+2

−
1

2

(
(λ+ 1)2H+2

+(λ− 1)2H+2
))
; λ=

1t

τ
;λ≥ 1.

(31)

In the large-1t limit we have〈(
1GH,τ (1t)

)2
diff

〉
≈ 2τ 2H

(
1− (H + 1)(2H + 1)λ2H

)
;

λ=
1t

τ
� 1. (32)

Since H < 0, the differences asymptote to the value 2τ 2H

(double the variance, Eq. 17). Notice that since H < 0, the

differences do not scale with 1t .

Haar fluctuations

As pointed out in Lovejoy and Schertzer (2012a), the preced-

ing fluctuations only have variances proportional to τ 2H over

restricted ranges of H , specifically −1≤H ≤ 0 (anomalies)

and 0≤H ≤ 1 (differences). A more generally useful fluc-

tuation (used below) is the Haar fluctuation (from the Haar

wavelet, Haar, 1910). This is defined as the differences be-

tween the average of the first and second halves of the inter-

val 1t :

(
1GH,τ (1t)

)
Haar
=

2

1t

 t∫
t−1t/2

GH,τ (t ′)dt ′

−

t−1t/2∫
t−1t

GH,τ (t ′)dt ′

 . (33)

Using Eq. (23), we obtain〈(
1GH,τ (1t)

)2
Haar

〉
= 41t2H

(
2−2H

− 1
)
. (34)

This indeed scales as 1t2H and does not depend on the res-

olution τ .

2.4 Using fGn to model and forecast the temperature

Using the definition (Eq. 11) of fGn, we can define the tem-

perature as

T (t)= σTGH (t) (35)

(i.e. σT = σγ /cH ). Let us now introduce the integral S(t):

S(t)=

t∫
−∞

T (t ′)dt ′ =
1

0(H + 3/2)

t∫
−∞

(t − t ′)H+1/2γ (t ′)dt ′. (36)

Since T is a fractional integral of the order 1/2+H with

respect to white noise, S(t) is a fractional integral of the or-

der 3/2+H = 1/2+H ’. Strictly speaking, the above inte-

gral diverges at −∞; however, this is not important since we

will always take differences over finite intervals (equivalent

to integrating T (t) over a finite interval) and the differences

will converge.

We can therefore define the resolution τ temperature as

Tτ (t)= σTGH,τ (t)=
S(t)− S(t − τ )

τ

= σT
BH ′ (t)−BH ′ (t − τ )

τ
. (37)

Notice that because of the divergence of S(t) at −∞, we did

not define S(t)= σT BH ′ (t). However, the differences do re-

spect S(t)− S(t − τ )= σT (BH ′ (t)−BH ′ (t − τ )).

Using Eq. (35), the τ resolution temperature variance is

thus〈
T 2
τ

〉
= σ 2

T τ
2H . (38)

From this and the relation Tτ (t)= σT GH,τ (t), we can triv-

ially obtain the statistics of Tτ (t) from those of GH,τ (t).

2.5 Forecasts

Since an fGn process at resolution τ is the average of the

increments of an fBm, process, it suffices to forecast fBm.

There are four important related problems in the predic-

tion of fBm: to find the best forecast using (a) finite past

data and (b) infinite past data. The cases (1) 0<H ′< 1/2

and (2) 1/2<H ′< 1 (with H ′= 1+H ) must be consid-

ered separately. Since −1/2<H < 0, our problem corre-

sponds to cases 2a and b. Yaglom solved problem 1b in 1955

(Yaglom, 1955), Gripenburg and Norros (1996) solved 2a

and b in 1996 and problem 1a was solved by Nuzman

and Poor (2000). Hirchoren and Arantes (1998) used the

Gripenburg and Norros results for 1/2<H ′< 1 to numer-

ically test the method adapted to fGn; see also Hirchoren

and D’attellis (1998). Although the Gripenberg and Nor-

ros (1996) result conveniently expresses the fBm predictions

at time t (the “forecast horizon”) directly in terms of the past

series for t ≤ 0, the corresponding formulae are not simple.

The standard approach that they followed yields nontrivial

integral equations (which they solved) in both the finite- and

infinite-data cases. In what follows, we use a more straight-

forward method – the general method of innovations (see,

e.g., Papoulis, 1965, ch. 13) – and we obtain relatively sim-

ple results for the case with infinite past data (which is equiv-

alent to the corresponding Gripenberg and Norros (1996) re-

sult). In a future publication we improve on this by adapting
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it to the finite-data case. The main new aspect of the forecast-

ing problem with only finite data is that it turns out that not

only do the most recent values (close to t = 0) have strong

(singular) weighting, but the data in the oldest available data

also have singular weightings. In the words of Gripenberg

and Norros (1996), this is because they are the “closest wit-

nesses” of the distant past.

We now derive the forecast result for resolution τ fGn us-

ing innovations assuming that data are available over the en-

tire past (i.e. from t =−∞ to 0). Recall that the resolution τ

temperature at time t is given by

Tτ (t)=
S(t)− S(t − τ )

τ
=

cHσT

τ0(H + 3/2) t∫
−∞

(t − t ′)H+1/2γ (t ′)dt ′

−

t−τ∫
−∞

(t − τ − t ′)H+1/2γ (t ′)dt ′

 (39)

(t ≥ τ ≥ 0). We have used the fact that S(t) is a fractional

integral of the order H + 3/2 of γ . Since the γ s are effec-

tively independent random variables, they are called “inno-

vations”. If Tτ (t) is known for t ≤ 0, then the above relation

can be inverted to obtain γ (t) for t ≤ 0. If γ (t) is known for

t ≤ 0, then the minimum square (MS) estimator (circonflex)

at time t ≥ τ is given by

T̂τ (t)=
Ŝ(t)− Ŝ(t − τ )

τ
=

cHσT

τ0(H + 3/2) 0∫
−∞

(t − t ′)H+1/2γ (t ′)dt ′

−

0∫
−∞

(t − τ − t ′)H+1/2γ (t ′)dt ′

 , (40)

which depends only on γ (t) for t ≤ 0. That this is indeed the

MS estimator follows since the error ET in this estimator is

orthogonal to the estimator. To see this, note that ET only

depends on γ (t) for t ≥ 0:

ET = Tτ (t)− T̂τ (t)=
cHσT

τ0(H + 3/2) t∫
0

(t − t ′)H+1/2γ (t ′)dt ′

−

t−τ∫
0

(t − τ − t ′)H+1/2γ (t ′)dt ′

 . (41)

Since the range of integration for T̂τ (t) in Eq. (40) is t ′< 0,

whereas the range for the error ET (Eq. 41) is t ′> 0, T̂τ (t)

and ET are clearly orthogonal:〈(
Tτ (t)− T̂τ (t)

)
γ (s)

〉
= 0; t ≥ 0; s < 0. (42)

We can use this to obtain〈
ET (t, τ )2

〉
=

〈
Tτ (t)2

〉
−

〈
Tτ (t)T̂τ (t)

〉
=

〈
Tτ (t)2

〉
−

〈
T̂τ (t)2

〉
.

(43)

Using the substitution u=−(t − τ − t ′)/τ in the integral

Eq. (41) and the function FH (λ) introduced in Eq. (13) and

using Eq. (16) for cH , we obtain〈
T̂τ (t)2

〉
= σ 2

T τ
2H

[
FH (∞)−FH (λ)

FH (∞)+ 1
2H+2

]
(44)

(FH (∞) is given in Eq. (14)).

Using Eqs. (43) and (44), the error variance is〈
ET (t, τ )2

〉
=

〈
Tτ (t)2

〉
−

〈
T̂τ (t)2

〉
= σ 2

T τ
2H

[
FH (λ)+ 1

2H+2

FH (∞)+ 1
2H+2

]

= σ 2
T τ

2H

[
1+ (2H + 2)FH (λ)

1+ (2H + 2)FH (∞)

]
. (45)

Hence, if we define the “skill” (Sk) in terms of the error

variance Sk = 1−〈ET (t, τ )2
〉/〈Tτ (t)2

〉, then for minimum

square forecasts, it is also equal to the fraction of the vari-

ance that it explains:

Sk(λ)=1−

〈
ET (t, τ )2

〉〈
Tτ (t)2

〉 =
〈
T̂τ (t)2

〉
〈
Tτ (t)2

〉 = [FH (∞)−FH (λ)

FH (∞)+ 1
2H+2

]
;

λ= t/τ ; λ≥ 1. (46)

Figure 1a shows the theoretical skill as a function of H for

different forecast horizons, and Fig. 1b shows it for different

forecast horizons. In Fig. 1a, dashed reference lines indicate

the three empirically significant values: land (H ≈−0.3),

global, (H ≈−0.2), ocean (H ≈−0.1). In Fig. 1b, the es-

timated global value (H =−0.20± 0.03; see below) is indi-

cated in red.

This definition of skill is slightly different from the root

mean square skill score (RMSSS) that is sometimes used to

evaluate GCMs (see, e.g., Doblas-Reyes et al., 2013). The

RMSSS is defined as 1 minus the ratio of the RMS error of

the ensemble-mean prediction divided by the RMS tempera-

ture variation:

RMSSS= 1−

〈
(T − T̂ )2

〉1/2
〈
T 2
〉1/2 . (47)

In our case, the forecast is orthogonal to the prediction so that

〈(T − T̂ )2
〉= 〈T 2

〉− 〈T̂ 2
〉, and we obtain

RMSSS= 1− (1− Sk)
1/2
≈

1

2
Sk +

1

8
S2
k + . . . . (48)
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This shows that Sk and RMSSS are more or less equiva-

lent skill measures, both being in the range of 0 to 1. How-

ever, GCM forecasts are generally not orthogonal to the data,

and for them, the RMSSS can be negative. Recall that zero

skill corresponds to the unconditional forecast after remov-

ing low-frequency (anthropogenic) effects and the annual cy-

cle.

If the process scales over an infinite range in the data but

we only have access to the innovations over a duration λmem

(in pixels), then

Sk,λmem,∞(λ)=

[
FH (λ+ λmem)−FH (λ)

FH (∞)+ 1
2H+2

]
; λ≥ 1. (49)

To illustrate the potentially huge amount of memory in the

climate system (especially in the ocean), we can (somewhat

arbitrarily) define the memory in the system by the λmem

value such that Sk,λmem,∞(1)/Sk,∞,∞(1)= 0.9; the result is

shown in Fig. 1c. We see that, over land (using H =−0.3),

the memory estimated this way typically only goes back 15

time units (nondimensional time steps), whereas over the

ocean (using H =−0.1), it is 600 time units. This means

that the annual temperatures over the ocean typically have

information from over 600 years in the past, whereas over

land, it is only 15 years. Note that these indicate the mem-

ory associated with 90 % of the skill (see Fig. 1a) and these

skill levels fall off rapidly as H approaches the white noise

valueH =−1/2. We may also note that this calculation does

not imply that if we only had a short length of ocean data,

the forecast would be terrible. This is because the calculation

is true for the innovations (γ ’s) not the temperatures (T ’s)

themselves (i.e. the data). Even if we only have 10 years

of ocean temperatures, the past from 10 years ago implicitly

contains significant information from the distant past and can

be exploited (see the numerical experiments in Hirchoren and

Arantes (1998)).

In the real world, after the removal of the anthro-

pogenic component (see Lovejoy and Schertzer (2013) and

Fig. 4c), the scaling regime has a finite length (estimated as

≈ 100 years here), so that the memory in the process is finite.

In addition, the monthly and annual resolution series that

we hindcast below used memories of λ= 180 and 20 units

(months and years) respectively. The finite memory is easy

to take into account; if the process memory extends over an

interval of λmem units at resolution τ (i.e. over a time interval

t = λmemτ ), it suffices to integrate to λmem instead of infinity,

i.e. to replace infinity by λmem in Eq. (49):

Sk,λmem,λmem (λ)=

[
FH (λ+ λmem)−FH (λ)

FH (λ+ λmem)+ 1
2H+2

]
;

λmem ≥ λ≥ 1. (50)

In Fig. 1d we show that the effect of finite memory increases

strongly as H moves closer to 0 and is nonnegligible, even

for λmem= 180, the largest used here (for the monthly series,

whenH =−0.17, the skill is reduced by 3–5 % up to λ= 60;

see the bottom curves in Fig. 1d).

It is instructive to compare the skill obtained with the full

memory with the skill obtained if only the most recent vari-

able Tτ (0) is used. The latter can be used either as classical

persistence whereby the forecast at time t = λτ is equal to

the present value (no change) (i.e. T̂τ (t)= Tτ (0)) or as “en-

hanced” persistence in which Tτ (0) is used as a linear estima-

tor of T̂τ (t). Since the mean of the process is 0, for a single

time step t = τ in the future; this is the same as the minimum

square forecast made of an order-1 autoregressive model with

nondimensional time step= 1 (AR(1)). Note, however, that

this equivalence is only for a single time step in the future;

for forecasts further in the future, the AR(1) skill decays ex-

ponentially, not in a power law manner.

In persistence, T̂τ (t)= Tτ (0); the error in the forecast

is simply the difference ET (t, τ )=1Tτ (t)= Tτ (t)− Tτ (0),

the skill is therefore Sk = 1−〈1T 2
τ 〉/〈T

2
τ 〉. In enhanced

persistence, the value Tτ (0) is simply considered as an

estimator and the minimum square error linear estima-

tor T̂ (t) is only proportional to Tτ (0). A standard cal-

culation (e.g. following Papoulis, 1965, ch. 13) yields

T̂τ (t)= [〈Tτ (t)Tτ (0)〉/〈Tτ (0)2
〉]Tτ (0) so that the term in the

square brackets enhances the persistence value Tτ (0). Fig-

ure 1e compares the skill of the three estimators as functions

of H for λ= 1 (i.e. using Eq. (25) for the autocorrelation):

T̂τ (τ )= (22H+1
− 1)Tτ (0). Whereas for H ≈<−0.1, classi-

cal persistence is quite poor, we see that the enhanced persis-

tence forecast is much better.

3 Forecasting the Northern Hemisphere and global

temperatures

3.1 The data and the removal of anthropogenic effects

In order to test the method, we chose the NASA GISS

Northern Hemisphere and global temperature anomaly data

sets, both at monthly and at annually averaged resolu-

tions. A significant issue in the development of such global

scale series is the treatment of the air temperature over the

oceans, which is estimated from sea surface temperatures;

NASA provides two sets, the Land–Ocean Temperature In-

dex (LOTI) and Land-Surface Air Temperature Anoma-

lies only (Meteorological Station Data; dTs series). Accord-

ing to the site (http://data.giss.nasa.gov/gistemp/tabledata_

v3/GLB.Ts+dSST.txt), LOTI provides a more realistic rep-

resentation of the global mean trends than dTs; it slightly

underestimates warming or cooling trends, since the much

larger heat capacity of water compared to air causes a slower

and diminished reaction to changes. dTs on the other hand

overestimates trends, since it disregards most of the dampen-

ing effects of the oceans that cover about two thirds of the

earth’s surface. In order to compare the two, we used LOTI

for the annual series and dTs for the monthly series.
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The prediction formulae assume that the series has

the power law dependencies indicated above, with RMS

anomaly or Haar fluctuations following 1tH (Eq. 34) and

spectra with ω−β , with β = (1+ 2H ) (Eq. 27). However,

this scaling only holds over the macroweather regime, and

in the industrial epoch, anthropogenic forcing begins to

dominate the low-frequency variability on scales τc≈ 10–

20 years, whereas it occurs on scales τc≈ 100 years in the

pre-industrial epoch; see Lovejoy et al. (2013b) and Fig. 4d.

However, Lovejoy (2014a, b) showed that if the radiative

forcing due to the observed global annually averaged CO2

concentrations (ρCO2
) is used (proportional to log 2ρCO2

), the

“effective climate sensitivity” λ2×CO2,eff is quite close to the

more usual “transient” and “equilibrium” climate sensitivi-

ties estimated by GCMs and the residues had statistics over

the scale range 1 to ≈ 125 years that were very close to pre-

industrial multiproxy statistics (see Table 1).

Therefore, as a first step, using the Frank et al. (2010) data

(extended to 2013 as described in Lovejoy, 2014a), we re-

moved the anthropogenic contribution, using

T (t)= Tanth(t)+ Tnat(t), (51)

Tanth(t)=λ2×CO2,efflog2

(
ρCO2

(t)/ρCO2,pre

)
;

ρCO2,pre = 277ppm, (52)

where ρCO2,pre is the pre-industrial concentration. The

monthly data are shown as a function of date (Fig. 3a) and

of CO2 forcing (Fig. 3b) with residues shown in Fig. 3c. The

effective sensitivities are shown in Table 1a. We may note

that if, alternatively, the equivalent CO2 since 1880 was used

(“CO2eq” as estimated in the IPCC AR5 report), the sen-

sitivities need only be divided by a factor of 1.12, and the

residues are essentially unchanged. This is because of the

nearly linear relation between the actual CO2 concentration

and the estimated equivalent concentration (correlation coef-

ficient> 0.993; see Table 3 for the standard deviations of the

residues, Tnat). By using the observed CO2 forcing as a lin-

ear surrogate for all anthropogenic effects, we avoid various

uncertain radiative assumptions needed to estimate CO2eq

especially those concerning the cooling effects of aerosols

which are still unsettled. As explained in Lovejoy (2014b),

since the anthropogenic effects are linked via global eco-

nomic activity, the observed CO2 forcing is a plausible linear

surrogate for all of them.

From Table 2 we see that the sensitivities do not depend on

the exact range over which they are estimated (columns 2–4).

As we move to the present (column 4 to column 2), the sen-

sitivities stay within the uncertainty range of the earlier es-

timates, with the uncertainties constantly diminishing, con-

sistent with the convergence of the sensitivities as the record

lengthens. As a consequence, if we determine Tanth using the

data only up to 1998 or up to 2013, there is very little differ-

ence: for the global data at a monthly resolution, the differ-

ence in the standard deviations (SDs) of Tnat estimated with

the different sensitivities is 0.005 K, whereas at annual res-

olutions, it is 0.0035 K (for this period, 1log2 ρCO2
= 0.05).

These differences are larger than the estimated error in the

global-scale temperatures (estimated as ±0.03 K for both –

the errors have very little scale dependence; Lovejoy et al.,

2013a). From Table 2, we see that there is a ≈ 30 % differ-

ence between the global and monthly sensitivities. Due to the

change from the LOTI (global) to dTs (monthly) series the

sensitivities are virtually independent of whether the data is

at a 1-month or 1-year resolution. We also see that the North-

ern Hemisphere has systematically higher sensitivities than

the entire globe; this is consistent with the larger land mass

in the north and the larger sensitivity of land with respect to

the ocean.

An obvious criticism of the method of effective climate

sensitivities is that anthropogenic forcing primarily warms

the oceans and, only with some lag, the atmosphere. System-

atic cross-correlation analysis in Lovejoy (2014a, b) shows

that while the residues are barely affected (see rows 2 and 3

in Table 2 and Lovejoy (2014b) for more on this), the values

of the sensitivities are affected (see, e.g., column 4 in Ta-

ble 2). We may note that using Eq. (52) (no lag), or the same

relation but with a lag, are equivalent to assuming a linear cli-

mate with Green’s function given by a Dirac delta function.

This and more sophisticated (power law) Green’s functions

will be discussed in a future publication.

Finally, we can note that the difference between LOTI and

dTs temperature is primarily the sensitivities (Table 2) and

that the remaining differences in the residues are mostly due

to their different resolutions. From Eq. (39) we see that the

ratio of RMS fluctuations in these should be λH , where λ is

the resolution ratio, here 12 months yr−1. Table 1 shows that

the H estimated from the RMS values is indeed close to the

H estimated more directly in the next subsection. This shows

that the main difference between the LOTI and dTs series is

indeed their climate sensitivities.

In order to judge how close the residues from the CO2

forcing (Eq. 51) are to the true natural variability, we can

make various comparisons (Table 3). Starting at the top

(row 1), we see that, as shown in Lovejoy (2014b), the statis-

tics of the resulting residues are very close to those of pre-

industrial multiproxies (see also Fig. 4c). In row 3, we see

that if we take the residues of the 20-year lagged tempera-

tures, there is virtually no difference (although the sensitivi-

ties are significantly higher; see Table 2). As a further refer-

ence (row 4), we see that it is substantially smaller than the

standard deviation of the linearly detrended series (i.e. when

the residues are calculated from a linear regression with time

rather than the forcing).

As further evidence that residues provide a good estimate

of the true natural variability, in rows 5–10 we also show

the annual RMS errors of various GCM global temperature

hindcasts. For example, in rows 5–6 we compare hindcasts

of CMIP 3 (Coupled Model Intercomparison Project, phase

3) GCMs, both with and without annual data initialization
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Table 1. A comparison of root mean square (RMS) variances (data residues) and hindcast errors (from deterministic and stochastic models)

of global-scale, annual temperatures. See also Fig. 2. Note that the GCM hindcasts are all “optimistic” in the sense that they use the observed

volcanic and solar forcings, and these would not be available for a true forecast. In comparison, the stochastic models forecast the responses

to these (unknown) future forcings.

Row 1-year 5-year 9-year

anomalies anomalies

Temperature, residues

1 Pre-industrial multiproxies 0.112 0.105 0.098

(1500–1900)a

2 Tnat residues (1880–2013) no lag 0.109 0.077b 0.070

with CO2, Tanth(t)∝ log2 ρCO2
(t)

3 Tnat,20 residues from 1900 to 2013, 0.108

20 years lag with CO2:

Tanth1t (t)∝ log2 ρCO2
(t −1t)

4 Standard deviation of the linearly 0.163

detrended series 1880–2013

(residues, from a linear regression

with the date)

Deterministic forecasts (GCMs)

5 Without data assimilation 1983–2004 0.132 0.106 0.090

(Smith et al., 2007), CMIP3

6 With data assimilation 0.105 0.066 0.046

(“DePresSys”) 1983–2004

(Smith et al., 2007), CMIP3

7 CMIP3 simulations with bias and 0.106 0.059 0.044

variance corrections 1983–2004

(Laepple et al., 2008)

8 GFDL CM2.1 (initialized yearly) 0.11

cited in Newman (2013)

9 CMIP5 multimodel ensemble 0.095

(Doblas-Reyes et al., 2013) not

initializedc

10 CMIP5 multimodel ensemble 0.06

(Doblas-Reyes et al., 2013)

initialized

Stochastic forecasts

11 LIMd (Newman, 2013) 0.085 (0.128) (0.155)

12 Baillie and Chung (2002a) 0.132± 0.023

ARFIMAe

13 Baillie and Chung (2002a) 0.156± 0.068

AR(1)f forecast

14 SLIMM (one parameter, 0.093 0.071 0.067

Stochastic 1880–2013)g (0.102) (0.105)

a The average of the three multiproxies from Huang (2004), Moberg et al. (2005) and Ammann and

Wahl (2007). These analyses were discussed in Lovejoy (2014b). b The empirical 5-year and 9-year anomaly

values are close to the theoretical values 0.109−0.2
= 0.079 and 0.109× 9−0.2

= 0.070. c The results here are

for a subset of the CMIP5 simulations that were run with and without annual data assimilation (initialization).
d Linear inverse modelling using 20 eigenmodes and > 100 parameters. The errors in brackets are for the

temperatures; they are not anomalies. Note that the 9-year LIM value is almost identical to the standard

deviation of the residues of the linear regression (fourth row of the table). e ARFIMA: autogressive

fractionally integrated moving average process; this is close to the SLIMM used here. However, the data and

the data treatment were somewhat different. The annually, globally averaged temperatures from 1880 with a

linear trend removed were used to make hindcasts over horizons of 1 to 10 years for the decades 1930–1940,

1940–1950, 1950–1960, and 1960–1970. For each decade all the forecast errors were averaged. The value

indicated here is the mean of the decade to decade mean error and the standard deviation of that error; the

errors cannot therefore be directly compared with each other. The data were from a series compiled in 1986.
f AR(1): autoregressive order 1; this is equivalent to enhanced persistence. The variance reduction when using

ARFIMA instead of AR(1) is 29 %. g The values in parentheses are for 1-year resolution temperatures.
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(a)

(c)

(b)

Figure 3. (a) Upper left: the monthly surface temperature anomaly series from NASA GISS data (the monthly dTs series). (b) Top (red) is

the global average, displaced upward by 2 K for clarity; the bottom (blue) is the Northern Hemisphere series displaced upward by 1 K. Upper

right: the same as the upper left but for the temperatures as functions of the logarithm of the CO2 concentration ρCO2
normalized by the

pre-industrial value ρCO2,pre= 277 ppm (global values are displaced upward by 2 K and Northern Hemisphere values are displaced by 1 K

for clarity). The regressions have slopes indicated in Table 2; they are the effective climate sensitivities to CO2 doubling. (c) Lower left: the

residues of the linear regressions of the upper right; the estimate of the natural variability (global – red, top; Northern Hemisphere – blue,

bottom) has been shifted upward by 1 K for clarity.

Table 2. The climate sensitivities estimated by linear regression of log2 ρCO2
against the temperature anomalies at monthly and annual

resolutions from global and Northern Hemisphere series. The far right column shows the 20-year lagged sensitivity over 1900–2013, i.e. using

Tanth1t (t)= λ2×CO2,eff,1t log2(ρCO2
(t −1t)/ρCO2,pre), where 1t = 20 years.

Resolution λ2×CO2,eff λ2×CO2,eff λ2×CO2,eff λ2×CO2,eff

(K/doubling, (K/doubling, (K/doubling, (K/doubling,

no lag, no lag, no lag, 20-year lag,

1880–2013) 1880–1998) 1880–1976) 1900–2013)

Monthly Global 2.97± 0.08 2.92± 0.13 2.97± 0.25 4.29± 0.13

(dTs) Northern Hemisphere 3.41± 0.11 3.11± 0.17 3.10± 0.33 4.99± 0.18

Annual Global 2.33± 0.16 2.26± 0.24 2.08± 0.48 3.73± 0.25

(LOTI) Northern Hemisphere 2.56± 0.23 2.25± 0.34 2.41± 0.65 3.96± 0.38

(rows 5 and 6). Without initialization (row 5), the results are

half way between the CO2 forcing residues (i.e. Tnat, row 2)

and the standard deviation of the linearly detrended series

(row 4), i.e. the forecast is poor even for the anthropogenic

part. Unsurprisingly, with annual data initialization and as-

similation (row 6), it is much better, but it is apparently still

unable to do better than simply estimate the anthropogenic

component. We can deduce this since the resulting RMS er-

rors are virtually identical to the standard deviation of the es-

timated Tnat (row 3). This conclusion is reinforced in row 7,

where CMIP 3 GCMs (without data initialization) were anal-

ysed. However, in place of annual data initialization, a com-

plex empirical bias and variance correction scheme was im-

plemented in order to keep the statistics of uninitialized hind-
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  Hemisphere,

(a) (b)

(d)

(c)

Figure 4. (a) Upper left: the spectrum of the monthly residues for northern (blue) and global (red) data. The slope β = 0.6 is shown

corresponding to the best overall estimate (H =−0.20). (b) Upper right: the Northern Hemisphere (top, blue) and global (bottom, red)

spectra, at monthly (solid) and annual (dashed) resolutions using the NASA GISS surface temperature anomaly series from 1880–2013.

For frequencies higher than the lowest factor of 10, averages have been made over 10 frequency bins per order of magnitude in scale. In

addition, the spectra have been “compensated for” by multiplying by ω0.54 so that spectra with H =−0.23 (β = 0.54) appear flat. The range

−0.17<H <−0.23, corresponding to one standard deviation limits (β = 1+ 2H , i.e. ignoring small multifractal intermittency corrections),

corresponds to 0.54<β < 0.66. The lower and upper bounding reference lines are shown dashed. (c) Lower left: the RMS Haar fluctuations

for the northern (blue) and global (red) monthly series. Reference lines with slopesH =−0.2 are shown. We see that the scaling is fairly well

respected up to ≈ 100 years. The raw Haar fluctuations have been multiplied by 2 (the “canonical calibration”; see Lovejoy and Schertzer,

2012a) in order to bring them closer to the anomaly fluctuations. Also shown is the NASA control run and the pre-industrial multiproxies.

They all agree quantitatively very well up to about 100 years, where the pre-industrial natural climate change starts to become important.

This shows that the monthly-scale residuals are almost exactly as simulated by the GISS model without any anthropogenic effects, supporting

the idea that Tnat is a good estimate of the natural variability. (d) Lower right: comparisons of the RMS Haar fluctuations of global-scale

natural variability (Tnat) from the lower left with those from land only (HADCRUT3, black) and from the Pacific decadal oscillation (PDO,

top, purple; from Lovejoy and Schertzer (2013), Fig. 10.14). Reference lines of slopes H =−0.1, −0.2, −0.3 are shown close to the curves

for ocean, globe and land respectively.

casts close to the data. We see that the resulting RMS error is

virtually identical to GCMs with data initialization (row 6) as

well as the standard deviation of Tnat (row 3). It is also very

close to other GCM estimates of natural variability. These

conclusions are reinforced in the 5- and 9-year “anomaly”

columns. As expected – due to the averaging of the tempera-

ture in the definition of the anomalies (as far as the forecast

horizon) – the RMS error decreases. However, it is still only

barely better than the Tnat estimates from the residues.
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Table 3. The various standard deviations of the temperature residues (Tnat) after removing Tanth at monthly and annual resolution and the

estimate of H obtained assuming perfect scaling over a factor of 12 in timescale (units: K).

Monthly Annual H = log(σT ,yr/σT ,month)/ log12

Global 0.201 0.109 −0.24

Northern Hemisphere 0.273 0.155 −0.23

Table 4. The hindcast standard deviations (in K) at the finest res-

olutions (1 month, 1 year) for natural variability temperatures ob-

tained from the unlagged and 20-year lagged climate sensitivities.

Note that the lag makes very little difference to the hindcast error

variance.

Resolution 〈ET (τ,τ )2
〉
1/2

〈ET (τ,τ )2
〉
1/2

No lag 20-year lag

Monthly
Global 0.148 0.146

Northern Hemisphere 0.214 0.209

Annual
Global 0.093 0.092

Northern Hemisphere 0.132 0.133

Very similar results are indicated in rows 8–10 for other

GCM hindcast experiments. These are shown graphically in

Fig. 2, which is adapted from a multimodel ENSEMBLES

experiment. The hindcasts are discussed in García-Serrano

and Doblas-Reyes (2012). The multimodel mean is consis-

tently close to – but generally a little above – Tnat (bottom

horizontal line), while remaining better than the standard de-

viation of the linearly detrended temperature (top horizon-

tal line). Also shown in Table 1 and Fig. 2 are the results of

LIM, SLIMM and other stochastic models. These will be dis-

cussed further in Sect. 4. For now, suffice it to indicate that

the SLIMM error is bounded above by the standard devia-

tion of Tnat. By using the long-range memory to forecast Tnat,

SLIMM can only do better. SLIMM thus generally improves

upon the GCMs, and – for 2-year horizons and beyond – it

is better than the > 100 parameter LIM model, whose 9-year

forecast is essentially equivalent to a linear detrending.

3.2 Estimating H from the residues

Having estimated Tnat by removing the anthropogenic con-

tribution, we may now test the quality of the scaling and es-

timate H . Figure 4a shows the raw spectra of the residues

showing the scaling but with large fluctuations (as expected)

with β ≈ 0.60. We have already mentioned that the inter-

mittency is low in this macroweather regime. Indeed, us-

ing exponents estimated in Lovejoy and Schertzer (2013),

the resulting multifractal corrections to the variance expo-

nent are ≈ 0.01–0.02 so that we may use the monofractal re-

lation β = 1+ 2H , which yields H ≈−0.20. Slightly more

accurate estimates can be obtained by averaging the spec-

trum over logarithmically spaced bins (Fig. 4b), and by com-

pensating for the spectrum by dividing it by the theoretical

spectrum with β = 0.54 (H =−0.17). This figure makes the

estimate β = 0.20± 0.06 (H =−0.20± 0.03) plausible. Fi-

nally, the corresponding RMS Haar fluctuations are shown

in Fig. 4c. We see that they plausibly follow H =−0.20 out

to about 100 years (the sharp drop at the largest lag is not

significant: it corresponds to a single long fluctuation that

is somewhat biased since some of the low-frequency natu-

ral variability is also removed when Tnat is estimated by the

method of residuals).

Also shown for reference in Fig. 4c is the GISS-E2-R mil-

lennium control run (with fixed forcings) as well as the RMS

fluctuations for three pre-industrial multiproxies. We see that

up to about 100-year scales, all the fluctuations have nearly

the same amplitudes as functions of scale, giving support to

the idea that Tnat as estimated by residuals is indeed a good

estimate of the natural variability and also confirming the es-

timate of the global-scale exponent valueH =−0.20± 0.03.

As a final comparison, Fig. 4d shows RMS Haar fluctu-

ations for the global averages (from Fig. 4c), land only av-

erages and from the oceans – the Pacific decadal oscilla-

tion (PDO). The PDO is the amplitude of the largest eigen-

value of the Pacific sea surface temperature autocorrelation

matrix (i.e. the amplitude of the most important empirical or-

thogonal function: EOF). For the land-only curve, notice the

sharp rise for scales>≈ 10 years; this is the effect of the an-

thropogenic signal that was not removed in this series. Over-

all we see that (roughly) for land H ≈−0.3, for the globe

H =−0.2, and for the oceans H =−0.1. Figure 1a and c

shows the drastic differences in memory implied by these

apparently small changes in H (we recently discovered that

other global temperature series had global H closer to −0.1

so that the GISS series analysed here is the least predictable).

4 Testing SLIMM by hindcasting

4.1 The numerical approach

The theory for predicting fGn leads to the general equation

for the variance in forecast error (ET ) at forecast horizon t

and resolution τ (Eq. (45)). In order to test the equation on

the temperature residues, we can use the global and North-

ern Hemisphere series analysed in the previous section and

systematically make hindcasts. In this first study, we took a

simple, straightforward approach based on the method of in-

novations. We discretized Eq. (9), which was then written as
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a matrix equation of the form Tt =
∑
t ′<t

Mt,t ′γt ′ , where the in-

dices refer to the discrete time nondimensionalized by the se-

ries resolution andMt,t ′ is the (singular) kernel from the frac-

tional integration. The sum was over a finite past of length

tmem= λmemτ units (see below), and the matrix was then in-

verted to yield the corresponding innovations γt . To make the

forecast at time t +1t (i.e. 1t units in the future), the equa-

tion was used with an augmented kernel Mt+1t,t ′ , with the

innovation vector lengthened by appending 1t zeroes (the

expectation values of the unknown future innovations) to the

tmem innovations that were determined in the previous step.

While our approach has the advantage of being straight-

forward (and it was tested on numerical simulations of fGn),

in future applications improvements could be made. For ex-

ample, by using a Girsanov formula, we could rewrite fGn

in terms of a finite integral (see Biagini et al., 2008), and

the discretized numerics would then be more accurate (this

is especially important for H near the limiting values 0

and −1/2). Alternatively, we could use the Gripenberg and

Norros (1996) integral equation method discretized with a

variant of the Hirchoren and Arantes (1998) approach, which

notably has the advantage of requiring less past data.

4.2 The hindcasts

In order to obtain good hindcast error statistics, it is im-

portant to make and validate as many hindcasts as possible,

i.e. one for each discretized time that is available. However,

due to the long-range correlations, we want to use a reason-

able number of past time steps in the hindcast for memory, so

that the earliest possible hindcast will be later than the ear-

liest available data by the corresponding amount. The com-

promise used here consisted of dividing the 134-year series

into 30 annual blocks (annual resolution) and 20-year blocks

(monthly resolution). In each block in the annual series, the

first 20 years were used as “memory” to develop the hind-

cast over the next 10 years so that for estimating the hind-

cast errors a total of 134− 30= 104 forecasts were made.

For the monthly series, the same procedure involved blocks

of 240 months: 180 months for the memory and 60 months

for the hindcast for a total of 1608− 240= 1368 hindcasts.

The hindcasts can be evaluated at various resolutions and

forecast horizons. Eqs. (46), (49) and (50) give the general

theoretical results. The cases of special interest are the tem-

perature hindcasts and the anomaly hindcasts with resolu-

tions and horizons of (τ , λτ ) and (λτ , λτ ) respectively. The

error variance ratios (R) are

Rtemp =

〈
ET (λτ,τ )2

〉〈
ET (τ,τ )2

〉 = 1+ (2+ 2H )FH (λ) (53)

and

Ranom =

〈
ET (λτ,λτ )2

〉〈
ET (τ,τ )2

〉 = λ2H . (54)
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Figure 5. The dimensionless ratios (R) of the hindcast error vari-

ances to the variance at the smallest resolution and horizon t equal

to the resolution τ for both temperature with horizon λτ and resolu-

tion τ (top; R=〈ET (λτ,τ )2
〉/〈ET (τ,τ )2

〉= 1+ (2+ 2H )FH (λ))

and anomaly, with horizon λτ and resolution λτ (bottom;

R=〈ET (λτ,λτ )2
〉/〈ET (τ,τ )2

〉= λ2H ). The red lines are global

series; the blue lines are Northern Hemisphere series. The thick,

shorter curves are at annual resolution (τ = 1 year) and the thin,

longer lines are at a monthly resolution (τ = 1 month). Also shown

(dashed) are the theory curves for H =−0.17, −0.23 (top (black)

and bottom (brown) of each dashed pair respectively). The data

closely follow theH =−0.17 curves. The standard deviations at the

highest-resolution 〈ET (τ,τ )2
〉
1/2 are given in Table 4. This plot has

no adjustable parameters.

Both ratios are shown in Fig. 5, along with the exact the-

ory curves, and Table 3 gives the corresponding highest-

resolution standard deviations (for both lagged and unlagged

estimates of Tnat, there is virtually no difference), Table 4.

It can be seen that all the forecast error variances (global,

northern, annual, monthly resolution) collapse quite well be-

tween the theory curves corresponding to H =−0.17 and

H =−0.23 (corresponding to H ≈−0.20± 0.03) although

they are closer to the H =−0.17 curves. It is important to

stress that Fig. 5 is completely nondimensional. It depends on

a single parameter (H ), and this parameter was estimated ear-

lier using a quite different technique (Haar fluctuations and

spectra) that had no direct relation to the property being mea-

sured (forecast skill). We have effectively used spectral and

Haar analysis of scaling to determine the accuracy of fore-

casts using no extra information. Figure 5 has no adjustable

parameters so that the agreement of the hindcast errors with

theory is a particularly strong confirmation of the theory. We

could add that the fact that the errors depend only on the

dimensionless forecast horizon is also a consequence of the

scaling, i.e. of the lack of strong characteristic timescale in

the macroweather regime.

Since the anomaly errors are power laws (Eq. 54), they can

be conveniently evaluated on a log-log plot (see Fig. 6). Note
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that the RMS anomaly errors decrease with forecast horizon.

The reason is that while forecasts further and further in the

future lose accuracy, this loss is more than compensated for

by the decrease in the variance due to the lower resolution,

so that the anomaly variance decreases. Finally, we may note

that the method has been applied to explaining the “pause”

or “hiatus” in the global warming since 1998 as well as to

make a forecast to 2023 (Lovejoy, 2015b).

4.3 Hindcast skill

Another way to evaluate the hindcasts is to determine their

nondimensional skills, i.e. the fraction of the variance that

they explain (see the general formula Eq. 46). From the for-

mula, we can see that the skill depends only on the nondi-

mensional forecast horizon λ= t/τ . Therefore, the skill for

forecast anomalies – i.e. the average of the forecast up to

the horizon, i.e. t = τ and hence λ= 1 – has the remarkable

property of being constant, independent of the horizon. The

reason is that while forecasts further and further in the fu-

ture lose accuracy, this loss is exactly compensated for by

the decrease in the variance due to the lower resolution, so

that the anomaly skill does not change. Figure 7 is another

example of a nondimensional plot where the theory involves

no adjustable parameters. It shows that the theoretical pre-

diction is well respected by the global and Northern Hemi-

sphere annual and monthly resolution series. Since we esti-

mated H =−0.20± 0.03, it can be seen that the skill for the

monthly series is nearly as high as theoretically predicted:

up to 1 year or so for the global series but up to several years

for the Northern Hemisphere series. The global series has

slightly lower forecast skill than theoretically predicted, but

it is still of the order of 15 % at 10 years. Also shown in Fig.

7 is the effect of using only a finite part of the memory.

The skill in usual temperature forecasts (i.e. with fixed res-

olution τ and increasing horizon t = λτ ) is shown in Fig. 8.

We see that monthly series can be predicted to nearly the the-

oretical limit of up to about 2–3 years (≈ 5 % skill). For the

annual series, this is up to about 5 years (≈ 10 % skill). Again

the results are close to the H =−0.17 theory.

4.4 Hindcast correlations

A final way to evaluate the hindcasts is to calculate the corre-

lation coefficient between the hindcast and the temperature:

ρ
T̂ ,T

(t, τ )=

〈
T̂τ (t)Tτ (t)

〉
−

〈
T̂τ (t)

〉
〈Tτ (t)〉〈

T̂τ (t)2
〉1/2〈

Tτ (t)2
〉1/2 . (55)

Since <T >= 0, the cross term vanishes; using Eq. (44) we

obtain the simple result

ρ
T̂ ,T

(t, τ )=

(
FH (∞)−FH (λ)

FH (∞)+ 1
2H+2

)1/2

; λ=
t

τ
, (56)
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Figure 6. A log-log plot of the standard deviations of the anomaly

hindcasts, with the theoretical reference line corresponding to

H =−0.20. The solid lines are for the monthly data, the dashed

lines for annual data. Red indicates global data; blue indicates

Northern Hemisphere data.
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Figure 7. The anomaly forecast skill as a function of forecast hori-

zon (horizontal axis) on a log-linear plot for both series (annual thin,

monthly thick; global red, Northern Hemisphere blue). Also shown

are pairs of theoretical predictions (constant skill independent of the

forecast horizon) for various values ofH . The top (dashed) member

of the pair is for an infinite memory; the bottom solid line is for the

finite memory used here: the monthly series has a memory of 180;

the annual series has a memory of 20. This plot has no adjustable

parameters.

i.e. ρ
T̂ ,T

(t, τ )= Sk(t, τ )1/2, a result which depends on the

consequences of orthogonality: 〈Tτ (t)T̂τ (t)〉= 〈T̂τ (t)2
〉 (Eq.
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Figure 8. The forecast skill for the temperature at fixed resolutions

(one month, bottom left; 1 year, upper right) for global (red) and

Northern Hemisphere (blue) series. Also shown are the exact theo-

retical curves (forH =−0.17) that take into account the finite mem-

ories of the forecasts (20 and 15 years for the annual and monthly

series respectively). The raw curves were shifted a little upward so

that their long-time parts were close to the theory; this is equivalent

to using the theory to improve the estimate of the ensemble-average

skill from the single series that were available.

42). Asymptotically for λ� 1

ρ
T̂ ,T

(t, τ )≈2H+1/2

(
H +

1

2

)
U1/2λH ; λ� 1;

U =

√
π

20(1−H )0
(

3
2
+H

) . (57)

In the special cases of anomalies t = τ , λ= 1, and we obtain

ρ
T̂ ,T

(t, t)=
√

1+HU22H+2 (58)

so that the correlations are constant at all forecast horizons.

Over the range −1/2<H < 0, the constant U is conve-

niently close to unity.

As in the previous hindcast error analyses, the series were

broken into blocks and the forecasts were repeated as often

as possible; each forecast was correlated with the observed

sequence and averages were performed over all the forecasts

and verifying sequences (the mean correlation shown by the

solid lines in Fig. 9). The uncertainty in the hindcast correla-

tion coefficients was estimated by breaking the hindcasts into

thirds: three equal sized groups of blocks with the error being

given by the standard deviation of the three about the mean

(dashed lines). Also shown in Fig. 9 are the theoretical curves

(Eq. 54) forH =−0.20. In this case the dashed lines indicate

the theory for 1 standard deviation in H , i.e. for H =−0.17

and H =−0.23.

As predicted by Eq. (57), the anomaly correlations are rel-

atively constant up to about 5 years for the annual data (top

row) and nearly the same for the monthly data (bottom row).

In addition, the Northern Hemisphere series (blue) are some-

what better forecast than the global series (red). It can be seen
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Figure 9. The empirical correlations of the forecast temperatures

(left column) and anomalies (right column). The same hindcasts

but with different empirical comparisons and also with comparisons

with theory forH =−0.2 (thick black line),H =−0.17 (top dashed

black line), and−0.23 (bottom dashed black line). Now note that in

all cases the one standard deviation bounds (dashed) on the empir-

ical and theoretical curves overlap virtually throughout. The theory

curves have no adjustable parameters.

that temperature forecasts (i.e. with fixed resolutions) have

statistically significant correlations for up to 8–9 years for

the annual forecasts, for up to about 2 years for the monthly

global and nearly 5 years for the monthly Northern Hemi-

sphere forecasts (bottom dashed lines). The anomaly fore-

casts are statistically significantly correlated at all forecast

horizons. Figure 9 provides more examples of nondimen-

sional plots with no free parameters, and again the agreement

with the hindcasts validation is remarkable.

Although the results for the anomaly correlations are quite

close to those of hindcasts in García-Serrano and Doblas-

Reyes (2012), the latter are for the entire temperature fore-

cast, not just the natural variability as here. This means that

the GCM correlations will be augmented with respect to ours

due to the existence of long-term anthropogenic trends in

both the data and the forecasts that are absent in ours (but

even with this advantage, their correlations are not higher).

4.5 Comparison with GCMs, LIM, AR(1) and ARFIMA

hindcasts

In Table 1 and Fig. 2, we have already compared GCM hind-

cast errors with estimates of the natural variability (Tnat) from

the residues of a linear regression on the CO2 radiative forc-

ing since 1880. We found that the annual, global GCM hind-

casts had errors that were close to, but generally larger than,

the standard deviation of Tnat (〈T 2
nat〉

1/2) but smaller than the

standard deviation of the linearly detrended temperature se-

ries (the horizontal lines in Fig. 2). 〈T 2
nat〉

1/2 is the RMS er-

ror of an unconditional forecast (i.e. with no knowledge of

Earth Syst. Dynam., 6, 637–658, 2015 www.earth-syst-dynam.net/6/637/2015/



S. Lovejoy et al.: SLIMM: using scaling to forecast global-scale macroweather from months to decades 655

the past): 〈T 2
nat,τ 〉= 〈E

2
T (τ,∞)〉 (see Eq. 45). It is the upper

bound to the hindcast errors, a lower bound on skill (= 0).

In Fig. 2, we see that the one-parameter stochastic hind-

cast (with H =−0.2) is somewhat better than the GCMs

up to about 6 years, after which it is about the same. This

bolsters the hypothesis that GCMs primarily model the an-

thropogenic temperature change, not the natural variability,

whereas SLIMM has some skill in forecasting the latter.

Table 2 and Fig. 2 also compare SLIMM RMS errors to

those of LIM hindcasts modelled with 20 degrees of freedom

(involving> 100 parameters). We see that LIM is slightly

better than SLIMM for horizons of up to about 2 years, be-

yond which SLIMM is better. According to the analysis in

Newman (2013), for periods beyond about 1 year, the fore-

casts are mostly determined by the two most important EOFs,

and their skill decays exponentially, not as a power law. From

Fig. 2, their main effect seems to be to remove the long-term

linear trend allowing LIM to have an asymptotic RMS error

roughly equal to the standard deviation of the linearly de-

trended series (the upper horizontal line).

Finally, in Table 1, rows 12 and 13, we have compared

the errors with those of an early attempt at scaling tem-

perature forecasts using the autoregressive fractionally in-

tegrated moving average process (ARFIMA) (Baillie and

Chung, 2002b) along with the corresponding order-1 autore-

gressive (AR(1)) process. Unfortunately, the forecasts were

made by taking 10-year segments and, in each, removing a

separate linear trend so that the low frequencies were not

well accounted for (see the footnote to the table for more de-

tails). The AR(1) results were not so good as they were close

to the standard deviations of the detrended temperatures. As

expected – because they assume a basic scaling framework –

the ARFIMA results were somewhat better. Yet they are sub-

stantially worse than those of the other methods, probably

because they did not remove the anthropogenic component

first.

5 Conclusions

GCMs are basically weather models whose forecast horizons

are well beyond the deterministic predictability limits, cor-

responding to many lifetimes of planetary-scale structures:

the macroweather regime. In this regime – that extends from

about 10 days to ≈ 100 years (pre-industrial), the weather

patterns that are generated are essentially random noise. With

fixed boundary conditions, GCMs therefore converge asymp-

totically (in a power law manner; Fig. 4c) to their (model) cli-

mates. In order to model the low-frequency variations asso-

ciated with the climate proper, the GCMs must be externally

forced; if the forcing is strong enough, in principle it can re-

verse the trend of macroweather fluctuations decreasing with

increasing timescale and initiate a new climate regime where

fluctuations instead increase with scale (qualitatively similar

to their behaviour in the higher-frequency weather regime;

see Lovejoy et al., 2013b). In the real world (pre-industrial),

this occurs somewhere around 100 years and fluctuations in-

crease in scaling manner (but now with H > 0) as far as ice-

age timescales (≈ 50–100 kyr; note that this 100-year pre-

industrial transition scale apparently has large geographical

variability; see Lovejoy and Schertzer (2013), Sect. 11.1.4).

On these scales, in addition to solar and volcanic forcings,

the real world may involve new, slow internal processes that

become important.

In this regard, the problem with the GCM approach is that

in spite of massive improvements over the last 40 years, the

weather noise that they generate is not totally realistic nor

does their climate coincide exactly with the real climate.

In an effort to overcome these limitations, stochastic mod-

els have been developed that directly and more realistically

model the noise and use real-world data to exploit the sys-

tem’s memory so as to force the forecasts to be more realis-

tic.

The main approaches that could potentially overcome the

GCM limitations are the stochastic ones. However, going

back to Hasselmann (1976), these have only used integer-

ordered differential equations. They have implicitly assumed

that the low frequencies are white noises and hence cannot

be forecast with any skill. Modern versions – the LIM – add

sophistication and a large number of (usually, but not neces-

sarily) spatial parameters, but they still impose a short (ex-

ponentially correlated) memory and they focus on periods

of up to a few years at most. This contrasts with turbulence-

based nonlinear stochastic models which assume that the sys-

tem scales over wide ranges. When they are extended to the

macroweather regime (the Extended Fractionally Integrated

Flux – EFIF model), these scaling models have low intermit-

tency, scaling fluctuations with temporal exponents close to

those that are observed by a growing macroweather scaling

literature. Contrary to their behaviour in the weather regime,

in macroweather they are only weakly nonlinear. However,

empirically, the spatial macroweather variability is very high

so that Lovejoy and Schertzer (2013) already proposed that

the EFIF model be spatially modulated by a multifractal cli-

mate process (yielding the CEFIF) whose temporal variabil-

ity was at such low frequencies so as to be essentially con-

stant in time over the macroweather regime.

The CEFIF model is complex both numerically and mathe-

matically and its prediction properties are not known. In this

paper, we therefore make a simplified model, the ScaLIng

Macroweather Model (SLIMM) that can be strongly vari-

able (intermittent) in space and Gaussian (nonintermittent)

in time (see Lovejoy and de Lima (2015) for this regional

SLIMM). The simplest relevant model of the temporal be-

haviour is thus fractional Gaussian noise (fGn), whose inte-

gral is the better-known fractional Brownian motion (fBm)

process. A somewhat different way of introducing the spa-

tial variability is to follow the LIM approach and treat each

(spatial) grid point as a component of a system vector. In this

case, SLIMM can be obtained as a solution of a fractional-
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order generalization of the usual LIM differential equations.

Although in future publications we will show how to make

regional SLIMM forecasts, in this paper, we only discuss the

scalar version for single time series (here, global-scale tem-

peratures).

In Sect. 2, we situate the process in the mathematical lit-

erature and derive basic results for forecasts and forecast

skill. These results show that a remarkably high level of

skill is available in the climate system; for example, for fore-

cast horizons of one nondimensional time unit in the future

(i.e. horizons equal to the resolution), the forecast skills –

defined as the fraction of the variance explained by the fore-

cast – are 15, 35 and 64 % for land, the whole globe and

oceans respectively (Fig. 1b; taking rough exponent values

H =−0.3,−0.2,−0.1 respectively; Fig. 4c). To quantify the

size of the memory, it can be defined as the number of nondi-

mensional units needed to supply 90 % of the full memory of

the system. Using the same empirical exponents, we found

that the memory is 15, 50 and 600 time units for typical land,

the globe and typical ocean regions respectively.

The SLIMM forecasts the natural variability. While the re-

sponses to solar and volcanic forcings are implicitly included

in the forecast, the responses to the anthropogenic forcings

are not; we must therefore remove the anthropogenic com-

ponent, which becomes dominant on scales of 10–30 years.

For this, we follow Lovejoy (2014b), who showed that the

CO2 radiative forcing is a good linear proxy for all the an-

thropogenic effects (including the cooling due to aerosols,

which is difficult to estimate) so that the natural variability is

the residue with respect to a regression against the forcing. In

Table 1 and in Fig. 2, we showed that the resulting standard

deviation (±0.109 K) is very close to the RMS errors in an-

nual, globally averaged GCM temperature hindcasts that use

annual data initialization and assimilation. Indeed, to a good

approximation, all the models have errors bounded between

this estimate of the natural variability and the slightly higher

standard deviation of the linearly detrended temperature se-

ries (±0.163 K). This is true in spite of the fact that they are

“optimistic” since they assume that the future volcanic and

solar forcings are known in advance. The only partial excep-

tion is the stochastic LIM model (with > 100 parameters),

which is only marginally better (±0.085 K) than SLIMM for

forecast horizons of 1–2 years, after which it asymptotes to

the linearly detrended standard deviation.

Using the method of innovations, we developed a new

way of forecasting fGn that allows SLIMM hindcasts to

be made; the long-time forecast horizon RMS error is thus

±0.109 K; the exploitation of the memory with the single

parameter – the exponent H ≈− 0.20± 0.03 – reduces this

to ≈±0.093 K for 1-year global hindcasts so that SLIMM

remains better than or comparable to the multimodel GCM

mean (Fig. 2).

This paper only deals with single time series (global-scale

temperatures), but it is nevertheless ideal for revisiting the

problem of the pause, “slow down” or hiatus in the warm-

ing since 1998, which is a global-scale phenomenon. Love-

joy (2015b) shows how SLIMM hindcasts nearly perfectly

predict this hiatus. However, most applications involve pre-

dicting the natural variability on regional scales. A future

publication will show how this can be done and will quan-

tify the improvement that the additional information (from

the regional memory) makes to the forecasts. As forecasts

from months to a decade or so, the SLIMM forecast are po-

tentially better than alternatives.
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