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Abstract. The heterogeneity of precipitation rates in high-mountain regions is not sufficiently captured by state-

of-the-art climate reanalysis products due to their limited spatial resolution. Thus there exists a large gap between

the available data sets and the demands of climate impact studies. The presented approach aims to generate spa-

tially high resolution precipitation fields for a target area in central Asia, covering the Tibetan Plateau and the

adjacent mountain ranges and lowlands. Based on the assumption that observed local-scale precipitation amounts

are triggered by varying large-scale atmospheric situations and modified by local-scale topographic character-

istics, the statistical downscaling approach estimates local-scale precipitation rates as a function of large-scale

atmospheric conditions, derived from the ERA-Interim reanalysis and high-resolution terrain parameters. Since

the relationships of the predictor variables with local-scale observations are rather unknown and highly nonlin-

ear, an artificial neural network (ANN) was utilized for the development of adequate transfer functions. Different

ANN architectures were evaluated with regard to their predictive performance.

The final downscaling model was used for the cellwise estimation of monthly precipitation sums, the number

of rainy days and the maximum daily precipitation amount with a spatial resolution of 1 km2. The model was

found to sufficiently capture the temporal and spatial variations in precipitation rates in the highly structured

target area and allows for a detailed analysis of the precipitation distribution. A concluding sensitivity analysis

of the ANN model reveals the effect of the atmospheric and topographic predictor variables on the precipitation

estimations in the climatically diverse subregions.

1 Introduction

The large-scale spatial pattern and the seasonal and interan-

nual variability of precipitation rates over central and High

Asia has been widely studied, particularly with regard to

its impact on downstream hydrological regimes and hence

on the climate-sensitive agriculture-dominated economies of

the highly populated downstream areas (Akhtar et al., 2008;

Mall et al., 2006; Matthews et al., 1997). The main rivers of

South and East Asia such as the Indus, Ganges, Brahmapu-

tra, Huang-He and Yangtze have their upper catchment areas

on the Tibetan Plateau or in the adjacent mountain regions

and are mainly fed by the enhanced precipitation rates com-

pared with the surrounding lowlands and by snow melting

in spring. Glacial runoff contributes to a lesser extent but is

crucial for the base flow during dry season (Immerzeel and

Bierkens, 2010). The glacial dynamics are likewise distinctly

influenced by the local- and mesoscale climate variability

(Maussion et al., 2014). Particularly for the investigation of

the climatic influence on the fragile ecosystems of central

and High Asia, spatially high resolution climate data are re-

quired. While the temporal and spatial variations in near-

surface temperatures over central and High Asia have been

modeled with reliable results (Böhner, 2006; Gerlitz et al.,

2014), the accuracy and spatial resolution of available grid-

ded precipitation estimates do not yet satisfy the demands

of climate impact studies (Schoof, 2013). Gridded climate

reanalysis products, such as ERA-Interim, adequately simu-
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late the large-scale atmospheric features over Asia, but fail

to capture the topographic variability of precipitation rates

over the highly structured target area. Often reanalysis prod-

ucts are refined by means of dynamical downscaling appli-

cations, which employ regional climate models (Maussion et

al., 2014). However, due to exponentially increasing compu-

tational demands with rising spatial resolution, most studies

focus on very limited target domains or time frames. Dynam-

ically downscaled fields for larger regions seldom achieve

resolutions below 10 km and thus still do not address typi-

cal boundary layer processes on the meteorological micro-β

to meso-γ scale, such as topographically induced convective

systems or local-scale orographic precipitation. In contrast,

less computationally demanding statistical downscaling ap-

proaches aim to develop empirical transfer functions, link-

ing independent large-scale atmospheric parameters to near-

surface observations in order to predict local-scale climate

conditions under altering synoptic situations. Since statis-

tical downscaling applications are usually calibrated based

on point-scale observations, they enable the estimation of

near-surface climates for specific locations. Although some

studies indicate that the preciseness of statistical downscal-

ing applications is comparable with dynamical downscal-

ing approaches (Schoof, 2013), the generation of fully dis-

tributed climatic fields by means of statistical techniques

still remains challenging (Maraun et al., 2010). Against this

background, we present a novel empirical approach which

enables an estimation of spatially high resolution monthly

precipitation fields, basically merging statistical downscal-

ing of large-scale atmospheric fields and DEM-based ter-

rain parameterization methods. Therefore we consider local-

scale precipitation as a function of large-scale atmospheric

parameters on the one hand and a local-scale terrain-induced

modification on the other. Selected terrain parameters were

developed and evaluated with regard to their representation

of local-scale atmospheric processes, which typically lead

to precipitation occurrence. Subsequently statistical relation-

ships between large-scale atmospheric conditions, terrain pa-

rameters and local-scale precipitation observations were ana-

lyzed and adequate transfer functions were developed. Based

on the assumption that the atmosphere–topography interac-

tions are highly nonlinear, we utilized an artificial neural net-

work (ANN) approach for the analysis of the statistical re-

lationships. Neural networks stand out due to their ability to

approximate any continuous multidimensional function and

their capability to handle the interactions of interconnected

predictors. Neural networks have seen increasing use in the

field of climate- and geosciences, particularly for the exam-

ination of complex systems with unknown relationships be-

tween several predictor and predictand variables.

Due to the integration of physically based terrain param-

eters for the estimation of local-scale precipitation rates, the

presented approach remains physically consistent and can be

utilized for the development of local-scale climate change

scenarios. All methods have been applied on a 64 bit Win-

dows personal computer, which reflects the low computa-

tional demands of the approach and its suitability for climate

and climate impact studies in environmental offices and re-

search units, even in central Asian countries.

In the following section, we firstly provide a brief

overview of large-scale circulation modes, associated plu-

viometric regimes and their topographic modifications over

the target area. Subsequently, we introduce the utilized

large-scale atmospheric data sets and the derivation of

precipitation-relevant terrain parameters in Sect. 3.1. Sec-

tion 3.2 addresses the implementation and validation of the

statistical model. Subsequently, the spatiotemporal variabil-

ity of precipitation rates over the target area as well as the

influence of the major atmospheric and topographic predic-

tors is analyzed in Sect. 3.

2 Large-scale circulation modes, pluviometric

regimes and the role of topography

The target area, shown in Fig. 1, covers the Tibetan Plateau

and the main mountain ranges of High Asia, such as the Hi-

malayan Arc, the Kunlun Shan and the Quilian Shan. The

adjacent Indus–Ganges Lowlands, the Tarim Basin and the

Red Basin define the borders of our target domain. Extend-

ing from 80 to 105◦ E and 25 to 42◦ N, the pluviometric

regimes of this vast area are controlled by both tropical–

subtropical and extratropical circulation systems. Seasonal

shifts in large-scale circulation modes and the associated al-

ternation of air masses lead to a distinct hygric seasonality

commonly subsumed under the term “monsoon”. Although

this characteristic differentiation between a rather moist sum-

mer and a dry winter season is valid for most of the target

area, precipitation regimes and their spatial domains differ

in terms of air masses and involved synoptic processes. In

general, the target area is controlled by three major pluvio-

metric regimes: the East Asian summer monsoon, the South

Asian summer monsoon (synonymous with the Indian sum-

mer monsoon) and the extratropical westerlies and their as-

sociated fronts and disturbances (Böhner, 2006; Maussion et

al., 2014).

In summer the continental areas of the target area

and especially the elevated Tibetan Plateau act as a heat

source, which triggers the development of the autochthonous

“plateau monsoon”, a shallow direct circulation mode con-

verging above the Tibetan Plateau (Flohn, 1987). Enhanced

flux of sensible heat from the elevated heat source and the

release of latent heat in high-reaching convection clusters

over the northeastern Indian plains and adjacent mountain

ranges lead to the formation of a warm anticyclone in the

mid- to upper troposphere (monsoon high) and establishes

the 500–200 hPa layer over southern Tibet as the Earth’s

free-atmosphere warm pole. The resulting reversal of upper-

troposphere temperature gradients in the Indian–Indonesian

sector forces the development of the Tropical Easterly Jet,
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Figure 1. The target area and its main geomorphological features. The white dots indicate the locations of meteorological stations used for

the implementation of the statistical downscaling model. The locations marked in red were used for the model evaluation.

a permanent component of the large-scale summer mon-

soon system, which controls trajectories of monsoonal dis-

turbances south of the Himalayas tracking from east to west

as well as the alternating formation of convection cells and

frontal rains in southeastern Tibet (Böhner, 2006; Domrös,

1988; Flohn, 1987). Due to lower radiation influx and ther-

mal capacity, strong high-pressure cells form over the adja-

cent Indian and Pacific Ocean. Thus the shallow trough over

Tibet leads to converging moist air masses over the Asian

continent (Maussion et al., 2014). The Himalayan Arc acts

as a barrier to the near-surface monsoonal currents, which

results in an orographic uplift of moist air masses and strong

convection over India and the southern slopes of the Hi-

malayas and eventually in the formation of the monsoon

trough over the Indian Lowlands (Böhner, 2006). The main

moisture fluxes for the South Asian summer monsoon orig-

inate over the Bay of Bengal and lead to intensive and per-

petual precipitation over the eastern Indus–Ganges Lowlands

and the adjacent mountain ranges. The moist air masses

penetrate the meridional Three River Gorges and lead to

enhanced precipitation rates in southeastern Tibet. A mi-

nor monsoonal current advects moist air masses from the

Arabian Sea into western India and the western Himalayas

(Sigdel and Ikeda, 2012). Since the western monsoonal cur-

rent is weaker, a clear east–west gradient of summer precip-

itation rates over the Indus–Ganges Lowlands and the Hi-

malayan Arc can be observed (Böhner, 2006; Wulf et al.,

2010). The central and western areas of the central-western

Tibetan Plateau are less directly influenced by monsoonal air

masses. Precipitation events are mainly associated with diur-

nal local-scale convection due to high rates of solar irradia-

tion (Maussion et al., 2014).

The easternmost parts of the investigation area are mainly

influenced by the East Asian summer monsoon. The advec-

tion of dry continental air from northern directions and the

flux of moist tropical air originating from the western Pacific

lead to intensive front formation in the middle troposphere

of the polar mixing zone. The resulting quasi-stationary front

and its associated rain regimes cover large domains over East

Asia (Böhner, 2006).

The northern part of the target area remains north of the

Intertropical Convergence Zone (ITCZ) during summer and

hence is mainly influenced by extratropical westerlies. How-

ever due to the shadowing effect of the Pamir, Karakoram

and Tian Shan mountain ranges (outside of the target area),

the Tarim Basin remains dry, with summer precipitation rates

below 25 mm (Xu et al., 2004). Only the elevated and west-

ern exposed regions of the Kunlun and Quilian Shan re-

ceive summer precipitation due to western cyclonic activity

(Böhner, 2006). During the post-monsoon season, the pres-

sure cells over Asia and the adjacent oceans dissolve and the

ITCZ shifts southward. The area influenced by western cir-

culation patterns spreads south and reaches the Himalayan

Arc in winter season. The Tibetan Plateau and the continen-

tal regions of central Asia now act as a cold source, result-

ing in the formation of the Asiatic High over Mongolia and
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northern China. The associated strong pressure gradients be-

tween the high-pressure cell over Asia and its counterparts,

the Aleutian Low over the Pacific Ocean and the ITCZ over

the Indian Ocean, lead to a divergent near-surface flow over

central and High Asia. Thus the target area is under the in-

fluence of dry continental air masses. The 200 hPa jetstream

at the planetary frontal zone reaches its southernmost posi-

tion in January at 35◦ N. Due to the blocking effect of the

Tibetan Plateau, the jetstream is divided into two branches.

While the northern current is situated near the Altai Moun-

tains (north of the target area), the southern branch follows

the slopes of the Himalayas. The western Himalayas, partic-

ularly west-facing slopes, receive a considerable amount of

winter precipitation associated with the uplift of the west-

erly flow and western disturbances brought by the 200 hPa

jetstream. Thus winter precipitation events in the target area

are mainly triggered by circulation modes of the temperate

latitudes (Böhner, 2006; Filippi et al., 2014; Maussion et al.,

2014; Wulf et al., 2010). The eastern parts of the study area

receive less precipitation due to the shadowing effect of the

Tibetan Plateau and the mountain ranges of High Asia. The

Indian plains are under the influence of the subtropical sub-

siding motion of the Hadley cell and are characterized by

stable atmospheric conditions (Böhner, 2006). In spring the

pressure gradients over Asia decrease due to increasing so-

lar irradiation. The northern branch of the 200 hPa jetstream

strengthens, and the major trajectories of the western distur-

bances shift northward. The Indus–Ganges Lowlands and es-

pecially the southern Himalayan slopes receive high solar ra-

diation, which results in occasional convective precipitation

events (Romatschke et al., 2010).

Investigation of the interannual variability of precipitation

rates over central and High Asia often focuses on the sum-

mer monsoon season. Most studies (Li and Yanai, 1996; Pe-

ings and Douville, 2010; Prodhomme et al., 2015) reveal that

the intensity of the monsoon highly depends on the magni-

tude of pressure gradients. Since the formation and intensity

of the low-pressure cell over Asia is mainly triggered by the

radiative heating of the Tibetan Plateau, an enhanced snow

cover during winter and spring increases the surface albedo

and results in a delayed and reduced formation of the ther-

mal low and subsequently in decreasing summer precipita-

tion amounts. Moreover, many studies highlight the impor-

tance of the Southern Oscillation for the intensity of mon-

soonal precipitation (Sankar et al., 2011; Shrestha, 2000),

although some studies illustrate that the correlation of the

Southern Oscillation index (SOI) and the Indian and the East

Asian summer monsoon precipitation weakened during re-

cent decades (Kumar et al., 1999; Wang and He, 2012). Stud-

ies by Pokhrel et al. (2012) and Sigdel and Ikeda (2012) indi-

cate that El Niño events are accompanied by reduced mois-

ture fluxes into South Asia. Preethi et al. (2011) point out that

the severe 2009 drought over India was at least partially trig-

gered by a weak El Niño event. The variability of winter pre-

cipitation is mainly related to the magnitude of the pressure

gradients and the position of the planetary frontal zone and

the accompanying westerly jetstream (Dimri et al., 2013).

On the local scale, the precipitation distribution over the

target area is extremely modified due to the various inter-

actions of moist air masses with complex topography and

the accompanying local-scale atmospheric processes (Chen

et al., 2014; Guan et al., 2009; Suprit and Shankar, 2008).

Many studies show that the elevation plays a crucial role in

the distribution of precipitation, although the vertical precip-

itation gradient in high-mountain regions varies considerably

in different target areas. While some studies indicate increas-

ing precipitation amounts up to highest elevations, others

assume an elevational threshold, followed by stationary or

even decreasing values (Barry, 2012). The near-surface mon-

soonal currents during summer generate high precipitation

rates at the southern Himalayan slopes up to elevations of

4000 m, followed by a sharp decrease above at the south-

ern Himalayan slopes (Barros et al., 2000; Shrestha et al.,

2012). The cyclogenetic winter precipitation reaches higher

elevations, due to orographic uplift of the westerly flow. In

general the windward slopes receive enhanced precipitation.

The orographic precipitation reaches annual amounts of up to

10 000 mm a−1 in the Kashi Hills in northern India. In con-

trast, the leeward areas of the Trans-Himalaya are character-

ized by arid conditions even during summer (Böhner, 2006).

Based on the remote-sensing-derived Tropical Rainfall Mea-

suring Mission (TRMM), Bookhagen and Burbank (2006)

show that the topography of the southern Himalayan slopes is

the main trigger for the local-scale precipitation distribution.

While the central Himalayas are characterized by a so-called

one-step topography, which results in a distinct band of max-

imal precipitation rates south of the main mountain ranges,

the eastern and western parts show a second band of high pre-

cipitation at lower elevations due to the orographic barrier of

the lesser Himalayas (Böhner, 2006; Maussion et al., 2014).

The precipitation rates in high-mountain regions are further

modified by autochthonous local-scale circulations, such as

the diurnal valley–mountain breeze. The enhanced irradia-

tion at the mountain slopes leads to slope-upward winds and

subsiding air motions over the valley bottoms. This results

in convection and occasional precipitation events over the

slopes, while the valleys remain dry (Böhner and Antonić,

2009).

3 Data and methods

Gridded climate reanalysis products, such as ERA-Interim

(developed at the European Centre for Medium-Range

Weather Forecast, ECMWF), simulate 6-hourly large-scale

atmospheric fields for 60 pressure levels between 1000 and

1 hPa over Asia with a horizontal resolution of 0.7◦ lat/long

(T255) (Berrisford et al., 2009; Dee et al., 2011). Since

the ERA-Interim reanalysis combines modeling results with

ground and radiosonde observations and remote sensing data
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using a data assimilation system, the free-atmospheric fields

can be considered as the best guess of the current large-

scale atmospheric situation for every time step. Many stud-

ies reveal that ERA-Interim adequately captures the variabil-

ity of relevant free-air meteorological parameters, even over

complex mountain regions (Bao and Zhang, 2012; Gao et

al., 2012). Recent evaluations of different reanalysis prod-

ucts show that ERA-Interim has the best accordance with

in situ observations derived from near-surface meteorologi-

cal records (Bao and Zhang, 2012) and radiosonde observa-

tions over the Tibetan Plateau (Wang and Zeng, 2012) and

the central Himalayan Arc (Jin-Huan et al., 2013). These re-

sults were particularly evident for temperature, wind direc-

tion and velocity, and hydroclimatological parameters. Due

to the assimilation of in situ radiosonde and near-surface ob-

servations, we assume that the precipitation relevant mois-

ture fluxes are well represented by ERA-Interim. Sigdel and

Ikeda (2012) show that the interannual variability of mois-

ture transports into the target area (e.g., because of variations

in the Southern Oscillation) can be captured by reanalysis

products. However, their coarse resolution is insufficient to

represent the spatial variability of sub-grid atmospheric pro-

cesses in the highly structured study area. For the analysis of

local-scale precipitation rates we utilized daily observations

from 173 meteorological stations which were available from

1989 onwards. A total of 157 records were used for the model

calibration based on the period from 1989 to 2000. A further

16 station records for the period from 2000 to 2011 were used

for the evaluation of the modeling approach (Fig. 1). Thus the

validation data set is spatially and temporally independent of

the model implementation. The station records for the evalu-

ation procedure were subjectively chosen with the objective

of representing all major geographic subregions of the target

area and their specific climate characteristics. The data sets

in general showed a sound data quality; missing values were

deleted. The observations for China and Tibet were provided

by the China Meteorological Administration, the records for

Nepal were supplied by the Department of Hydrology and

Meteorology, Kathmandu, Nepal. All station records were

quality-proofed using the Neumann ratio for annual precipi-

tation sums. Further, the cumulative residuals were tested as

suggested by Buishand (1982). Records showing significant

inhomogeneities on the 99 % level were rejected. The pre-

cipitation time series were aggregated to monthly sums. For

a rough assessment of the temporal precipitation distribution

we used the maximum daily amount as well as the number

of rainy days as additional predictand variables.

3.1 Atmospheric and topographic predictors

For the characterization of the large-scale atmospheric pres-

sure distribution over Asia, a principal component analy-

sis (PCA) of the ERA-Interim 500 hPa geopotential height

(GPH) fields was conducted for the macrogeographical re-

gion between 50◦ N and 10◦ S and 30 and 140◦ E. This al-

lows for identification of the major spatial modes and the

temporal variability of the atmospheric circulation over the

target area. The PCA decomposes the time series of grid-

ded GPH fields to a small number of orthogonal atmospheric

patterns (referred to as eigenvectors or empirical orthogonal

functions, EOFs) and accompanying uncorrelated time in-

dices (scores) (Hannachi et al., 2006). The atmospheric pat-

tern for every time step can then be described as a linear com-

bination of the EOFs and scores. Typically the major part of

the large-scale atmospheric variability can be explained by

only a small number of EOF fields (Hannachi et al., 2007).

This leads to a reduction in the dimensionality of complex

systems and removes internal redundancies. The PCA was

conducted based on anomalies of the 500 hPa ERA-Interim

monthly mean GPH compared with the longtime mean for

the period from 1989 to 2010. For the computation we uti-

lized the package “prcomp” within the free and open-source

software R. We considered those fields which contribute to

more the 1 % of the total variance of the spatiotemporal GPH

distribution. Since the position of the major pressure cells

over Asia and the adjacent oceans determines the prevail-

ing wind directions and the moisture transport into the tar-

get area, the EOF fields are useful to interpret the circulation

variability and the accompanied precipitation-forming atmo-

spheric processes. The scores indicate the relevance of the

EOF patterns for the pressure distribution of each month and

were used as large-scale predictors for the presented down-

scaling approach.

Figure 2 shows the major six EOF fields and the appen-

dant time series of scores, as well as their portion of vari-

ance explained. The first EOF indicates the seasonal shift

of the ITCZ and the associated north–south pressure gradi-

ent between the Asian continent and the Indian Ocean. Dur-

ing summer the continent is characterized by a thermal low-

pressure cell, which results in an uplift of the 500 hPa GPH.

At the same time, the Indian Ocean is under the influence

of the southern branch of the Hadley cell, which results in

higher sea level pressure and a decrease in the 500 hPa level

GPH. In winter season the large-scale atmospheric condi-

tions turn due to the southward shift of the ITCZ. The scores

of the first EOF show a clear annual cycle: the summer cir-

culation pattern is characterized by positive, and the winter

pattern by negative scores. The second EOF field addresses a

pressure gradient from east to west over the Asian continent.

Again the scores suggest an annual cycle of the second EOF,

with mainly positive values during summer and negative val-

ues during winter. This is attributed to the formation of a ther-

mal low-pressure cell over central Asia during summer. How-

ever the time series of scores show an interannual variability

which is significantly correlated with the index of the South-

ern Oscillation, defined as SOI=
1P −1Pavg

s1P
, where 1P in-

dicates the sea level pressure difference between Tahiti and

Darwin. 1Pavg is the mean pressure difference and s1P is

the accompanying standard deviation (r =−0.51, p= 0.99).
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Figure 2. Spatial modes and time series of scores for the first six EOFs of the 500 hPa GPH anomaly over the macrogeographical region.

Blue (red) lines indicate low (high) values of the particular EOF.

The extreme 1997/1998 El Niño event in particular is clearly

evident in the time series of EOF scores (Kirono et al., 1999;

Slingo and Annamalai, 2000; Wang et al., 2002). The first

two EOFs already contribute to 84.1 % of the temporal large-

scale variability of the GPH over the selected region. The

third EOF field (which explains an additional 4.4 % of the

GPH variability) indicates the uplift and lowering of the

500 hPa level over northern India and Southeast Asia.

This band coincidences with the position of the Tropical

Easterly Jet during summer and the trajectories of tropical

disturbances (Parth Sarthi et al., 2014).

The fourth EOF pattern addresses an east–west-oriented

pressure gradient over the Indian Ocean. Pattern five alludes

to variations in the 500 hPa level GPH over the southern In-

dian Ocean; pattern six indicates variations in the simultane-

ous formation of pressure cells over the Arabian Sea and the

Australian continent.

For the characterization of precipitation relevant synop-

tic situations we further processed the ERA-Interim monthly

means of relative humidity at the 500 and 200 hPa level.

These fields were resampled to a grid size 1 km2 using a

thin-plate spline and were extracted for every single meteoro-
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logical station. Since the downscaling approach utilizes only

free-atmospheric fields as large-scale predictor variables, the

interpolation to high spatial resolution appears reasonable.

Many studies (Corbosiero and Molinari, 2002; Frank and

Ritchie, 2001; Wingo and Cecil, 2009) mention the vertical

wind shear between the 500 and 200 hPa level as an impor-

tant factor for the spatial and temporal precipitation distribu-

tion, particularly with regard to tropical disturbances. Thus

the wind shear was derived from the ERA-Interim reanalysis

and likewise resampled to the required resolution of 1 km2.

For the analysis of interactions between the large-scale

synoptic situation and the varying topographic settings of

the target area, specific terrain parameters were integrated

into the downscaling approach. These were derived from the

SRTM digital elevation model (Farr et al., 2007) and aggre-

gated to a 1 km2 resolution. Primarily the raw surface eleva-

tion (Z) controls the precipitation distribution in complex ter-

rain (Daly et al., 1994). The vertical precipitation gradient in

mountainous regions is often exaggerated due to the diurnal

mountain–valley circulation and the associated convection at

the mountain slopes. To account for the spatial variations in

terrain-induced convection, we utilized the relative elevation

above the channel network (Zrel) as an additional predictor

variable. Therefore the channel lines were identified and in-

terpolated for the target domain. The elevation above channel

line is subsequently calculated as a difference of the surface

elevation and the interpolated channel altitudes. The methods

for the derivation of the relative elevation above the chan-

nel network are available as a complete tool in the free and

open-source geographical information system (GIS) SAGA

(Böhner and Antonić, 2009).

Orographic precipitation, resulting from the uplift of

moisture-bearing air masses at windward slopes of topo-

graphic barriers and the related leeward rain shadow, is prob-

ably the most prominent feature of the spatial precipitation

distribution in the target area. Based on the assumption that

the windward impact on the precipitation intensity depends

on the prevailing large-scale wind direction and on the ele-

vation of the orographic barrier, a wind index (as suggested

by Böhner and Antonić, 2009) was used for the presented

study. For the Tibetan Plateau, with its mean elevation be-

tween 4000 and 5000 m, the 500 hPa wind field can be con-

sidered as near surface; in addition, the wind and leeward

effects of the major mountain ranges influence the 500 hPa

level wind field. It should be mentioned that the 500 hPa

level does not represent near-surface conditions for the pe-

ripheral lowlands; however, we assume that the annual cycle

of prevailing wind directions is depicted by the 500 hPa level.

Thus we resampled the monthly mean ERA-Interim 500 hPa

wind fields to the target resolution of 1 km2 and subsequently

derived the windward and leeward positions. For every grid

cell, the wind trajectories were followed and the weighted

vertical angles of the flow currents analyzed using the fol-

lowing equations.

The windward index HW and the leeward index HL were

calculated to

HW =

n∑
i=1

1
dWHi
· tan−1

(
dWZi

dWHi

)
n∑
i=1

1
dLHi

+

n∑
i=1

1
dLHi
· tan−1

(
dLZi

dLHi

)
n∑
i=1

1
dLHi

, (1)

HL =

n∑
i=1

1
ln(dWHi )

· tan−1
(
dLZi

dWHi

)
n∑
i=1

1
ln(dLHi )

, (2)

where dWHi and dLHi refer to the horizontal distances in

windward and leeward direction and dWZi and dLZi are the

corresponding vertical distances compared with the consid-

ered raster cell. The second summand in Eq. (1) accounts for

the leeward impact of previously traversed mountain chains.

The logarithmized horizontal distances in Eq. (2) lead to

a longer-distance impact of leeward rain shadow. The final

wind-effect parameter, which is supposed to be related to the

interaction of the large-scale wind field and the local-scale

precipitation characteristics, is calculated as H =HL ·HW

and takes values between 0.7 for leeward and 1.3 for wind-

ward positions (Böhner and Antonić, 2009). The cellwise

calculation of the wind effect is likewise fully implemented

in SAGA GIS.

Figure 3 shows the spatial distribution of the wind ef-

fect as well as the mean 500 hPa wind field for January

and July 2010. The upper picture shows the complete tar-

get area, while the lower one is an enlargement of the cen-

tral Himalayan Arc. The winter situation is characterized by

a homogenous westerly flow which results in high values

of the wind-effect parameter at the western slopes, particu-

larly at the margins of the Kunlun Shan, the Quilian Shan

and the Himalayas. During summer the thermal low over

the Tibetan Plateau is fully established, resulting in a con-

verging flow pattern at the 500 hPa level. The northwest-

erly monsoonal currents over southern Asia lead to maxi-

mal values of the wind-effect parameter at the southern Hi-

malayan slopes. Especially the first mountain ranges north of

the Nepalese border and the major Himalayan peaks are char-

acterized by strong windward positions. In contrast, the east–

west-oriented valleys of central Nepal are located in the rain

shadow of the lower Himalayas. The strong leeward position

of the Trans-Himalayan valleys north of the major peaks is

particularly well captured by the spatial distribution of the

wind-effect parameter.

To account for varying interactions of large-scale atmo-

spheric processes and topographic characteristics in the ver-

satile subregions of the target area, the geographical coordi-

nates (lat/long) were considered as further explanatory vari-

ables for the presented downscaling approach.

www.earth-syst-dynam.net/6/61/2015/ Earth Syst. Dynam., 6, 61–81, 2015



68 L. Gerlitz et al.: Large-scale atmospheric forcing and topographic modification of precipitation rates

Finally, all predictor and predictand variables were nor-

malized by subtracting the mean values and dividing by the

corresponding standard deviation.

3.2 Implementation and evaluation of an ANN model

Traditional statistical methods, most notably linear models,

have been frequently used for the quantification of statis-

tical relationships and the implementation of transfer func-

tions (e.g., Böhner, 2006), although the actual predictor–

predictand relations are often highly nonlinear (Gerlitz,

2014; Sauter and Venema, 2011). Furthermore, the data sets

used often violate the statistical conditions, e.g., in the case of

intercorrelated predictor variables or non-normal-distributed

and non-homogenous residuals (Schönwiese et al., 2010;

Schoof and Pryor, 2001). During the last decade, complex

machine learning algorithms such as artificial neural net-

works have become more prominent in the field of geosci-

entific research and have been utilized, for example, for hy-

drological simulations (Dawson and Wilby, 2001; Jain and

Kumar, 2007), snow cover prediction (Sauter and Venema,

2011) and habitat modeling (Özesmi and Özesmi, 1999),

as well as for statistical downscaling and climate model-

ing applications. For the analysis and prediction of the vari-

ability and change of monsoonal precipitation rates over

India, various recent studies have applied ANNs, attaining

reliable results (Chattopadhyay, 2007; Shukla et al., 2011;

Singh and Borah, 2013). In the field of precipitation down-

scaling ANNs were utilized (amongst others) by Coulibaly

et al. (2005), Dibike and Coulibaly (2006), Mekanik et

al. (2013) and Tomassetti et al. (2009). All studies high-

light the complexity and nonlinearity of the climate system

with particular regard to precipitation-forming processes. A

comprehensive review of studies on rainfall prediction based

on neural network applications is given by Ranjan Nayak

et al. (2013). Schoof and Pryor (2001) compared the pre-

dictive performances of neural-network-based downscaling

approaches with linear-regression-based methods and con-

cluded that ANNs are superior at capturing complex inter-

actions between the large-scale synoptic patterns and local-

scale observations, although they point out that the results

of precipitation downscaling approaches do not achieve the

quality of comparable temperature estimations.

Compared to linear models, ANNs stand out due to their

flexibility and their capability to approximate any nonlin-

ear continuous function. The data-driven non-parametric ap-

proach can identify input–output relationships without any

prior assumptions and can handle intercorrelated predictor

variables, which is advantageous if complex systems are to

be analyzed and the specific type of internal relationships and

interactions is unknown (Günther and Fritsch, 2010; Sauter

et al., 2009). Inspired by our conception of the human brain,

ANNs are composed of numerous simple parallel operat-

ing processing units (referred to as neurons) and associated

weights (synapses). The neurons are generally arranged in

layers, starting with the input layer, which contains one neu-

ron for each independent variable ξ , one or more hidden lay-

ers with an arbitrary number of neurons for the processing

of the data, and one output layer, which releases the final

modeling results. Since an ANN with one hidden layer can

already approximate any continuous differentiable function

(Schoof and Pryor, 2001), multilayer ANNs are seldom used

for regression applications.

Figure 4 shows exemplarily a neural network architecture

with three input variables, one hidden layer with two process-

ing units, and one output variable. The input passes the vector

of time series of the independent variables to the hidden neu-

rons. These receive a signal which is determined by the so-

called integration function netj , defined as a weighted linear

combination of the predictand vectors. To account for non-

linearities of the input–output relationships, the neurons pro-

cess the signal by means of the activation function ϕ, which

is usually defined as a sigmoid logistic function, mapping

the values of the integration function to a domain∈ [0; 1].

The value 1 refers to a strong effect of the particular linear

combination of the input vectors for the output result, while

0 indicates a negligible influence. In the final output layer the

activation function is linear. For the calculation of the output

oj of any neuron j , the activation function is applied to the

net result of the weighted linear combination netj .

oj = ϕ
(
netj

)
with netj =

n∑
i=1

wi · xi and ϕ =
1

1+ enetj
(3)

Most ANNs are constructed using a three-layer architecture

with only one hidden layer, where the processing of the data

is conducted. For the presented study we utilized a feed-

forward ANN, i.e., the information flow is unidirectional.

Each neuron receives signals from all nodes of the previous

layer and passes the modified signal to the nodes of the sub-

sequent one. The knowledge of an ANN is comprehended

in the weights of the integration function. These are initially

assigned as random values of the normal distribution. The

initial network processes the input vectors based on the inte-

gration and activation functions of the internal neurons and

passes an output signal to the final layer. Since the weights

are randomly chosen, the output of the ANN model, com-

pared with observed values, is primarily insufficient. Based

on a learning sample, the weights are subsequently itera-

tively adjusted with the aim of minimizing the error func-

tion, defined as the root-mean-square error of the desired

predictand values and the outcome of the ANN model. For

the adjustment of weights, several supervised learning al-

gorithms were developed, although most ANN applications

are based on the so-called backpropagation approach (Hecht-

Nielsen, 1989). This algorithm calculates the gradient of the

error function with regard to modified weights backward in

the network and shifts the weights into the opposite direction

of the partial derivates based on a default learning rate. The

recursive application of the backpropagation procedure en-
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Figure 3. The spatial distribution of the wind-effect parameter for January and July 2010. The arrows represent the 500 hPa ERA-Interim

wind field.

sures the identification of a local minimum of the error func-

tion and the corresponding weights. To discover the best neu-

ral network for the regression of the local-scale precipitation

rates as a function of the abovementioned predictor variables,

we utilized the resilient backpropagation approach, which is

fully implemented in the R package “neuralnet” (Günther

and Fritsch, 2010). This algorithm increases the learning rate

if the direction of the error gradient keeps its sign. If the sign

turns, the learning rate is decreased automatically. This leads

to an accelerated conversion of the recursive adjustment of

weights and avoids a minimum being missed due to a too

large learning rate.

The most obvious degree of freedom of any ANN ap-

proach is its architecture, particularly the number of neurons

within the hidden layer. Although rules of thumb for the best

number of neurons have been suggested (Basheer and Ha-

jmeer, 2000), a general rule, defining the best ANN architec-

ture, has yet to be determined. While an ANN model with

too many neurons in the hidden layer tends to overfit, which

results in a poor predictive performance, an insufficient num-

ber of neurons leads to an overgeneralization and hence non-

detection of distinct nonlinear relationships within the learn-

ing sample. The best ANN architecture highly depends on the

number of predictor and predictand variables, the number of

cases, and the type and complexity of the statistical relation-

ship (Sauter et al., 2009). Thus, for the identification of an

optimum ANN for the downscaling approach, we tested sev-

eral ANN architectures with regard to their predictive power.

Starting with only one neuron in the hidden layer, the com-

Figure 4. Schematic structure of a feed-forward artificial neural

network model and the equations for the integration function netj

and the activation function ϕ.

plexity of the network was gradually increased. Due to ex-

ponentially increasing computing demands in the learning

phase, the maximum number of neurons was set to 10. For

each of the neurons, an ANN was implemented based on the

learning sample containing monthly time series of 157 me-

teorological stations for the period from 1989 to 2000. The

vectors of predictor variables were used as input nodes. The

observed monthly precipitation sum, the maximum of daily

precipitation and the number of rainy days were chosen as
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Figure 5. Normalized prediction error of various ANN architectures for 18 independent observational records (top panel) and the modeled

distribution of precipitation sums for July 2010 over Nepal based on ANN architectures with N = 1, N = 8 and N = 10 neurons.

output variables. Every ANN realization was used to pre-

dict the output variables for an independent evaluation data

set. Due to the disproportionally high computing demands

of cross-validation techniques, we exemplarily evaluated the

ANN performance based on time series from 16 stations for

the period 2001 to 2011 (see red dots in Fig. 1). These sub-

jectively chosen stations cover different climatic subregions

and thus enable the evaluation of the model under varying

pluviometric regimes. The fact that the evaluation data set

is temporally and spatially independent facilitates the pre-

vention of overfitting of both large-scale atmospheric and

local-scale topographic predictor variables. For the evalua-

tion of the model, the mean squared residuals of each sta-

tion were calculated and normalized using the mean and the

standard deviation of the particular record of observations.

This enables the comparison of the model quality for sta-

tions with varying precipitation amounts. Figure 5 shows the

mean squared error (in standard deviations) of the monthly

precipitation sums for each of the evaluation records. The

ANN realizations with only a few neurons in the hidden layer

show large residuals for some stations. This is due to an ex-

treme overestimation of precipitation rates for the dry regions

in the north of the study area (not shown). With increasing

complexity the model better captures the diverse climates
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of the target area and improves the prediction performance

for the evaluation data records. The ANN with eight hid-

den neurons was found to have the lowest prediction error of

the monthly precipitation sums (with values below 0.5 stan-

dard deviations for most of the meteorological stations) and

hence was used for the cellwise estimation of precipitation

rates in the target area. The analysis of the prediction power

for the maximum daily precipitation and the number of rainy

days revealed similar results (not shown). For ANN archi-

tectures with more than eight hidden neurons, the prediction

performance of the model decreased considerably. The maps

in Fig. 5 exemplarily show the predicted fields of precipi-

tation sums for the central Himalayan region for July 2010

based on varying ANN architectures with N = 1, N = 8 and

N = 10 hidden neurons. The simple ANN with only one neu-

ron in the hidden layer does not capture the topographically

determined precipitation distribution and mainly depicts an

elevational gradient of precipitation sums with high values

in the Indus–Ganges Lowlands and lower values in the high

mountains and on the elevated Tibetan Plateau. In contrast

the ANN with 10 hidden neurons clearly overfits the input–

output relationships, resulting in a rather unrealistic scattered

precipitation field, particularly over the highly complex ter-

rain of the southern Himalayan slopes. The precipitation dis-

tribution predicted by the “best” ANN architecture with eight

hidden neurons depicts two major precipitation bands, one at

the first topographic barrier of the outer Himalayas and one

at the southern margin of the highest mountain peaks, as well

as a sharp decrease in precipitation amounts above 4000 m.

These results highly agree with previous studies on the to-

pographically induced distribution of precipitation rates in

the target area (Bookhagen and Burbank, 2006; Maussion et

al., 2014; Shrestha et al., 2012) and support the reliability

of the statistical model. Figure 6 compares the modeled and

observed time series of monthly precipitation sums for the

16 independent stations. The spatial distribution of precip-

itation (with annual precipitation sums ranging from below

50 mm over the Tarim Basin to more than 2000 mm over the

monsoon-influenced Himalayan slopes) is well simulated by

the ANN model. However for the stations in the central Asian

deserts and at the southern Himalayan slopes, particularly for

Jomsom, which is located in the bottom of the deeply carved

Kali Gandaki Valley in central Nepal, the model clearly over-

estimates the precipitation amounts.

For all other records the annual precipitation amounts are

properly simulated with deviations of annual precipitation

sums below 20 %. The seasonal variability in monthly pre-

cipitation sums, with highest values during summer, is well

captured for the complete target area. The locations of Dar-

lag, Darwu and Tuotuohe (all situated at elevated sites on

the Tibetan Plateau) and Sikta (at the southern Himalayan

slopes) receive a considerable amount of winter precipita-

tion, which is (although distinctly overestimated for the sta-

tion Darlag) in general well captured by the ANN model.

The interannual variability of precipitation rates is particu-

larly obvious for the monsoon season. The well-documented

2009 drought over India and the Himalayas (Preethi et al.,

2011) is clearly evident in the observed and modeled time

series of precipitation sums for Jomsom, Phidim and Sikta.

Likewise, for the arid landscapes in the northern part of the

model domain, the major variations in annual precipitation

amounts are well captured. The obvious feature of low pre-

cipitation rates during 2009 and considerably higher values

in the following year are particularly evident in observations

and modeling results. The interannual variability of moisture

fluxes into the western Tibetan Plateau and the accompany-

ing variability of precipitation rates are likewise well simu-

lated by the modeling results. The extremely dry year 2009

at the station Shiquanhe is particularly evident in both data

sets. The explained variance of the ANN model ranges from

approximately 0.5 for the convection-dominated stations in

the arid landscapes in the north of the study region to the

considerable value of 0.75 in the monsoon-influenced areas

south and east of the Tibetan Plateau.

Although the validation was conducted exemplarily and

more sophisticated and computationally demanding tech-

niques (e.g., k-fold cross-validation or an evaluation based

on additional data sets, which were used for neither the

model calibration nor the choice of an adequate network ar-

chitecture) would certainly better assess the overall perfor-

mance of the model, the results indicate that both the spa-

tial and temporal variability are well captured by the statis-

tical approach. The fact that the local-scale topographically

induced precipitation distribution coincides with remote-

sensing-derived precipitation products (Bookhagen and Bur-

bank, 2006; Shrestha et al., 2012) in particular supports the

feasibility of the suggested downscaling approach.

Based on the gridded modeling results, a detailed analysis

of the temporal and spatial precipitation distribution in the

target area and its essential influencing factors is given below.

4 Results

4.1 Spatial and temporal variability of precipitation rates

The ANN model was utilized to estimate gridded monthly

precipitation sums, the maximum daily precipitation and the

number of rainy days for each month with a horizontal reso-

lution of 1 km2 for the period from 1989 to 2011. The promi-

nent features of the spatial, seasonal and interannual vari-

ability of modeled precipitation rates were analyzed and are

highlighted below with emphasis on the winter- and summer-

type circulation. Therefore the mean precipitation sums for

January and July are mapped in Fig. 7. To quantify the in-

terannual variability, the coefficient of variation, defined as

the ratio of the standard deviation by the mean precipitation

sum, was calculated cellwise. Further, for a rough estimation

of the precipitation intensity and frequency the percentage of

the maximum daily precipitation of the monthly precipitation

sum is given in Fig. 7. Since the number of rainy days highly
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Figure 6. Observed (black bars) and modeled (polygons) monthly precipitation sums [mm month−1] (left y axis) and observed (black lines)

and modeled (red lines) annual precipitation sums [mm a−1] (right y axis) for 16 stations of the evaluation data set. The scale of the y axis

is adapted to the maximum precipitation amount at each station.
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Figure 7. Mean monthly precipitation sum [mm] (top panels), coefficient of variation (middle panels) and the ratio of maximum daily

precipitation and the monthly sum (bottom panels) for January (left panels) and July (right panels).

correlates with monthly precipitation sums and the maximum

daily intensity, we resign to map this additional predictand

variable.

As expected, the simulated large-scale precipitation distri-

bution in the target area is mainly determined by the prevail-

ing atmospheric modes. During winter season the circulation

pattern is characterized by the Asiatic High in the bound-

ary layer and the southward shift of the 200 hPa jetstream.

The target area is mainly dominated by dry conditions. Par-

ticularly for the Tarim Basin, no January precipitation was

predicted for the entire period. Similarly, the lowlands of

India and the Red Basin show monthly precipitation sums

below 20 mm. The Tibetan Plateau, especially the western

part, which is located leeward of the Karakoram and Pamir

mountains, receives mean monthly precipitation sums below

30 mm and shows a large interannual variability of precipita-

tion rates (cv> 2). Meanwhile the Kunlun and Quilian moun-

tains act as a barrier to the prevailing westerly flow. The

uplift of advected air masses and the occasional passage of

westerly disturbances result in considerable winter precipi-

tation amounts. For January the mean precipitation sums at

the western slopes of the mountain ranges reach more than

50 mm; for the leeward slopes and the valley bottoms less

than 20 mm is characteristic. The rainfall occurs reliably and

steadily, the interannual variability is small, and the low ra-

tio of maximum daily precipitation and the monthly sum in-

dicates a temporally uniform precipitation distribution and

the absence of extreme events (see Fig. 7). The maximum

of January precipitation occurs at the western margin of the

Himalayas due to a stronger southern branch of the 200 hPa

jetstream. The windward slopes receive up to 150 mm on av-

erage during January. The amounts of winter precipitation

at the Himalayan slopes show a clear gradient from west

to east. Like the Kunlun and Quilian Shan, the western Hi-

malayas are characterized by comparably low variability in

winter precipitation rates.

During spring, the pressure gradients over Asia decrease.

The enhanced radiative forcing leads to occasional con-
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Figure 8. Modeled mean annual precipitation sums [mm] for the entire target domain (a) and enlargements of the central Himalayan Arc (b),

the western Tibetan Plateau (c) and the margins of the Red Basin (d).

vective precipitation events, particularly over India and the

southern Himalayan slopes, while the north of target area

remains under dry conditions (figure not shown). In July

the summer-type circulation pattern is fully established, the

monsoonal flow leads to intense moisture fluxes into the

study region. Particularly the Indus–Ganges Lowlands and

the Himalayan slopes receive heavy rainfall, with mean

monthly sums of partially more than 1000 mm at windward

positions. Since the Indian Lowlands are only rudimentar-

ily represented by our observations, the results of the ap-

proach for that particular subdomain should be considered

less reliable. For the well-represented Himalayan slopes, the

model results indicate the occurrence of two high precipita-

tion bands, as observed by Bookhagen and Burbank (2006).

The first discontinuous zone of high precipitation is located

at the windward sites of the first orographic barrier of the

outer Himalayas at elevations between 1500 and 2000 m. A

second band of high precipitation occurs south of the high-

est Himalayan peaks at elevations between 2000 and 2500 m.

The zones of maximal precipitation are followed by a sharp

decrease above 4000 m. Particularly for the southern Hi-

malayan slopes, the precipitation distribution during sum-

mer results in a distinct differentiation of annual precipitation

sums (see Fig. 8b). The variability of monsoonal precipita-

tion at the Himalayan slopes is low, particularly for the east-

ern Himalayas, where cv values below 0.1 were computed by
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the ANN model. The leeward regions of the Trans-Himalayas

receive less than 90 mm average precipitation during July.

Contemporaneously, the Red Basin is under the influence of

the East Asian monsoon and receives precipitation amounts

of more than 300 mm on average during July. For the wind-

ward slopes east of the Tibetan Plateau, monthly precipita-

tion sums of up to 1000 mm were estimated. However, the

depiction of annual precipitation sums for the eastern margin

of the Tibetan Plateau shows a scattered precipitation dis-

tribution, which might indicate the appearance of statistical

artifacts in that particular region. The interannual variability

of monsoonal precipitation in the Red Basin was found to be

low, with cv values below 0.1. The precipitation distribution

over the Tibetan Plateau shows a clear east–west gradient

during summer. The east of the plateau is penetrated by moist

monsoonal air masses due to the meridional orientation of

the Three River Gorges. This results in monthly precipitation

sums of up to 150 mm. The western part is situated leeward

of the Himalayan and Karakoram mountain ranges and thus

remains under dry conditions. For the valley bottoms, the

monthly precipitation estimates amount to less than 20 mm;

for the elevated sites up to 50 mm was computed. This in-

dicates a rather convective precipitation regime by implica-

tion of the diurnal mountain–valley circulation. The inter-

annual variability is notably higher compared to advection-

dominated regions such as the windward slopes of the main

mountain ranges (cv> 0.4; see Fig. 7). Likewise, the higher

ratio of maximum daily precipitation and the monthly pre-

cipitation sum (partially 40 % of the monthly precipitation

amount fall within one day) indicates the occurrence of spo-

radic precipitation events. The Quilian Mountains receive

higher summer precipitation amounts of more than 70 mm

during July and mark the border of the East Asian monsoonal

influence. The leeward slopes, the Tsaidam Depression in the

southeast of the Quilian Shan, and the Tarim Basin are char-

acterized by mean monthly precipitation sums below 20 mm

and a considerably larger interannual variability with cv val-

ues ranging from 0.3 to 0.5. In the Tarim Basin the maximum

of daily precipitation exceeds 50 % of the monthly precipi-

tation sum. This indicates the importance of autochthonous

convective precipitation events for the northernmost part of

the study region.

The estimated mean annual precipitation sums (Fig. 8)

reach 1500 to 2000 mm in the lowlands of India and more

than up to 4000 mm at the southern slopes of the central Hi-

malayas. The Himalayan valleys, located north of the first

orographic barriers of the monsoonal current, receive con-

siderably reduced annual precipitation amounts on the or-

der of 1200 to 1500 mm (Fig. 8b). The Indian Lowlands

and the eastern Himalayas receive more than 80 % of the

annual rainfall during summer. For the western Himalayas

the percentage of summer precipitation reaches barely 60 %

of the annual amount. The annual precipitation estimates for

the Tibetan Plateau reveal a strong east–west gradient, with

amounts below 100 mm in the far west and above 1000 mm

in the monsoon-influenced eastern part. Particularly in west-

ern Tibet, the valley bottoms are characterized by arid con-

ditions with annual precipitation sums below 100 mm, while

the elevated sites reach values of up to 350 mm (Fig. 8c). The

precipitation estimates for the Kunlun Mountains amount

to approximately 400 to 600 mm, with maximum values

in the far west due to an enhanced winter precipitation

(DJF), which reaches up to 50 % of the annual precipitation

sum. The annual precipitation over the Quilian Shan reaches

500 to 600 mm with highest values at the stronger monsoon-

influenced east-facing slopes. The Tarim Basin is character-

ized by dry conditions throughout the year; the annual pre-

cipitation sum amounts to less than 80 mm. The convective

precipitation during summer amounts to almost 90 % of the

annual sum.

4.2 Sensitivity analysis for large-scale atmospheric and

topographic predictor variables

In comparison to linear models, the complex structure of

the ANN does not directly reveal physically interpretable

input–output relationships. Thus ANNs are often mentioned

as black-box models (Schönwiese et al., 2010). For the iden-

tification of the particular synoptic- and local-scale processes

leading to a spatial and temporal precipitation variability in

the target area, a local sensitivity analysis was conducted and

is exemplarily illustrated for four locations which represent

varying precipitation regimes in the study region (Fig. 9).

Nearby locations in general show similar results of the sen-

sitivity analysis. In each case one predictor variable was

chosen as a running variable, taking values between the

0.1 and 1.0 percentiles of the learning sample, while all other

predictors were set to constant values. For the assessment

of the model sensitivity to altering large-scale atmospheric

predictor variables (Fig. 9a), all predictors (apart from the

considered running variable) were set to their mean values

(which is 0 for normalized values). The predicted precipita-

tion amounts display the response of the ANN model, i.e., the

modeled precipitation amounts [mm month−1], to modified

values of the considered predictor variables and provide an

insight into the internal model structure. For the assessment

of the response of the ANN model to altering topographic

characteristics of the underlying surface, two sensitivity ex-

periments under different large-scale atmospheric conditions

were conducted. In order to investigate the model sensitivity

to topographic characteristics under dry conditions (Fig. 9b),

the relative humidity at the 500 and 200 hPa level was set to

0 % and the scores of the first EOF were set to the minimum

value, representing a typical winter type circulation pattern.

All other predictor variables were set to their mean values.

For an assessment of the model sensitivity under moist con-

ditions, the relative humidity was set to 100 % and the EOF1

scores were set to maximum, as characteristic for the summer

circulation type (Fig. 9c). Furthermore, a generalized sensi-

tivity analysis for the maximum daily precipitation amounts
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Figure 9. Sensitivity analysis of the ANN model for the atmospheric and topographic predictor variables at selected locations. Values are

in millimeters. (a) Sensitivity of the modeled monthly precipitation sums to altering values of large-scale atmospheric predictor variables.

(b) Sensitivity of monthly precipitation sums to topographic predictor variables under dry conditions. (c) Sensitivity of monthly precipitation

sums to topographic predictor variables under moist conditions. (d) Generalized sensitivity analysis of maximum daily precipitation amounts.

was conducted for both atmospheric and topographic precip-

itation amounts (Fig. 9d). Therefore all predictors (beside of

the running variable) were set to their mean values.

The ANN signal of each predictor variable for the monthly

precipitation sums and the maximum daily precipitation

amount is plotted in Fig. 9. The station Sikta, situated near

the southern Nepali border, represents the monsoonal cli-

mate of the Indian Lowlands and the slopes of the Himalayas.

The first EOF (indicating the pressure gradient between the

Asian continent and the Indian Ocean) and the relative hu-

midity (especially at 200 hPa) were found to be the crucial

large-scale predictors for the observed precipitation rates.

A strong positive pressure gradient during summer intensi-

fies the monsoonal circulation and leads to enhanced precip-
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itation rates over the Indus–Ganges Lowlands and the Hi-

malayan Arc. The positive response to increasing values of

second EOF scores (which are negatively correlated with the

SOI) indicates a positive implication of El Niño events for

the monsoonal precipitation amounts at first sight. However

a further correlation analysis of the predictor variables re-

veals a strong negative relationship (r > 0.5, p= 0.95) of the

EOF2 scores and the 500 hPa relative humidity during sum-

mer for all stations located in the Indian Lowlands and at

the southern Himalayan slopes. For other regions of the tar-

get area, no significant correlation could be identified. This

indicates a decreased moisture flux into the target area dur-

ing El Niño events, which is sufficiently captured by the as-

similated ERA-Interim reanalysis. Particularly for the 2009

monsoon season, the relative humidity fields of the reanaly-

sis show a considerably negative anomaly over India and the

Himalayas (not shown). In combination with a slight nega-

tive anomaly of the large-scale pressure gradients, this results

in reduced precipitation rates predicted by the ANN model

(see Fig. 6). The negative response to increasing values of

the wind shear has to be interpreted with regard to the an-

nual shift of the 200 hPa jetstream. While the windshear over

India during monsoon season is comparably low, the win-

ter circulation pattern is characterized by high wind speeds

in the upper troposphere. Although a southward shift of the

jetstream leads to the occasional passage of westerly distur-

bances, the winter season is mainly dominated by dry synop-

tic conditions. For the local-scale precipitation distribution,

the wind-effect parameter could be identified as the major

topographic predictor variable for the Himalayan slopes, re-

sulting in a considerable topographic differentiation of the

precipitation estimates. The model particularly shows a dis-

tinct response to the wind-effect parameter under moist con-

ditions; however, even under dry atmospheric circumstances,

the estimates of monthly precipitation amounts show higher

values at windward slopes (Fig. 9b and c). Likewise, the sen-

sitivity analysis indicates that the topographic differentiation

of maximum daily precipitation rates for the southern Hi-

malayan slopes is primarily determined by the wind-effect

parameter (Fig. 9d). The negative response of increasing ele-

vations implies a sharp precipitation decrease above 4000 m.

The sensitivity analysis for Dawu (located on the eastern Ti-

betan Plateau) shows a similar response for most of the syn-

optic and topographic predictor variables. However, in com-

parison with the southern Himalayan slopes, the precipita-

tion estimates show a clear positive response to increasing

values of the relative elevation above the nearest channel

network under both moist and dry large-scale atmospheric

conditions. Particularly for the maximum daily precipitation

amounts, the response of the ANN model to variations inZrel

was found to be considerably larger than the influence of the

wind effect. This indicates the importance of convective pre-

cipitation events for the spatial precipitation distribution over

the eastern Tibetan Plateau and especially for the generation

of intense precipitation events. The fact that the model dis-

tinctly responses to increasing values of the relative eleva-

tion, even under dry atmospheric conditions, might indicate

the importance of local water recycling for the precipitation

formation on the Tibetan Plateau as suggested, for exam-

ple, by Kurita and Yamada (2008) and Yang et al. (2007). For

the location of Xainza (western Tibetan Plateau) the ANN

response to variations in the wind effect seems to be negli-

gible. Elevation and relative elevation above the channel net-

work were detected as the most influential predictors for the

spatial precipitation distribution, indicating a rather convec-

tive precipitation regime over the western Tibetan Plateau.

Again, the modeled monthly precipitation amounts increase

with rising values of relative elevation under moist and dry

large-scale atmospheric conditions. The sensitivity analysis

for Alar, located in the arid Tarim Basin, mainly reveals a

certain response of the ANN model to variations in moisture

fluxes into the Tarim basin, represented by the 500 hPa rel-

ative humidity of the ERA-Interim reanalysis. A slight pos-

itive response to increased EOF1 scores is most likely due

to isochronous development of the summer monsoon cir-

culation pattern and the occurrence of convective precipi-

tation events and should not be interpreted as a monsoonal

influence. Under dry atmospheric conditions, the precipita-

tion distribution over the homogenous Tarim Basin appears

to be rather unaffected by varying topographic settings. High

values of relative humidity and the first EOF scores lead to

distinct topographic differentiation of monthly precipitation

rates, comparable with the western Tibetan Plateau, which is

dominated by a convective precipitation regime. However, it

should be mentioned that such high values of relative humid-

ity actually do not occur over the central Asian deserts.

5 Conclusions and outlook

The presented ANN-based downscaling approach suffi-

ciently captures the large- and local-scale variations in the

precipitation distribution in the highly structured target area.

By means of the integration of physically based terrain pa-

rameters, the approach addresses particular local-scale atmo-

spheric processes and enables the statistical downscaling of

fully distributed precipitation fields in mountainous environ-

ments.

Especially for the monsoon-dominated precipitation

regimes of the Indus–Ganges Lowlands, the Himalayan

slopes and the Red Basin the approach explains up to 70 %

of the variability of monthly precipitation sums. However,

for the Kunlun and Quilian mountains, where precipitation

occurs mainly due to western circulation patterns, and for

the convection-dominated regions, such as the western Ti-

betan Plateau and the Tarim Basin, the results are less reliable

(r2
= 0.5).

The trained ANN model stands out due to its nonlinear-

ity and its ability to capture the interactions of related large-

scale atmospheric and topographic predictor variables and
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facilitates the consideration of varying precipitation-forming

processes in different subregions of the modeling domain. A

subsequent local sensitivity analysis can reveal the influence

of specific predictor variables on the ANN output. While the

large-scale spatial variations and the seasonal cycle of the

monthly precipitation amounts were found to be determined

by varying circulation modes and moisture fluxes, as repre-

sented by the ERA-Interim reanalysis, the local-scale pre-

cipitation distribution was found to be highly influenced by

topographic characteristics. However, the impact of the to-

pographic parameters highly depends on the large-scale cli-

matic regimes. Complex artificial neural networks are effec-

tive modeling tools precisely for that reason, particularly in

comparison with linear regression models which suggest a

constant statistical relationship of predictor and predictand

variables for the entire target area. While windward and lee-

ward positions were identified as the major topographic pre-

dictor for the local-scale spatial precipitation variations in

the monsoon-dominated regions of India and the Himalayas,

the rather convection-dominated precipitation regimes of the

western Tibetan Plateau appear to be mainly influenced by

the relative elevation above the channel network and the ac-

companying diurnal mountain–valley circulation.

The spatial resolution of the modeled precipitation rates

of 1 km2 is auspicious for climate impact studies, e.g., for

the analysis of climate-sensitive ecosystems and hydrolog-

ical regimes. However the focus of the presented study on

monthly precipitation estimates still does not satisfy the re-

quirements of several geoscientific modeling approaches.

Hence, further research needs to be done to generate spa-

tially and temporally high resolution precipitation estimates.

Since the terrain-induced precipitation-forming processes

show large temporal variability due to varying mesoscale

atmospheric characteristics, the assessment of daily precip-

itation rates remains challenging. Böhner (1996) illustrates

that the representation of precipitation amounts for monthly

observations in central Asia remains below 200 km. This is

particularly valid for the convection-dominated regions of

the target area and indicates the heterogeneity of precipita-

tion observations in complex terrain. The daily precipitation

amounts in the study region are determined by mesoscale

atmospheric processes, such as the passage of tropical and

westerly disturbances or the development of convective clus-

ters, which are not sufficiently represented by limited reso-

lution climate models or reanalysis products. The mesoscale

atmospheric patterns, however, are crucial for the identifica-

tion of the flow direction and the moisture fluxes on a daily

timescale. This further increases atmospheric heterogeneity

in mountainous regions and impedes the statistical analysis

of interactions between the atmospheric circulation and the

underlying topographic characteristics. State-of-the-art dy-

namical downscaling models can be effective alternatives for

the simulation of mesoscale atmospheric processes, but due

to their high computational demands and their requirements

for high-quality input data, most studies focus on a limited

spatial domain or time frame. So far the WRF-based High

Asia Refined analysis (Maussion et al., 2014) is the only

data set known to the authors which adequately captures the

mesoscale climatic variability for the entire target region of

this study for the reasonable period from 2001 to 2011. Al-

though the resolution of 10 km still does not satisfy the needs

of many climate impact investigations, the data set could pro-

vide improved free-atmospheric predictor variables for sta-

tistical downscaling applications. The combination of dy-

namical downscaling and the presented statistical approach

appears to be auspicious for the analysis of mesoscale at-

mospheric conditions and its modification due to local-scale

topographic characteristics and should be considered for fur-

ther research.
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