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Abstract. A three-step climate classification was applied to a spatial domain covering the Himalayan arc and

adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected

based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal

component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis

ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed

consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment

of climatic influences on water resources and food security as well as for characterising the skill and bias of

gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies.

Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also

provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected

climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas,

where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

1 Introduction

The first objective, quantitative systems for global climate

classification were developed in the early 20th century by

integrating climate data to delineate zones of coherent veg-

etation type or ecoregion (Belda et al., 2014). By distill-

ing information from multiple climate variables which af-

fect vegetation typology, climatic classifications can provide

a framework for understanding natural resource systems (El-

guindi et al., 2014). By focusing specifically on climate vari-

ables which govern river flows and crop growth, derived cli-

mate classifications can also yield insight into the depen-

dency of agricultural production on water resources. How-

ever, the bulk of recent literature (e.g. Chen and Chen, 2013;

Mahlstein et al., 2013; Zhang and Yan, 2014) is global in

scope. In this study we focus for the first time on a specific

classification for the Himalayan arc and adjacent regions,

concentrating on climate types relevant to the spatial domain

and time period of interest.

The Himalayan arc and Tibetan Plateau give rise to river

systems which sustain populations numbering in the hun-

dreds of millions (Immerzeel et al., 2010). To derive climate

classifications for this region we focus on climate variables

which control the hydrological regimes of catchments with

mountainous headwaters, and hence with substantial runoff

contributions from snow and glacial melt, as well crop yields.

Our precise study area encompasses the Indus, Ganges and

Brahmaputra basins and is shown in Fig. 1. The topographic

contrast is stark between the high-elevation areas of the Hi-

malayan arc and Tibetan Plateau, and adjacent lowlands of

the Indo-Gangetic Plain and deserts of Central Asia. Another

striking feature of Fig. 1 is the extent of area under irrigation

in South Asia. The crops produced by these irrigated surfaces

are crucial to the food security of Pakistan, India, Bangladesh

and beyond (de Fraiture and Wichelns, 2010). Archer et
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Figure 1. Geographic context of the study area (Himalayan arc

and adjacent plains) including elevation and areas with > 33 % un-

der irrigation (hatched). Data sources include the United Nations

Food and Agriculture Organization (FAO) and the United States

Geological Survey Global 30 Arc-Second Digital Elevation Model

(GTOPO30).

al. (2010) point out that the semi-arid plains of the Lower In-

dus had only marginal (rainfed) agricultural viability until the

development of irrigation infrastructure. Irrigation demand in

the Lower Indus is supplied by run-off from the Hindu Kush,

Karakoram and western Himalaya. Thus holistic understand-

ing of regional food security depends upon characterisation

of the spatial as well as climatological differences of these

hydrologically connected subregions. Furthermore, it is pos-

sible that these subregions will experience distinct trajecto-

ries of change in the coming decades. Differential rates, or

even signs, of change could substantially alter the regional

balance of irrigation water supply and demand. The climate

classification approach offers a framework within which to

evaluate such water balance scenarios.

Global meteorological reanalyses provide coherent syn-

theses of atmospheric states including radiative and mass

flux exchanges with the sea or land surface. In this paper

we compare the climatologies described for the study area

from four reanalyses – JRA-55 (Ebita et al., 2011), ERA-

Interim (Dee et al., 2011), NASA MERRA (Rienecker et al.,

2011) and NCEP CFSR (Saha et al., 2011) – which encom-

pass the recent decades rich in data from both ground-based

and satellite-borne instruments. In assessing climate classi-

fications derived from each reanalysis we are not only in-

terested in how the climatically defined zones relate to water

resource supply (mountainous headwaters) and demand (irri-

gated plains) areas but also in how the classifications derived

from individual reanalyses relate to each other. These inter-

comparisons establish a methodology for evaluating gridded

data sets, including global and regional climate simulations

(Elguindi et al., 2014) as well as reanalyses. Comparisons

can be made not only between different models but also be-

tween different time periods (“time slices”), for either his-

torical data sets (Belda et al., 2014; Chen and Chen, 2013)

or simulations by climate models (Mahlstein et al., 2013).

Temporal changes in derived climate zones can be assessed

in terms of both projected spatial changes (areal extent, ele-

vation range, etc.) and of projected climatic changes (mean,

annual range, etc.) in the individual climate variables used to

create the classification.

2 Data and methods

2.1 Reanalysis data sets

Reanalyses are generally conducted by institutions respon-

sible for meteorological forecasting and are undertaken in

part to assess the performance forecasting models and the

data assimilation systems which support them (Uppala et al.,

2005). The resulting coherent multi-decadal syntheses of cli-

mate conditions, however, are of substantial utility to a much

broader spectrum of natural scientists. In this study we draw

upon data from four reanalyses produced by agencies from

diverse geographic regions. Characteristics of the reanaly-

ses used in this study are provided in Table 1 and differ in

both spatial and temporal resolutions. Given the forecast-

driven nature of reanalyses, it is common for time steps to

be organised in 6 h synoptic forecasting time windows. The

NASA MERRA data set is distinct in that the default time

step is hourly. In all cases daily means were calculated as

the mean of the available sub-daily time steps. Daily max-

imum and minimum were taken as the highest and lowest

values respectively amongst the sub-daily time steps unless

reported specifically, as was the case for NCEP CFSR. Di-

urnal range was calculated as maximum minus minimum.

In order to make extracted climatic values as comparable as

possible, a common reference period, 1980 to 2009, avail-

able from each of the reanalyses, was selected for this study.

However, comparability of the results was still limited by dif-

fering spatial resolutions of the reanalyses as both tempera-

ture and precipitation are greatly influenced by topography

in mountainous regions (Immerzeel et al., 2012). The fidelity

with which each reanalysis reproduces the topography of the

study area is limited by its spatial resolution. For this reason,

the JRA-55 (1.25× 1.25◦ resolution) data set is expected to

be handicapped compared to the NCEP CFSR (0.50× 0.50

decimal degree resolution) data set. Nevertheless, other el-

ements, including efficacy of data assimilation and realism

of land-surface process algorithms, are also expected to play

substantial roles in determining reanalysis skill.

2.2 Selection of climate variables governing water

resources and food security

The utility of a climate classification depends on the extent

to which it reflects the climatic constraints which govern

physical processes of interest. If, for example, geochemical

processes such as pollutant mobilisation are an overwhelm-

ing concern, sensitivity studies can be conducted to identify
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Table 1. Reanalysis data sets utilised for comparative climate classification.

Reanalysis Producer Time period covered Spatial resolution (◦) Diurnal discretisation

JRA-55 JRA 1958 to (near) present 1.25× 1.25 6 h synoptic forecast/analysis periods

ERA-Interim ECMWF 1979 to (near) present 0.75× 0.75 6 h synoptic forecast/analysis periods

CFSR NCEP 1979 to 2009 (later extended) 0.50× 0.50 6 h synoptic forecast/analysis periods

MERRA NASA 1979 to (near) present 0.67× 0.50 hourly

the key climatic factors involved (e.g. Nolan et al., 2008).

In this paper the processes of interest are river flows from

mountainous headwaters and agricultural production, both of

which depend upon inputs of mass (precipitation) and energy

(ambient temperature and incoming radiation). From a sim-

ulation standpoint, common approaches for modelling both

meltwater generation from seasonal snowpack and glaciers

(Ragettli et al., 2013) and crop yields (Baigorria et al., 2007;

Kar et al., 2014) require both air temperature and incom-

ing radiation in addition to precipitation as input data. Fur-

thermore, moisture exchanges from the land surface and at-

mosphere depend upon the latter’s vapour pressure deficit,

which is commonly expressed as relative humidity. Whilst

these parameters can be observed directly, the diurnal tem-

perature range (DTR) also acts as an effective proxy for am-

bient moisture conditions (Easterling et al., 1997).

In establishing the methodology used here, we favoured

reanalysis variables with the simplest relationship to com-

monly observed parameters at ground-based stations. Hence,

Tavg (mean temperature) and DTR – which together describe

the diurnal temperature cycle and can be calculated at sta-

tions recording solely Tmax (maximum temperature) and Tmin

(minimum temperature) – along with precipitation were se-

lected as governing variables. An exception to this princi-

ple was made in selecting net incoming shortwave radiation

(SWnet) at the ground surface as a governing variable due

to the importance of seasonal snow cover in the hydrologi-

cal regimes of major Himalayan and Tibetan river systems.

SWnet can be observed at standard manned meteorological

stations and automatic weather station (AWS) units if they

are equipped with radiometers, but is also indirectly available

from remote sensing via albedo and cloud climatology. It was

largely for the linkage between SWnet and snow cover via

albedo that the former was selected as a key variable. Specif-

ically, land surfaces with full snow cover have a much higher

albedo than “bare ground” and albedo evolves during snow-

pack accumulation and ablation when snow cover is partial.

Albedo in turn modulates net shortwave absorption from in-

coming solar radiation at the surface. Thus net shortwave ra-

diation can serve as a proxy for snow cover. The linkage be-

tween SWnet and cloud cover is also useful, as the latter is an

indicator of large-scale weather system – mid-latitude west-

erly or tropical monsoon – influence. Cloud cover influences

SWnet by modulating the amount of incoming shortwave ra-

diation reaching the surface. In the absence of snow cover,

suppression of SWnet in summer months over South Asia is

likely due to monsoonal activity, while suppression in other

months suggests mid-latitude westerly disturbances. Table 2

lists the governing variables selected for this study, includ-

ing the seasonal aggregates of interest, and summarises their

physical significance.

Prior to derivation of climate classifications, a comparison

of the climatologies from the individual reanalyses provides

a context within which differences can be interpreted. To es-

tablish a common framework, the “native” resolution data

from each reanalysis was regridded (subdivided) to a com-

mon 0.25× 0.25◦ spatial resolution. Ensemble means were

calculated, by grid cell, from the simple averages of the four

reanalyses. There was no weighting applied from any met-

ric of skill or confidence, nor were any corrections made to

account for differences between “native” orography and esti-

mated surface elevation of the target common grid cell. This

approach was taken in the absence of detailed information

on likely biases by the reanalyses in the variables of interest.

Once the ensemble mean had been calculated, normalised

differences, i.e. individual reanalysis value minus ensemble

mean, were calculated to facilitate comparisons of individual

climatologies.

In a study driven by interest in water resources and agricul-

tural production, it is logical to initially focus on precipitation

climatologies. Figure 2 shows the ensemble mean reanalysis

precipitation climatology and the individual contributions (as

normalised differences). In addition to annual totals, seasonal

precipitation is differentiated between a cold season (Octo-

ber to March), known regionally as the “rabi”, and the mon-

soon season (April to September), referred to as the “kharif”.

The regional dominance of monsoonal rainfall is striking

when comparing the ensemble means of the seasonal contri-

butions to annual total precipitation, although for the Karako-

ram/Hindu Kush and north-western Central Asian deserts the

rabi precipitation outweighs monsoonal inputs. In compar-

ing the climatologies of the individual reanalyses, the most

prominent differences are located along the southern flank of

the Himalayan arc and over the Ganges–Brahmaputra Delta

along with uplands along the India–Myanmar border region.

Broadly, JRA-55 is drier than the other reanalyses along

the Nepal–Bhutan–China border but much wetter over the

Terai, Assam, the lower Ganges Basin and the Bay of Ben-

gal. NCEP CFSR has similar characteristics, with the ex-

ception of being drier over the Bay of Bengal. ERA-Interim
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Table 2. Variables used for Himalayan region climate classification.

Variable Season Physical importance

Precipitation Annual total Humid vs. arid climates

ONDJFM

(“rabi”)

Westerly (extratropical) weather system climate

influence

AMJJAS

(“kharif”)

Monsoonal weather system climate influence

Tavg

daily mean near surface air

temperature

DJF

MAM

JJA

Indicator of precipitation state (solid versus liq-

uid) and available energy to drive hydrological

processes (meltwater generation) and crop growth

(transpiration); as such an indicator of hydrologi-

cal regime (pluvial, nival or glacial)

DTR

diurnal temperature range

DJF

MAM

JJA

(inverse) Indicator of moisture conditions, i.e. rel-

ative humidity and cloud cover, as both suppress

DTR; as such a proxy for cloud cover further in-

forms regarding circulation influences

SWnet at surface

net downward shortwave

radiation at the surface

DJF

MAM

JJA

Indicator of land-surface state (snow-covered or

bare) and available energy to drive hydrological

processes (meltwater generation) and crop growth

(transpiration); as such an indicator of hydrologi-

cal regime (pluvial, nival or glacial)

and NASA MERRA show the opposite pattern, with ERA-

Interim being much wetter over the Nepal–Bhutan–China

border region and NASA MERRA being much drier over the

Terai, Assam and Ganges–Brahmaputra Delta.

While adequate moisture inputs from precipitation are pre-

requisite for both river flows and agricultural production,

the role of energy inputs in both the generation of meltwa-

ter runoff, from snow and glacial ice, and driving crop de-

velopment, through photosynthesis and transpiration, is also

critical. Figure 3 shows the ensemble mean climatologies

and individual (normalised difference) contributions for win-

ter (December to February) SWnet, spring (March to May)

daily Tavg and summer (June to August) DTR. These tempo-

ral aggregates (winter, spring and summer) were selected to

identify hydrological regimes (pluvial, nival (snowpack) or

glacial) and growing seasons dependent upon thermal condi-

tions. As described in Table 2, all three seasonal values (win-

ter, spring, summer) for each of these variables – Tavg, SWnet

and DTR – were used as input to the classification procedure.

Figure 3 shows a single seasonal example of each variable to

illustrate the information it contributes. Autumn (September

to November) seasonal aggregates were not used as they are

very similar to spring (mirror image) in terms of magnitude

and variability and thus not expected to substantially increase

information content available to the PCA.

Figure 3 shows that winter SWnet illustrates the influence

of seasonal snow cover via albedo. As expected there is a

generally latitudinal gradient, with decreasing SWnet mov-

ing northward, although the latitudinal gradient is smaller

than reductions in net surface absorption in areas with sea-

sonal snow cover. JRA-55 shows generally lower SWnet val-

ues than the ensemble mean, particularly over south-western

Pakistan and the Tibetan Plateau. The former difference is

likely due to greater reanalysis estimates of cloud radiative

effect (CRE), while over Tibet this might be due to either

CRE or higher predicted albedo from greater assumed sea-

sonal snow cover. In contrast JRA-55 shows higher SWnet

over the Pamir and sections of the high Karakoram and Hi-

malayan arc. This may be due to either assumed lesser sea-

sonal snow cover (decreased albedo) or estimated clearer

sky conditions (decreased CRE). Broadly speaking, ERA-

Interim and NASA MERRA show the opposite contribution

patterns to JRA-55, and hence detailed examination of ra-

diation modulating physical mechanisms, e.g. clear versus

overcast conditions and full snow cover versus bare ground,

would likely reveal opposing tendencies. Between ERA-

Interim and NASA MERRA, the former shows broader and

more pronounced decreases in SWnet continuously along the

Himalayan arc from Pamir through the east of Bhutan to the

Sikkim. NCEP CFSR shows a mixed pattern of SWnet, agree-

ing with JRA-55 north of approximately 30◦ N and more

closely corresponding to ERA-Interim and NASA MERRA

south of this line.

The ensemble mean climatology of spring daily Tavg dis-

plays the expected influence of elevation, with sub-freezing

temperatures found roughly above 3000 m a.s.l. Like SWnet,

Tavg through the freezing isotherm provides a spatial indi-

cation of areas with likely snow cover. More generally, Tavg
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Figure 2. Ensemble precipitation climatology and normalised com-

parison of individual contributions from reanalyses used in this

study. ONDJFM is the abbreviation for the period from October

to March, referred to regionally as “rabi”. AMJJAS is the abbrevi-

ation for the period from April to September, referred to regionally

as “kharif”.

quantifies the available energy to drive melting of snow and

ice as well as plant development. Although NASA MERRA

is notably warmer than the other three reanalyses over the

Indo-Gangetic Plain, the largest discrepancies are along Hi-

malayan arc as well as at the transition from the Taklimakan

Desert to the Tibetan Plateau. JRA-55 and NCEP CFSR are

generally colder than the mean along the Himalayan arc but

warmer along the northern Tibetan fringe. ERA-Interim is

strongly warmer along the Himalayan arc but much cooler

over the southern Taklimakan. NASA MERRA has more

mixed contributions, with relatively limited areas showing

substantial departures from the ensemble mean.

Summer DTR is not a direct indicator of energy input to

the hydro-climatological system and biosphere. It does, how-

ever, provide a measure of the amplitude of energy variation

throughout the diurnal cycle as well as providing a proxy for

relative humidity (vapour pressure deficit) and cloud cover.

Examination of the ensemble mean summer DTR climatol-

ogy clearly illustrates the influence of both cloud cover and

humidity. Regionally summer DTR is lowest over the Ara-

bian Sea and Bay of Bengal and highest over the western

Central Asian deserts. Suppression of summer DTR is clearly

evident by comparing the ensemble mean summer DTR in

Fig. 3 to the ensemble mean monsoonal precipitation accu-

mulations in Fig. 2. The influence of diurnal discretisation

(sub-daily time step) on individual reanalysis DTR clima-

tologies is evident in Fig. 3. NASA MERRA, with an hourly

time step, has much larger DTR values over land than the en-

Figure 3. Ensemble energy input (temperature and radiation) cli-

matology and normalised comparison of individual contributions

from reanalyses used in this study. SWnet is net downward short-

wave radiation at the surface. Tavg is daily mean near surface air

temperature. DTR is diurnal temperature range. DJF is the (winter)

period December through to February. MAM is the (spring) period

March through to May. JJA is the (summer) period June through to

August.

semble mean but lower DTR values than the mean over the

Arabian Sea and the Bay of Bengal. MERRA’s hourly time

step allows better representation of the full amplitude of the

DTR, while the 6 h time steps of the other reanalyses “flat-

ten” or dampen estimated diurnal variations. NCEP CFSR

has the lowest DTR values, with particularly small DTR es-

timates over the Central Asian deserts and Tibetan Plateau.

ERA-Interim has broadly, if moderately, lower DTR values

than the mean except over the Central Asian deserts as well

as the Arabian Sea and Bay of Bengal. JRA-55 is similar to

ERA-Interim in DTR estimates, albeit spatially more vari-

able and closer to the ensemble mean.

In summary, the substantial differences, illustrated in

Figs. 2 and 3, in input variable climatologies between the

individual reanalyses can be attributed to differences in spa-

tial resolution and sub-diurnal discretisation. Reanalyses will

also differ in the data assimilation systems and data analy-

sis and forecasting models they incorporate, an exploration

of which is beyond the scope of this study. Spatial resolu-

tion will have the most pronounced influence in areas with

steep topographic gradients and in interface zones between

land and sea. Sub-diurnal time -step influence will be lim-

ited to absolute accuracy of DTR. While both spatial reso-

lution and sub-diurnal time-step influence absolute accuracy

and hence the direct comparability of a reanalysis to other
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data sets, its internal coherence, i.e. relative spatial and tem-

poral variability, may still be substantial. This coherence can

be tested through the climate classification process. Where

good ground-based observations exist and can be translated

meaningfully to the grid cell resolution in the reanalyses, bias

assessment could be performed. This would provide insight

into which data set more accurately represents regional con-

ditions but would be very challenging and time-consuming

due to data paucity and inconsistencies. This in fact high-

lights one of the major benefits of the climate classifica-

tion procedure: objective delineation of the regional domain

should enable optimisation of the use of limited ground data

by defining “areas of relevance” within which the magnitude

and distribution of bias can be meaningfully summarised.

2.3 Method for climate classification

The climate classification methodology used in this study

directly transfers the method developed by Blenkinsop et

al. (2008) for the European FOOTPRINT project, albeit with

the set of variables described in Sect. 2.2 rather than those

identified for FOOTPRINT (Nolan et al., 2008). Blenkinsop

et al. (2008) applied a three-step approach to climate zon-

ing: (i) identification of key climatic variables, (ii) principal

component analysis (PCA) and (iii) k-means cluster anal-

ysis. The decision to use the PCA and k-means approach,

which classifies the spatial domain based on relative differ-

ences, rather than to apply a classification based on abso-

lute thresholds, e.g. Köppen–Trewartha (Belda et al., 2014),

was made due to the expectation that the spatial aggregation

(large grid cells) within the reanalyses would introduce in-

evitable biases. These biases could be further exacerbated

by the formulation of data assimilation and forecasting al-

gorithms adopted by each reanalysis. Thus it seemed more

reasonable to apply a relative differentiation rather than an

absolute, fixed standard.

As explained by Blenkinsop et al. (2008), PCA is a nec-

essary step in the climate classification process in order to

reduce the dimensionality of the input variables, which are

expected to be substantially correlated as a set. Prior to PCA

all input variables were standardised (subtraction of spatial

mean and division by spatial standard deviation). Standardis-

ation was performed so that the unit-dependent absolute val-

ues of the individual variables would not distort their weight-

ing within the PCA process. PCA was performed using the

“mlab” module of matplotlib (Hunter, 2007) executed in a

Python environment. Input and output operations of reanaly-

sis data stored as GeoTiffs were handled using the RasterIO

Python module (Holderness, 2011).

The results of the PCA for each reanalysis are summarised

in Table 3. A decision was made to retain principal compo-

nents (PCs) which accounted for at least 5 % of the total vari-

ance in the input data set. Table 3 indicates that ERA-Interim

and NCEP CFSR each had four PCs which met this criterion

while JRA-55 and NASA MERRA had five PCs. Details on

Figure 4. Comparison of the first three principal components (PCs)

from each of the reanalyses used in this study. PCs are calculated

from the principal component analysis (PCA) input standardised

variables using the PCA output weighting factors. PCs are thus di-

mensionless and values are expressed in standard deviations.

the first three PCs, which together account for between 81

and 85 % of the total variance, for each reanalysis are pro-

vided in Table 3, while Fig. 4 shows these PCs graphically.

The first PC for all four reanalyses was primarily composed

of variables related to energy inputs (daily mean temperature,

net shortwave radiation), although JRA-55, ERA-Interim and

NASA MERRA all had substantial negative contributions

from summer DTR. The first PC accounted for between 36

and 46 % of the total variance depending on the reanalysis

chosen. As can be seen in Fig. 4, the differences between the

reanalyses in spatial distribution of PC1 within the domain

can be largely accounted for by the respective differences in

spatial resolution. Even without allowing for the spatial reso-

lution, differences in the consistency in PC1 between reanal-

yses are striking.

For the second and third PCs, contributions were very sim-

ilar between three of the reanalyses (Table 3). For ERA-

Interim, NASA MERRA and NCEP CFSR, PC2 was dom-

inated by precipitation inputs from all seasons, while neg-

ative contributions from summer energy inputs were also

present. In these reanalyses PC3 was dominated by DTR,

particularly winter and spring. For JRA-55, PC2 was dom-

inated by winter and spring DTR, with a negative contribu-

tion from cold season (rabi) precipitation. JRA-55 PC3 was

dominated by annual total and monsoonal (kharif) precipita-

tion as well as winter DTR. Despite the differences in com-

position, i.e. loadings from input variables, spatial variability

within the domain for PC2 from JRA-55 is visually very sim-

ilar to PC2 from the other three reanalyses. In PC2, for JRA-

55 the Arabian Sea shares the same sign as the Himalayan

arc and Ganges–Brahmaputra Delta, while in the other three

reanalyses the Arabian Sea has the same sign as the Lower

Indus Basin and Central Asian deserts. There are more sub-
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Table 3. Comparison of results of principal component analysis.

Gridded data source PC1 PC2 PC3

JRA-55

5 PCs > 0.05

Explained

variance

0.459 0.194 0.162

Loading JJA DTR −0.359

DJF Tavg 0.380

DJF SWnet 0.384

ONDJFM Precip

−0.440

DJF DTR 0.408

MAM DTR 0.509

AnnTot Precip −0.419

AMJJAS PrecipTot−0.416

DJF DTR −0.461

ERA-Interim

4 PCs > 0.05

Explained

variance

0.364 0.317 0.167

Loading JJA DTR −0.353

DJF Tavg 0.443

MAM Tavg 0.404

DJF SWnet 0.402

AnnTot Precip 0.460

AMJJAS Precip 0.440

ONDJFM Precip 0.407

MAM SWnet −0.353

JJA SWnet −0.371

DJF DTR 0.622

MAM DTR 0.621

NASA MERRA

5 PCs > 0.05

Explained

variance

0.416 0.214 0.185

Loading JJA DTR −0.378

DJF Tavg 0.404

MAM Tavg 0.375

DJF SWnet 0.388

AnnTot Precip 0.491

AMMJAS Precip 0.439

ONDJFM Precip 0.479

JJA Tavg −0.395

DJF DTR −0.631

MAM DTR −0.635

NCEP CFSR

5 PCs > 0.05

Explained

variance

0.377 0.275 0.181

Loading DJF Tavg 0.451

MAM Tavg 0.429

JJA Tavg 0.363

DJF SWnet 0.424

MAM SWnet 0.382

AnnTot Precip 0.459

AMJJAS Precip 0.440

ONDJFM Precip 0.367

JJA SWnet −0.429

DJF DTR −0.478

MAM DTR −0.645

JJA DTR −0.462

NB: rows labelled “Explained variance” indicate fraction of total input variance accounted for by the principal component (PC). Rows labelled “Loading”

indicate input variables whose (coefficient) contribution to the PC is >0.35. Loading coefficients are shown with their signs to differentiate between

variables with opposing contributions.

stantial differences between reanalyses in PC3. In JRA-55

the signs of Central Asian deserts and Tibetan Plateau are

reversed compared to the patterns found in PC3 in the other

three reanalyses. For all reanalyses, PC2 accounted for be-

tween 19 and 32 % of total variance, while PC3 accounted for

between 16 and 19 %. Overall the spatial patterns in Fig. 4

are physically plausible, especially PC1 (mean annual tem-

perature/energy input) and PC2 (annual total precipitation)

in the three similar reanalyses (excluding JRA-55). Spatial

patterns in PC3 (cold season/rabi DTR) are also physically

plausible, although visually they are less intuitive as diur-

nal temperature cycles are substantial even in high-elevation

areas (Karakoram, Himalaya, Tibetan Plateau) in these sea-

sons. They are of lesser amplitude, however, than those ex-

perienced currently in the Indo-Gangetic Plain and Central

Asian deserts.

K-means cluster analysis was also performed using mat-

plotlib (Hunter, 2007) and RasterIO (Holderness, 2011)

within a Python environment. As suggested by Blenkinsop

et al. (2008), standardised grid cell latitude and longitude

were added to the retained principal components as input

to the clustering process. Because k-means cluster analysis

presupposes the number of distinct (climate) classes rather

than determining the number groupings (zones) based on a

numerical measure of “likeness”, a range of cluster numbers

was tested for each reanalysis. The results are presented in

the following section, but the our interpretation was that the

study domain could be aptly described by eight subregional

climate zones with increases in cluster numbers leading to

subdivisions of these zones. The issue of spatial discretisa-

tion of steep topographic gradients, and hence temperature

and precipitation gradients, in the transition zone between

the (southern flank of the) Himalayan arc and Indo-Gangetic

Plain does, however, raise a legitimate caveat to this general-

isation.
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Table 4. Description of primary Himalayan region climate zones (eight clusters).

Regional climate

zone name/area

Climate type Characteristics Fraction of domain covered

ERA- NASA NCEP

JRA-55 Interim MERRA CFSR

Arabian Sea and

Bay of Bengal

Subtropical ocean Year-round warm temperatures, minimal

DTR, limited monsoonal precipitation

0.069 0.077 0.066 0.080

Central Asian

deserts

Mid-latitude desert Cold winter, hot summer, minimal annual

precipitation

0.199* 0.150 0.168 0.101

Tibetan Plateau High-elevation

desert

Cold winter, mild summer, limited mon-

soonal precipitation

0.229 0.207 0.266* 0.227

Himalayan arc Subtropical high

mountains

Cold winter, mild summer, substantial mon-

soonal precipitation weather

** 0.061 ** 0.039

Karakoram/Hindu

Kush

Mid-latitude high

mountains

Cold winter, mild summer, substantial pre-

cipitation from westerly weather systems

(winter and spring)

0.058 0.064 0.050 0.064

Lower Indus Basin Semi-arid plains Mild winter (cold season), hot summer, lim-

ited monsoonal precipitation

0.133 0.152 0.179 0.194

Gangetic plains Sub-humid plains Mild winter (cold season), hot summer, sub-

stantial monsoonal precipitation

0.217 0.192 0.163 0.222

Ganges–

Brahmaputra

Delta

Humid plains Mild winter (cold season), warm summer, in-

tense monsoonal precipitation

0.090 0.093 0.104 0.069

*Combination of two climate zones in this reanalysis. **Not identified by this reanalysis.

3 Results

3.1 Description of emergent regional climate zones and

subdivisions

Figure 5 shows the results of k-means clustering for each re-

analysis for 8, 12 and 16 clusters. Similar subdivisions of the

eight subregional climate zones tend to emerge in all the re-

analyses as cluster numbers increase, although subdivisions

first emerge dependent upon spatial discretisation and clima-

tological differences – illustrated in Figs. 2 and 3 – of each

reanalysis.

The general characteristics of the eight emergent subre-

gional climate zones are described Table 4 along with the

fraction of the spatial domain each covers in each reanal-

ysis (for the eight-cluster case). With the exception of the

Himalayan arc zone, which was not identified by both JRA-

55 and NASA-MERRA when the number of clusters was

limited to eight, there is substantial agreement not only on

the broad geographic locations of the eight zones but also

on their spatial extent within the domain. There is arguably

some blurring in the definition of the “Lower Indus Basin”

(semi-arid plains), which regionally could be seen as a tran-

sitional zone between the “Central Asian deserts” and the

“Gangetic plains” (sub-humid plains), although the latter

could itself be seen as a transitional zone between the Lower

Indus and the “Ganges–Brahmaputra Delta” (humid plains).

3.2 Comparison of climatologies of emergent

subregional climate zones

The spatial mean and ranges (minimum and maximum) have

been calculated for the period monthly means of the four

input variables from each reanalysis. The annual cycles of

precipitation and DTR are shown in Fig. 6. The annual cy-

cles of daily mean temperature and net shortwave radiation

are shown in Fig. 7. Placement of subregional zones within

these figures are deliberate in their relationship to geograph-

ical location and large-scale circulation influences. The most

northerly zones are in the upper figure panels, and the most

southerly at the bottom. Zones with greater westerly weather

system influence are in the left-hand column, while greater

monsoonal influence zones are to the right. Results shown in

both figures are referred to in the discussion throughout this

section.

3.2.1 Precipitation climatologies of emergent

subregional climate zones

Precipitation is a core element in differentiating the eight

emergent subregional climate zones within the study do-

main. The Ganges–Brahmaputra Delta (humid plains) has

by far the highest precipitation of the subregional zones fol-

lowed by the Gangetic plains (sub-humid plains) and the Hi-

malayan arc. Precipitation in each of these zones is domi-

nated by monsoonal rainfall although the Himalayan arc re-
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Figure 5. Comparison of climate classifications resulting from the

use of 8, 12 and 16 clusters (k) on principal components from the

individual reanalyses. Large units in the legend refer to zones for

the k = 8 case.

ceives moderate precipitation from westerly weather systems

in late winter (February) and spring. The Karakoram/Hindu

Kush zone is the next wettest with dominant inputs from rabi

westerly weather systems and limited summer rainfall. The

Tibetan Plateau has a similar seasonal distribution of pre-

cipitation to the Himalayan arc but with lower monthly to-

tals. The Lower Indus Basin and Central Asian deserts are

the driest zones. Spread in spatial means between reanaly-

ses is substantial for all climate zones and appears roughly

proportional to precipitation amount, i.e. the largest spread is

found in the wettest months and in the wettest zone (Ganges–

Brahmaputra Delta).

3.2.2 DTR climatologies of emergent subregional

climate zones

As explained in Sect. 2.2, ensemble spread in DTR cli-

matologies can be substantially attributed to issues of sub-

diurnal discretisation. For all climate zones except the Ara-

bian Sea and Bay of Bengal, the reanalysis with an hourly

time step (NASA MERRA) has the largest DTR values.

Despite similar sub-diurnal discretisation, NCEP CFSR has

consistently lower DTR values across all climate zones than

ERA-Interim and JRA-55, which tend to agree closely with

one another. Despite this considerable ensemble spread in ab-

solute values, the “shape” of annual DTR cycles within cli-

mate zones is consistent between reanalyses, i.e. standard-

ised values are very similar. Zones with substantial mon-

soonal influence – the Ganges–Brahmaputra Delta, Gangetic

plains and Himalayan arc – have annual DTR minima in

summer. In contrast, drier and more westerly dominated sub-

regional zones – the Central Asian deserts, Tibetan Plateau,

Karakoram/Hindu Kush and Lower Indus Basin – have an-

nual DTR minima in winter, although the Lower Indus has a

sufficient monsoonal influence for a minor minimum (limited

DTR suppression) in summer. The Arabian Sea and Bay of

Bengal have the smallest DTR values both in absolute terms

(annual mean) and amplitude of annual cycle.

3.2.3 Daily mean temperature climatologies of

emergent subregional climate zones

Based on the PCA results presented in Sect. 2.3, differ-

ences in energy inputs account for the largest fraction of

variance within the input data. Differences in annual cy-

cles of daily Tavg provide clear differences between the

emergent subregional climate zones. The Arabian Sea and

Bay of Bengal have year-round moderately warm temper-

atures with minimal spread in both ensemble mean and in

spatial spread within individual reanalyses. The Ganges–

Brahmaputra Delta has similar monthly spatial mean values

to the Arabian Sea but with incrementally larger ensemble

spread and much greater spatial spread. The spatial spread

is attributed to the topographic diversity within the zone,

stretching from coastal areas to the front ranges of the Hi-

malaya. The Lower Indus Basin and Gangetic plains have

quite similar annual cycles of daily mean temperature. Both

have mild cold seasons (rabi) and hot summers with large

spatial spreads in all months. The ensemble spread is incre-

mentally larger in all months for the Lower Indus than for

the Gangetic plains. The remaining four zones – the Central

Asian deserts, Tibetan Plateau, Karakoram/Hindu Kush and

Himalayan arc – are alike in several months of the annual cy-

cle, with mean temperatures below freezing. Ensemble and

spatial spreads are greater in the Central Asian deserts and

Karakoram/Hindu Kush than in the Tibetan Plateau, which is

consistently the coolest zone. For the Himalayan arc, ERA-

Interim and NCEP CFSR agree closely for both the spatial

means and the considerable spatial spreads of this zone.

3.2.4 Net shortwave radiation climatologies of emergent

subregional climate zones

Net shortwave radiation at the surface is, understandably, the

least differentiated of the input variables. Of interest is the

varying degrees of SWnet suppression in different seasons.

In cold months shortwave suppression is due to increased

albedo from seasonal snow cover and to a lesser extent to

CRE from thick cloud cover. This is evident in the Tibetan

Plateau and Karakoram/Hindu Kush, where the annual min-

ima is well below 100 W/m2. Sub-100 W/m2 annual minima

in the Central Asian deserts are more surprising and may in

part be due to airborne dust particles. Higher winter SWnet

for the Himalayan arc, comparable to the Lower Indus, than

the Karakoram/Hindu Kush may be attributable to the lower

latitude and lesser seasonal snow cover of the more easterly

mountain range. Summer SWnet suppression will be caused
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Figure 6. Ensemble spatial statistics for annual cycles of precipitation (left) and DTR (right) by climate zone (eight clusters). DTR is diurnal

temperature range.

by large CRE linked to monsoonal activity. This is particu-

larly visible in the Ganges–Brahmaputra Delta and Gangetic

plains and still noticeable in the Himalayan arc and Arabian

Sea. The effect is present, though barely perceptible, in the

Lower Indus Basin.

3.2.5 Commonalities and distinctions in the

climatologies of emergent subregional climate

zones

The layout of Figs. 6 and 7 is intended to facilitate compari-

son of adjacent climate zones. Climate zones are represented

within Figs. 6 and 7 moving from north to south by moving

from top to bottom panels. Given the latitudinal influence

on temperature, zones with similar temperature regimes, e.g.

the Lower Indus Basin and Gangetic plains, are laterally ad-

jacent. In contrast, the dependence of precipitation on atmo-

spheric circulation can be examined by comparing these ad-

jacent panels. Thus the Lower Indus Basin, with limited mon-

soonal rainfall, is found by the clustering process to be dis-

tinct from the Gangetic plains. Similarly the Tibetan Plateau

is distinguished from the Central Asian deserts not only by

cooler temperatures but also by greater monsoonal precipi-

tation. The Karakoram/Hindu Kush and Himalayan arc have

similar temperature regimes, but the seasonality and magni-

tude of annual precipitation, driven by the differing circula-

tion influences, clearly separates them. Even without knowl-

edge of land or sea presence, the Ganges–Brahmaputra Delta

zone is distinct from the Arabian Sea zone by both precipita-

tion and DTR.

4 Discussion

4.1 Insights from climate classifications for water

resources and food security in South Asia

The PCA and k-means clustering approach applied to climate

classification for the Himalayan arc and adjacent regions, fo-

cusing on water resources and food security, has found a con-

sensus among four global meteorological reanalyses to iden-

tify eight emergent subregional climate zones. These zones

are physically plausible and correspond to broadly recog-

nised units of vegetation typology and land-surface charac-

teristics in South and Central Asia. Of these eight zones, one

is open water (the Arabian Sea and Bay of Bengal), while

two – Central Asian deserts and the Tibetan Plateau – are

sparsely populated. The three plains zones – the Lower Indus

Basin, Gangetic plains and Ganges–Brahmaputra Delta – are

densely populated and projected to experience rapid demo-

graphic growth in the coming decades (Archer et al., 2010;

Immerzeel and Bierkens, 2012). In addition to direct precip-

itation assessed in the climate classification, these plains re-

gions receive river flows from upstream areas: the Karako-

ram/Hindu Kush is upstream of the Lower Indus Basin, while
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Figure 7. Ensemble spatial statistics for annual cycles of Tavg and SWnet by climate zone (eight clusters). SWnet is net downward shortwave

radiation at the surface. Tavg is daily mean near surface air temperature.

the Himalayan arc is upstream of the Gangetic plains and

Ganges–Brahmaputra Delta. The precipitation climatologies

of individual climate zones presented in Fig. 6 confirm that

the Lower Indus Basin receives substantially less direct pre-

cipitation than the other two plains climate zones. In a first-

order analysis, irrigated areas in the Lower Indus, shown in

Fig. 1, are thus much more dependent upon upstream flows

than their Gangetic counterparts.

This general assessment does not, however, take into ac-

count the question of intra-annual (inter-seasonal) water

transfers, as the annual cycle of Ganges Basin tributary

river flows will closely follow the annual precipitation cycle.

Thus, in the absence of impounding reservoirs or substan-

tial groundwater recharge, only limited water volumes would

be available to supplement irrigation in the dry rabi season.

This study also does not take into account inter-annual vari-

ability, as the climate classifications here draw solely upon

period means (1980 to 2009). A further limitation of this as-

sessment is that at the “parcel scale” of rainfed agriculture

the convective precipitation in monsoonal weather systems

has very large spatial variability (Khan et al., 2014). Thus,

while farmers in the irrigated Lower Indus Basin rely upon

upstream flows for the bulk of crop moisture requirements,

farmers in the Gangetic plains may find supplementary ir-

rigation critical to compensate for spatially and temporally

acute precipitation deficits and ensure crop yields.

Looking forward, climate classifications of the type ap-

plied in this study help to frame the assessment of the impact

of changing climate conditions on future water resources,

crop production and food security. By understanding the

roles of subregional climate zones as water resource supply

(headwaters) and demand (irrigated plains) areas, the net re-

sult of changes in water availability (precipitation change)

and potential evapotranspiration (air temperature, shortwave

radiation and relative humidity change) can be more skilfully

evaluated. Changes, calculated between time slices of dy-

namically downscaled climate model simulations, in both the

spatial extent and climatological statistics of water resource

supply and demand zones in and of themselves provide infor-

mation on the trajectory of water availability, i.e. unit yield or

deficit multiplied by surface area. Additionally, delineation

of subregional climate zones provides an objective basis for

definition of study boundaries of more sophisticated nested

downscaling investigations. Accurate delineation is impor-

tant when computational requirements are high, for example

when high-resolution sensitivity experiments are required to

constrain the uncertainties in future supply and demand sce-

narios.
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4.2 Utility of climate classification for assessment of

gridded data sets

The ensemble reanalysis input climatologies and normalised

difference contributions shown in Figs. 2 and 3 illustrate the

initial steps in comparative assessment of gridded data sets

for bias characterisation and validation. Further logical steps

would draw upon the climate zones derived through the PCA

and k-means clustering approach to subdivide the spatial do-

main in order to focus and organise the use of limited in situ

data (ground-based, point observations) to characterise sub-

regional data set performance. The use of in situ data to pro-

vide “ground truthing” and related large-scale data sets to

local conditions will remain crucial for the foreseeable fu-

ture because gridded data sets of a global nature – be they

reanalyses, spatially interpolated from local observations, or

derived from satellite imagery – will inevitably have intrin-

sic biases. These biases are a function of spatial and temporal

resolution of the source observations as well as the physical

nature of those observations. In situ data, be they from na-

tional monitoring networks or international databases such

as the Global Historical Climatology Network (Lawrimore et

al., 2011), could be grouped by the derived climate zones and

in this way structure the analysis of statistics of “grid cell ver-

sus station” biases. In this way individual gridded data sets

could be assessed to determine in which subregional climate

zones they perform well or poorly. This approach also per-

mits comparative evaluation of different gridded data sets to

determine which most accurately reproduces the climatology

of a given climate zone.

This proposed methodology for bias assessment is depen-

dent, however, upon the availability of station data, which

are representative of climatic conditions in absolute terms

at the grid-scale level. This constraint could be prohibitive

for mountainous areas, such as the Karakoram/Hindu Kush,

where meteorological stations are often located in valley bot-

toms, substantially below the mean elevations of overlying

data source grid cells. One such example is the Upper Indus

Basin (Gilgit–Baltistan administrative district of Pakistan),

where Archer (2003, 2004) and Archer and Fowler (2004,

2008) found climate observations at manned meteorologi-

cal stations of the Pakistan Meteorological Department lo-

cated in valley settlements to correlate strongly with variabil-

ity in hydrological conditions, although runoff volume fluc-

tuations did not equate directly to precipitation anomalies.

Thus, in mountainous or other highly spatially variable do-

mains, “transfer functions” (scaling relationships) represent-

ing climate parameter variation with topography may still be

necessary to compare in situ point observations to grid cell

spatial means in absolute terms.

These challenges for relating point-based observations

to gridded data in fact point toward the utility of inter-

comparison of spatial data sets. The climate classification

approach provides a supplementary dimension in which to

compare gridded data sets. To illustrate this, the subregional

Figure 8. Comparison of climate classifications resulting from the

use of eight clusters on principal components of the control period

(1970 to 1999) from the individual members of the Hadley Centre

RQUMP perturbed physics ensemble downscaled over South Asia.

climate zones delineated from the four reanalyses could be

considered as reference or benchmark values for evaluation

of climate model control period outputs. Ongoing work is

exploring the application of the climate classification ap-

proach to time slices within the Met Office Hadley Centre

17-member perturbed physics ensemble of 130-year transient

future climate simulations (Collins et al., 2011) dynamically

downscaled to 0.22◦ for the South Asia domain (Bhaskaran

et al., 2012). Climate classifications, using eight clusters, for

the initial 30 years (1970 to 1999) of the simulation, con-

sidered as the “control climate”, are shown for each of the

ensemble members in Fig. 8. Visual comparison of Fig. 8 to

Fig. 5 confirms that the broad patterns of the subregional cli-

mate zones found by the reanalyses are replicated in the con-

trol climate time slice of the climate model ensemble. There

are noteworthy differences, particularly over the Ganges–

Brahmaputra Delta, but the overall subregional differences

are unmistakeable. Table 5 provides the distribution of the

spatial domain among the subregional climate zones for each

climate model ensemble member. The ensemble mean and

standard deviation are also given in Table 5. These values are

compared, in Table 6, to the equivalent values from the re-

analyses (from Table 4). The largest differences in fractional

areas stem from an eastern Himalayan climate zone in the

model ensemble amalgamating area allocated to the Ganges–

Brahmaputra in the reanalyses as well as sections assigned
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Table 5. Variability in primary Himalayan region climate zones (eight clusters) in the Hadley Centre downscaled perturbed physics ensemble,

Regionally Quantify Uncertainty in Model Predictions (RQUMP), for South Asia.

Central Lower Karakoram/ Ganges–

Ensemble Indian Asian Gangetic Indus Hindu Himalayan Brahmaputra Tibetan

member Ocean deserts plains Basin Kush arc Delta Plateau

rqump00 0.062 0.152 0.236 0.169 0.113 0.092 0 0.171

rqump01 0.075 0.15 0.227 0.184 0.104 0.083 0 0.173

rqump02 0.074 0.15 0.251 0.160 0.102 0.080 0 0.180

rqump03 0.074 0.153 0.231 0.173 0.114 0.091 0 0.160

rqump04 0.071 0.145 0.193 0.168 0.135 0.026 0.083 0.175

rqump05 0.064 0.149 0.179 0.157 0.127 0.039 0.093 0.187

rqump06 0.061 0.154 0.216 0.167 0.131 0.076 0 0.192

rqump07 0.068 0.15 0.196 0.154 0.126 0.027 0.086 0.190

rqump08 0.062 0.156 0.209 0.153 0.131 0.098 0 0.188

rqump09 0.062 0.168 0.208 0.178 0.120 0.092 0 0.169

rqump10 0.075 0.270 0.267 0 0.130 0.121 0 0.134

rqump11 0.061 0.152 0.202 0.171 0.136 0.092 0 0.183

rqump12 0.062 0.238 0.175 0.115 0 0.128 0 0.280

rqump13 0.091 0.261 0.300 0 0.171 0.035 0.138 0

rqump14 0.063 0.264 0.263 0 0.100 0.099 0 0.209

rqump15 0.062 0.148 0.202 0.160 0.132 0.025 0.085 0.183

rqump16 0.069 0.240 0.190 0.115 0 0.101 0 0.282

Mean 0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179

Standard deviation 0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059

to the Tibetan Plateau in the reanalyses being assigned to the

Karakoram/Hindu Kush in the model ensemble. Future work

will investigate differences in climatology between reanaly-

sis zones (as presented in Sect. 3.2 and Figs. 6 and 7) and the

model ensemble zones. This analysis will then be extended

to compare climate classifications between time slices of the

model ensemble.

In summary, the climate classification approach presented

here has substantial potential for use in assessment of water

resources and food security issues as well as for the char-

acterisation of skill and bias of gridded data sets for repro-

ducing subregional climatologies. This relative, or internal-

difference, classification approach was preferred over a

methodology based on fixed, absolute thresholds due to the

nature of the gridded data sets, whose spatial discretisation

on likely intrinsic biases would distort the results of an abso-

lutist method. The natural resource assessment application of

this approach is timely, as increasing pressures on water re-

sources and cropland appear inevitable in South Asia for the

medium term due to demographic trends and evolving con-

sumption patterns. The growing availability of gridded data

sets increases the likelihood of their use to address resource

management and climatic sensitivity issues. In order to use

these data sets skilfully it is necessary to first rigorously char-

acterise their performance and biases. Thus the climate clas-

sification approach presented here is doubly timely as it pro-

vides a framework to organise use of in situ observations to

differentiate gridded data set performance at the subregional

level and to carry out inter-comparison of gridded data set

performance for these subregions.

5 Conclusions

A three-step approach was used to derive climate classifica-

tions for the Himalayan arc and adjacent plains from climate

inputs from four global meteorological reanalyses covering

the recent historical record (1980 to 2009). Input variables

were selected for this process with a focus on climatic drivers

of water resources and agricultural production. Knowledge

of the climatic factors governing behaviour of hydrological

regimes with substantial contributions from seasonal snow-

pack and glaciers as well as controlling crop growth led to

selection of precipitation amount, daily mean temperature,

net shortwave radiation at the surface and DTR as input vari-

ables. Three seasonal aggregations were chosen for each in-

put variable. Annual, “rabi” (October to March) and “kharif”

(April to September) totals were used for precipitation to dif-

ferentiate the influences of westerly mid-latitude and mon-

soonal sub-tropical weather systems. For the remaining vari-

ables temporal aggregates for winter (December to Febru-

ary), spring (March to May) and summer (June to August)

were selected to identify hydrological regimes – pluvial, ni-

val (snowpack) or glacial – and growing seasons dependent

upon thermal conditions.

Principal component analysis (PCA) was applied to the

spatially standardised temporal aggregates of the input vari-

www.earth-syst-dynam.net/6/311/2015/ Earth Syst. Dynam., 6, 311–326, 2015



324 N. Forsythe et al.: Himalayan arc and adjacent regions

Table 6. Comparison of RQUMP perturbed physics ensemble climate model subregional climate zone distributions to those from the reanal-

ysis ensemble.

Central Lower Karakoram/ Ganges–

Indian Asian Gangetic Indus Hindu Himalayan Brahmaputra Tibetan

Statistic Ocean deserts plains Basin Kush arc Delta Plateau

Ensemble Climate model 0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179

means Reanalyses 0.073 0.154 0.198 0.164 0.059 0.050 0.089 0.232

Difference −0.005 0.028 0.022 −0.034 0.051 0.026 −0.061 −0.053

Ensemble Climate model 0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059

standard Reanalyses 0.006 0.041 0.027 0.027 0.006 0.015 0.014 0.024

deviations Difference 0.002 0.007 0.007 0.038 0.038 0.018 0.033 0.035

ables. Comparison of PCA results from the four reanalyses

shows that in all cases the first principal component was

dominated by energy inputs, while the second and third were

dominated by precipitation and DTR. Principal components

accounting for a minimum of 5 % of total input variance,

supplemented with standardised latitude and longitude, were

used as inputs to a k-means cluster analysis. Progressive in-

creases in cluster numbers were tested for each reanalysis in

order to assess the evolution of emergent climate zones. Re-

sults of the k-means analysis were interpreted to show that

the study domain could be adequately described by eight

subregional climate classifications, while further increases

in cluster numbers resulted in subdivisions of these macro-

zones. Spatial statistics for each subregional climate zone

from the ensemble of reanalyses revealed consistent, distinct

climatologies in the annual cycles of the input variables.

The capacity of the climate classifications to provide in-

sight into water resources and food security issues at a re-

gional scale was discussed. This capacity is linked to the

objective delineation of water resource supply and demand

zones. Analysis of changes in both the spatial and climatic

characteristics of the zones over time provides a frame-

work for evaluation of water availability for crop produc-

tion. The climate classifications also support evaluation of

gridded data sets themselves. The climate zones provide an

objective method for grouping available ground-based ob-

servations to quantify and summarise gridded data set bias.

They also serve as a metric with which to compare clima-

tologies of gridded data sets. This was illustrated by com-

paring the climate classifications of the ensemble of reanal-

yses to the “control period” of a dynamically downscaled

perturbed physics climate model ensemble. Strong common-

alities between the benchmark (reanalysis) and predictive

(RCM) data sets were evident while limited divergences were

clearly identified. Future work will extend the methodology

here to evaluate the regional water resources and food se-

curity implications of changes projected by available RCM

experiments covering South Asia and the Himalayan arc.
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