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Abstract. Several studies have connected emissions of greenhouse gases to economic and trade data to quantify

the causal chain from consumption to emissions and climate change. These studies usually combine data and

models originating from different sources, making it difficult to estimate uncertainties along the entire causal

chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters,

and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty prop-

agates to estimates of global temperature change from regional and sectoral territorial- and consumption-based

emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pol-

lutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the

final results are largely dominated by the climate sensitivity and the parameters associated with the warming

effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty

in the economic data appears to have a relatively small impact on uncertainty at the national level in compari-

son to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results

suggest that consumption-based national emissions are not significantly more uncertain than the corresponding

production-based emissions since the largest uncertainties are due to metric and emissions which affect both

perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant

compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global

Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncer-

tainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption

emissions of the top 10 emitting regions have a broad uncertainty range of ±9 to ±25 %, with metric and emis-

sion uncertainties contributing similarly. The absolute global temperature potential (AGTP) with a 50-year time

horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating

that the ranking of countries is uncertain.

1 Introduction

Many studies have shown that national greenhouse gas

(GHG) emission accounts can be viewed from either a

production (territorial) or consumption perspective (Davis

and Caldeira, 2010; Hertwich and Peters, 2009; Wiedmann,

2009; Peters and Hertwich, 2008). While the production view

only looks at territorial emissions, the consumption view in-

cludes emissions from the production of imported products

and excludes emissions from the production of exports. It

has been shown that territorial emissions have decreased in

most developed countries since 1990, but consumption-based

emissions have increased (Peters et al., 2011c). This indicates

that growth in consumption and international trade may un-

dermine the effectiveness of climate policies that only limit

emissions in a subset of countries, such as in the Kyoto Pro-

tocol (Wiebe et al., 2012; Kanemoto et al., 2013).

The concept of consumption-based emissions estimates

can therefore be used to extend the cause–effect chain from

consumption, to production, to emissions, and ultimately to
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Figure 1. Flow chart of activities (bold boxes) and the data sets that

determine transitions between them (dashed boxes).

global warming (Fig. 1). This is an important complement

to the established territorial (Kyoto Protocol) viewpoint, par-

ticularly in that it links more directly to consumption as a

key driver of emissions. More recent studies have broadened

this concept to look at further consequences of increased

global demand for traded products, such as deforestation

(Karstensen et al., 2013), biodiversity loss (Lenzen et al.,

2012b), dependency on traded fossil fuels (Andrew et al.,

2013), land-use change (Weinzettel et al., 2013), and water

footprints (Hoekstra and Mekonnen, 2012).

In the estimation of consumption-based emissions ac-

counts, various data sets and models are combined in the cal-

culations, and thus uncertainties and errors may arise in a

number of data sets and models: emission data, metric data,

economic data, etc. There are also uncertainties in assump-

tions and study design that can be more difficult to explicitly

quantify, including which metric and time horizon to use for

comparing pollutants, and how economic data for one spe-

cific year can be relevant to other years.

The uncertainty of many aspects of the cause–effect

chain have been investigated previously (Höhne et al., 2010;

Prather et al., 2012), but the link to consumption has not

been made. There is a growing literature on the uncertainty

in input–output (IO; economic) models used to estimate

consumption-based emissions (Wilting, 2012; Lenzen et al.,

2010; Peters et al., 2012; Moran and Wood, 2014; Inomata

and Owen, 2014). Uncertainty in economic models, such as

computable general equilibrium models, has also received at-

tention recently (Elliott et al., 2012). However, the literature

on uncertainty in economic data and models is still relatively

small, and large knowledge gaps remain (IPCC, 2014).

A number of studies have investigated uncertainty in emis-

sions (European Commission, 2011; UNEP, 2012; Marland

et al., 2009; Macknick, 2011), both regionally and globally,

but surprisingly there is still no emission data set with spec-

ified uncertainties at the country level across all climate-

relevant species. In addition, there are almost no estimates of

uncertainty at the sector level. Many aspects of uncertainty

have been investigated in the climate system (Skeie et al.,

2013; Prather et al., 2012; Myhre et al., 2013b), but there

is little literature on the uncertainties in emissions metrics

(Olivié and Peters, 2013; Shine et al., 2007; Reisinger et al.,

2010). We are not aware of any studies that have estimated

the uncertainty introduced by each model and data set (e.g.,

metric and IO uncertainties), or how uncertainty propagates

when estimating climate change from consumption as a so-

cioeconomic driver.

We extend the uncertainty analyses done by Prather et

al. (2009), Höhne et al. (2010), and den Elzen et al. (2005)

by including consumption-based emissions for a single year

and using a temperature-based emission metric, which is ar-

guably a more policy-relevant method of weighting emis-

sions. We use Monte Carlo analysis and draw on previous

studies of uncertainties to perturb and highlight the different

contributors: economic data, emissions, and metric parame-

ters, and then compare our results with the previous studies.

2 Methods

We consider the propagation of uncertainty from the point

of consumption of goods and services (products), to the pro-

duction of products where emissions occur, to the climate im-

pacts caused by those emissions (Fig. 1). This can be thought

of as a causal chain where consumption is assumed to be the

primary driver, in turn driving production, which in turn leads

to emissions, which then lead to temperature change. These

components of the cause–effect chain are linked by calcu-

lation methodologies, each requiring parameterization, and

we break the analysis into those three components: economic

data, emission statistics, and emission metrics. We estimate

the uncertainty for each of the components individually and

finally connect the components to determine how uncertainty

propagates through the cause–effect chain.

To determine the temperature response to a given level of

consumption, we first map emission statistics for most im-

portant pollutants to producing regions and sectors (Euro-

pean Commission, 2011). Emissions are then converted into

global temperature change using an emission metric (Aa-

maas et al., 2013). This means that we allocate future global

temperature change to current production and consumption

emissions. The allocation from producers to consumers (in

sectors and regions) requires the global supply chain to be

enumerated using economic production and trade data (Pe-

ters, 2008). Production often goes through several steps from

extraction and refining to manufacturing and packaging, and

finally to consuming markets. These linkages are represented

in the global supply chain through monetary transactions.

We normalize emissions using monetary output in each sec-

tor in each region, and allocate emissions according to con-

sumer purchases. The result connects production and con-
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sumption, which are potentially geographically separated,

and estimates the consumption that is driving current produc-

tion emissions and hence future global temperature response.

All data sets and models introduce uncertainties in the

analysis, and thus we estimate uncertainties in the economic

data, the emissions data, and metric parameters in order to es-

timate uncertainties in the final results. We undertake the un-

certainty analysis using Monte Carlo (MC) analysis, in which

data sets and parameters are randomly perturbed according to

predetermined distributions, and then sub-models are run se-

quentially to obtain distributions of the results (Granger Mor-

gan et al., 1990). We isolate the individual contributions to

uncertainty in the final results by perturbing individual com-

ponents independently, before running everything together to

estimate total uncertainty. The analysis considers paramet-

ric uncertainties for the components, as opposed to structural

uncertainties, which would include the comparisons of dif-

ferent models and data sets (Peters et al., 2012). The next

section lists the background data, and shows how uncertain-

ties are estimated, before running the models and discussing

the results.

2.1 Data sets and models

We use multi-regional input–output (MRIO) analysis to link

economic activities from production to consumption, cap-

turing global supply chains at the sectoral level (Davis and

Caldeira, 2010; Wiedmann, 2009). We source our economic

input–output data from the Global Trade Analysis Project

(GTAP) database version 8, which comprises domestic and

trade data for the entire world economy in 2007 divided

into 129 regions and 58 sectors (Narayanan et al., 2012).

We use these data to construct an MRIO model with the

same regional and sectoral resolution, connecting all regions

at the sector level (Andrew and Peters, 2013; Peters et al.,

2011b). While GTAP does not provide uncertainty estimates

for the economic data sets, it is possible to generate realis-

tic uncertainty estimates for the GTAP database from proxy

data. Since an MRIO database is an aggregation of multiple

data sets, it inherits uncertainties from a number of sources,

including source data, base year extrapolations, balancing

and harmonization procedures, allocations, and aggregations

(Wiedmann, 2009; Weber, 2008).

We use emissions data for the year 2007 from the Emis-

sions Database for Global Atmospheric Research (EDGAR)

for a number of pollutants (see Table 1), mapping these data

to the regions and sectors of the GTAP database. Uncertain-

ties in emission statistics for each pollutant are derived from

multiple sources, e.g., for CO2: the amount of fuel that is

actually consumed, its carbon content, and how much of it

is combusted. Additionally, to be consistent with top-down

estimates, statistics are subject to adjustments and harmo-

nization, and aggregated and grouped to economic sectors.

Although national uncertainty may in some cases be large,

global emissions are dominated by a small number of coun-
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Figure 2. Error distribution of selected GTAP input–output data

(taken from Table 19.6 in McDougall (2006) and shown as colored

circles), and trend lines showing the fit of the general functional

relationship explained by Eq. (1). Red and blue circles differ due to

different methods of estimating the difference between unbalanced

and balanced data. See the discussion in the text.

tries, and thus the global uncertainty is mostly a reflection of

these countries’ data quality (Andres et al., 2012).

The estimated global temperature impact of emissions

are calculated using the global temperature change potential

(GTP) metric (Aamaas et al., 2013; Shine et al., 2005), which

is essentially a parameterization of more complex climate

models. The metric uses pollutant characteristics (atmo-

spheric lifetime, radiative forcing (RF)) as input, and unlike

the more commonly used global warming potential (GWP)

which only relates to RF, the GTP also includes estimates

of climate temperature response (sensitivity) to changed RF

in the atmosphere, which adds additional layers of uncertain-

ties (Reisinger et al., 2010). We base our pollutant parameters

on the ATTICA (European Assessment of Transport Impacts

on Climate Change and Ozone Depletion) assessment (Fu-

glestvedt et al., 2010) and IPCC (2007, 212–213), and cli-

mate sensitivity and CO2 uncertainties on the latest CMIP5

data (Olivié and Peters, 2013). The uncertainties of the other

pollutants are drawn from several sources, but mostly follow-

ing the IPCC Fifth Assessment Report (Myhre et al., 2013a).

2.2 General uncertainty relationships

It has previously been shown that economic and emissions

data show a general pattern where relative uncertainty is in-

versely related to the magnitude of the data point (Lenzen et

al., 2010; Wiedmann, 2009; Wiedmann et al., 2008; Lenzen,

2000). The GTAP data used in our analysis follow a similar

relationship, based on differences between the reported input

data and the final data in the database after the harmonization

and balancing of selected input–output (IO) data (Table 19.6

in McDougall, 2006). Figure 2 illustrates the inverse rela-

tionship between unbalanced and balanced data in the GTAP

www.earth-syst-dynam.net/6/287/2015/ Earth Syst. Dynam., 6, 287–309, 2015
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Table 1. Global emissions and uncertainties. The uncertainties indicate the 5–95 % (90 %) percentile range. PFCs include C2F6, C3F8,

C4F10, C5F12, C6F14, C7F16, CF4, and c-C4F8. HFCs include HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-227ea, HFC-23, HFC-

236fa, HFC-245fa, HFC-32, HFC-365mfc, and HFC-43-10-mee, following UNEP (2012).

Pollutant Global emissions (kt) Uncertainty Emissions references Uncertainty references

PFCs 1.47× 101
±17 % European Commission (2011) UNEP (2012)

CH4 3.25× 105
± 21 % European Commission (2011) UNEP (2012)

CO 9.47× 105
± 25 % European Commission (2011) European Commission (2011)

CO2 3.14× 107
± 8 % European Commission (2011) UNEP (2012)

HFCs 2.68× 102
± 17 % European Commission (2011) UNEP (2012)

N2O 1.02× 104
± 25 % European Commission (2011) UNEP (2012)

NF3 1.58× 10−1
± 26 % European Commission (2011) Weiss et al. (2008)

NH3 4.92× 104
± 25 % European Commission (2011) Clarisse et al. (2009)

NMVOC 1.60× 105
± 50 % European Commission (2011) European Commission (2011)

NOx 1.27× 105
± 25 % European Commission (2011) European Commission (2011)

SF6 6.17× 100
± 10 % European Commission (2011) Levin et al. (2010)

SO2 1.22× 105
± 11 % European Commission (2011) Smith et al. (2010)

BC 5.22× 103
± 84 % Shindell et al. (2012) Bond et al. (2004)

OC 1.34× 104
± 84 % Shindell et al. (2012) Bond et al. (2004)

database together with a first-order regression (R2 > 0.9).

These differences result from the GTAP harmonization and

balancing process and values are only published for a sample

of “large sectors in large regions with large relative changes”

(McDougall, 2006). As a consequence of this data selection

bias, it is not possible to convert these differences directly

to more general sectoral uncertainties. Other uncertainty as-

sessments in MRIO analysis have also taken this inverse rela-

tionship as the starting point (Lenzen et al., 2013; Moran and

Wood, 2014; Lenzen et al., 2012a). Furthermore, a similar re-

lationship is found with emissions data, based on a previous

study of the UK Greenhouse Gas Inventory, where uncer-

tainties were found using an error propagation model (Jack-

son et al., 2009). The underlying mechanisms for this inverse

relationship are, however, unclear. The uncertainties may re-

flect conflicting data sources, unreliable measurements, bias

in the source data, allocations and aggregations, base year

extrapolations, estimates, and assumptions, etc. (Wiedmann,

2009; Weber, 2008; Lenzen, 2000), and it is unclear if all

these uncertainties will lead to a clear inverse relationship

with data values. It may be that the method of generating the

data through some sort of optimization process leads to the

relationship.

The data sets allow for the parameterization of a func-

tion mapping relative uncertainties to the magnitude of the

data points. Following previous studies (Lenzen et al., 2010;

Wiedmann et al., 2008), we assume the data follows a power

function

rx = a x
b, (1)

where a and b are coefficients. As there is very little data

available to parameterize Eq. (1), we parameterize the rela-

tionship using two extreme data points (generally the uncer-

tainty in the minimum and maximum values)

a =
rmin

vbmax

, (2)

b =
rmax− rmin

vmin− vmax

. (3)

It is generally argued that developed countries have lower

uncertainty than developing countries due to the strength of

institutions (Narayanan et al., 2012; Andres et al., 2012). The

terms rmin and rmax define the smallest and largest relative er-

rors, respectively, and are functions of developed and devel-

oping regions (using the Kyoto Protocol groupings of Annex

B and non-Annex B countries). We assume that developing

countries have double the uncertainties of developed coun-

tries, based on estimates for CO2 emissions (Andres et al.,

2012; see further discussion in Sect. 2.4). This range is also

sector and region dependent for the economic and emissions

data, which we define below. The terms vmin and vmax re-

fer to fixed minimum and maximum data values for sectors

in a specific region given the uncertainty of rmax and rmin,

respectively. Figure 3 shows the functional relationship be-

tween sector sizes and uncertainties for economic and emis-

sions data.

The lower threshold vmin is fixed for all regions in the eco-

nomic and emissions data sets, giving sectors of the same

size the same uncertainty, as the smallest sectors do not con-

tribute much to the national totals. The upper threshold vmax

can also be fixed to a certain sector size. However, uncertain-

ties are likely to be regionally variable, as while a sector of,

e.g., USD 1 billion might be very large for some countries, it

might not be large in other regions. To account for this, we

argue that the sectors’ importance should vary with their con-

tribution to the nations’ totals, e.g., gross domestic product

(GDP) or total emissions. We therefore scale vmax according

Earth Syst. Dynam., 6, 287–309, 2015 www.earth-syst-dynam.net/6/287/2015/
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Figure 3. Functional relationship between sector sizes on the hor-

izontal axes (in kt CO2 and million US dollars) and relative uncer-

tainty on the vertical axes. The red lines outline the range of devel-

oping regions, while the blue lines show the range of developed

countries. Each region has been estimated using a single unique

curve, and all sectors, depending on their size, will fall on this curve.

The form of this relationship is established independently for each

pollutant.

to the regions’ GDP and total emissions, for the respective

data sets, so that the sectors’ importance in different regions

is reflected by their uncertainties. Sectoral values larger than

vmax are given the same uncertainty as values equal to vmax,

to ensure that single large sectors do not affect the uncertainty

in other large sectors (see details below).

To help illustrate the effects of the methodology, we show

two examples: (1) one of China’s largest economic sectors is

the public administration, defense, education, and health sec-

tor, worth nearly USD 340 billion in 2007. Large sectors are

given small uncertainties, and this sector is a substantial part

of China’s GDP (around 10 %). The uncertainty is therefore

assumed to be one of the lowest in the country, but scaled

up relative to other countries since China is not an Annex-B

country. (2) One of the USA’s smallest direct CO2-emitting

sectors is the production of electronic equipment. Emitting

roughly 1 Mt CO2, this is on the lower-end of the scale, con-

tributing little to the national total of nearly 5000 Mt CO2.

This sector is therefore given higher relative uncertainty. We

expand on these examples with specific numbers in the next

sections, after we define the uncertainty ranges for the eco-

nomic and emissions data.

The estimated uncertainties are used to create distribu-

tions of perturbations. We impose lognormal distributions so

that distributions with small relative spreads closely resem-

ble normal distributions, while distributions with large rela-

tive spreads are skewed but avoid negative values (Fig. 4).

The distributions are characterized using reported data as

medians, and the spreads are (in order of decreasing pref-

erence) taken directly from the literature, derived from pub-

lished analyses, or estimated. We define uncertainties as the

5–95 % confidence interval (90 % CI; equivalent to 1.64 stan-

dard deviations of a normal distribution).

0 1 2 3 4 5 6

Figure 4. Distributions depending on median values and uncer-

tainty. Both distributions have a median of 1, while the near-normal

distribution (green) has a relative uncertainty of 100 %, the skew

distribution has a relative uncertainty of 500 %. The green and red

shaded areas indicate the 5–95 % (90 %) confidence intervals.

By randomly perturbing each data point, we assume no

correlation in the uncertainties of economic and emissions

data, which might not be accurate for some sector combina-

tions (Peters et al., 2012). Implementing correlations in such

an analysis is a major difficulty due to the size of the system

under investigation and the lack of uncertainty data, but this

may also have significant effects on the results. We discuss

this further in Sect. 4. We do, however, undertake a simple

sensitivity analysis on the parameter choices by comparing

the final results on MRIO uncertainty with uncertainty from

the GTAP table showing extreme observations.

Aggregations of the results (from sectors to regions and

from regions to the globe) usually decrease the relative un-

certainty, so that the national uncertainty is lower than indi-

vidual sectors, and global uncertainty is in some cases lower

than national uncertainty. This is a result of the summation

effect, and the relationship between sector sizes and uncer-

tainties. The largest sectors are given the lowest uncertain-

ties, so that the national uncertainty is largely a reflection of

the uncertainty of the largest sectors. As an example of the

summation effect, the relative uncertainty r of addingM±S,

n times, is

r =
S/M
√
n
, (4)

assuming no correlations. To illustrate this effect, we show

the uncertainty results at multiple levels.

2.3 Economic data (multi-regional input–output model)

The total sectoral output x of a region’s economy (a vector)

is the sum of intermediate consumption Ax and final con-

sumption, y (Miller and Blair, 1985):

x = Ax+ y, (5)

where A is the inter-industry requirements matrix, which is

equivalent to the technology used in each sector’s production.

www.earth-syst-dynam.net/6/287/2015/ Earth Syst. Dynam., 6, 287–309, 2015
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We solve for the total output

x = (I−A)−1y, (6)

where (I−A)−1 is the Leontief inverse L. Emissions are es-

timated for a given y by first estimating the output, and then

linking to sectoral emission intensities, F . This gives the di-

rect and indirect emissions (supply chain) emissions

f = FLy. (7)

The economic data from GTAP is represented in a multi-

regional input–output (MRIO) model, which is constructed

from a number of smaller data sets. The GTAP data set itself

is based on a large number of smaller data sets (such as na-

tional IO tables and trade data from the UN’s COMTRADE

database), which are harmonized to remove inconsistencies

(Andrew and Peters, 2013; Peters et al., 2011b; Narayanan

et al., 2012). The construction of an MRIO table from the

GTAP data is explained in detail elsewhere (Peters et al.,

2011b). In the MC analysis, we perturb the components of

the GTAP database (e.g., domestic IO data and international

trade data) and not the resulting MRIO. In other words, we

estimate the uncertainty of the MRIO data based on the un-

certainty in the data used to construct it (Peters et al., 2011b),

which consists of all data points in the GTAP database used

to construct the MRIO model. This ensures that the uncer-

tainties of the final model reflect the underlying uncertainties

of the various input data. We construct the perturbed L and

y, before allocating the direct emissions F (which are also

perturbed) to consuming regions and sectors.

We calibrate the uncertainty relationship (Eq. 1) for the

GTAP data using several data sets. From the trend lines cre-

ated from the GTAP table (Fig. 2), we find the smallest un-

certainty of the largest sectors to be at approximately 5 %.

We therefore let 90 % of perturbed values fall within 5 % of

the median, and set rmin = 5 % for the largest sectors (where

vmax applies).

The upper threshold vmax is defined by the regions’ GDP

so that a sector of a specific size will have a larger impor-

tance (and hence a lower uncertainty) in a small region than

in a large region. We use the UK data provided by Lenzen

et al. (2010) to explain the range of uncertainties in a single

economy. In this data set the largest sectors have the small-

est error, and following the trend line we find that the largest

value is about 4 % of UK GDP. We use this to define the up-

per threshold vmax = 4 %×GDPr , which means that sectors

at or above this value will be given the lowest national un-

certainty (rmin). Figure 3 shows the result of the implemen-

tations, where the lines indicate the range of developing and

developed regions’ sector sizes and uncertainties.

For the smallest sectors we set vmin equal to USD 1 and

assume rmax = 100 % (following Wiedmann et al., 2008),

due to the lack of more precise regional uncertainty data.

The USD 1 relates to a small value often used in the GTAP

database (Peters, 2006). These parameters may seem some-

what arbitrary, but these choices are not overly important.

A value of USD 1 in an input–output table (IOT) is exceed-

ingly small (it represents the economic relationship between

two sectors over 1 year). Indeed, analysis shows that remov-

ing small values has a negligible effect on the estimates’

consumption-based emissions (Peters and Andrew, 2012).

Thus, USD 1 is effectively zero in our data set. It could also

be argued that the value of USD 1 is highly uncertain and

should have large uncertainty. Giving values smaller than

this higher relative uncertainty causes highly skewed log-

normal distributions for the perturbations (see Fig. 4). The

GTAP data set has values as low as 7×10−35 causing r to be

6× 106 %. Such highly skewed distributions for data points

with small medians (�USD 1) can lead to large imbalances

in the table.

An IO model is balanced so that gross input equals gross

output, a fundamental characteristic of input–output models

(Leontief, 1970). The same applies for a multiregional model

(MRIO). When perturbing the coefficients in an IO table,

it ultimately upsets the balance. In principal, the IO table

can be rebalanced, but given the size of the systems (about

7500× 7500 matrices), rebalancing is prohibitively compu-

tationally expensive, and may reduce uncertainties as the per-

turbed values are changed. We therefore choose not to rebal-

ance, which effectively causes the “unbalanced” component

to be shifted to the value added. A concern is that the value

added may become unrealistic (e.g., negative) as a conse-

quence. The MC algorithm specifically outputs value added

components to allow crosschecking imbalances with the raw

data, and we find the distributions of the value added at the

sector level to be within expected uncertainty bounds given

the size of the value added. This is partially because of the pa-

rameterization of uncertainty we have used, and partially be-

cause the perturbations tend to cancel out (the sum of random

numbers). Thus, we can justify not rebalancing our perturbed

IOTs and assume the imbalances are allocated to the value

added (without having a large effect on the value added).

Implementing this general methodology has also led to rel-

atively small regional uncertainties in other studies (Lenzen

et al., 2010; Wiedmann et al., 2008). Structural uncertain-

ties have also been found to be relatively small for major

economies (Moran and Wood, 2014). As a simple sensitivity

analysis of the input uncertainties, we also run the MC model

with uncertainties according to the fit of the GTAP table un-

certainties (trend line relative to final values, due to better

fit; Fig. 2). This vastly increases the uncertainties of all sec-

tors, and we do not constrain the upper or lower uncertainties,

meaning that very small sectors will be given unrealistically

large uncertainties (USD 1 gives r = 109 %). This exercise

is only valid for the data it represents, large sectors in large

countries, but is useful for facilitating a discussion about un-

certainties in economic data. We discuss these results when

exploring MRIO uncertainties, but do not include this when

combining uncertainties.

Expanding on our previous example of the Chinese public

administration, defense, education, and health sector, we can
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now calculate the uncertainty. Each data point in our MRIO

model consists of inputs from several different GTAP data

sets. When these data sets are combined, together with the

uncertainties, the MRIO model and its uncertainty are ob-

tained. In the MC analysis, all data sets are given uncertain-

ties and perturbations (according to the inverse relationship)

before constructing the MRIO model. The Chinese public ad-

ministration, defense, education, and health sector, which is

a single sector in the final GTAP–MRIO model, is built up

from several data sets (bilateral trade, intermediate demand,

and final demand of households, governments, and capital in-

vestments). In our example, we choose to focus on one of the

most significant contributors to this sector: domestic govern-

ment consumption expenditure. This sub-data set has a sec-

toral range from < 1 to USD 420 billion, which, when cal-

culating the uncertainty, is constrained in the calculations by

the lower and upper threshold vmin=USD1 and vmax = 4 %

of national GDP = USD 130 billion. For the uncertainty, the

general sectoral range is rmin = 5 % to rmax = 100 %. GTAP

estimates the value added in the sector in this sub-data set

to be around USD 340 billion, which is 10 % of national

GDP. This is well above vmax, giving this sector a relative

uncertainty equal to rmin (5 %). Since China is a non-Annex

B country, this is doubled, leading to a final uncertainty of

10 % for this sector in this sub-data set. The uncertainties for

the other data points in the other sub-data sets that make up

the Chinese public administration, defense, education, and

health sector will be estimated similarly, and together explain

the overall uncertainty of this sector in the GTAP–MRIO

model.

2.4 Emission statistics

The pollutants considered are listed in Table 1, which cover

anthropogenic emissions for the year 2007 which have an ef-

fect on the climate. We do not include emissions from short

cycle biomass burning, as this is considered to have a short

lifetime in the atmosphere due to regrowth. The data set

originally includes CO2 emissions from forest fires and de-

cay, which is a mix of natural and anthropogenic emissions.

Extracting the anthropogenic emissions and mapping them

to agricultural sectors would require crude assumptions. We

therefore do not include emissions related to forest loss, but

acknowledge that it would increase global CO2 emissions

by roughly 12 % (van der Werf et al., 2009). The EDGAR

data set only provides crude information on uncertainty at the

global level for some species (European Commission, 2011).

Therefore, global and regional uncertainties in emissions are

taken from a variety of sources (Table 1). Global fossil fuel

CO2 emissions statistics are independently produced by sev-

eral organizations, but they generally agree with each other

within about 5 % for developed countries and 10 % for de-

veloping countries (Andres et al., 2012). The CO2 emission

estimates are all based on energy data, and globally the emis-

sions are thought to have an uncertainty of ±10 % using a

95 % CI (UNEP, 2012). Global SO2 emissions have an esti-

mated uncertainty of between±8 and±14 %, while regional

uncertainties may be as large as ±30 % (Smith et al., 2010).

For CH4, N2O, and F gases, the uncertainty of global emis-

sions have been estimated as ±21, ±25, and ±17 %, respec-

tively (UNEP, 2012).

Table 1 shows parameters and uncertainties for each pol-

lutant used as median values in the perturbations. Very little

data exist on the uncertainty of emissions by sector, espe-

cially on a pollutant and regional level. Lenzen et al. (2010)

used a table of selected sectors of UK CO2 emissions to find

uncertainties, originating from Jackson et al. (2009). Accord-

ing to the regression of the data points, within the limits of

the data points, there is a spread of uncertainties by roughly a

factor of 10 (Fig. 2 in Lenzen et al., 2010). We therefore esti-

mate sectoral uncertainty using the same general relationship

as with the economic data (Eq. 1), where the uncertainty of

global emissions is used as a proxy for the lowest uncertainty

estimate of the largest sectors (rmin) and the smallest sectors’

uncertainty is scaled by 10 times (rmax = 10 rmin).

We assign developing countries an rmin and rmax which are

double those of developed countries. We define vmin = 1 kt

and vmax = 5 % of regional emissions. This dependence on

total regional emissions shifts the function so that a sector

of a specific size will have a larger importance (and hence a

lower uncertainty) in a smaller region than in a larger region

(Fig. 3). We do not distinguish between different sources of

the same pollutant, due to a lack of information at the sec-

tor level. This is, in some cases, a crude simplification (e.g.,

when comparing uncertainties in emissions of certain pol-

lutants from the agricultural sector and power generation).

Similarly, for the emissions data, we set vmin equal to 1 kt of

emissions. Values below this (as with economic data) have

little impact on the footprint of regions and sectors, and are

therefore given zero uncertainty.

Expanding on our previous example of emissions from

the USA’s electronic equipment sector, we can now cal-

culate the uncertainty. The USA’s sectors have a range of

CO2 emissions from 0.3 kt to 2500 Mt, which is then con-

strained in the calculations by the lower and upper thresh-

old vmin = 1 kt CO2 and vmax = 5 % of national total CO2 =

247 Mt CO2. For CO2 uncertainty, the general sectoral range

is from rmin = 16 % (or±8 %), taken from Table 1, to rmax =

10×rmin = 160 %. The emissions in the electronic equipment

sector are 1.2 Mt CO2, which is 0.02 % of total emissions.

This is in between vmin and vmax, giving the CO2 emissions

from this sector a relative uncertainty of 43 %. Since the USA

is an Annex B country, this is not doubled.

With every sector data point having an uncertainty, we

create perturbations which we can sum to get a bottom-up

estimate of the national uncertainty. Table 2 shows several

perturbations of sectors (xin) for region r . Each perturbation

i leads to a new national total (Xi). However, independent

uncertainty estimates of national totals (e.g., national emis-

sions) that may be available for some regions may conflict
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Table 2. Example of perturbations of sectors for a single region r , and the resulting distribution of the national total. This bottom-up

uncertainty estimate may not be consistent with top-down uncertainty estimates.

National total Distribution of

Region r Sector 1 Sector 2 Sector 3 Sector n (sum of sectors) national totals

Perturbation 1 x11 x12 x13 x1n X1

Perturbation 2 x21 x22 x23 x2n X2 →XN
Perturbation 3 x31 x32 x33 x3n X3

Perturbation i xi1 xi2 xi3 xin Xi

with our bottom-up distributions of the national totals (XN ).

When summing the perturbed sectors xin for a region, it is

unlikely that the distribution of XN will be the same as the

known uncertainty in X.

Additionally, the uncertainty in XN will depend on the

number of elements contributing to the sum, according to

standard propagation of uncertainty rules (RSS, root sum

square; see earlier discussion on the summation effect). In

practice, the uncertainty of X may be based on several lines

of evidence, which may even exclude sector-based data.

To ensure that we can reproduce the top-down uncertainty

estimates of X, we use constrained optimization (using a

quadratic programming (QP) methodology) to minimally ad-

just the perturbations of xin to a given distribution of the XN
(Table 2).

Given that we can adjust one iteration so that it sums to a

fixed X, we then give X a distribution based on known na-

tional uncertainties, and thus, each iteration of X is used to

balance the same iteration of the disaggregated sector data

(xin). This ensures that the sum of sectors (Xi) always gives

aXN with a known uncertainty. The cost of this adjustment is

that the spread of the large values in each region (e.g., a large

sector) are adjusted to fit the constraints. To meet the criteria

of, e.g., a narrower distribution of the aggregated values, the

large values have to be given a narrower distribution as well.

This methodology allows us to give realistic uncertainties for

each xin leading to an XN with a known uncertainty. We do

not perform such balancing on the MRIO input data (previ-

ous section) as it is too computationally expensive, and there

is little top-down data on uncertainties in economic data.

2.5 Emission metrics

To link emissions to temperature change, we use the global

temperature change potential (GTP) as a metric to compare

and aggregate pollutants (Shine et al., 2007). This gives an

estimate of the global-mean surface temperature change due

to a pulse of emissions from a specific pollutant, and is a

simple way of modeling the much more complex climate

system and its response. Uncertainties in metric values can

arise from a number of factors, including pollutant parame-

ters (RF and lifetime) and the response of the climate system.

Although it has been shown that the GTP may have larger rel-

ative uncertainties than the alternative metric global warm-

ing potential (GWP) (Aamaas et al., 2013; Reisinger et al.,

2010) and it has been criticized for some of its characteris-

tics (Pierrehumbert, 2014), the GTP directly links to global

temperature change and is thus arguably more policy relevant

(Shine et al., 2005). In addition, the physical interpretation of

the GWP is less clear and the metric has been criticized by

many authors (Peters et al., 2011a; Shine, 2009; Pierrehum-

bert, 2014). The GTP metric is calculated using impulse re-

sponse functions, which explain the interaction of pollutant i

in the atmosphere (impulse response function; IRFi) and the

climate system (temperature) response to a pulse emission

(IRFT ) with specific RF and atmospheric lifetime.

We briefly describe the metric equations here, and refer

to existing literature for more details (Aamaas et al., 2013;

Fuglestvedt et al., 2010; Olivié and Peters, 2013; Myhre et

al., 2013b). The absolute GTP (AGTP) for each pollutant i is

defined as

AGTPi (H )=

H∫
0

RFi (t) IRFT (H − t)dt, (8)

where the RF for a pulse emission is

RFi (t)= RE× IRFi = Ai exp

(
−
t

τi

)
, (9)

where t is time (years), H is the time horizon (years), Ai is

the radiative efficiency for pollutant i (W (m−2kg)), and τi is

the decay time for pollutant i (years). The AGTP metric is

dependent on the IRF of temperature, which incorporates the

climate system response in global-mean surface temperature

to a given RF. The climate response is modeled using two

decaying exponential functions representing (1) the relative

fast response of the atmosphere, the land surface, and the

ocean mixed layer, and (2) the relative slow response of the

deep ocean (Peters et al., 2011a),

IRFT =

J∑
j=1

cj

dj
exp

(
−
t

dj

)
, (10)

where J is the number of decay terms (usually two), cj is

a component of the climate sensitivity (K (Wm−2)), where

the total climate sensitivity λ=
∑
cj , and dj is the decay
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Table 3. Metric parameters with uncertainties. Note that the uncertainties are derived from CMIP5 data and Joos et al. (2013), but we use

the corresponding distributions listed in Table 5 and 6 in the study by Olivié and Peters (2013) to account for correlations.

Parameters Values Unit Uncertainties

Climate sensitivity f1 0.43 K Wm−2
±29 %

Climate sensitivity f2 0.32 ±59 %

Climate sensitivity decay τ1 2.57 year ±46 %

Climate sensitivity decay τ2 82.24 ±192 %

CO2 weight a0 0.23 ±20 %

CO2 weight a1 0.28 ±33 %

CO2 weight a2 0.35 ±28 %

CO2 weight a3 0.14 ±30 %

CO2 decay τ0 Infinite year –

CO2 decay τ1 239.6 ±58 %

CO2 decay τ2 18.42 ±68 %

CO2 decay τ3 1.64 ±63 %

time (years) of component cj . These two functions are ex-

plained by lifetime and climate sensitivity for the individual

components (Table 3). The λ explains the change in equi-

librium global-mean temperature due to forcing by a pollu-

tant in the atmosphere. We parameterize the IRF according to

the results from CMIP5 covering 15 different climate models

(Olivié and Peters, 2013). This data set is parameterized by

relatively short climate runs (140–150 years), and thus it is

more representative of the short-term climate response (less

than 100 years) compared to the equilibrium response (see

Olivié and Peters, 2013 for details). Nevertheless, the data

set leads to a median λ= 0.75 K Wm−2 (equivalent to 2.8 ◦C

global-mean temperature increase), which is consistent with

the climate response (sensitivity) of a doubling of CO2 con-

centration in the atmosphere within the range of 1.5 to 4.5 ◦C

(IPCC, 2013).

As CO2 has a more complex interaction in the atmosphere

and can not be sufficiently modeled with a single exponential

decay, we define the RF for CO2 as a sum of exponentials

(Aamaas et al., 2013):

RFCO2
(t)= ACO2

{
a0+

I∑
i=1

ai

(
1− exp

(
−
t

τi

))}
, (11)

where ai is the weight of each exponential, which by defi-

nition has to sum to one (
∑
ai = 1), and I is the number of

exponentials. We follow Joos et al. (2013) and use four ex-

ponentials and weights, and randomize the multiple lifetimes

and coefficients so that the coefficients always sum to 1, fol-

lowing Olivié and Peters (2013). The use of four different

timescales was found to be sufficient to model CO2 behav-

ior in the atmosphere compared to advanced climate models

(Olivié and Peters, 2013). Correlations between the param-

eters were implemented for CO2 and IRFT , also based on

Olivié and Peters (2013), but the effect of the correlations on

temperature results was found to be small (less than 1 % of

AGTP50 value for CO2).

Estimates from the literature are used as the median (Fu-

glestvedt et al., 2010) and estimates of uncertainty as spread

of the distributions (Tables 4 and 5). For the non-reactive

pollutants, we randomized the single RF and lifetime val-

ues, as these are represented by only a single decay func-

tion. The RF used in the calculations includes the indirect

effects of chemical reactions from the ozone precursors (CO,

NOx , and NMVOC), which were perturbed similarly as the

other pollutants. This accounts for three indirect forcing ef-

fects: formation of O3 (causing positive RF by CO, NOx , and

NMVOC), changing CH4 levels (causing positive RF by CO

and NMVOC, and negative RF by NOx), and CH4-induced

O3 effects (causing positive RF from CO and NMVOC, and

negative RF from NOx) (Aamaas et al., 2013). The indirect

effect of SO2 is included by scaling the metric value, where

the indirect effect of SO2 is estimated to be about 175 % of

the direct effect (Aamaas et al., 2013). This is a crude es-

timate, and while the indirect effect may be more uncertain

than the direct effect, we use the same uncertainty for the di-

rect and indirect effects due to lack of pollutant specific data

(Boucher et al., 2013).

Our analysis of uncertainty contributions from emissions

and metric parameters uses absolute GTP (AGTP) values

with units of temperature change (in Kelvin or ◦C). When

later allocating temperature data in the economic model, we

also use GTP values in units of CO2-equivalent (eq.) emis-

sions for comparison. The GTP values are calculated by nor-

malizing the AGTP values with reference to the AGTP val-

ues for CO2. When we connect the components for a full MC

analysis, we choose a single time horizon for computational

reasons. As discussed elsewhere (Fuglestvedt et al., 2010),

choosing a time horizon includes value judgment, and is not

based solely on a scientific judgment. We choose to focus on
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Table 4. RF values and uncertainties. Note that CO, non-methane volatile organic compound (NMVOC) and NOx are precursors, which

have an effect on O3 and CH4 concentrations. Because of this, no single RF value can be given. The uncertainties indicate the 5–95 % (90 %)

percentile range. Parameters from IPCC (2007, Table 2.14, p. 212–213).

Pollutant RF (Wm−2 kg−1) Uncertainty RF references Uncertainty references

PFCs 6.40× 10−12–1.06× 10−11
±10 % IPCC (2007) Myhre et al. (2013a)

CH4 1.82× 10−13
±17 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

CO – ±24 % Derwent et al. (2001) Myhre et al. (2013a)

CO2 1.81× 10−15
±10 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

HFCs 6.74× 10−12–1.53× 10−11
±10 % Fuglestvedt et al. (2010), IPCC (2007) Myhre et al. (2013a)

N2O 3.88× 10−13
±17 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

NF3 1.66× 10−11
±10 % IPCC (2007) Assumed

NH3 −1.03× 10−10
±123 % Shindell et al. (2009) Myhre et al. (2013a)

NMVOC – ±41 % Collins et al. (2002) Myhre et al. (2013a)

NOx – ±120 % Wild et al. (2001) Myhre et al. (2013a)

SF6 2.00× 10−11
±10 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

Sulphate −3.20× 10−10
±50 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

BC 1.96× 10−9
±66 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

OC −2.90× 10−10
±68 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

Table 5. Lifetimes and uncertainties. Uncertainties for several gases’ lifetimes are assumed, but a sensitivity analysis revealed that a change

of this uncertainty will not have a large impact on the results (see metric results section below). Note that CO, NMVOC, and NOx are

precursors, which have an effect on O3 and CH4 concentrations. Because of this, no single lifetime can be given. Values and uncertainties

for CO2 are given in Table 3. The uncertainties indicate the 5–95 % (90 %) percentile range. Parameters from IPCC (2007, Table 2.14,

p. 212–213).

Pollutant Lifetime (years) Uncertainty Lifetime references Uncertainty references

PFCs 2600–50 000 ±20 % Fuglestvedt et al. (2010) Assumed

CH4 12 ±19 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

CO – ±20 % Fuglestvedt et al. (2010) Assumed

CO2 – – Fuglestvedt et al. (2010) –

HFCs 1.4–270 ±12–±29 % Fuglestvedt et al. (2010), Myhre et al. (2013a),

IPCC (2007) Ko et al. (2013)

N2O 114 ±13 % Fuglestvedt et al. (2010) Myhre et al. (2013a)

NF3 740 ±13 % Fuglestvedt et al. (2010) Ko et al. (2013)

NH3 0.02 ±20 % Fuglestvedt et al. (2010) Assumed

NMVOC – ±20 % Fuglestvedt et al. (2010) Assumed

NOx – ±20 % Fuglestvedt et al. (2010) Assumed

SF6 3200 ±20 % Fuglestvedt et al. (2010) Assumed

Sulphate 0.01 ±20 % Fuglestvedt et al. (2010) Assumed

BC 0.02 ±20 % Fuglestvedt et al. (2010) Assumed

OC 0.02 ±20 % Fuglestvedt et al. (2010) Assumed

the impact at 50 years (AGTP50 and GTP50), as this is both

consistent with current literature (Myhre et al., 2013b), and

within reasonable time for when to expect global warming to

exceed 2 ◦C (Joshi et al., 2011; Peters et al., 2013).

3 Results

Estimated uncertainties are used to create distributions of all

data points. To analyze how various stages of the cause–

effect chain contribute to overall uncertainty, we introduce

uncertainty separately in each part of the chain before com-

bining them all together (Fig. 1). We first show uncertainties

resulting from (1) the economic data only, (2) the emissions

data only, and (3) the metric calculations only. The final sec-

tion, (4), connects these three parts together to follow uncer-

tainty through the entire cause–effect chain. The results show

uncertainty propagation from consumption to global temper-

ature change. The analysis is based on 10 000 MC runs.
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3.1 MRIO uncertainty

In this section, we assume there are no uncertainties in the

territorial emissions data or emission metrics, and thus the

MRIO model uses unperturbed median estimates of GTP50

values for all pollutants when allocating emissions to con-

sumers, and uncertainties are purely dependent on parametric

uncertainty in the input data into the MRIO. In our analysis,

each of the 129 countries has 57 producing sectors (not in-

cluding households as they are considered final demand in

the model, and therefore not included in the processing), and

thus the MRIO table has 7353 rows and columns. We em-

phasize here, but discuss later, that we consider parametric

uncertainties and not structural uncertainties.

Table 6 shows uncertainties in emissions embodied in im-

ports and exports, as well as consumption, due to pertur-

bations only on the economic data set. The exports indi-

cate goods that are produced domestically but consumed

abroad, while the imports indicate goods produced abroad

but consumed domestically. The uncertainties in exported

emissions are solely due to uncertainties in domestic eco-

nomic data, thus reflecting the pattern of developed countries

having higher uncertainties. Uncertainties in imported emis-

sion are generally higher than exported emissions, as the im-

ports come from a number of different regions of which many

may have high uncertainties (e.g., emerging and developing

economies).

For the largest consumption paths, the consumption per-

spective is not substantially more uncertain than the cor-

responding territorial view due to economic uncertainties.

Following the largest international fluxes embodied in trade

from Davis and Caldeira (2010) aggregated over all sectors,

we find 2 % uncertainty in emissions embodied in products

exported from China to the USA, 2 % uncertainty from China

to western Europe, 3 % from China to Japan, and 1 % from

the USA to western Europe from economic uncertainties

only. These fluxes are mainly dominated by the largest sec-

tors, to which our method has assigned the smallest uncer-

tainties. The export from China to the USA mainly originates

in the manufacturing sectors, which combined is one of the

largest Chinese sectors, therefore with relatively low uncer-

tainties. Annex B countries are assigned lower uncertainties

than non-Annex B countries, which explains the relatively

low uncertainty from the USA to western Europe.

For smaller paths, there are much higher economic uncer-

tainties. More than 20 % of the international trade routes have

a higher uncertainty than 10 % (total number of trade routes

is 128 regions × 128 regions), while the median of all is 6 %

uncertainty. The uncertainties in consumption emissions for

the top emitters are very low for two reasons: (1) the effect of

summations and aggregations reduce the uncertainties on the

national level (Eq. 4; much higher values are seen on a sec-

toral level), and (2) the distributions we give the perturbed

data in the larger sectors are relatively small.

Since we start from the raw GTAP data to construct the

MRIO table, and normalize and invert the MRIO table, a vast

number of summations and multiplications are done with the

initial perturbed data (an inversion in a single MC ensem-

ble requires more than 1012 operations, which was estimated

using the Lightspeed Matlab toolbox; Minka, 2014). Follow-

ing RSS uncertainty propagation, the relative uncertainty will

decrease when adding equally sized numbers with equally

sized uncertainty (not an unrealistic assumption for input–

output analysis). Thus, the relative uncertainty of the sum of

a row in the MRIO (the output) will depend on the number,

n, of large data points (Eq. 4). This problem can be avoided

by using a quadratic programming approach to rebalance the

sum to a given uncertainty (as we do for the emissions data),

but we do not do this as (a) it is too computationally expen-

sive, and (b) it would require balancing the entire MRIO table

to get consistent sums. This problem is difficult to negotiate

given the size of the database we are using, and consequently

this exerts a downward pressure on MRIO uncertainties. Be-

cause of this, and because uncertainty ranges of input values

are small for the largest and most important sectors, the final

results have small uncertainties. A valid question is then how

reliable the uncertainties are.

The “unfitted” and “fitted” data from Table 19.6 in the

GTAP documentation (Fig. 2) act as a simple sensitivity anal-

ysis to our applied uncertainties; however, since this table

only samples the very largest deviations, it is not represen-

tative of the uncertainties in the entire database. When we

use these, we find that the uncertainties are much larger

for the largest emitters (between 160 and 400 % uncer-

tainty for consumption-based emissions), and for small- and

medium-sized countries the uncertainties becomes unrealisti-

cally large. Thus, the results are clearly sensitive to the input

uncertainties. This is expected as the input uncertainties are

outliers in the GTAP database, and thus the uncertainties are

known to be large. As a consequence, the vastly perturbed

values lead to ill-defined MRIO tables (outside of machine

precision), which will compromise the accuracy of the final

results (see discussion on skew distributions and small data

points in the Methods section). However, as discussed ear-

lier, using the difference between input and output values as

a proxy of uncertainty is not straightforward. For example,

the first data point in Table 19.6 indicates an input values of

USD 2 billion and an output value of USD 132 billion, where

the difference (relative to the initial value) can be interpreted

as a change of 6500 %. This uncertainty is vast, and many

data points have much larger differences. Because of these

difficulties, and since the results are only valid for specific

sectors, we do not show regional results from this analysis,

but only use it for illustrative purposes.

Overall, we find small uncertainties in the MRIO results;

however, the uncertainties in the end results are a function

of the uncertainties in the input values, as shown by the sen-

sitivity analysis. Furthermore, the input uncertainties are es-

timated from small amounts of data and many assumptions,
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Table 6. Uncertainties in allocated emissions due to uncertainties in the economic data set, by top 10 emitters. The territorial emissions are

not perturbed, and thus they have no uncertainty.

Region Territorial Exports Uncertainty Imports Uncertainty Consumption Uncertainty

T
o

p
1

0
em

it
te

rs
g

lo
b

al
ly

1 China 7269 1966 1.7 % 400 2.1 % 5703 0.7 %

2 United States of America 6380 744 1.1 % 1411 1.2 % 7047 0.3 %

3 Russian Federation 2027 600 1.0 % 216 1.3 % 1642 0.5 %

4 India 1812 232 2.0 % 186 2.6 % 1766 0.5 %

5 Japan 1381 257 1.3 % 471 1.4 % 1595 0.5 %

6 Germany 957 324 0.9 % 498 1.0 % 1130 0.6 %

7 Brazil 750 127 2.1 % 116 3.1 % 739 0.7 %

8 Canada 626 194 1.0 % 209 1.5 % 641 0.7 %

9 United Kingdom 616 134 1.0 % 410 1.1 % 892 0.6 %

10 Korea 547 158 1.9 % 214 2.4 % 602 1.2 %
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Figure 5. Relative uncertainties (90 % CI) in emissions of all pollu-

tants for all sectors (red box plots), for national aggregates (blue box

plots) and global aggregates (green dots). The edges of the boxes

indicate the 25th and 75th percentiles, and the whiskers include ex-

treme data points, but not outliers. The blue target symbols indicate

the median value of the distributions. Pollutants are sorted accord-

ing to global emissions in tons.

making the uncertainty estimates for the end results less ro-

bust. Although our results are supported by other studies that

have performed parametric uncertainty analysis (Lenzen et

al., 2010; Bullard and Sebald, 1988; Peters, 2007), structural

uncertainties in MRIO analysis are found to be larger (Pe-

ters et al., 2012). Thus, we suggest that MRIO uncertainty

may be best evaluated using a combination of structural un-

certainties (model comparisons) and parametric Monte Carlo

uncertainties.

3.2 Emissions

At the global level, uncertainties in emissions are known

from previous studies (Table 1), which are used to estimate

uncertainties of emissions occurring from production at the

sectoral and regional level. Figure 5 shows the uncertainty

of all data points (7482 sectors and 129 regions and global

aggregations) for all pollutants. Each data point’s uncer-

tainty is dependent on the sector size, the region’s GDP, and

whether the region is a developed or developing country. Dif-

ferent activities are associated with different emissions, and

thus not all sectors in all regions include emissions from all

pollutants. Additionally, the perfluorinated chemical (PFC)

and hydrofluorocarbon (HFC) groups are aggregates of sev-

eral pollutants, and thus the spreads are based on different

amounts of data.

The red box plots in Fig. 5 shows the sectoral distribu-

tions of the relative uncertainties, not including data points

with zero uncertainties. Aggregations of sectors to individ-

ual countries (blue box plots) lower the uncertainty ranges,

depending on the sectors’ impact on national totals (NF3 is a

special case, where only one sector in each region has emis-

sions, and thus sectoral and regional uncertainties are the

same). The median values for the box plots indicate the skew-

ness of the distributions. The distributions often have two dis-

tinct peaks (not visible in the box plots), which are developed

and developing countries, where the latter group has higher

uncertainty. The global aggregations are results of national

totals, which are dominated by large regions (e.g., China and

the USA). The bottom-up global uncertainties are not con-

strained by top-down estimates, as we are not using aggre-

gated global emissions in the end results. They are, however,

all (except NF3 due to few data points) lower than the input

estimates from Table 1 due to the aggregation effect. Small

regions with low emission and high uncertainties thus have

little effect on the global uncertainties.

The well-mixed GHGs (WMGHGs; CO2, CH4, N2O,

HFCs, PFCs, SF6, NF3) generally have lower emission un-

certainties (9 % uncertainty for the aggregated sum) than

the short-lived pollutants (black carbon (BC), organic car-

bon (OC), SO2, NH3; 14 % uncertainty) and precursors

(CO, NMVOC, NOx ; 19 % uncertainty). The WMGHGs ac-

counted for 39.4± 1.5 Gt CO2-eq. emissions (using GTP50),

while the short-lived pollutants accounted for −4.6± 0.6 Gt

CO2-eq. and the precursors accounted for 0.4± 0.1 Gt CO2-

eq. (where the two last groups have a mix of warming and
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cooling effects). Uncertainties in pollutant aggregates for

emissions (in tons) and GTP50 (CO2-eq.) values only in-

clude emission uncertainties, but are different due to the dif-

ferent weighting of pollutants and due to mixing of cooling

and warming effects. Uncertainties of territorial emissions

from developing countries (54 % of global emissions using

GTP50) have a median value of 32 %, while developed re-

gions have a median uncertainty of 16 %. These numbers are

dominated by the uncertainty of CO2, and usually only small

variations are seen due to other pollutants.

Globally, most emissions occur in the electricity gener-

ation (28 % of global emissions using GTP50) and man-

ufacturing sectors (25 %) (see Supplement for sector ag-

gregations). Uncertainties in emissions (in tons) from elec-

tricity range from 19 % for CO2, to 27 % for SO2 and to

60 % for NOx , which are the most important pollutants (with

the largest contributions to the sectoral GTP50 value). For

energy-intensive manufacturing, CO2 (7 % uncertainty), SO2

(8 %), and CH4 (52 %) are the most important pollutants. In

the non-energy-intensive manufacturing sectors, CO2 (8 %

uncertainty), SO2 (16 %), and HFCs (21 %) dominate.

For agriculture, CH4 (21 % uncertainty) and N2O (26 %)

are equally important to the GTP50 value, while CO (37 %)

comes third. CH4 has less uncertainty coming from agricul-

ture than energy-intensive manufacturing, since for CH4 the

agriculture sector is much larger, which is consistent with

top-down estimates (Kirschke et al., 2013). The household

sector emits mainly CO2 (8 % uncertainty), BC (156 %) and

OC (140 %) due to household fuels and private transporta-

tion. The transport sectors consists mainly of CO2 (5 %),

SO2 (9 %), and NOx (17 %). Mining, services, and food sec-

tors are small in a production view, and consist mainly of

CO2 (4 %), CH4 (16 %), and SO2 (9 %). These estimates are

aggregates of sectors and regions (and gases for HFCs and

PFCs), and thus disaggregated data have larger uncertainties.

3.3 Emission metrics

Metric (temperature) values have an uncertainty range for

the different pollutants and different time horizons, due to

the perturbed metric parameters (RF, lifetime, and climate

sensitivity). This includes uncertainties from mapping emis-

sions to atmospheric concentrations through the global car-

bon cycle, which is represented by the relatively uncertain

climate sensitivity. Figure 6 shows all pollutants on the same

scale using AGTP for 2007 global emissions, with both rela-

tive and absolute uncertainties. The net temperature response

(black dotted line) goes from negative to positive over the

first few years, before the short-lived species decay, and the

net effect becomes dominated by CO2 in the long run. The

relative and absolute uncertainty of the net effect is largest

in the first few years, and becomes roughly stable from 50

to 100 years. The strong temperature effects of short-lived

climate forcers (SLCFs), and thus the high absolute uncer-

tainties of the mix of pollutants increase the net uncertainty

(a)

(b) (c)

Figure 6. (a) The AGTP for a range of pollutants, with (b) relative

and (c) absolute uncertainties due to metric parameters. Pollutants

are sorted in the legend according to absolute temperature impact

at 50 years. The shaded area around the net effect in subplot (a)

indicates the 90 % CI uncertainty. Subplot (b) is on the log scale,

showing relative uncertainties. Subplot (c) (also using the log scale)

shows the absolute uncertainty for a 90 % CI, of which half is the

upper shaded area in (a) and the other half is the lower shaded area.

in the first few years, but CO2 dominates the uncertainty after

20 years.

The top contributors to absolute uncertainties in the first

year are SO2, BC, and NH3. BC and SO2 have similar

relative uncertainties, but since the emissions of SO2 are

much larger, it has 5 times the absolute uncertainty. OC, BC,

and SO2 have the largest uncertainties after approximately

10 years (except for NH3 due to its significantly larger RF

uncertainty), as the uncertainties are dominated by RF and

climate sensitivity uncertainties. NOx has a very high rela-

tive uncertainty after 7 years because its temperature effect

goes from positive to negative around this time.

Figure 7 shows a breakdown of the parameters contribut-

ing to relative uncertainty of the AGTP values by pollutant.

MC runs with separate metric components were individually

perturbed to isolate the individual contributions to uncertain-

ties. For comparison, uncertainties in global emissions are

also included in the graph, although not included when per-

turbing all components. Uncertainties in emissions and RF

do not depend on the time horizon, and thus they are straight

lines. However, as the precursors have combined effects (see

methods) the uncertainty of RF on CO, NMVOC, and NOx
actually changes with time due to the different effects having

different lifetimes.

For the first 3 years, the total uncertainty for most pollu-

tants (except the SLCFs: BC, OC, SO2, and NH3) is com-

pletely dominated by the first decay parameter of the cli-

mate sensitivity, which has a median value of 2.6± 1.2 years

(Olivié and Peters, 2013). For the WMGHGs, the parameter

continues to dominate for approximately 6–8 years, when the
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Figure 7. AGTP values (black lines) for all pollutants (sorted by absolute temperature impact at the 50-year time horizon) and relative

uncertainties (dashed lines) for metric parameters, on the right vertical axis. AGTP median values use parameters from the literature, while

AGTP values all show uncertainty with all parameters perturbed (excluding emissions). Uncertainties indicate the 90 % CI range of the

median values. Global emission uncertainties are derived from sector aggregations, and are the same as shown in Fig. 5.

uncertainty of the climate sensitivity component takes over

and continues to dominate to at least 100 years. Between

them they explain the largest contributions of uncertainties

to the metric values for all time horizons. While the decay

parameter explains the large uncertainties in the first years,

the climate sensitivity parameter explains the increasing rela-

tive uncertainties towards 50 and 100 years. The climate sen-

sitivity parameters are highly sensitive to the time horizon

since they have different effects at different times. For SO2

and NH3, the first years are also effected by high uncertain-

ties from RF. Other short-lived pollutants (BC and OC) have

large contributions from both emissions and RF values.

At 50 years, CO2 and CH4 have additional significant con-

tributions to uncertainties from lifetimes. Since they both

have lifetimes within the ranges of the graph, they show

variability depending on the time horizon. The shorter- and

longer-lived pollutants show little variations in lifetime un-

certainties over the different time horizons, as lifetimes

are either too short or too long to have any effect within

100 years at this scale. The uncertainty of several gases’ life-

times are assumed (Table 5); however, the small impact from

lifetime uncertainties in the metric values indicate that small

changes of the median lifetimes will for most pollutants

have very little effect. At 50 years, the short-lived pollutants

have uncertainties ranging between ±95 and ±165 %, while

the WMGHGs have uncertainties ranging between ±35 and

±70 %. The precursors have uncertainties around ±65 %.

After 100 years, only the WMGHGs still have a signif-

icant temperature effect, which means that the SLCFs do

not contribute with absolute uncertainties. In relative terms,

shorter-lived pollutants have a rise in uncertainties from 50 to

100 years, while the opposite is true for the longer-lived pol-

lutants. The last group is then completely dominated by cli-

mate sensitivity uncertainties. Most pollutants have relatively

low uncertainty contributions from emissions as the global

estimates are low, except for BC and OC. On a regional and

sectoral level, the uncertainties from emissions are usually

much more dominant, shifting the total uncertainties at all

time horizons.

The literature consists of both studies which allocate emis-

sions using the absolute metric (AGTP) and those that use the

normalized metric (GTP). The GTP metric values are scaled

with the AGTP values for CO2. When running the MC analy-

sis, we create AGTP values for every iteration, which implies

that CO2 always will be normalized by itself (by definition,

GTPCO2
= 1). Therefore, the uncertainties of total emissions

using GTP values are quite different to AGTP uncertainties

since the dominant species (CO2) has no metric uncertainty,

and the uncertainties in other species are potentially ampli-

fied due to the uncertainty of AGTPCO2
values.

A second effect of using the GTP values is that the nor-

malization of AGTP values include the climate sensitivity

in both the numerator and denominator, which means that

GTP values are less sensitive to climate sensitivity uncer-
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Table 7. Metric values uncertainties for the 20-, 50-, and 100-year time horizons. All metric parameters (excluding emissions) were perturbed.

The uncertainties indicate the 5–95 % (90 %) percentile range, where the plus–minus notation is half of the 90 % CI. Numbers are rounded

to nearest 5 %, as multiple MC runs would give slightly different results (usually within 1–2 %).

Pollutants AGTP20 AGTP50 AGTP100 GTP20 GTP50 GTP100 GWP20 GWP50 GWP100

PFCs ±30 % ±35 % ±35 % ±20 % ±20 % ±20 % ±15 % ±15 % ±15 %

CH4 ±45 % ±70 % ±75 % ±35 % ±55 % ±70 % ±25 % ±30 % ±30 %

CO ±45 % ±65 % ±75 % ±35 % ±45 % ±65 % ±20 % ±20 % ±25 %

CO2 ±35 % ±40 % ±40 % ±0 % ±0 % ±0 % ±0 % ±0 % ±0 %

HFCs ±30 % ±40 % ±40 % ±20 % ±20 % ±20 % ±15 % ±15 % ±20 %

N2O ±35 % ±40 % ±40 % ±25 % ±25 % ±30 % ±20 % ±25 % ±25 %

NF3 ±35 % ±35 % ±35 % ±20 % ±25 % ±25 % ±15 % ±20 % ±20 %

NH3 ±180 % ±165 % ±170 % ±165 % ±150 % ±165 % ±125 % ±130 % ±130 %

NMVOC ±50 % ±65 % ±75 % ±35 % ±45 % ±65 % ±20 % ±20 % ±25 %

NOx ±35 % ±65 % ±95 % ±35 % ±50 % ±80 % ±295 % ±150 % ±125 %

SF6 ±35 % ±35 % ±35 % ±20 % ±20 % ±25 % ±15 % ±20 % ±20 %

SO2 ±110 % ±95 % ±100 % ±100 % ±80 % ±100 % ±55 % ±55 % ±55 %

BC ±125 % ±110 % ±110 % ±110 % ±95 % ±110 % ±70 % ±70 % ±70 %

OC ±125 % ±110 % ±115 % ±110 % ±95 % ±110 % ±70 % ±75 % ±75 %

tainties than AGTP values (i.e., uncertainties are correlated).

Table 7 illustrates the difference between uncertainties in

AGTP, GTP, and GWP values. GTP uncertainties are typi-

cally ±10–15 percentage points below those of AGTP, and

since the AGTPCO2
uncertainties are not strongly depen-

dent on the time horizon, they do not affect the uncertainties

over different time horizons for other pollutants’ GTP values

much. GWP calculations use the same parameters as GTP,

and although we do not use GWP in our results, we include

the uncertainties in the table for comparison. Overall, we find

less uncertainty using GWP than the other metrics (Reisinger

et al., 2010), except for NOx . The GWP calculations are not

dependent on the highly uncertain climate sensitivity, since

it does not relate to global temperature change. Thus, it is

expected to have lower uncertainties. NOx has overlapping

indirect effects, with highly uncertain RF values, which sug-

gest that the GWP20 values can be both negative and posi-

tive, with a median close to zero. Thus, it has very high un-

certainty.

A few other studies have investigated the uncertainties of

AGTP and GTP values, but it is difficult to compare those as

there are many different sources of uncertainties from many

different models and data sets. Our GTP uncertainty results

are generally higher than the Olivié and Peters (2013) es-

timates since we also include uncertainties in lifetime and

RF values of non-CO2 species. Their GTP50 uncertainties

for BC (−62 to +67 %), CH4 (−38 to +48 %), N2O (−16

to +25 %) and SF6 (−17 to +25 %) are higher than their

GWP uncertainties, mainly due to the dependence on the un-

certain climate response (Olivié and Peters, 2013). Another

study (Fuglestvedt et al., 2010) found similar uncertainties

for GTP50 values for BC (around 200 %) and smaller val-

ues for CH4 (50 %) compared to our results, and essentially

zero for N2O, when only looking at sensitivity to the cli-

mate response. N2O is a special case as it has a similar av-

erage lifetime to CO2, and thus it has similar climate sen-

sitivity uncertainty as CO2, which can be seen in Fig. 7 for

AGTP values. The normalization of GTP therefore cancels

out the climate sensitivity effect. Based on an evaluation of

several studies (including Reisinger et al., 2010), Myhre et

al. (2013b) assessed the uncertainty of CH4 for GTP100 to

be ±75 %, which is close to our estimate. Furthermore, Joos

et al. (2013) found uncertainties for CO2 AGTP values at 50

(±45 %) and 100 years (±90 %), based on the spread of mul-

tiple climate models. Overall, we find the uncertainties to be

consistent with other studies, but highly variable depending

on data sets and choices.

3.4 Uncertainty of all components

Total uncertainties in production- and consumption-based

emission estimates reflect a combination of uncertainties

from the economic data (IO data for regions and sectors),

emissions data (tons of the pollutants occurring in regions

and sectors), and metric parameters (RF and lifetime for the

pollutants, and the resulting climate response). Additionally,

the emissions of a region in a consumption perspective is a

combination of domestic emissions as well as emissions oc-

curring in other regions (due to emissions embodied in trade),

which change the mix of pollutants and inherits uncertain-

ties from the regions and sectors they occur in. To facilitate

our discussion, we aggregate the 58 economic sectors (post

analysis) into 9 sectors. The results are strongly dependent

on different perspectives: (1) production and consumption,

(2) relative or absolute metric values, (3) the time horizon of

the metric, (4) global, regional, or sectoral level, and (5) mix

of pollutants included. To illustrate the largest differences,
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Figure 8. Territorial perspective of emissions and metric uncer-

tainty using GTP50. The top graph shows global emissions in sec-

tors they occur in, while the bottom graph shows regional emis-

sions. Each of the components is represented by an individual MC.

The black circle indicates the aggregated RSS uncertainty. The un-

certainty represents the 5–95 % CI.

we focus on comparing points 1, 2, and 4, as 3 has been dis-

cussed extensively elsewhere (Myhre et al.,‘2013b).

In the allocations of metric values in the MRIO model, we

choose to use 50-year time horizon, as discussed earlier: it

is consistent with other recent studies, and consistent with

the 2 ◦C policy target. Because of the differences between

absolute and relative metric uncertainties, we compare both

when including perturbations on all components in the last

section.

Figure 8 shows uncertainties from the components with

aggregated sectors and the top emitting regions, using GTP50

production emissions. The three different bars represent in-

dividual MC ensembles with only the respective components

perturbed. At the sector level, the uncertainties in emissions

data is generally the smallest (from 6 to 24 % for sectors), ex-

cept for households where large and highly uncertain emis-

sions of BC and OC occur. Uncertainty in metrics has a

range from 14 to 63 %, especially large in sectors with non-

CO2 emissions (e.g., agriculture and mining). Pollutants with

higher relative uncertainty of emissions compared to uncer-

tainty of metric values at GTP50 (including BC, OC, and

NF3 at disaggregated levels) will tend to give higher un-

certainty to emissions, while the other pollutants will give

higher uncertainty to metrics.

The sector aggregation means that high and low uncertain-

ties from different sector sizes are mixed, and thus single sec-

tors like construction have a higher uncertainty than the ag-

gregated services sector. Disaggregation from the global sec-

tor perspective to the national and sector levels reveals that

emission uncertainties are a function of aggregations (sec-

toral uncertainties are adjusted to specific national uncertain-
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Figure 9. Consumption perspective of emissions, metric and MRIO

uncertainty using GTP50. The top graph shows global emissions by

sector, while the bottom graph shows regional consumption.

ties), while the metric uncertainties are not directly depen-

dent on sector aggregation and will therefore not scale the

same way. Consequently, disaggregated levels generally find

much higher emission uncertainties than metric uncertain-

ties. For the top 10 emitters, disaggregated sectoral emission

uncertainties have a median value between 13 and 94 per-

centage points above the national aggregate, while the metric

uncertainties have a median value between 4 and 16 percent-

age points above the national aggregated level.

Furthermore, emission uncertainties are scaled according

to sector sizes, whereas metric uncertainties are not. This

means that emission uncertainties are a combination of mix

of pollutants and mix of sector sizes, while metric uncertain-

ties only reflect the mix of pollutants (where uncertainty is

dominated by temperature response). This makes the global

sectoral and national level quite different, since the national

level represent various sector sizes with uncertainties accord-

ing to the functional relationship, while the global sectors

might only represent large or small sectors. Because of this,

emission uncertainties usually dominate at the national level

as the regions are less aggregated (each region consists of 58

sectors) than the global sectors (each consisting of 129 re-

gions). The difference in regional uncertainties is attributed

to different mix of territorial pollutants being emitted, the

sector and economy sizes, and if the regions are developed

or developing nations.

Uncertainties from the different components do not lin-

early contribute to total uncertainty in the end results, and

thus we calculate the total uncertainty in two different

ways: an MC run with everything perturbed and an RSS ap-

proach combining the individual components. While the MC

run is considered the more robust method since it takes into

account all data points, including the effect of error cancel-

ing, the RSS method is an approximation of error propaga-
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tion which assumes no correlation and normal distributions.

The two methods agree in most cases, which imply that there

are only small correlations between the components and that

the global-level data is close to normally distributed. This

further implies that a full computationally intensive MC run

with all components perturbed might not be necessary in

ideal cases as the RSS method can approximately derive the

results.

Figure 9 shows uncertainties from the consumption per-

spective, thus including MRIO uncertainties. In general, the

emissions embodied in imports and exports inherit uncertain-

ties from the economic data of the region where the emis-

sions occur. Consumption emissions include territorial emis-

sions and emissions from imports, while they exclude emis-

sions from exports. Since our MRIO uncertainties only in-

clude parametric uncertainties, they tend to be small due to

the cancellation effect discussed earlier, which is consistent

with other similar studies (Lenzen et al., 2010; Wilting, 2012;

Bullard and Sebald, 1988; Peters, 2007). Structural uncer-

tainties, including differences in data sources, MRIO models,

and definitions of consumption-based emissions, may be a

larger source of uncertainty (Andrew and Peters, 2013). The

differences in the data sets and methods used to calculate

consumption-based CO2 emissions have shown to be rela-

tively small, with roughly 10 % for the USA for 2007 (Pe-

ters et al., 2012). Although various studies use different in-

put data and models, Peters et al. (2012) found the results of

major emitters to be robust across studies, even though 10 %

differences are not uncommon.

The top emitting regions are large economies, and there-

fore have mostly large economic sectors and therefore low

aggregated uncertainties. The consumption perspective also

mixes pollutants in regions and sectors since the supply chain

is taken into account, leading to dilution of the sectoral and

regional variability since multi-sectoral dependence for a sin-

gle consuming sector is common (e.g., the production of a car

needs input from other sectors, especially electricity). House-

holds are considered final demand in the MRIO model, and

therefore their emissions are not allocated through the eco-

nomic model and thus do not inherit economic uncertainties.

Contrary to the production perspective, the national

consumption-based emissions are more dominated by met-

ric uncertainties, due to different mix of pollutants. Disag-

gregation of the consumption emissions reveals that metric

uncertainties usually dominate the sectors for the top emit-

ters, and that uncertainties in economic data also usually

increase more than the emission uncertainties at the sector

level. For these nations, disaggregated sectoral emission un-

certainties have a median value between 2 and 11 percent-

age points above the national aggregate, while the metric

uncertainties have a median value between 3 and 9 percent-

age points above the national aggregated level, and economic

uncertainty have an increase between 4 and 10 percentage

points.

Figure 10. GTP values and uncertainties for territorial (first bars)

and consumption (second bars) perspectives. Percentages on top of

the bars indicate total uncertainty (rounded to the closest 5 %).

Figure 10 show GTP values and uncertainties for the same

sectors and regions, for both territorial and consumption per-

spectives. Comparing the allocation differences due to dif-

ferent perspectives help explain the change in uncertainties

when going from production to consumption. Agriculture

and mining see the largest sectoral decrease in uncertainties

due mainly to different mix of pollutants (increased CO2),

while transport and non-energy intensive manufacturing see

an increase due to increased allocations of non-CO2 emis-

sions like SO2. Similar differences can be seen for regions:

India and Brazil are uncertain due to SO2 and CH4 emissions,

while the US emissions consist mostly of CO2 uncertainty.

Most regions have quite similar uncertainty in both per-

spectives, indicating that the economic uncertainties do not

play a major role for the large regions. The difference of

uncertainties in the allocation perspectives can mainly be

attributed to (1) different mix of pollutants and (2) differ-

ent allocations of emissions to sectors. The first effect gives

net emission importers higher uncertainty in some sectors,

due to highly uncertain pollutants (e.g., the share of non-

CO2 emissions in the UK is 30 % higher using consumption-

based emissions, assuming absolute values), while other sec-

tors decrease uncertainties due to the increased allocation of

CO2. The second effect is introduced when aggregating sec-

tors to the national level. The production emissions in a re-

gion are often dominated by a few large sectors, while the

consumption-based emissions are distributed more evenly

among the same sectors. This difference in distribution cause

different relative errors on the aggregated result, even tough

the sectoral uncertainties and the sum of emissions might

be the same. Thus, on the national level, this effect cre-

ates smaller uncertainties. The combined results may give

consumption-based emissions less uncertainty than produc-
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Figure 11. AGTP values and uncertainties for territorial (first bars)

and consumption (second bars) perspectives. The uncertainty re-

flects a combination of all pollutants including CO2. Percentages on

top of the bars indicate total uncertainty (rounded to closest 5 %).

tion emissions on the national level (usually within 1–2 %

for the top emitters).

In the Supplement, we demonstrate how to calculate con-

sumption uncertainty analytically for a simple one-sector,

two-region world economy. This reveals that the consump-

tion uncertainty can be lower, under conditions that are not

unusual. How this analytical solution generalizes to larger

systems requires further research. A similar finding was also

found by Peters et al. (2012).

The AGTP emissions include uncertainties in CO2, and

thus sectoral and regional uncertainties are larger and dif-

ferences are reduced since it is the most common pollutant

(Fig. 11). In this view, e.g., Chinese and US emissions over-

lap greatly within the given uncertainties, suggesting that

the ordering is uncertain. The corresponding GTP values

have less overlap. This may have large policy implications

in terms of responsibility. Other choices may also change the

relative importance and uncertainty of regions and sectors.

Choosing 20 years as time horizon would give lower relative

uncertainties for all pollutants because of lower uncertain-

ties for lifetime and climate sensitivity, except for SO2, BC,

OC and NH3 due to their short-lived nature, and thus regions

and sectors with large emissions or consumption of SLCFs

will be given larger uncertainties. Choosing 100 years will in

most cases give higher relative uncertainties and give SLCFs

less importance (see Fig. 7). Overall, we find the uncertain-

ties to be highly sensitive to methods and choices.

4 Discussion

This study investigates parametric uncertainties in the tem-

perature response to territorial- and consumption-based

emissions with uncertainty contributions from economic

data, emissions data, and metric parameters. Structural un-

certainties (data set and model differences) and other con-

tributing factors such as emission metric, attribution meth-

ods, and indicators of climate change may be equally impor-

tant when assessing uncertainties, but we did not investigate

those here (den Elzen et al., 2005; Höhne et al., 2010; Peters

et al., 2012; Moran and Wood, 2014). Earlier studies have

shown relatively low uncertainties when estimating coun-

tries’ contributions to climate change. Prather et al. (2009)

estimated an uncertainty range of −27 to +32 % for the

global warming caused by Annex I countries for the period

1990–2002 (0.11± 0.03 ◦C using 16–84 % confidence inter-

val). Similar to them, we find that climate modeling generally

has the largest contribution to total uncertainty on an aggre-

gated level.

Our analysis has shown that uncertainties change depend-

ing on the (1) allocation perspective, (2) pollutants included,

(3) metric and (4) aggregation. These changes in uncertain-

ties may have implications for future mitigation policies.

First, we found little difference in the uncertainties in

production- and consumption-based emissions. It is often as-

sumed that consumption-based emissions are more uncertain

(Peters, 2008). Consistent with others, we find that paramet-

ric uncertainties are smaller, while structural uncertainties

are generally larger (Peters et al., 2012; Moran and Wood,

2014). Lenzen et al. (2010) found lower uncertainties for the

UK carbon footprint (relative standard deviation of 5 % in

2001) than our results (±9 %), but this is probably because

we include other pollutants and metric uncertainties. In a

recent study, Moran and Wood (2014) found that paramet-

ric uncertainties in consumption-based emissions were gen-

erally lower than the uncertainty in territorial-based emis-

sions and the structural uncertainties (model spread). They

found that most major economies’ carbon footprint results

are within 10 %, consistent with our results. However, it is

difficult to gauge how robust the parametric consumption-

based emission uncertainties are. On the one hand, our cho-

sen input uncertainties may be underestimated but there ex-

ists scant data to verify this. Increasing the uncertainties re-

quires rebalancing the MRIO tables used in the analysis,

which may introduce correlations and additional uncertain-

ties resulting from the balancing process. Due to the com-

putationally expensive nature of this type of analysis, further

work would be required to assess the implications of rebal-

ancing for each perturbation. On the other hand, the small

uncertainties may reflect a realistic canceling of numerous

random errors (Lenzen et al., 2010). Settling these issues is a

topic of future research.

Second, including SLCFs creates larger differences be-

tween regions’ and sectors’ uncertainties, where, e.g., emis-

sions from Brazil and India are much more uncertain than

those of the other top 10 emitters due to large emissions

in agriculture. Sectors such as agriculture, electricity, and

manufacturing have large non-CO2 emissions, causing larger
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cooling and warming effects and additional uncertainties in

the net change. It is often argued that a shorter time hori-

zon (e.g., 20 years) places more emphasis on the short-lived

pollutants relative to CO2, while with a longer time horizon

(e.g., 100 years) the warming from CO2 dominates. There is

also a similar trade off with uncertainty: in the short term,

the uncertainties are much larger due to the SLCFs, and thus

the temperature effect of policies to reduce SLCFs has a more

uncertain outcome; in the long term, the more certain temper-

ature effects of CO2 dominate and the uncertainty due to the

SLCFs becomes less relevant. Thus, uncertainty may tend to

favor a more certain outcome for CO2 mitigation compared

to SLCFs. This hypothesis would require deeper analysis us-

ing economic and other models that incorporate uncertainty

into decision making.

Third, the GTP values have much smaller uncertainties

than the AGTP metric due to (1) the dominance of CO2

which has GTPCO2
= 1 and no uncertainty by definition and

(2) the scaling by AGTPCO2
in the denominator which effec-

tively reduces the impact of climate-sensitivity uncertainty in

the GTP. This suggests that a normalized metric, GTP, may

be better than an absolute metric, AGTP, in terms of reducing

uncertainties. In perspective, the underlying uncertainties are

ultimately the same, but they have just been shifted to differ-

ent variables and scaled out. Thus, a GTP focus may give the

impression of greater uncertainty in CO2, while the uncer-

tainty is really translated to the GTP of other species. Other

metrics, like the GWP, have lower uncertainties then the GTP

as they do not include the response of the climate system

(Olivié and Peters, 2013). Despite the metric uncertainties, it

is unclear what role they should play in policy. From a sci-

entific point of view the uncertainties are important, but in

policy, once a metric and its parameters are chosen, their un-

certainties are likely to be disregarded in subsequent policy

applications. This is an area that needs further consideration.

Fourth, aggregation changes the importance of the uncer-

tainty contribution between the different components (eco-

nomic data, emissions data, and metric), as only the emis-

sions data uncertainty have been estimated at both sector and

regional level, while they all are affected by reduction in un-

certainties by aggregation. On the global sectoral level, un-

certainties are dominated by metrics. For the regions, emis-

sion uncertainties often dominate metric uncertainties. At the

sector level, much larger variations are seen, with even eco-

nomic uncertainties dominating in very small sectors. Thus,

the role of uncertainties may differ depending on the level of

aggregation.

These results presented are broadly in line with the ex-

isting literature on this topic (Wilting, 2012; Fuglestvedt et

al., 2010; Joos et al., 2013; Lenzen et al., 2010; Myhre et

al., 2013b; Olivié and Peters, 2013). However, our results are

limited by the quality of the uncertainty information avail-

able as input into our analysis. Despite the widespread usage

of the input data in a wide variety of studies, there still exists

virtually no uncertainty information on economic data, and

limited data on the uncertainties in emission statistics and

metric parameters.

A major difficulty of uncertainty analysis is the issue of

correlations. There is a large need for addressing correlations

in data sets and uncertainties, as these may have significant

impacts on the results. We see several places where correla-

tions could be important: (1) correlations in the metric pa-

rameters, (2) balancing constraints (e.g., if the production of

electricity is low, then the consumption of electricity has to

be low), (3) between data sets (e.g., a perturbation in fos-

sil fuel use in the economic data set should be reflected by

a similar perturbation in the emissions data set), and (4) in

each MC ensemble the perturbation given to a particular re-

gion/sector combination may be correlated with other re-

gion/sectors (e.g., if Norway’s emissions from cement pro-

duction in one ensemble are low, then Sweden’s emissions

from the same sector may also be low due to correlations in

emissions factors).

In our analysis, we have explored correlations for met-

ric parameters (temperature and CO2 IRF), which we found

to have a small effect on the results, addressing point 1.

The effect of correlations in the MRIO data, and linkages

to emission data through energy consumption, has not pre-

viously been quantified, and this remains an important area

of research. Although these correlations may change the un-

certainty outcome, implementation of correlations in emis-

sions and economic data faces considerable computational

and conceptual hurdles. First, due to the large data sets used

in this analysis, the correlation matrix would be prohibitively

large (approximately 1015 elements), posing serious com-

putational issues. Second, there are little or no data indicat-

ing correlations in uncertainties in sectoral economic data or

emissions data, and populating a correlation matrix of the

necessary size would therefore be largely guesswork. Given

these constraints, we suggest that the best way forward is to

generate small test cases to assess the importance of correla-

tions in small data sets, but we leave this for future work.

5 Conclusions

We analyzed emissions from 129 countries and 58 sectors

with 31 SLCFs and GHGs, estimating countries’ territorial

and consumption-based emissions for 2007. We use top-

down uncertainty estimates to derive sector-level uncertain-

ties, and use these to perturb the economic data, emissions

data, and metric parameters in a Monte Carlo model. We find

the results are sensitive to some parameters (such as the un-

certainty of the climate response and the data sets) and as-

sumptions (such as developing countries are assigned twice

the uncertainty for emissions and economic data), but espe-

cially to choices regarding allocation perspective, pollutants

included, metric used, and aggregation level of the results.

We find only minor uncertainty differences between allo-

cation perspectives (production versus consumption) for the
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top regions, and uncertainties in the economic data are very

small for the large countries. Since economic data generally

do not have uncertainty information, it was necessary to es-

timate the uncertainties of the economic data and there is lit-

tle data to verify our estimates. At the sectoral level, larger

differences between production and consumption are found.

The inclusion of SLCFs increases both the emissions and

metric uncertainties, and gives larger variations between re-

gions and sectors. A different choice of time horizon would

change the prioritization of the gases and corresponding un-

certainties. At the global level, the metric uncertainty (which

is dominated by climate sensitivity) dominates emission and

economic uncertainty. At the regional level, the uncertainties

from emissions are more important.

Our work points to key areas of future research required to

reduce uncertainties. The climate sensitivity generally dom-

inates uncertainties, and this is where the largest improve-

ments can potentially be made. Most climate sensitivity liter-

ature focuses on the long-term sensitivity, whereas for met-

rics (and undoubtedly most mitigation analysis), the tempo-

ral path to the equilibrium response is most relevant (impulse

response function). Thus, we suggest much deeper analysis

is needed on the time evolution of the temperature response.

Emission statistics are routinely collected but generally have

poorly defined uncertainties. Our work indicates that large

improvements in the reporting and analysis of emission un-

certainties are needed. Additional metric uncertainties can be

improved through a better characterization of metric param-

eters (radiative efficiencies and lifetimes). Reducing uncer-

tainties in metrics and emission statistics will reduce both un-

certainties in production- and consumption-based emissions.

The uncertainty in the economic data was necessarily based

on crude assumptions. While we found that the economic un-

certainties were small, this result requires confirmation by

more comprehensive analyses, including, critically, uncer-

tainty correlations, which were excluded from our analysis.

Reducing uncertainties in the economic data will have the

effect of reducing uncertainties in consumption-based emis-

sions only.
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