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Abstract. A global sensitivity analysis is performed to describe the effects of astronomical forcing on the

climate–vegetation system simulated by the model of intermediate complexity LOVECLIM in interglacial con-

ditions. The methodology relies on the estimation of sensitivity measures, using a Gaussian process emulator as

a fast surrogate of the climate model, calibrated on a set of well-chosen experiments. The outputs considered are

the annual mean temperature and precipitation and the growing degree days (GDD). The experiments were run

on two distinct land surface schemes to estimate the importance of vegetation feedbacks on climate variance.

This analysis provides a spatial description of the variance due to the factors and their combinations, in the form

of “fingerprints” obtained from the covariance indices. The results are broadly consistent with the current un-

derstanding of Earth’s climate response to the astronomical forcing. In particular, precession and obliquity are

found to contribute in LOVECLIM equally to GDD in the Northern Hemisphere, and the effect of obliquity on

the response of Southern Hemisphere temperature dominates precession effects. Precession dominates precipi-

tation changes in subtropical areas. Compared to standard approaches based on a small number of simulations,

the methodology presented here allows us to identify more systematically regions susceptible to experiencing

rapid climate change in response to the smooth astronomical forcing change. In particular, we find that using

interactive vegetation significantly enhances the expected rates of climate change, specifically in the Sahel (up

to 50 % precipitation change in 1000 years) and in the Canadian Arctic region (up to 3◦ in 1000 years). None

of the tested astronomical configurations were found to induce multiple steady states, but, at low obliquity, we

observed the development of an oscillatory pattern that has already been reported in LOVECLIM. Although the

mathematics of the analysis are fairly straightforward, the emulation approach still requires considerable care in

its implementation. We discuss the effect of the choice of length scales and the type of emulator, and estimate

uncertainties associated with specific computational aspects, to conclude that the principal component emulator

is a good option for this kind of application.
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1 Introduction

The seasonal and spatial distribution of incoming solar radia-

tion (insolation) at the top of the atmosphere is determined by

three astronomical parameters: Earth’s eccentricity, the lon-

gitude of the perihelion, and Earth’s obliquity. The variation

in these parameters causes sufficient changes in insolation to

significantly affect climate, such as the distribution of sur-

face temperature, vegetation cover, monsoon rainfall, Arctic

sea ice, etc. These changes can be simulated and studied by

means of experiments with global climate models. One clas-

sical approach consists in identifying two epochs in the past

for which sufficient data are available, running the climate

model (with the implicit assumption that simulated climate

is quasi-stationary with respect to the astronomical forcing),

and then comparing the two resulting simulated climates.

This is the approach followed, for example, by the Paleocli-

mate Modelling Intercomparison Project (Braconnot et al.,

2007).

The difference between the two epochs may then be fur-

ther decomposed into contributions of several factors. Sup-

pose we want to compare the beginning and the end of the

last interglacial. These two periods, distant by 11 000 years,

are characterised by significant climatic differences (e.g.

Sanchez-Goñi et al., 1999). The difference in insolation forc-

ing is caused by a change in the position of the perihelion on

Earth’s orbit (this is the precession process) and a decrease

in obliquity. Based on a series of transient experiments, Cru-

cifix and Loutre (2002) suggested that the sum of individual

effects of precession and obliquity during the Eemian are less

than their combined effects. In the model experiments dis-

cussed in that article, this is caused by feedbacks associated

with the responses of vegetation and sea ice.

Tuenter et al. (2003) investigated the difference between

individual and combined effects more generically, without

reference to specific epochs of the Quaternary. They per-

formed a set of seven experiments with different combina-

tions of precession and obliquity spanning the range of values

reached during the Quaternary. They found that “the ampli-

tude of the [North African] precipitation response to obliq-

uity depends on precession, while the precipitation response

to precession is independent of obliquity”. The fact that the

response to obliquity depends on precession may be inter-

preted as a second-order effect.

One difficulty appears when one points to the possibility

that second-order effects may be significant during certain

epochs, or at certain critical locations only. A local analysis,

focused on specific periods, such as the study by Crucifix

and Loutre (2002), may thus by chance over- or underem-

phasise second-order effects. The approach of Tuenter et al.

(2003) is more global in the sense that it does not refer to a

specific epoch, but the coverage of astronomical forcing con-

figurations may be too coarse to a detect second-order effects

reliably enough.

To see how the problem may be formulated statistically,

let us use vector x to express the astronomical forcing. Then,

let us denote the output of a model run at configuration x by

f (x). The vector x varied in the past, and we can estimate its

distribution by reference to existing astronomical solutions.

If we assume that the climate model represents reality and

that the climate is quasi-stationary with respect to the as-

tronomical forcing, then f (x) reflects the past evolution of

climate. We can in particular enquire about the variance in

f (x) caused by the distribution of x, decompose this vari-

ance into contributions from individual factors (precession

and obliquity in this example), and then check for second-

order effects. This is the principle of global sensitivity anal-

ysis (Homma and Saltelli, 1996; Saltelli et al., 2004), for

which there exist methods specifically tailored for complex

numerical simulators.

We therefore propose to carry out a global sensitivity anal-

ysis of the climate model of intermediate complexity LOVE-

CLIM (Goosse et al., 2010) to the astronomical forcing.

We provide geographic distributions of the contributions of

obliquity and precession on precipitation and temperature.

We also attempt to detect regions where fast climate re-

sponses may occur in response to the slow changes in astro-

nomical forcing. The objectives of this work are twofold. The

first is climatic: we would like to determine the respective

roles of astronomical factors on interglacial climate change

and contribute to the discussion on the mechanisms of glacial

inception and interglacial duration with a focus on climate–

vegetation interactions, adding to the discussion in de No-

blet et al. (1996), Claussen et al. (1999), Crucifix and Loutre

(2002), Kageyama et al. (2004), and Meissner et al. (2003).

Our second objective is methodological: while global sen-

sitivity analysis is well established in statistics, it has only

recently been applied to climate problems. Lee et al. (2011),

for example, performs a global sensitivity analysis of a global

atmospheric model associated with a complex aerosol model

in order to decompose model output uncertainty into contri-

butions from eight uncertain parameters (see also Lee et al.,

2013; Carslaw et al., 2013). Although our scientific objective

is different (we want to decompose forced climate variances

induced by variances in forcing factors), the methodologi-

cal approach that will be followed here is broadly similar to

that of Lee et al. (2011) and Oakley and O’Hagan (2004):

(a) choose the experimental design to efficiently fill the in-

put space (here, the space of astronomical forcings); (b) run

LOVECLIM in these experiments; (c) train and validate an

emulator, that is, a stochastic statistical model used to pre-

dict the function f (x) at any input point, based on the output

of the experiments actually run; and (d) use the emulator to

estimate sensitivity indices. Emulation has been increasingly

used in climate science in recent years as a tool to explore in-

put spaces with the aim of calibrating the model on observa-

tions and estimating climate sensitivity (Rougier et al., 2009;

Holden et al., 2010; Schmittner et al., 2011). We explore the

potential of this methodology for our specific application,
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with a discussion of its possible advantages, challenges, and

drawbacks compared to more classical approaches.

2 Methodology

2.1 Choice of input factors

In palaeoclimatology, it is common to refer to the time of

the year using the true solar longitude (λ), that is, the geo-

centric angle between the vernal equinox and the position

occupied by the Earth at any point during the year. For ex-

ample, the June solstice corresponds to λ= 90◦, the Septem-

ber equinox to λ= 180◦, etc. For the purpose of computing

insolation at a given time of year, we need the true solar lon-

gitude at perihelion, that is, the true solar longitude corre-

sponding to the shortest Earth–Sun distance. This quantity

is denoted $ . The shape of the Earth’s orbit is elliptic and

characterised by eccentricity e. Finally, the angle between the

ecliptic and the equator is called the obliquity and denoted ε.

It may then be shown that the secular evolution of the top-of-

the-atmosphere incoming solar radiation at any latitude and

any true solar longitude is reasonably well approximated by

a linear combination of i1 = e sin$ , i2 = ecos$ , and i3 = ε

(Loutre, 1993). The quantity i1 is often referred to as the cli-

matic precession parameter. As i1, i2, and i3 are not corre-

lated, the three inputs can be viewed as a canonical form of

the astronomical forcing parameters. In particular, their sig-

nature on the season–latitude distribution of incoming solar

radiation is characteristic: i1 and i2 control the Earth–Sun

distance at any true solar longitude with very little effect on

annual mean insolation1, and i3 controls the seasonal contrast

as well as the annual mean insolation.

The time evolution of the astronomical parameters over

the Pleistocene is well known (Berger, 1978b; Laskar et al.,

2004). Note that, 99 % of the time, eccentricity e < 0.05 and

the inner 99th percentile of ε is 22.3 to 24.3◦, these bound-

aries differing by less than 0.1◦ if the Berger (1978b) or

Laskar et al. (2004) solution is used as the reference.

2.2 Experiment design

As specified above, the climate model we use is the ocean–

atmosphere–vegetation model of intermediate complexity,

“LOVECLIM” (Goosse et al., 2010). The choice of inputs

for the experiments are encoded in an input factor matrix

denoted X, which has three columns corresponding to the

inputs i1,2,3, and which has as many rows as ensemble mem-

bers (27 experiments in our case). There is a rich literature

on experiment design sampling techniques, and, for exam-

ple, the monograph by Santner et al. (2003) is specifically

dedicated to computer experiments. As a general rule, given

a fixed number of experiments to be run, one objective is to

1A small effect on the global annual mean insolation emerges as

a result of variations in eccentricity.

maximise the information that can be inferred from the ex-

periment set. If we use a Gaussian process (GP) emulator (as

here), this criterion corresponds to minimising the posterior

variance in the GP predictions (Sacks et al., 1989). Another

objective is to minimise the bias in the quantities to be es-

timated. Finding an adequate design is thus an optimisation

problem, and generally not a straightforward one, because

the GP hyper-parameters are not known a priori, and so the

design must trade off the need to learn these parameters with

the need to minimise the prediction variance. In practice, an

effective approach consists in using Latin hypercube designs

(McKay et al., 1979; Morris and Mitchell, 1995; Urban and

Fricker, 2010) with specific properties, such as maxi–min

properties (where we maximise the minimum Euclidean dis-

tance between any pair of design points) or orthogonality (in

this case, maximising X′X). Hybrid designs combine several

such properties and can be theoretically justified as good so-

lutions for Gaussian process emulation (Joseph and Hung,

2008). Out-of-the-box packages can be used to produce Latin

hypercube designs (e.g. the lhs package; Carnell, 2012), but

they are unsuited to our needs as we face an additional con-

straint: we want to avoid wasting computational effort sam-

pling eccentricities > 0.05, which translates into a constraint

on the quantity i21 + i
2
2 . (Vernon et al., 2010) and (Draguljić

et al., 2012) provide examples of designs for non-rectangular

input spaces. The algorithm used here (Appendix A) is simi-

lar to that of (Vernon et al., 2010): it satisfies the constraint on

eccentricity while aiming at near orthogonality and max–min

properties. The choice of n= 27 experiments arises from the

general recommendation of (Loeppky et al., 2009) to perform

10 experiments per input dimension. We used 27 members

(and not 30) in order to compare with a factorial design of 33

members (Bounceur, 2015).

The resulting design is shown in Fig. 1. It is executed three

times. Two ensembles use the standard version of LOVE-

CLIM with the VECODE vegetation model (Brovkin et al.,

1997) but with two distinct sets of initial conditions. The first

ensemble uses the pre-industrial conditions provided by de-

fault in the LOVECLIM model package. The second uses

the final state of member 2 of the first ensemble. This is

a so-called warm orbit (high obliquity, high eccentricity, and

$ ' 90◦) that produces extensive vegetation cover in the

Northern Hemisphere and in the Sahara region. Every ex-

periment is run for 2000 years, and the data used for the fol-

lowing analysis are obtained by averaging the last 500 years.

The purpose of using two distinct initial conditions is to

detect potential co-existence of multiple steady-state solu-

tions. Brovkin et al. (1998), for example, found two sta-

ble equilibria for certain orbital configurations when us-

ing the same vegetation model as here, but a different

atmosphere–ocean system. If such multiple states were to

co-exist, then the simulator output would need to be emu-

lated using a multi-modal process rather than a (unimodal)

Gaussian process as used here. Our initial intention was to

build two distinct emulators: one using the warm orbit as

www.earth-syst-dynam.net/6/205/2015/ Earth Syst. Dynam., 6, 205–224, 2015
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Figure 1. Two-dimensional projections of the experimental design. The experiment marked in red (experiment 20) was discarded from the

analysis.

initial conditions, and one using the cold orbit. In practice,

the two emulators ended up being redundant (Sect. 3.1), and

thus a third of our computational budget was thus spent on

replicating essentially identical runs. However, this could not

have been easily foreseen, and we feel this was worth the

cost so as to avoid the risk of missing the existence of mul-

tiple steady states. The third ensemble uses the same initial

conditions as the first but considers the original “ECBILT”

surface scheme with fixed vegetation (Opsteegh et al., 1998)

and not the VECODE model. We chose to build a third inde-

pendent emulator in this case, but we note that “multi-level

emulation” approaches, which associate similar but differ-

ent simulators (Cumming and Goldstein, 2009), could po-

tentially have increased our predictive accuracy by allowing

us to make better use of the limited computational resource.

We leave this option as a possible subject for further investi-

gation.

2.3 Global variance measures

In the present application the inputs (the astronomical forc-

ing) are known, and we want to estimate the simulator output

variance induced by separate and/or combined variations of

the different forcing factors. Recall that we defined f (x) to

be the simulator response at input vector x, which contains

the values of the three astronomical forcing terms. Let ρ(x)

be the time-wise occupation density of the input space during

the Pleistocene, which can be estimated from standard astro-

nomical solutions (Berger, 1978b; Laskar et al., 2004). The

total variance in the output associated with the variations of

factors may then be expressed as

V := Var(f (x)), (1)

where the variance operator means that we are sampling

(varying) x following the distribution ρ(x). As f (x) is a vec-

tor, V is a matrix with elements giving covariances between

any output pair.

Suppose we are now interested in the variance in the sim-

ulator output caused by the variation of a subset of the input

factors only. Let xi denote a subset of the components in x,

and let x−i be the remaining components. For example, if i is

obliquity, −i will be the indices associated with eccentricity

and precession.

We define the following quantities (e.g. Saltelli et al.,

2004): the main effect, η(xi), is the expected output condi-

tional on the value of xi , i.e. η(xi)= E[f (x)|xi]; the main

effect variance is the variance in the main effect with respect

to xi : Vi = Var[η(xi)].

On the other hand, the output variance associated with fac-

tors xi varying while the factors x−i are fixed is denoted

Var(f (x)|xi). This is a function of the value of the fixed fac-

tors x−i . If we further average this variance over possible

values of x−i , that is, we take the expectation of this quan-

tity with respect to x−i , we obtain the total effect variance

associated with factor xi , denoted Ti :

Ti : = E
[
Var(f (x)|x−i)

]
.

Similarly,T−i = E
[
Var(f (x)|xi)

]
. (2)

The law of total variance implies Vi := V−T−i , so that

we can see that the main effect variance may be interpreted

as the expected loss of output variance resulting from fixing

(knowing) the value of xi . The standardised quantity Vi/V

is commonly referred to as the main effect index, and Ti/V

as the total effect index (cf. Homma and Saltelli, 1996, and

Saltelli et al., 2004).

To estimate these sensitivity indices, we extend the frame-

work established by Oakley and O’Hagan (2004) for one-

dimensional scalar simulator outputs to multi-dimensional

vector outputs. Let X , Xi , and X−i be the domains of the

input factors x, xi , and x−i , respectively. The total variance

can be explicitly written as

V=

∫
X

f (x)f (x)′ρ(x)dx

−

∫∫
X×X

f (x)f (x?)′ρ(x)ρ(x?)dxdx?. (3)

The main effect is computed as follows:

η(xi)=

∫
X−i

f (x)ρ(x−i |xi)dx−i, (4)

Earth Syst. Dynam., 6, 205–224, 2015 www.earth-syst-dynam.net/6/205/2015/
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where ρ(x−i |xi) is the conditional density of x−i given xi .

Because our knowledge of f (x) is limited to the ensemble of

model runs, we are uncertain about the value of η(xi) for all

values of xi . The approach described in Oakley and O’Hagan

(2004) is to build an emulator of f (x) that can predict its

value for any input configuration x. They use a Gaussian pro-

cess (GP) model for the emulator, with mean function m(x)

and covariance function between f (x) and f (x∗), which we

will denote 6(x,x∗). Because the emulator is a Gaussian

process, the main effect η(xi), which is a linear transforma-

tion of f (x), is also a Gaussian process, and has mean and

variance functions

M i(xi) =

∫
X−i

m(x)ρ(x−i |xi) dx−i, (5)

Si(xi,x
?
i ) =

∫∫
X−i×X−i

6(x,x?)ρ(x−i |xi)ρ(x?
−i |x

?
i )

dx−idx
?
−i . (6)

It follows that

Ef (Vi) =

∫
Xi

[
M i(xi)M

′

i(xi)+Si(xi,xi)
]
ρi(xi)

dxi −C, (7)

where Ef denotes expectation with respect to the emulator,

and

ρi(xi) =

∫
X−i

ρ(xi |x−i) dxi, (8)

M tot =

∫
X

m(x)ρ(x) dx, (9)

C =

∫
X

m(x)m(x)′ρ(x)dx+

∫∫
X×X

6(x,x′)ρ(x)

ρ(x′)dxdx′. (10)

The expectation of the total variance V of the simulator out-

put is

Ef (V) =
[
M totM

′
tot+Stot

]
−C,with Stot =

∫
6(x,x)

ρ(x)dx. (11)

From now on, it will be implicit that the V, Vi , and Ti
are estimated with the emulator and the symbol Ef will be

dropped. Specifically, we refer to T{e$ } as the total effect

variance associated with precession, and Tε as that associ-

ated with obliquity.

Finally, we refer to the quantity V−T{e$ }−Tε = Tε−Tε
as the synergy term. More generally, Ti −Vi is a measure

of how much the factor i is involved in interactions with

any other input variable. The word “synergy” is commonly

used in the climate literature to express the difference be-

tween the model response to different factors varied together,

and the sum of the responses to factors individually. Unlike

the global sensitivity indices discussed here, synergy terms

are classically estimated on the basis of a reference experi-

ment, and comparing changes one at a time with combined

changes in the different factors, following a method called

factor separation analysis (Stein and Alpert, 1993; Alpert and

Sholokhman, 2011; see, for example, Crucifix and Loutre,

2002; Ganopolski et al., 1998; Claussen, 2009; Braconnot

et al., 1999; Berger, 1999; Henrot et al., 2010; Wohlfahrt

et al., 2004).

2.4 Emulator

2.4.1 Motivation

As the outputs of our simulator are spatially resolved climate

quantities, we need to build an emulator capable of modelling

multivariate outputs. A simple pragmatic solution is to train

independent emulators for each grid point, which is done by

Lee et al. (2011). There are, however, several other possibil-

ities for multivariate emulation (see, for example, Rougier,

2008). The main challenge is defining a covariance function

for generating the covariance matrix6(x,x∗) in order to pro-

duce a valid covariance function for the Gaussian process.

See Fricker et al. (2013) for discussion. Here, we propose

the principal component (PC) emulator (Higdon et al., 2008;

Wilkinson, 2010) as a cost-effective and statistically reason-

able alternative to point-wise emulation. The advantages of

this choice are commented on in Sect. 2.6. The derivation

of sensitivity indices with PC emulation is largely based on

published material, which we elaborate on here in order to

introduce the notation leading to the final Eq. (18). To our

knowledge, this has not been given elsewhere. The reader

mainly interested in the emulator performance and climato-

logical analysis may immediately jump to Sect. 3.

2.4.2 Principal component decomposition

Let Y denote the matrix in which each column represents

the output of one experiment, i.e. Y= [f (x(1)), . . .,f (x(n))],

where x(j ) is the input of experiment j . For example, if we

want to emulate annual mean surface temperature, f is a vec-

tor of p = 2048 components (the number of grid points). De-

note the p vector of row averages of Y by Y . We now define

the centred matrix Y? = Y−Y1′p, with 1p a vector of length

p with all components equal to 1, and consider the singular

value decomposition (SVD) Y? = UDV′,where D is a diago-

nal matrix and U and V are square orthonormal matrices. The

columns of U represent the basis vectors, {uk}, and the pro-

jection coefficients are given by VD. For the j th experiment,

the coefficient for the kth basis vector is ak(x
(j ))= Vj,kDkk .

Wilkinson (2010) keeps the first ` eigenvectors only (or-

dered by decreasing eigenvalues). This is sometimes known

www.earth-syst-dynam.net/6/205/2015/ Earth Syst. Dynam., 6, 205–224, 2015
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as “hard-thresholding regularisation” (Silverman, 1996), and

results in a reduced-order model: f (x)≈
∑`
k=1ak(x)uk.

Thus, for any input x, the emulator output prediction will

lie in the space spanned by the {u1. . .u`}. The error associ-

ated with hard-thresholding is accounted for in the covari-

ance of the estimator (see Sect. 2.5).

2.4.3 Emulation of PC scores

We then need to predict the ak(x) based on the experiment

output ak(xi). This is done by considering ` Gaussian pro-

cess (GP) models (Rasmussen and Williams, 2005). We sup-

pose the prior mean of each GP is h(x)′βk , where h(x) is

a vector of q known regression functions and βk is the vec-

tor of corresponding regression coefficients. This prior mean

is conditional on parameters βk , which will then need to be

estimated. For the present application, h(x) is simply de-

fined as (1,x1,x2,x3)′ (linear regressors), so that h(x)′βk =

1+βk,1x1+βk,2x2+βk,3x3.

We then define the following:

– H, the matrix which has row i equal to the regressors

h(xi);

– yk = (ak(x1), . . .,ak(xn))′, the vector of PC scores we

wish to emulate;

– ck(x,x
?)= cor(ak(x),ak(x

∗)), the correlation function

for ak(·). This is typically a monotonically decreasing

function of the distance between the two points. We let

Ak be the n×nGram matrix, with Ak[i,j ] = ck(xi,xj ).

If each ak(·) is modelled as a Gaussian process, then we have

a Gaussian prior predictive distribution for y conditional on

βk and σk , with yk ∼N (Hβk,σ
2
k Ak).

The interpretation of this model is that the simulator re-

sponse is the sum of a mean response function, expressed as

the linear combination of regressions, and a stochastic com-

ponent (a zero-mean Gaussian process) that absorbs devia-

tions from the mean response.

In order to estimate σ 2
k and βk , we assume a con-

jugate non-informative prior distribution, i.e. π (βk,σ
2
k )∝

σ−2
k (Berger et al., 2001). This allows σ 2

k and βk to be

marginalised out of the analysis, resulting in a posterior dis-

tribution of the simulator output that is a Student t distribu-

tion with n− q degrees of freedom, with mean and variance

functions

mk(x) = h(x)′β̂k + tk(x)′ek, (12)

6k(x,x
?) =

ˆ
σ 2
k [ck(x,x

?)− tk(x)′A−1
k tk(x

?)

+pk(x)′(H′A−1
k H)−1pk(x

?)], (13)

where

ˆ
σ 2
k =

1

n− q − 2
(e′kA

−1
k ek), β̂k = (H′A−1

k H)−1H′A−1
k yk,

tk(x)j = ck(x,xj ), pk(x)′ = h(x)′− tk(x)′A−1
k H, and ek =

A−1
k (yk −Hβ̂k).

We primarily use the squared exponential covariance func-

tion with a nugget term for each ck (as discussed at length in

Andrianakis and Challenor, 2012):

ck(xi,xj )= exp[−(x′i3
−2
k xj )] + νkIi=j , (14)

where 3k is a scaling matrix chosen to be diagonal and νk
is a “nugget”, which we will discuss shortly. The diagonal

elements of 3k are commonly called the length scales. The

parameters 3k and νk are then found by optimising a pe-

nalised likelihood L
(pen)

k of the Gaussian process associated

with the principal component k, as a function of 3k and νk .

The expression of Lk is given in (Andrianakis and Challenor,

2012):

logLk(νk,3k) =−
1

2
(log(|Ak||H

′A−1
k H|)

+(n− q) log(
ˆ
σ 2
k ), (15)

logL
(pen)

k (νk,3k) = logLk(νk,3k)− 2ν2
k

(yk −Hβ̂k)
′A−2
k (yk −Hβ̂k)

(yk −Hβ̂k)
′(yk −Hβ̂k)

. (16)

The role of the penalty is to guarantee smaller Gaussian pro-

cess variances than would be obtained by least-squares re-

gression.

The nugget term, νkIi=j , was originally introduced to

account for measurement errors in geospatial data analy-

sis (Cressie, 1993). In emulators of deterministic systems,

the nugget may also be justified as a regularisation ansatz

to avoid poor matrix conditioning (Pepelychev, 2010) or as

a way to account for the mis-specification in the correlation

function (Gramacy and Lee, 2012). In climate model appli-

cations, the nugget may also be justified as a way to account

for “internal variability”. Indeed, the chaotic dynamics of

the simulator are such that a particular climate average over

a given time window can be viewed as a stochastic quan-

tity, even though the simulator is deterministic. In the climate

modelling parlance, the effect is referred to as uncertainty as-

sociated with the internal simulator variability. For example,

in Araya-Melo et al. (2015), we found that our estimate of

the nugget is consistent with the assumption that this term

represents the uncertainty due to simulator variability. This

is also the interpretation adopted by Williamson et al. (2014)

(both studies use the climate model HadCM3). In the present

application, we use rather long climate averages (500 years)

and we anticipate that internal variability will be of the same

order as the error associated with the truncation of the princi-

pal components. It may thus not be appropriate to interpret νk
as an indicator of internal variability, and we therefore chose

not to do so.

Finally, two options will be considered to estimate the dif-

ferent 3k and νk associated with the different principal com-

ponents: (1) maximise Lk independently for each k or (2) use
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the same parameters for all k, i.e. 3k =3, and νk = ν and

optimise
∑`
k=1Lk . Although option (2) does not maximise

the likelihood of the emulator taken as a whole, it presents

computational benefits in the context of global sensitivity

analysis as we show next. Whichever option is used, the 3k
and νk are, once chosen, considered as known. In particu-

lar, the means and variances given in Eqs. (12) and (13) are

conditional on the values of these parameters.

2.5 Recombination of PC scores

The emulator posterior distribution for predictions of LOVE-

CLIM’s outputs f (x) follows a distribution with mean and

covariances functions given by

m(x) =
∑̀
k=1

mk(x)uk, (17)

6(x,x?) =
∑̀
k=1

6k(x,x
?)uku

′

k︸ ︷︷ ︸
6(gp)

+

n∑
k=`+1

D2
kk

n
uku
′

k︸ ︷︷ ︸
6(pc)

. (18)

The covariance matrix of the emulator for LOVECLIM is

thus of dimension p×p and provides information on the joint

uncertainty of any two simulator outputs.

Variance indices may now be obtained by pluggingmk and

boldsymbol6k (Eqs. 12 and 13) into Eqs. (17) and (18) to

obtain m and 6 and then using these expressions in Eq. (7).

Although these operations can be performed numerically,

there is a computational advantage in processing the equa-

tions symbolically. Details are given in Appendices B and C.

2.6 Short discussion of possible advantages over the

independent emulator approach

Now that the notation and relevant concepts have been in-

troduced, the potential advantages and drawbacks of the PC

emulator and the independent emulator approaches may be

briefly summarised as follows:

– The PC emulation is based on the calibration of `

Gaussian process models per output field (temperature,

precipitation, GDD). We use `= 10 (justified below).

We note that computational cost may be saved by us-

ing the same length scales for all Gaussian processes,

though in practice computational costs remain afford-

able even when using independently optimised length

scales. Consequently, the impact of the same length-

scale assumption may be assessed more easily than it

would be if we used 2048 independent emulators (i.e.

the number of grid points) for each output.

– As the PC emulation approach requires fewer emula-

tors, more time can be spent individually validating each

of them.

−10

0

10

0 500 1000 1500 2000

−
25

−
5

Figure 2. Slow oscillations developing in experiment 20 (e =

0.040, $ = 334.6◦, ε= 22◦). The surface annual temperature over

one of the North Atlantic grid points is shown (inset, in ◦C) along

with the geographic distribution of the difference between the warm

and the cold phases. The horizontal red line in the inset is the emu-

lator prediction, calibrated on the 26 remaining experiments.

– In some regions there may be only small variation in

the simulated output as the input parameters change. If

independent emulators are used for each grid cell, esti-

mating the hyper-parameters for these cells can be diffi-

cult without applying some sort of parameter regularisa-

tion, and, moreover, the computational effort of building

the emulator is unnecessary (as the output is constant).

The global principal component emulator is therefore

preferable in these situations, as these constant regions

are automatically accounted for in the principal compo-

nent variance decomposition.

– Finally, the PC emulator provides covariance indices be-

tween any two simulator outputs. It therefore allows us

to analyse the spatial structure of the simulator response

to individual and combined factors.

3 Results

3.1 Sensitivity to initial conditions

For all ensemble members but two (experiments 20 and 27),

the runs with distinct initial conditions converged to the same

output, modulo small variations that can be attributed to

sampling variability (see Supplement). Experiment 27 shows

a higher-amplitude variability pattern, but clearly oscillates

around one mean value and, as we will shortly see, this mean

is correctly captured by the emulator. It is therefore kept

without further discussion for all subsequent analyses. Ex-

periment 20 used the lowest configuration of obliquity (22◦).

This is lower than any obliquity that occurred during the

Pleistocene (22.07◦ following Laskar et al., 2004). In this

configuration, LOVECLIM develops a slow oscillation pat-

tern that may be reminiscent of Dansgaard–Oeschger oscilla-

tions: millennial transitions between a warm and a cold North
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Atlantic phase, with fast warming and slow cooling (Fig. 2).

The phenomenon is a known feature of LOVECLIM (Goosse

et al., 2002; Loutre et al., 2014). It can be described as the ap-

parition of a cold North Atlantic phase that is being visited

stochastically and increasingly frequently as obliquity de-

creases. This cold phase is being visited shortly once during

an entire (additional) experiment at obliquity of 22.5◦ (low-

est 7th percentile of Pleistocene obliquities). The oscillation

itself could be of physical relevance for past climate vari-

ability, but the limits of the phase space region in which the

oscillation occurs are also likely to depend on many other un-

certain parameters of the model. One possible action would

be to use a sequential design strategy to delineate the region

of occurrence of the phenomenon and develop an emulator

aimed at characterising this oscillation. In particular, history-

matching theory provides adequate concepts and methods to

this end (Williamson et al., 2013). Given the likely sensitiv-

ity of the oscillation on model parameters, the significance

of this enterprise for palaeoclimate interpretation is unclear.

We choose to ignore the experiment for the time being (the

following diagnostics ignore experiment 20), but we discuss

the possible consequences of this decision in the final dis-

cussion. In statistical terms, we provisionally condition the

analysis on the hypothesis that these oscillations do not oc-

cur in the phase space.

3.2 Validation and choice of PC emulator

We concentrate on three output fields: annual precipitation,

growing degree days (GDD), and annual mean temperature.

GDD is defined here as the annual sum of daily temperatures

(in degrees Celsius) exceeding 0 ◦C. It is used as a calendar-

independent indicator of summer intensity and length in

extra-tropical regions, and the vegetation model VECODE,

used in LOVECLIM, uses GDD and annual precipitation to

predict the dynamics of vegetation (Brovkin et al., 1997). For

simplicity, GDD is estimated from monthly means, that is,

30 times the sum of monthly mean temperatures for which

this temperature is above zero. In equatorial and subtropical

regions this information is equivalent to annual mean tem-

perature. Furthermore, we use the logarithm of annual pre-

cipitation rather than precipitation, as the former is closer to

being Gaussian distributed than the latter.

The decomposition in principal components is effective,

with 99 % of the variance on average over all grid points

captured by the first four (annual temperature) to eight prin-

cipal components (Fig. 3). As discussed in the methodology

section, two options are considered for the estimation of the

length scales and nugget variance3 and ν. We first attempt to

use different correlation parameters obtained by maximising

the penalised likelihood for each principal component emu-

lator, independently of the others. It is then observed that the

Gaussian process likelihood decreases with the index of the

PC (Fig. 4). This is a natural result if we think of the fact that,

as the index of the PC increases, its spatial pattern becomes

more noisy and dependent on idiosyncrasies of the analysis

such as the specific experiment design, experiment length,

and initial conditions. They are thus less informative about

the model itself, and scores are more difficult to predict with

a smooth Gaussian process. The likelihood stabilises around

PC 10 to a minimum value that indicates that the calibrated

GP is not more informative than assuming independence of

outputs on inputs. We therefore use `= 10. The alternative

approach consists in using the same correlation parameters

for all PCs, in which case they are found by maximising the

product of Gaussian process likelihoods.

Our evaluation strategy is based upon the leave-one-out

cross-validation approach: for each member of the experi-

ment design, a PC emulator is trained using the remaining de-

sign runs (using the correlation parameters estimated above).

The means and standard deviations of the resulting emulator

are then found for the design member left out. Figure 5 shows

(bars) the number of grid points correctly predicted within

the central 66th, 95th, and 99th credible intervals. A well-

calibrated emulator would, on average, correctly predict 66,

95, and 99 % of the points, respectively, in each category.

Some remarks are in order:

1. Based on this diagnostic only, using constant rather

than PC-specific correlation parameters does not signif-

icantly affect the overall performance. This is explicitly

shown for GDD, but is also true of the other fields.

2. However, all fields exhibit an excessive number of pre-

dictions outside the central 99th credible interval. An-

nual mean precipitation is, in this respect, less well pre-

dicted than the others, perhaps not surprisingly given

that precipitation responds less straightforwardly to in-

solation changes than temperature.

3. There are an excessive number of predictions within the

66th central credible interval.

3.3 Astronomically forced variance vs. other effects

The total variance V resulting from the astronomical forcing

can be estimated from Eq. (11). Here we compare the esti-

mated total variance with other effects that may broadly be

described as sources of uncertainties on this quantity (Fig. 6).

For the assessment specific to this subsection, we considered

the uniform distribution ρ(x)= 1 over the cube in order to

be able to provide analytical integrals, and hence isolate the

effects associated with Monte Carlo sampling. The following

observations can be made:

– The variance associated with the input factors largely

dominates other sources of uncertainty.

– The error caused by the Monte Carlo approximation

of the integrals, estimated by comparing these Monte
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Figure 3. PCA decomposition of the logarithm of annual precipitation, GDD, and annual temperature fields based on the experiment design.

Shown are the cumulated normalised variances resolved by the principal components (red) and the remaining variance (blue), which is

modelled as white noise in Eq. (18), as a function of `. Quantities are grid-cell averages.
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Figure 4. Gaussian process parameters maximising the penalised log likelihood for three variables: GDD, log(annual precipitation), and

annual temperature, either (black) optimised for each PC independently or (blue) optimised based on the product of the likelihoods of the

first 10 PCs, assuming that the same correlation parameters are used on all PCs. The maximised log likelihood associated with each PC is

given for reference.

Carlo integrals with the analytical solution in the partic-

ular case of a uniform distributions for x (ρ(x)∝ 1), is

of the order of 0.5 % of the total variance.

– Slightly different variance estimates are obtained de-

pending on whether we use the same length scales for

all PC or not, or whether we use independent emula-

tors or the PC emulator. The difference over a grid point

is on average 2.5 % of the mean grid-point variance.

Different estimates will also be obtained with the in-

dependent emulators over all grid boxes depending on

the length scales being used; only one length scale was

tested here. The Supplement further shows that the pat-

terns of the global sensitivity indices are similar regard-
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Figure 5. Evaluation of the PC emulators. The bars give the fraction of grid points for which the emulation correctly predicts the value of

the experiment left out of the training set, within the 66th, 95th, and 99th inner quantiles of the distribution. The horizontal lines indicate

the theoretical position of the percentiles for well-calibrated emulators. Dots provide root mean squares of the differences between predicted

and actual values. The graphical layout is adapted from the recommendation of the “Modelling Uncertainty in Computer Model” project,

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ExamMultipleOutputsPCA.html.

less which emulator is used, so that this choice is of no

consequence for the scientific interpretation.

– The term “GP var” explicitly refers to Stot defined in

Eq. (11): shown here is the mean of the diagonal of this

matrix, equal to the mean of the Gaussian process vari-

ance over all grid points, averaged over the input space.

Again this is a small term, which is of the same order of

magnitude as the grid-box mean uncertainty associated

with the choice of initial conditions.

– The absolute value of the synergy term, measured as the

difference between the total variance and the sum of the

mean sensitivity indices, is also of the same order as the

different sources of uncertainty just discussed.

3.4 Grid-point-wise variance analysis

The variance indices over the different grid points are the di-

agonal elements of the matrices V, T{e$ }, and Tε. They pro-

vide essentially the same information as could be obtained

using emulators independently calibrated over all grid boxes,

as follows (see Fig. 7):

1. Precipitation is mainly controlled by precession over

western Africa and Australia. This is expected given

the known control of precession on monsoon dynamics

(e.g. Zhao et al., 2007). The absence of large variance

patterns in South East Asia and South America, other-

wise expected, may be a consequence to the limitations

of LOVECLIM in simulating tropical weather systems.

Note also the significant influence of obliquity in the

most western part of North Africa.

2. GDD exhibits distinctive responses across the hemi-

spheres. While this quantity is controlled in the North-

ern Hemisphere by both precession and obliquity (pre-

cession dominates), Southern Ocean temperature is al-

most exclusively controlled by obliquity.

Earth Syst. Dynam., 6, 205–224, 2015 www.earth-syst-dynam.net/6/205/2015/

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ExamMultipleOutputsPCA.html


N. Bounceur et al.: Climate–vegetation response to astronomical forcing 215

3. Annual mean temperature has the highest variance near

the poles. Again, Northern Hemisphere temperature is

equally controlled by precession and obliquity, while

obliquity dominates the variance in the Southern Hemi-

sphere.

3.5 Fingerprint analysis

The PC emulator, however, allows us to go one step further

than the independent emulator strategy. As the full covari-

ance matrices V and Ti are available, linear fingerprints may

be obtained by performing an SVD of these covariance ma-

trices (Fig. 8). Specifically, the eigenvectors T{e$ } and Tε
are called the “fingerprints” of precession and obliquity, re-

spectively. The first fingerprint of obliquity explains more

than 90 % of the variance in all three variables considered

here. Precession aggregates two inputs (e sin$ and ecos$ ).

It can therefore be expected to have at least a second signifi-

cant fingerprint. This is the case, but this second component

represents less than 30 % of the variance. We come to that

shortly. Compared to the point-wise variance analysis above,

the main advantage of the fingerprint analysis is that it pro-

vides information on the in-phase or anti-phase relationships

between climate variables, as follows:

– Obliquity produces in-phase effects on monsoon-related

precipitation both in the Northern and in the Southern

Hemisphere (compare Africa and northern Australia,

while precession causes opposite-phase effects. This

pattern is easily explained by reference to insolation.

Indeed, obliquity causes in-phase responses of summer

insolation in both hemispheres, while precession causes

anti-phased responses.

– Obliquity produces an equator–pole see-saw response

of annual mean temperature, with, however, a weaker-

amplitude response at the equator than in the extratrop-

ical regions. Again, this consistently reflects the pattern

of annual mean insolation (Loutre et al., 2004).

Note also that fingerprints of precession and obliquity are

not orthogonal and thus cannot be readily recovered by prin-

cipal component analysis of the model outputs. For refer-

ence, we estimated the variance decomposition of the PC

scores associated with precession and obliquity (decomposi-

tion and maps of principal components available in the Sup-

plement). The variance analysis reveals a mixture of preces-

sion and obliquity effects on each principal component.

Coming back to precession, we expect the simulated re-

sponse phase to differ from place to place. To illustrate this

point, we plot the emulated precipitation as a function of the

longitude of the perihelion for three points along the African

monsoon flow. We assume obliquity and eccentricity typical

of the Holocene (Fig. 9), and indicatively denote longitudes

of perihelion corresponding to the time of the beginning of

the Holocene (11 000 years ago), as well as 6000 years ago,

a reference period used for model intercomparison exercises

(Braconnot et al., 2007). The timing of the maximum re-

sponse is gradually shifted towards a late phase response as

one travels northwards. This observation can be explained

by considering the seasonal development of monsoon dy-

namics, along with the course of the zenithal sun. According

to this analysis, the most favourable epoch for a “Green Sa-

hara” experiment with a global climate model would there-

fore be around 9000 years, corresponding to the choice of

early modelling experiments on this subject (Street-Perrott

et al., 1990).

3.6 Detection of fast changes

Assuming that the climate system responds fast enough to

changes in astronomical forcing, the time evolution of the

climate system may in principle be simulated by forcing

the emulator with a realistic evolution of astronomical forc-

ing. Unfortunately, the output cannot be readily compared

to observations because we are neglecting here other signifi-

cant forcing elements, such as changes in land ice cover and

greenhouse gas concentrations (Araya-Melo et al., 2015, as

well as Bounceur, 2015). This exercise may, however, help

us to detect regions where, potentially, the climate system

may respond with steep gradients to the smooth astronomical

forcing changes in interglacial conditions. Specifically, we

estimate the maximum rate of change of a climate variable,

expressed in terms of units per thousands years (Fig. 10). In

order to enhance the palaeoclimatological interest of this dis-

cussion, we compare the experiments with interactive vege-

tation to those with fixed land-surface properties, hereafter

referred to as VOFF. As a reading guide, a climate variable

responding linearly and exclusively to precession with stan-

dard deviation 1 would show a maximum rate of change of

0.82ky−1; a variable responding linearly and exclusively to

obliquity with 1 standard deviation would show a maximum

rate of change of 0.35ky−1. On this basis, comparing Fig. 10

with 7 allows us to detect two regions of potentially rapid

changes:

The western Sahara: rate of changes expressed on the log

scale are of the order of 0.4 per thousand years, that is,

about 50 % precipitation change in 1000 years. This is

a well-known feature explained by feedbacks between

vegetation and climate (Brovkin et al., 1998), discussed

specifically in LOVECLIM by Renssen et al. (2003).

The North American sector of the Arctic, including both

northern Canada and sea-ice-covered regions: rates of

temperature changes are of the order of 3 ◦C per thou-

sand years.

These hotspots almost disappear with the fixed-land-cover

scheme, underlining the role of vegetation response. How-

ever, the fact that the North American hotspot region extends

over the Arctic Ocean also suggests a role for sea-ice cover,
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which further amplifies vegetation-induced effects. Such in-

teractions between Arctic vegetation and sea ice have already

been suggested to have played a role in Arctic climate change

during the Holocene (Ganopolski et al., 1998).

4 Discussion

Let us first review and comment upon the results of palaeo-

climate significance presented here. Naturally, they are con-

ditional on the use of the specific simulator considered here

(LOVECLIM) and must be considered critically given that

LOVECLIM is an imperfect representation of reality:

1. Precession and obliquity both contribute to annual tem-

perature. Precession generally has a greater effect in the

Northern Hemisphere and tropical regions, and obliq-

uity is the dominant forcing in the Southern Hemi-

sphere. The fact that obliquity has proportionally more

influence on southern than northern annual mean tem-

perature in the extra-tropical latitudes is physically rea-

sonable. Indeed, precession does not affect annual mean
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insolation, but it may affect the annual mean climate by

acting on the seasonal cycle of albedo associated with

sea-ice, snow, and vegetation feedbacks. The latter two

naturally depend on the presence of continental masses,

which occupy a larger fraction of the Northern than

Southern Hemisphere. This dichotomy between South-

ern and Northern Hemisphere responses was previously

noted by Yin and Berger (2012), based on LOVECLIM

simulations of previous interglacial periods, who then

referred to it as one of the elements needed to explain

the occurrence of the “Mid-Brünhes Event” (Yin, 2013).

It is also consistent with observations, namely

– the prominence of obliquity signals in Southern

Hemisphere records, and more particularly Antarc-

tic cores, be it CO2 concentration (Petit et al., 1999;

Siegenthaler et al., 2005; Luethi et al., 2008) or deu-

terium excess (Vimeux et al., 2002);

– the contrasting dynamics between southern records

and northern continental records, such as Baïkal’s,

during isotopic stage 11 (Prokopenko et al., 2002).

2. GDD is used here as a measure of summer length and

intensity. We considered it because it is used in VE-

CODE as a predictor for vegetation changes. This quan-

tity is also mathematically equivalent to the positive-

degree days (PDD) index used as a predictor of net

snow accumulation balance over ice sheets (e.g. Pol-

lard and DeConto, 2005). We see here that GDD is, in

the Northern Hemisphere, approximately equally sensi-

tive to precession and obliquity. Crucifix (2011), based

on Berger (1978a), noted that the Milankovitch’s caloric

season insolation is also equally sensitive to precession

and obliquity. Hence, this result is consistent with the

proposal by Ruddiman (2007) to use caloric season in-

solation as a predictor for ice age inception.

3. We find a fairly strong obliquity effect on North African

precipitation. This has been noted before, in particular

by Tuenter et al. (2003) (using the same atmosphere

model as LOVECLIM but a different ocean model) and

Bosmans et al. (2015) (using a higher-resolution model

called EC-EARTH). Both studies emphasise the global

character of the climate response to obliquity and inter-

pret the response of North African precipitation pattern
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Figure 10. Maximum rate of change, in units per thousand years, estimated using the PC emulator and assuming a quasi-stationary climate

and interglacial conditions.

to changes in large-scale atmospheric circulation pat-

terns.

4. Vegetation feedbacks substantially increase the climate

change rate in the Arctic and in the Sahel. The response

is slightly non-linear (best seen, for example, in Fig. 9),

but not to the point of generating multiple steady states

in response to a same astronomical configuration. In

other words, all 27 experiments of the design converge

to the same state (the particular case of experiment 20

is discussed in one of the next points). This is consis-

tent with previous transient simulations with this model

(Renssen et al., 2003), but we note that Brovkin et al.

(1998) report multi-stability of the western Sahara in the

early Holocene, leading to a bifurcation associated with

the abrupt desertification of the Sahara during the mid-

Holocene (Claussen et al., 1999). It remains unclear

whether possible multiple stable states persist when

more sophisticated land-surface–vegetation schemes as-

sociated with finer spatial resolution are used (see, for

example, Kleidon et al., 2007; Dekker et al., 2010). On

the other hand, model intercomparisons support the ex-

istence of a single stable state in the high latitudes (e.g.

Brovkin et al., 2003).

5. Our methodological approach allows us to document re-

sponse phases of precipitation patterns associated with

the African monsoon. In particular, we found that the

northward penetration of African monsoon is at a maxi-

mum when the perihelion is reached in August. Indeed,

in this configuration, average levels of spring insolation

can prevent excessive warming of the ocean surface dur-

ing this season, while high positive June-July-August

insolation anomalies effectively enhance the warming

of the subtropical continent. This combination max-

imises the contrast between ocean and continental tem-

perature during the monsoon season. Again, the result

needs to be qualified with the usual cautionary remarks

about the simplification of tropical dynamics in a model

like LOVECLIM.

6. Instabilities of the North Atlantic circulation develop at

very low obliquities. The effects of these instabilities

have not been taken into account in the variance diag-

nostics discussed here. We note in particular that obliq-

uities as low as those necessary to trigger the oscilla-

tions would, in the real world, also be associated with

the development of ice sheets. The latter could further

complicate the dynamics in the North Atlantic region.

We therefore limit ourselves to observe that such oscil-

lation dynamics, if they were to occur in specific inter-

glacial configurations, would dominate the astronomi-

cal sources of variance examined here.

A perhaps more surprising result of our analysis is the

smallness of the synergy terms. Crucifix and Loutre (2002)

outlined the significance of a synergy between preces-

sion and obliquity during the last interglacial period. They

noted that effects of precession and obliquity may combine

and produce non-linear effects associated with the taiga–

tundra transition in the Arctic area, not incompatible with

what we find here about rates of changes in the Canadian

Arctic. We explain this paradox by observing that metrics

provided by global sensitivity analysis are aimed at deter-

mining whether the total effect variances, assessed over the

whole Pleistocene, add up linearly or not. In LOVECLIM,

total variances indeed add up roughly linearly. This does not

exclude that non-linear effects may episodically dominate at

critical periods.
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5 Conclusions

We have presented a global sensitivity analysis of the effects

of astronomical forcing on the climate model LOVECLIM

in interglacial conditions. The work relies on the method-

ology of PC–Gaussian process emulation to explore the in-

put space and deliver spatially resolved variance indices. In

particular, we introduce the fingerprints as the eigenvectors

of the covariance indices obtained from global sensitivity

analysis to provide a spatial description of the effects of the

individual factors. From a palaeoclimatological perspective,

the results shown here are broadly consistent with the cur-

rent understanding of Earth’s climate response to the astro-

nomical forcing. Compared to standard approaches based on

a small number of simulations for well-defined past epochs,

the methodology presented here allows us to identify more

systematically regions susceptible to experience rapid cli-

mate change in response to the smooth astronomical forcing

changes, and examine the response phase of climate change

to precession. We do not have to rely on transient experi-

ments, so the methodology is readily applicable to more com-

plex climate models, but we have to rely on the assumption of

quasi-stationarity of the climate response to the astronomical

forcing. Although the mathematics are fairly straightforward,

the emulation approach requires considerable care in its im-

plementation. We discussed the effect of the choice of length

scales and the type of emulator and estimated uncertainties

associated with specific computational aspects such as the

Monte Carlo estimates of integrals, and have concluded that

the PC emulator is a reasonable option. We therefore recom-

mend its use for future applications.
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Appendix A: Experiment design algorithm

The following algorithm was used to generate the experiment

design.

1. The three factors are first standardised so that they

cover the ranges [−1,1], i.e., we use i1 = e sin$/0.05,

we use i2 = ecos$/0.05, and i3 = (ε− 23.5)/1.5. Let

x= (x1,x2,x3) be a point of the input space, where the

xi are the three factors.

2. Set dm0 = 0, and detinit = 0.

3. Sample a Latin hypercube design of N = 27 points in

the 3-dimensional cube [−1,1]3, as follows:

(a) Divide the interval [−1,1] into N equal-width in-

tervals and number the middle of each interval. Let

x(i) be the midpoint of the ith interval.

(b) Generate three random permutations of i = 1...N ,

denoted nj = {ni,j }
N
i=1 for j = 1,2,3.

(c) Form the matrix X, with Xi,j = x
(
ni,j

)
4. For every point of the design, check if the constraint

i21 + i
2
2 < 1 is verified (i.e., eccentricity smaller than

0.05). If not, omit the point and keep the design with

N∗ simulations

5. Sample a Latin hypercube of N−N∗ points in [−1,1]3

and augment the design X:

6. Repeat (4−5) until the dimension of the design X equals

N

7. Calculate the minimum distance dm between any two

points of the design X.

If dm > dm0, then

(a) set dm0 = dm,

(b) set X̂= X.

(c) If det(X̂′X̂)> detinit, then

i. set detinit = det (X̂′X̂),

ii. set X̃= X̂.

8. Repeat (3− 7) 1000 times. Keep the design X̃.

Appendix B: Analytical expressions for variance

indices

If the Gaussian process parameters ν and 3 are independent

of the principal component k, then, similar to Oakley and

O’Hagan (2002), one may define

Ai =
∫
Xi

∫∫
X−i×X−i

h(x)h(x?)′ρ(x−i |xi)ρ(x?
−i |x

?
i )

dx−idx
?
−idxi, (B1)

Bi =
∫
Xi

∫∫
X−i×X−i

t(x)h(x?)′ρ(x−i |xi)ρ(x?
−i |x

?
i )

dx−idx
?
−idxi, (B2)

Ci =
∫
Xi

∫∫
X−i×X−i

t(x)t(x?)′ρ(x−i |xi)ρ(x?
−i |x

?
i )

dx−idx
?
−idxi, (B3)

Di =
∫
Xi

∫∫
X−i×X−i

c(x,x?)ρ(x−i |xi)ρ(x?
−i |x

?
i )

dx−idx
?
−idxi, (B4)

Ei =
∫
Xi

∫∫
X−i×X−i

p(x)′(H′A−1H)−1p(x?)ρ(x−i |xi)

ρ(x?
−i |x

?
i )dx−idx

?
−idxi, (B5)

such that

Vi =
∑̀
k=1

∑̀
k?=1

(
β ′kAiβk? +β

′

kBiek? + e
′

kBiβk? + e
′

kCiek?
)

uku
′

k? +

∑̀
k=1

σ̂k(Di − tr(A−1Ci)+ Ei)uku′k −C, (B6)

where the formula for C involves quantitiesA0, B0, etc. sim-

ilar to the above but whereX−i is the whole domain and there

is no integral over Xi . That is, we define

A0 =

∫∫
X×X

h(x)h(x?)′ρ(x)ρ(x?)dxdx?, (B7)

B0 =

∫∫
X×X

t(x)h(x?)′ρ(x)ρ(x?)dxdx?, (B8)

C0 =

∫∫
X×X

t(x)t(x?)′ρ(x)ρ(x?)dxdx?, (B9)

D0 =

∫∫
X×X

c(x,x?)ρ(x)ρ(x?)dxdx?, (B10)

E0 =

∫∫
X×X

p(x)′(H′A−1H)−1p(x?)ρ(x)ρ(x?)

dxdx? (B11)
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and

C=
∑̀
k=1

∑̀
k?=1

(
β ′kA30βk? +β

′

kB0ek? + e
′

kB0βk? + e
′

kC0ek?
)
, (B12)

uku
′

k? +

∑̀
k=1

σ̂k(D0− tr(A
−1C0)+ E0)uku

′

k. (B13)

If the emulators for the different principal components use

different Gaussian process parameters, then the integrals Ai ,
Bi , etc. need to be computed for all possible combinations

k,k?, which is, for 10 PCs, an increase in computing cost by

a factor of 45.

Appendix C: Computation of integrals

Integrals (B1)–(B5) have the general form∫
Xi

∫∫
Xi×Xi

g(x,x?)ρ(x−i |xi)ρ(x?
−i |x

?
i )dx−idx

?
−idxi . (C1)

The integrals may be computed analytically in the partic-

ular case of ρ = 1 over the cube [0,1]3 for the astronomi-

cal forcing (i.e. ρ(x)= 1 over the cube [0,1]3), assuming a

squared-exponential correlation function and linear regres-

sors, as used here. The computations involve the erf and the

incomplete-gamma functions, which can be computed with

the gsl scientific library (Gallassi et al., 2009) made avail-

able in the “gsl” R package by R. Hankin. The more complex

density function ρ associated with the actual course of astro-

nomical forcing must be accounted for by means of a Monte

Carlo algorithm, based on Homma and Saltelli (1996):

1. Sample q vectors, x(j ), j = 1. . .q following the density

ρ(x), that is,

– if we are in the case ρ(x)= 1, then sample the uni-

form distribution;

– if we are actually sampling the astronomical forc-

ing, then generate an ensemble of possible units

by computing the history of astronomical forcing

(e.g. between −107 years and 0 at an interval of

1000 years with the astronomical solution of Berger

(1978b)), and then sample q elements of this en-

semble.

2. Shuffle the vectors x to produce a sequence x?(j ), j =

1. . .q.

3. For every j , modify the components [i] of x?(j ) to make

them equal to those of x(j ), i.e. x
?(j )
i ← x

(j )
i .

4. The sum
∑q

j=1g(x(j ),x?(j )) converges to the integral

(C1) as q→∞.

By comparison with analytical integrals we found that accu-

rate estimates are obtained in this application for q = 10 000.

In this case, all the computations of sensitivity indices needed

for the scientific discussion take about 10 min on a laptop at

time of writing if all PC components use the same Gaussian

process parameters ν and 3, or a couple of hours if parame-

ters are different for each component.

We carried out the analytical computations to compare in-

dependent and PC emulators, and also to have a reference for

estimating the accuracy of our Monte Carlo simulations. The

Monte Carlo simulations accounting for the true astronomi-

cal forcing distribution are used for the palaeoclimatological

discussion.
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