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Abstract. Northern Hemisphere (NH) temperature records from a palaeoclimate reconstruction and a number
of millennium-long climate model experiments are investigated for long-range memory (LRM). The models are
two Earth system models and two atmosphere–ocean general circulation models. The periodogram, detrended
fluctuation analysis and wavelet variance analysis are applied to examine scaling properties and to estimate a
scaling exponent of the temperature records. A simple linear model for the climate response to external forcing
is also applied to the reconstruction and the forced climate model runs, and then compared to unforced control
runs to extract the LRM generated by internal dynamics of the climate system. The climate models show strong
persistent scaling with power spectral densities of the formS(f ) ∼ f −β with 0.8 < β < 1 on timescales from
years to several centuries. This is somewhat stronger persistence than found in the reconstruction (β ≈ 0.7).
We find no indication that LRM found in these model runs is induced by external forcing, which suggests that
LRM on sub-decadal to century time scales in NH mean temperatures is a property of the internal dynamics of
the climate system. Reconstructed and instrumental sea surface temperature records for a local site, Reykjanes
Ridge, are also studied, showing that strong persistence is found also for local ocean temperature.

1 Introduction

The presence of long-range memory (LRM) in climatic
records is well documented in the geophysics literature.
LRM is characterized by an algebraically decaying auto-
correlation function (ACF) limt→∞ C(t) ∝ t−γ such that∫

∞

0 C(t)dt = ∞, i.e. 0< γ ≤ 1. Equivalently, the power
spectral density (PSD) of LRM time series follows a power
law limf →0S(f ) ∝ f −β , whereβ = 1− γ and 0< β < 1.
A typical model for an LRM stochastic process is the per-
sistent fractional Gaussian noise (fGn). This is a stationary
process with 0< β < 1. The cumulative integral (or sum) of
such a process has the PSD of the formS(f ) ∼ f −β , but with
β → β+2. Such a process with 1< β < 3 is a non-stationary
LRM process called a fractional Brownian motion (fBm).

In short time series the ACF estimator is biased and noisy,
which makes it difficult to use it for estimating properties of
a power-law tail. The reason for the bias is that the sample

mean will have to be used, rather than the true mean, in the
estimation of the ACF (Lennartz and Bunde, 2009b; Rypdal
et al., 2013). In this paper we use the periodogram to esti-
mate the PSD as the first crude characterization of the data,
and employ the periodogram, detrended fluctuation analysis
(DFA) and wavelet variance analysis (WVA) for parameter
estimation.

Most of the LRM studies of climatic time series inves-
tigate local time records (e.g.Pelletier, 1997; Weber and
Talkner, 2001; Eichner et al., 2003), but LRM has also been
found in global observed temperature records (Lennartz and
Bunde, 2009a) and reconstructed temperature records for
the Northern Hemisphere (Rybski et al., 2006; Mills , 2007).
Some surface temperature records from atmosphere–ocean
general circulation model (AOGCM) climate models have
been analysed with the main result that LRM is not repro-
duced in agreement with that of observational temperature
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(Syroka and Toumi, 2001; Bunde et al., 2001; Govindan
et al., 2001, 2002; Bunde and Havlin, 2002). Some of the
model experiments produce temperature with multiple scal-
ing regimes, and some of them yield smaller scaling expo-
nents than the observational temperature. However, inSy-
roka and Toumi(2001), Bunde et al.(2001), andGovindan
et al. (2001) the model experiments all had greenhouse gas
forcing as the only dynamic forcing, while remaining exter-
nal forcings, such as total solar irradiance and volcanic ef-
fects, were kept constant.Govindan et al.(2002) andBunde
and Havlin(2002) used experiments (i) where all forcings
were fixed, (ii) with fixed forcings except greenhouse gas
forcing, and (iii) with fixed forcings except greenhouse gas
plus aerosol forcing. Their main conclusion was that the tem-
perature from the model experiments fails to reproduce the
scaling behaviour found in observational data, and that the
models display large differences in scaling from different
sites. Of these scenarios, the one with dynamic greenhouse
gas plus aerosol forcing performed better with respect to
producing the scaling observed in instrumental temperature
records. Global fields of observed and simulated surface tem-
peratures from an AOGCM climate model experiment were
studied inFraedrich and Blender(2003). The experiment was
run with fixed forcings. The result from observational data
was mostly in agreement with previous studies of temper-
ature in oceanic and coastal regions, but the authors found
white noise scaling (β ≈ 0) at continental interiors. Analysis
of a 1000-year temperature simulation from the model exper-
iment produced similar scaling exponents to what was found
for the observational data in this study.Blender and Fraedrich
(2003) made a similar analysis of temperature from two dif-
ferent model experiments with dynamic greenhouse gas forc-
ing, giving results in agreement withFraedrich and Blender
(2003).

Temperature from model experiments with constant forc-
ings, and time-varying greenhouse gas, sulfate aerosol,
ozone, solar, volcanic forcing and various combinations was
studied inVyushin et al.(2004). Scaling exponents for tem-
perature at 16 land sites and 16 sites in the Atlantic Ocean
were estimated. They found that inclusion of volcanic forcing
considerably improved the scaling behaviour.Rybski et al.
(2008) used model experiments with all constant forcing and
with dynamic solar, volcanic and greenhouse gas forcing.
They analysed data from grid cells all over the globe, but did
not investigate global or hemispheric means. They found that
for the forced run experiment the temperature showed a scal-
ing exponent in agreement with observational temperature,
while the temperature from the control run showed generally
lower persistence.

Studies of LRM in temperature records from climate
model experiments mostly use temperature from local sites,
and some also use temperature spatially averaged over larger
regions. Global mean temperature was studied bySyroka and
Toumi (2001), but hemispheric means have not been stud-
ied with regard to LRM. For observational and reconstructed

temperature, global and hemispheric means are also far less
studied than local data.

In the present study we analyse scaling properties of sur-
face temperature for the Northern Hemisphere (NH) from
palaeoclimate simulations and compare to those of temper-
ature reconstruction byMoberg et al.(2005) which spans the
last two millennia. Hemispheric temperature records from
four different Earth system climate models are analysed, and
both forced runs and control runs are investigated. In order
to avoid effects of anthropogenic forcing only data up to the
year 1750 are used. This will give an idea of what role other
natural external forcing like solar, CO2, volcanic and aerosol
forcing play in producing LRM, and indicate whether LRM
can arise from internal dynamics alone.

Separation of the LRM arising from internal dynamics
from the LRM induced by external forcing can also be
achieved from reconstructed and simulated temperature data
if the forcing data are known. The method makes use of
a simple linear model for the global temperature response
(Rypdal and Rypdal, 2013). The response to the external
forcing can then be computed and subtracted from the ob-
served or modelled temperature record to yield a residual
which represents the internal variability of the climate sys-
tem. Analysis of this residual and temperature from forced
runs and control runs are compared for those models where
temperatures from both forced runs and control runs are
available.

This paper is organized as follows: Sect.2 describes the
DFA and WVA methods and the response model. Informa-
tion about the models and the data used can be found in
Sect.3, and the results from the analysis are presented in
Sect.4. Discussion and conclusion follow in Sect.5.

2 Methods

2.1 Estimation of power spectral density

The periodogram for the evenly sampled time series
x(1),x(2), . . . ,x(n) is defined in terms of the discrete Fourier
transformHm as

Sm =
2|Hm|

2

N
,m = 1,2, . . .,N/2.

Since our time unit here is the sampling time, the frequency
measured in cycles per time unit isfm = m/N . The smallest
frequency which can be represented in the spectrum, and the
frequency resolution, is 1/N , and the highest frequency that
can be resolved (the Nyquist frequency) isfN/2 = 1/2.

The periodogram has been heavily criticized as an esti-
mator for PSD for a number of reasons, but mainly because
of its poor signal-to-noise ratio. Standard error for a single
frequency is of the order of the mean, and it will not be im-
proved by a longer time series, because the number of fre-
quencies to which one can distribute the power increases
proportionally toN . This is a problem if we are interested
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in estimating the power in spectral peaks that are resolved
by the frequency resolution 1/N , but here we are concerned
with the overall shape of the spectrum. Windowing applied
to numerical realizations of fGns before computing the pe-
riodogram has a weak tendency to suppress the lowest fre-
quencies in the spectrum and hence destroy the scaling. For
this reason we show the log-binned periodogram in log–log
plots to give an intuitive feeling for the power-law and LRM
character (β > 0) of the spectra.

When estimating the spectral index from the periodogram,
one needs to keep in mind that the points will appear with
increasing density towards high frequencies in log–log plots
and hence, if there is imperfect scaling in the form of dif-
ferent slopes of the log–log curve in different parts of the
spectrum, such a fit will emphasize the higher end. In deal-
ing with LRM, however, we are mainly concerned with the
lower end of the spectrum, so a better approach would be
to compute the power in frequency bins which appear with
constant width on a logarithmic scale. Straight lines fitted
to frequency-binned power spectra will give a better repre-
sentation of the overall scaling properties of the signal. The
same idea applies to all the other techniques that will be de-
scribed in the following. These represent the scaling in terms
of timescaleτ , rather than frequency, but when fitting is done
in log–log plots we fit to curves where the scales are repre-
sented by points with constant separation on the log scale.

2.2 Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) (Peng et al., 1994;
Kantelhardt et al., 2001) was explicitly designed to remove
polynomial trends in the data. The method can be summa-
rized in four steps. First, we construct the cumulative sum
(the “profile”) of the temperature time seriesx(t), Y (i) =∑i

t=1x(t) − 〈x〉, where〈x〉 denotes the mean. In the second
step the profile is divided intoNτ = N/τ non-overlapping
segments of equal lengthτ . This is done both starting at the
beginning and at the end of the profile, so 2Nτ segments are
obtained altogether. In the third step, annth-order polyno-
mial is fitted to, and then subtracted from, each segment.
Thus, at this stage we have formed the detrended profile
Yτ (i) = Y (i) − pν(i), wherepν(i) is the polynomial fitted
to theνth segment. In the final step, the variance of each seg-
ment,F 2(ν,τ ) =

1
τ

∑τ
i=1Y 2

τ [(ν−1)τ +i], is computed. The
fluctuation function is given by the square root of the average
over all the segments,

F(τ) =

[
1

2Nτ

2Nτ∑
ν=1

F 2(ν,τ )

] 1
2

.

The scaling parameterβ is found through the relation

F(τ) ∝ τ (β+1)/2.

What we have described is thenth-order detrended fluctua-
tion analysis, denoted DFAn. It has the property of eliminat-

ing the effect of an (n − 1)th-order polynomial trend. In this
paper we employ second-order DFA, denoted DFA2, which
eliminates linear trends. DFA estimates ofβ has also been
shown to be rather weakly affected by oscillatory trends, pro-
vided the oscillation period is well inside the range of scales
investigated (Hu et al., 2001).

2.3 Wavelet variance analysis

The continuous wavelet transform is the convolution between
a time seriesx(t) and the rescaled wavelet9(t/τ):

W(t,τ ;x(t),9(t)) =

∞∫
−∞

x(t ′)
1

√
τ

9

(
t ′ − t

τ

)
dt ′.

The mother wavelet9(t) and all rescaled versions of it
must fulfil the criterion

∫
∞

−∞
9(t ′)dt ′ = 0. For LRM time se-

ries, the varianceVW (τ ) = (1/N)
∑N

t=1W2(t,τ ) scales as a
power law (Flandrin, 1992; Malamud and Turcotte, 1999),

VW (τ ) ∼ τβ .

The method is therefore known as wavelet variance analysis
(WVA). In this study we have used the Mexican hat wavelet,
which is capable of eliminating linear trends, and denote the
method WVA2. The properties of the WVA2 analysis are
similar to the DFA2 in that it usually yields similar values
of β. It is, however, much more sensitive to the presence of
additional oscillations in the data, which show up as wavy
structures in the functionVW (τ ). We use it in this paper
mainly as a tool (in addition to the periodogram) to detect
such oscillations.

2.4 The response model residual analysis

For the preindustrial period the most important contributions
to the external radiative forcingF(t) are orbital, solar vari-
ability and aerosols from volcanic eruptions. Orbital forcing
can be computed with high accuracy, and total solar irradi-
ation has been reconstructed for the last 10 millennia. Ex-
isting reliable reconstructions of volcanic forcing cover the
last millennium. The forcing data used here are further de-
scribed in Sect.3. The evolution of the global mean surface
temperature anomalyT on decadal to millennial timescales
can tentatively be modelled as a linear response toF(t) in
addition to a response to stochastic forcing from unresolved
spatiotemporal “turbulence” (e.g. forcing of the sea surface
temperature from atmospheric weather systems). A simple
stochastic–dynamic model (SDM) with an LRM response
function is (Rypdal and Rypdal, 2013)

T (t) = µ[

t∫
0

(t − s)β/2−1F(s)ds

︸ ︷︷ ︸
deterministic solution

+σ

t∫
0

(t − s)β/2−1dB(s)

︸ ︷︷ ︸
1/f βnoise

].
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HereB(s) is the Wiener stochastic process whose increment
dB(s) is a Gaussian white noise process andσdB(s) rep-
resents the stochastic component of the forcing.T (t) is the
temperature relative to the temperatureT0 at timet = 0 (the
beginning of the record) andF = F̃ +F0 is perturbed forcing
F̃ relative to that of a radiative equilibrium at surface tem-
peratureT0 plus the actual radiative imbalanceF0 at t = 0.
By definition F̃ (0) = 0. F0 is a model parameter which is
estimated from the data along with the other model param-
etersβ, µ and σ . The stochastic part of this solution (the
term to the right) has a power spectral density of the form
S(f ) ∼ f −β , and is fractional Gaussian noise (a stationary
process) ifβ < 1 and a fractional Brownian motion (nonsta-
tionary) if 1< β < 3.

Estimates of past changes in global climate forcing and
its various components exist for the instrumental period as
well as for the last millennium. This information can be used
in conjunction with the observed temperature records to per-
form maximum-likelihood estimates (MLE) of the parame-
ters of the model. The details of the MLE method applied
to this response model are explained inRypdal and Rypdal
(2013). In a short-range memory response model, the power-
law kernel(t−s)β/2−1 in the response model is replaced with
an exponentiale−(t−s)/τ , whereτ is the time constant. In
this case the parameterµ−1 can be interpreted as the effec-
tive heat capacity of the climate system. In the LRM response
modelµ−1 does not have a simple physical interpretation, al-
though it is (in combination withβ) a measure of the thermal
inertia of the system. The memory parameterβ estimated
from this model should be interpreted as the LRM parameter
for the internal temperature response, and hence the problem
of separating the LRM contribution from the forcing and the
internal LRM has been eliminated. Theβ estimated inRyp-
dal and Rypdal(2013) is β ≈ 0.75, which is not much lower
than the value estimated for the full temperature record from
detrending techniques like DFA and WVA. This shows that
the detrending techniques effectively eliminate the contribu-
tion toβ from the anthropogenic trend.

For the response model analysis in the present paper, all
forced temperature time series are provided together with
time series for the solar, volcanic and greenhouse gas forc-
ings. Other forcings may be included in the model simula-
tions, but they are not included in the analysis. If the ex-
act forcings used in the model experiments are not avail-
able, the forcing described inCrowley (2000) is used, here-
after referred to as the “Crowley forcing”. For the ECHO-
G forced run and the Moberg reconstructed temperature
(Moberg et al., 2005), the Crowley forcing is applied. For
the forced runs by COSMOS and HadCM3, the prescribed
model forcings were used as input to our response model.
For the LOVECLIM experiment, solar and volcanic forcings
prescribed for the model were used together with CO2 and
tropospheric aerosol forcings corresponding to the Crowley
forcing. The full forcing data in these four cases are shown
in Fig. 1.
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Figure 1. The different forcings used as input to the response
model: (a) Crowley forcing used with the Moberg reconstruction
and the ECHO-G simulation,(b) forcing used in the COSMOS ex-
periment,(c) in the LOVECLIM experiment and(d) in the HadCM3
experiment.

3 Data

3.1 The reconstruction of Moberg et al. (2005)

The reconstructed temperature presented inMoberg et al.
(2005) is a NH reconstruction covering the time period
AD 1–1979. The reconstruction is created from 11 low-
resolution proxy time series (e.g. ice cores and sediments,
1–180 year resolution) and seven tree-ring records (annual
resolution). The 18 local reconstructed temperature time se-
ries were first divided into an Eastern and a Western part.
Linear interpolation was then applied to all time series in or-
der to create annual mean values. The beginning and end of
the time series were padded with surrogate data so that they
all covered the time period 300 BC–AD 2300 to minimize
edge effects of the wavelet transform. The wavelet transform
(WT) with the Mexican hat wavelet basis function was then
applied using the set of 22 scales to generate 22 time series.
For each scale 1–9 (Fourier timescales< 80 years), the WTs
from the tree-ring proxy series were averaged. For the scales
10–22 (Fourier timescales> 80 years), the WTs from the
low-resolution proxy series were averaged. Scale 1–22 were
then merged, creating two full WT time series, one for the
Eastern and one for the Western NH. The two subsets were
then averaged, and the inverse WT was calculated, creating
a dimensionless NH temperature reconstruction. Finally, the
mean and variance of the reconstructed temperature time se-
ries were calibrated to correspond to the instrumental data
available for the time period 1856–1978.

3.2 Marine sediment SST reconstruction; Reykjanes
Ridge

The local sea surface temperature (SST) reconstruction ap-
plied in the following study is presented in detail inMiettinen
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et al. (2012). Past August SST has been reconstructed by
analysing marine planktonic diatoms from a composite ma-
rine sediment core, recovered at the Reykjanes Ridge in the
western subpolar North Atlantic (57◦27.09′ N, 27◦54.53′ W,
at 2630 m water depth). The composite core consists of a
54.3 cm long box core, and a 3.725 m long gravity core. The
general assumption is that the down-core diatomic microfos-
sil assemblages are related with past environmental condi-
tions at the core site. Marine diatoms are unicellular, pho-
tosynthetic algae with siliceous frustules. For this particu-
lar analysis, the down-core diatomic assemblages were con-
verted to August SST estimates by the weighted-average par-
tial least squares technique ofter Braak and Juggins(1993).
The SST reconstruction has an average temporal resolution
of 2 years for year 1770–2000 (box core), and 8–10 years for
year 1000–1770 (gravity core).

3.3 SST reconstruction from observations; Reykjanes
Ridge

A reconstruction based on instrumental observations was de-
veloped inSmith and Reynolds(2005). For the ocean, SST
was used, while surface marine air temperatures where left
out due to biases in the daytime temperatures. The SST anal-
ysis and a separate land surface air temperature analysis were
merged to form a monthly merged analysis from 1880 to
1997. The International Comprehensive Ocean–Atmosphere
Data Set (ICOADS) SST observations release 2 was the pri-
mary SST data, but the combined satellite and in situ SST
analysis ofReynolds et al.(2002) was also included. The
reconstruction was separated into low- and high-frequency
components, which were added for the total reconstruc-
tion. The low frequency was reconstructed using spatial and
temporal filtering, with a time filter of 15 years. The low-
frequency component was subtracted from the data before re-
construction of the high-frequency component using spatial
covariance modes. The method for reconstructing the data is
described in detail inSmith and Reynolds(2004). This re-
construction contains improvements over many earlier stud-
ies: It is globally complete, incorporates updates in ICOADS,
the analysis variance have less dependence on sampling com-
pared to some earlier analysis, and uncertainty estimates in-
dicate when and where the analysis is most reliable.

3.4 LOVECLIM model and experiment

The Earth system model LOVECLIM version 1.2 contains a
quasi-geostrophic model for the atmosphere (ECBilt2), cou-
pled to an ocean GCM (CLIO3) (Goosse et al., 2010). The
two models have 3 and 20 vertical levels, respectively. A ther-
modynamic sea-ice model is incorporated into the OGCM,
and the vegetation model VECODE is used to simulate the
dynamics of trees, grasses and deserts. It includes the evo-
lution of the terrestrial carbon cycle, while a separate model
LOCH simulates the ocean carbon cycle. Both the solubility

and the biological pumps are included in this model. Incor-
porated in LOVECLIM is also the ice-sheet model AGISM,
which consists of three modules: ice sheet flow, visco-elastic
bedrock and mass balance at the ice–atmosphere and ice–
ocean interfaces.

We apply surface temperature data from one experiment
with this model; “LOVECLIM Climate Model Simulation
Constrained by Mann et al. (2009) Reconstruction” (Goosse
et al., 2012). In this experiment, simulations are constrained
by the mean surface temperature reconstruction ofMann
et al. (2009). External forcing includes TSI (total solar irra-
diance), volcanic eruptions, land cover changes, orbital forc-
ing, greenhouse gases and aerosols. When we implement the
response model to these data, time series for the solar, vol-
canic and greenhouse gas forcing are applied. The solar forc-
ing time series is based on the reconstruction byMuscheler
et al.(2007). The volcanic activity time series originate from
Crowley et al.(2003) , while the greenhouse gas forcing used
is obtained fromCrowley(2000).

3.5 COSMOS ESM model and experiments

The COSMOS ESM model consists of GCMs for the at-
mosphere and the ocean (Jungclaus et al., 2010). The atmo-
spheric model ECHAM5 (Roeckner et al., 2003) has 19 ver-
tical levels, while the ocean model MPIOM (Marsland et al.,
2003) has 40. A thermodynamic sea-ice model is incorpo-
rated into the OGCM. Additional modules include the ocean
biogeochemistry model HAMOCC5 (Wetzel et al., 2006),
and the terrestrial biosphere model JSBACH (Raddatz et al.,
2007).

The surface temperature data applied in our analysis are
extracted from one experiment in a set of experiments re-
ferred to as “Ensemble Simulation of the Last Millennium
using the Comprehensive COSMOS Earth System Model”
(Jungclaus et al., 2010). External forcing used in the forced
simulations include TSI, volcanoes, orbital forcing, green-
house gases and land use change. An unforced control run is
also included in the comparative LRM study.

For the response model, time series for solar, volcanic and
greenhouse gas forcing are applied. The forcing time series
used are created specifically for this model and experiment
(Jungclaus et al., 2010). The solar forcing time series is based
on a combination of reconstructions; from the Maunder Min-
imum (AD 1647–1715) until today the total solar irradiance
(TSI) is based on historical sunspot records (Krivova and
Solanki, 2007; Balmaceda et al., 2007), and between 800 AD
and the Maunder Minimum the TSI is reconstructed from es-
timates of the solar open magnetic flux based on14C con-
centrations in tree rings (Solanki et al., 2004; Krivova and
Solanki, 2008; Usoskin et al., 2011). An 11-year solar cycle
has been superposed on this part of the reconstruction.

The relative radiative forcing from volcanic eruptions is
calculated from aerosol optical depth (AOD) and effective
radiusReff. Satellite data from the 1991 Mt Pinatubo eruption
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is the basis for these estimates. The greenhouse gas forcing
includes CO2, where concentrations are computed within the
model, based on historical records of fossil fuel emissions by
Marland et al.(2003).

3.6 ECHO-G model and experiments

The coupled model ECHO-G (Legutke and Voss, 1999) ver-
sion 4 consists of GCMs for the ocean/sea ice and the atmo-
sphere. The atmospheric model ECHAM4 (Roeckner et al.,
1996) includes 19 vertical levels, while the ocean model
HOPE-G (Legutke and Maier-Reime, 1999) includes 20 lev-
els. External forcing includes volcanoes, solar irradiance and
greenhouse gases. Suitable time series for the model forc-
ings were not available, and for this reason theCrowley
(2000) forcings are used in the response model study. Surface
temperature from two experiments is used for analysis: one
forced run and one control run with forcing values fixed to
year 1990 (Zorita et al., 2003; González-Rouco et al., 2003;
von Storch et al., 2004).

3.7 HadCM3 model and experiment

The Hadley Centre coupled model 3 is an AOGCM (Gor-
don et al., 2000), with 19 levels in the atmospheric com-
ponent HADAM3 (Pope et al., 2000) and 20 levels on the
ocean HADOM3 component. External forcing includes vol-
canoes, solar irradiance, greenhouse gases, land use change
and orbital variations. In the response model study, the time
series for volcanic forcing (Crowley et al., 2008), solar irradi-
ance (Steinhilber et al., 2009) and greenhouse gases (Schmidt
et al., 2011) from the model experiment were applied. The
complexity, time period covered, and temporal and spatial
resolution for each model experiment are given in Table1.

4 Results

When applying periodogram, DFA2 and WVA2 directly to
the temperature reconstruction records, all data up to the year
1750 are used. Because the Crowley forcing record starts at
AD 1000, only data from this year and forward were used in
the response model residual analysis of the Moberg recon-
structed temperature and the temperature from the LOVE-
CLIM experiment. Therefore the scales shown in the plots
may differ somewhat between the full record and the resid-
ual from the deterministic response. Table2 shows the result-
ing β from applying periodogram, DFA2 and WVA2 directly
to the full temperature and to the residuals from the deter-
ministic response. Theβ estimated using the response model
is also given, where the parameters of the response model
are estimated with the MLE method (Rypdal and Rypdal,
2013). The response model residual analysis is applied to the
temperature reconstructions and the temperature from forced
climate model experiments, while the direct analysis also in-
cludes control simulations. The scaling ranges used to findβ

Figure 2. (a) The Moberg reconstructed temperature.(b) PSD,(c)
DFA2, and(d) WVA2 applied to the record. The shaded areas are
the 95 % confidence range for synthetic fGn withβ estimated by
PSD, DFA2 and WVA2. Theβ-values are estimated from the slopes
of the straight lines and the range of scales used for estimation is
indicated by the length and position of these line segments. The
estimatedβ-values are indicated in the figure.

are shown in the figures and not given in the table. Figures2–
13 show the analysis of the temperature records. For the full
records, the figures show (a) the temperature data, and (b)
PSD, (c) DFA2, and (d) WVA2 applied to the data set. For
the response model results, the figures show (a) the temper-
ature data and deterministic response, (b) the residual, and
(c) PSD and (d) DFA2 applied to the residual. The residual
is the deterministic response interpolated to have the origi-
nal time resolution subtracted from the full-resolution tem-
perature data; 95 % confidence areas are shown for all three
methods, computed from Monte Carlo ensembles of syn-
thetic fGns. For the response-model analysis with PSD and
DFA2, the synthetic fGns are generated with theβ-value es-
timated by MLE, otherwise they are generated withβ found
from fitting straight lines to the log–log plots of the PSD,
DFA2 and WVA2 analysis, respectively. The values ofβ used
are indicated in each figure.

We have not given error bars on the estimatedβ-values in
each case. Such error bars can easily be estimated from fitting
straight lines to each realization in the Monte Carlo ensem-
bles, and computing probability density functions (PDFs) of
their slopes. This was done byRypdal et al.(2013) for time
series samples of similar lengths as studied here and error
bars of1β = ±0.2 (95 % confidence) was generally found
for all estimation methods. Hence, even though theβ es-
timates in this paper are given with two decimals, the last
decimal is hardly significant. The discrepancies in theβ es-
timates between the methods are within these error bars, and
hence there is no point in trying to explain these differences.
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Table 1. Information on temperature from model experiments

Climate model LOVECLIM ESM v. 1.2 COSMOS ESM ECHO-G HadCM3

Complexity interm. GCM GCM GCM
Time period covered AD 500–1750 AD 800–1750 AD 1000–1750 AD 850–1750
Temp. res. annual monthly monthly monthly
Spat. res. 5.63× 5.63 degrees 3.75× 3.75 degrees 3.75× 3.75 degrees 2.55× 3.75 degrees

Table 2. Estimatedβ from applying the PSD, DFA2 and WVA2 directly to the full temperature record (all temperatures), from PSD, DFA2
and WVA2 applied to the residuals from the deterministic response, and from the response model using MLE (temperature reconstruction
and temperature from the forced climate model run experiments). The error bars on all estimates are approximately1β ±0.2 (see main text).

Full record Residual Response model
PSD DFA2 WVA2 PSD DFA2 WVA2 MLE

Moberg 0.63 0.69 0.60 0.75 0.59 0.42 0.75
LOVECLIM forced 1.10 0.98 0.96 1.07 1.01 0.97 0.95
COSMOS forced 0.90 0.82 0.79 0.88 0.77 0.72 0.61
COSMOS ctrl 0.87 0.82 0.86
ECHO-G forced 0.99 0.91 0.90 0.86 0.72 0.84 0.75
ECHO-G ctrl 0.85 0.85 0.87
HadCM3 forced 1.14 1.12 1.17 0.89 0.90 0.86 0.82

Figure 3. (a) The Moberg reconstructed temperature (black) and
the deterministic response (red).(b) The residual from the deter-
ministic response.(c) PSD from the residual (black crosses) and
linear fit to the PSD in the scale range indicated by the red line seg-
ment. The valueβ = 0.75 estimated from this line segment is indi-
cated in the figure.(d) DFA2 applied to the residual (black crosses).
The straight line segment is a linear fit to the dots in the range indi-
cated by the length, and position of the line segment and the slope
yields an alternative estimateβ = 0.59 for the residual, indicated in
the figure. The shaded area in(c) and (d) is the 95 % confidence
range for synthetic fGn withβ = 0.75 estimated by MLE using the
response model.
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Figure 4. (a) The temperature from the LOVECLIM experiment.
(b) PSD,(c)DFA2, and(d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn withβ esti-
mated by PSD, DFA2 and WVA2. Theβ-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimatedβ-values are indicated in the figure.

4.1 Results from palaeoreconstruction of Moberg et
al. (2005)

Figure 2 shows the Moberg reconstructed temperature
record, its power spectral density (PSD) and the results of
DFA2 and WVA2 applied to the full record. As discussed
above, the scales up to∼ 10 years are not representative for
the temperature, and this is seen as a cross-over in the slope
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Figure 5. (a) Temperature from the LOVECLIM experiment with
1-year resolution (black) and deterministic response (red).(b) The
residual from the deterministic response.(c) PSD from the residual
(black crosses) and linear fit to the PSD in the scale range indicated
by the red line segment. The valueβ = 1.07 estimated from this line
segment is indicated in the figure.(d) DFA2 applied to the residual
(black crosses). The straight line segment is a linear fit to the dots in
the range indicated by the length, and position of the line segment
and the slope yields an alternative estimateβ = 1.01 for the resid-
ual, indicated in the figure. The shaded area in(c) and (d) is the
95 % confidence range for synthetic fGn withβ = 0.95 estimated
by MLE using the response model.

of the log–log periodogram and DFA2 and WVA2 fluctuation
functions. The deviation from a straight line at the largest
scales (lowest frequencies), which is most prominent in the
WVA2 fluctuation function, is caused by a nonlinear trend
associated with the two well-known climatic features of the
last 2000 years: the Medieval climate anomaly and the Lit-
tle ice age. The three methods yieldβ ≈ 0.63,β ≈ 0.69 and
β ≈ 0.60, respectively.

In principle the LRM properties due to internal dynamics
can be separated from those induced by the external forc-
ing by applying the response model method ofRypdal and
Rypdal(2013) described in Sect.2. This method allows esti-
mation of the model parametersβ, σ andµ from the Crow-
ley forcing data and the Moberg reconstruction record. Then
we can compute the deterministic response and the residual
obtained by subtracting this deterministic response from the
Moberg record. The residual represents the response to the
stochastic forcing and hence the internal variability of the
climate system. The scaling properties of this residual can
be assessed with the periodogram or the DFA method which
also provides a consistency test on the maximum-likelihood
estimate ofβ.

A caveat here is the low-pass filtered nature of the Moberg
record. The MLE method tends to emphasize the shorter
scales on which the reconstruction record is smooth, and this
will spuriously yieldβ ≈ 1. A way to avoid this could be to
coarse grain both temperature and forcing time series by av-

Figure 6. (a) The temperature from the COSMOS experiment.(b)
PSD,(c) DFA2, and(d) WVA2 applied to the record. The shaded
areas are the 95 % confidence range for synthetic fGn withβ esti-
mated by PSD, DFA2 and WVA2. Theβ-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimatedβ-values are indicated in the figure.

eraging over successive time windows of a certain lengthtA,
such that the temperature series is no longer smooth. This
will give a more reasonable maximum-likelihood estimate of
β, but the coarse-grained data cannot capture the causal con-
nection between the almost instantaneous volcanic forcing
spikes and the temperature response to them. The resulting
blurring of the causal connection on timescales shorter than
a decade has the effect that the MLE method interprets the
variability on these short scales as stochastic, and hence over-
estimates the stochastic forcing strengthσ , and also yields
incorrect estimates ofµ andβ. The lesson to learn from this
is that we cannot expect to obtain a correct separation of de-
terministic and stochastic forcing and correct parameter es-
timates from the low-resolution reconstruction data. Another
approach to circumvent this problem was suggested inRyp-
dal and Rypdal(2013), where the response model parame-
ters computed from the annual-resolution instrumental data
were applied to the millennium-long annual-resolution forc-
ing record to produce a deterministic-response record with
annual resolution. The Moberg record and this determinis-
tic response is shown in Fig.3a. The residual obtained by
subtracting the deterministic response from the reconstructed
record is shown in Fig.3b, and provides a good representa-
tion of the internal variability on timescales longer than a
decade. On shorter timescales the residual is strongly influ-
enced by the forced response due to the smooth character of
the temperature reconstruction, but we do not need to use
those scales to estimate model parameters if we do not insist
on using MLE. The PSD of the residual is shown to exhibit
good scaling in Fig.3c, and the DFA2 fluctuation function
of this residual on the longer timescales should provide good
estimates ofβ for the internal variability, as shown in Fig.3d.

Earth Syst. Dynam., 5, 295–308, 2014 www.earth-syst-dynam.net/5/295/2014/



L. Østvand et al.: Long-range memory in model experiments 303

Figure 7. (a) The temperature from the COSMOS control simula-
tion. (b) PSD,(c) DFA2, and(d) WVA2 applied to the record. The
shaded areas are the 95% confidence range for synthetic fGn with
β estimated by PSD, DFA2 and WVA2. Theβ-values are estimated
from the slopes of the straight lines and the range of scales used
for estimation is indicated by the length and position of these line
segments. The estimatedβ-values are indicated in the figure.

4.2 Results from LOVECLIM experiment

The NH temperature record for the period AD 1000–1750
for the LOVECLIM experiment, its power spectral density
(PSD), and the DFA2 and WVA2 fluctuation functions are
shown in Fig.4. There appears to be good scaling withβ ≈ 1
at least on timescales up to a few hundred years. The re-
sponse model gives similar value ofβ, which suggests that
the persistence observed in the modelled record is due to
LRM in the internal dynamics and not a reflection of LRM
in the forcing. In this model simulation both forcing input
and simulation output are given with annual resolution. This
allows us to handle volcanic forcing and the response to vol-
canic eruptions in a realistic manner. The results from the
response model estimates with annual resolution are shown
in Fig. 5.

4.3 Results from COSMOS experiment

The temperature from the COSMOS forced run experiments
exhibits some oscillations. In particular, a prominent peak
corresponding to a multiannual mode is seen in the PSD in
Fig. 6b, and in the WVA plot in Fig.6d. Otherwise scaling
is fairly good withβ ≈ 0.8–0.9. For the control simulation
(Fig. 7) β is almost the same as in the forced simulation, but
PSD, DFA2, and WVA2 show some signs of loss of memory
on scales longer than a century. The multiannual oscillation
influences the maximum-likelihood estimation of model pa-
rameters in the response model, so in Fig.8 these estimates
have been performed on a 4-year coarse-grained time series,
while the residual has been computed on monthly scale. As
discussed above, such coarse-graining creates a misrepresen-

Figure 8. (a) Four-year average of the temperature from the COS-
MOS experiment (black) and deterministic response (red).(b) The
residual from the deterministic response.(c) PSD from the residual
(black crosses) and linear fit to the PSD in the scale range indicated
by the red line segment. The valueβ = 0.88 estimated from this line
segment is indicated in the figure.(d) DFA2 applied to the residual
(black crosses). The straight line segment is a linear fit to the dots in
the range indicated by the length, and position of the line segment
and the slope yields an alternative estimateβ = 0.77 for the resid-
ual, indicated in the figure. The shaded area in(c) and (d) is the
95 % confidence range for synthetic fGn withβ = 0.61 estimated
by MLE using the response model.

Figure 9. (a) The temperature from the ECHO-G experiment Erik1.
(b) PSD,(c)DFA2, and(d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn withβ esti-
mated by PSD, DFA2 and WVA2. Theβ-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimatedβ-values are indicated in the figure.

tation of the response to volcanic eruptions, which we believe
is the main reason for the lower estimate ofβ ≈ 0.6 from the
response model.

In a recent paperHenriksson et al.(2014) analyse COS-
MOS global temperature series and obtain lower spec-
tral exponents than we do, in particular for the unforced
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Figure 10. (a) The temperature from the ECHO-G control simula-
tion. (b) PSD,(c) DFA2, and(d) WVA2 applied to the record. The
shaded areas are the 95% confidence range for synthetic fGn with
β estimated by PSD, DFA2 and WVA2. Theβ-values are estimated
from the slopes of the straight lines and the range of scales used
for estimation is indicated by the length and position of these line
segments. The estimatedβ-values are indicated in the figure.

simulation. The reasons for this discrepancy are the fol-
lowing: the COSMOS simulation has a very strong El
Niño–Southern Oscillation (ENSO)-like signal, considerably
stronger than in instrumental or reconstruction data. This
leads to a distinct spectral “hump” in the global temperature
on frequencies in the range 1/6 < f < 1 year−1, but with a
long tail towards lower frequencies. The spectral shape of the
ENSO signal is apparent from their spectra from locations in
the tropical oceans while away from this region there is a
much wider power-law range withβ ≈ 1. The globally aver-
aged temperature is a superposition of signals having these
two spectral shapes, and the result is that the range of fre-
quenciesf < 1/6 year−1 are influenced both by the ENSO
hump and the underlying power law which dominates at
higher latitudes. This leads to an apparent lower slope (lower
β) of the log–log spectrum in this range.Henriksson et al.
(2014) make a point of splitting the spectrum of a non-scaling
global signal into short pieces (ranges) and compute slopes
for each of these ranges. We cannot see that this has physical
meaning, since what appears as different ranges are results
of combining (averaging over) signals with different scaling
properties – in this case power-law scaling signals from tem-
perate and polar zones, and quasi-oscillatory signals from the
tropical oceans.

The goal of our analysis has been to uncover the underly-
ing power-law scaling which prevails away from the ENSO
region, and is why we have focused on DFA, which is rela-
tively insensitive to oscillatory perturbations. In comparison,
the WVA is much more sensitive to the ENSO perturbation.
However, the underlying scaling also becomes apparent from
the power spectrum if we analyse monthly, deseasonalized,
data, as shown in Figs.6b, 7b and8c.

Figure 11. (a) One-year average of the temperature from the ex-
periment Erik1 (black) and deterministic response (red).(b) The
residual from the deterministic response.(c) PSD from the residual
(black crosses) and linear fit to the PSD in the scale range indicated
by the red line segment. The valueβ = 0.86 estimated from this line
segment is indicated in the figure.(d) DFA2 applied to the residual
(black crosses).The straight line segment is a linear fit to the dots in
the range indicated by the length, and position of the line segment
and the slope yields an alternative estimateβ = 0.72 for the resid-
ual, indicated in the figure. The shaded areas in(c) and(d) show the
95 % confidence range for synthetic fGn withβ = 0.74 estimated
by MLE using the response model.

Figure 12. (a) The temperature from the HadCM3 experiment.(b)
PSD,(c) DFA2, and(d) WVA2 applied to the record. The shaded
areas show the 95% confidence range for synthetic fGn withβ esti-
mated by PSD, DFA2 and WVA2. Theβ-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimatedβ-values are indicated in the figure.

4.4 Results from ECHO-G experiments

The temperature from the forced experiment “Erik1” shows
good scaling withβ ≈ 0.9 in Fig. 9. The temperature from
the control run (Fig.10) also scales well with a similar
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Figure 13. (a) The temperature from the HadCM3 experiment
(black) and deterministic response (red).(b) The residual from the
deterministic response.(c) PSD from the residual (black crosses)
and linear fit to the PSD in the scale range indicated by the red
line segment. The valueβ = 0.89 estimated from this line segment
is indicated in the figure.(d) DFA2 applied to the residual (black
crosses). The straight line segment is a linear fit to the dots in the
range indicated by the length, and position of the line segment and
the slope yields an alternative estimateβ = 0.90 for the residual,
indicated in the figure. The shaded areas in(c) and (d) show the
95 % confidence range for synthetic fGn withβ = 0.82 estimated
by MLE using the response model.

value forβ. The response model yields a slightly smallerβ

(Fig. 11). Here a 1-year coarse graining has been applied be-
fore the parameters have been estimated, since the forcing
data have 1-year resolution.

4.5 Results from the HadCM3 experiment

The HadCM3 experiment consists of only a forced simula-
tion, and the scaling properties of the NH temperature se-
ries from this experiment differ from the other experiments
in some respects. Figure12 shows aβ slightly greater than
1 but a cross-over to a regime with lowerβ regimes for
τ ∼ 30 year. The analysis with the response model, how-
ever, indicates a more consistent scaling withβ ≈ 0.8–0.9,
as shown in Fig.13. The discrepancy between the scaling of
the forced signal and the residual is attributed to the strong
solar forcing signal employed in the HadCM3 simulation.

4.6 Scaling in local data; Reykjanes Ridge

In our experience, analysis of instrumental local station data
from continental interiors typically yields very low persis-
tence on timescales up to a few decades. On the other hand,
coastal and oceanic observations in the temperate regions of
the NH present persistentβ-values closer to those found for
the hemispheric average. We also believe that this feature ex-
tends beyond the decadal scales, i.e. that good scaling with
strong persistence prevails on scales up to several centuries in
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Figure 14. DFA2 applied to sea surface or air surface temperature
at Reykjanes Ridge. The upper curve is the result for the air surface
temperature from Erik1 experiment. The lower left curve is based on
the monthly reconstructed data for sea surface temperature, and the
lower right curve on the marine sediment reconstruction of ocean
temperature. The red lines indicate the scales used to estimateβ.

the northern oceans. As an illustration we present in Fig.14
analysis of the Reykjanes Ridge reconstruction from marine
sediments described in Section 3.2 and the ECHO-G Erik1
experiment for the period AD 1000–1750, and of the monthly
SST reconstruction for the period 1880–1997 as described in
Sect. 3.3. The figure shows DFA2 plots for the three data
sets. ECHO-G shows good scaling in the range 1–100 years
with β ≈ 0.67, as compared toβ = 0.91 for the NH average.
The marine sediment reconstruction yieldsβ ≈ 0.45, and the
instrumentally based reconstructionβ ≈ 0.56. The greatest
uncertainty in theβ-estimate is in the marine sediment re-
construction, for which a very limited range of scales is avail-
able for analysis. The record has uneven time spacing, but the
time step is mostly almost the same, slightly below 10 years.
The data points inconsistent with this are ignored, and DFA2
applied to the remaining record. A maximum-likelihood es-
timation method for time series with uneven time spacing
yieldsβ close to what was found with DFA2. In spite of these
uncertainties the analysis demonstrates consistently persis-
tent scaling over timescales from years to centuries in these
local data from model experiment and reconstruction data.

5 Conclusions

The temperatures from all model experiments yield higher
values ofβ than the Moberg reconstruction when scales
longer than a decade are considered. The reconstruction is
stated to represent temperature in the NH, but most of the
proxies used are in land and coastal areas. In this sense
they may be considered more like representations of land
or coastal temperature. Studies of observational data show
higher persistence in SST than land air temperature, and the
value forβ found for the Moberg record is more in agree-
ment with the one found for the NH land temperature than
ocean temperature (Eichner et al., 2003; Lennartz and Bunde,
2009a). Our estimate is in agreement withRybski et al.
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(2006). The temperature from the model experiments is aver-
aged over grid cells from both land and ocean areas, and the
influence of the ocean might be what yields the higher value
of β than found for the Moberg reconstruction.

The temperatures from the COSMOS experiments (both
forced and control run) clearly show an influence of a quasi-
periodic variability with a 2–3 year period, which can be
associated with ENSO. The ECHO-G and HadCM3 exper-
iments show less influence of this oscillation, and in LOVE-
CLIM it is not noticeable. For the reconstructed temperature
the ENSO timescales are not resolved.

The temperatures from the forced ECHO-G experiment
and the LOVECLIM experiment show a more distinct Lit-
tle Ice Age anomaly, in agreement with the temperature re-
construction, than the temperature from the COSMOS and
HadCM3 forced-run experiment. This anomaly may also in-
fluence the estimation ofβ.

All the NH-averaged temperatures from forced experi-
ments show clear persistent scaling with 0.8 < β < 1.2 on
most of the available scales, i.e. from a decade to several
centuries. The control runs and the response model estimates
from the forced runs, which reveal the memory properties of
the internal climate dynamics, do not show systematically
less persistence than obtained directly from the simulated
forced temperature records (there is a difference in HadCM3,
but the difference is within the error bars). This observa-
tion does not support the notion that the observed long-range
memory to great extent is generated by the forcing. Such a
suggestion was made byRybski et al.(2008), based on a
global map for the parameterα = (β + 1)/2 computed from
both forced runs and control runs of the ECHO-G model. We
believe that this discrepancy is caused by the reduction of
spatiotemporal noise implied in performing a NH average.
The differences in estimatedα between forced and unforced
simulations for local data may not be in the persistence of the
underlying global signal, but rather in differences related to
the amplitudes of spatiotemporal modes for the two types of
simulations.
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