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Abstract. Equilibrium climate sensitivity (ECS) is con-
strained based on observed near-surface temperature change,
changes in ocean heat content (OHC) and detailed radiative
forcing (RF) time series from pre-industrial times to 2010
for all main anthropogenic and natural forcing mechanism.
The RF time series are linked to the observations of OHC
and temperature change through an energy balance model
(EBM) and a stochastic model, using a Bayesian approach
to estimate the ECS and other unknown parameters from
the data. For the net anthropogenic RF the posterior mean
in 2010 is 2.0 Wm−2, with a 90 % credible interval (C.I.) of
1.3 to 2.8 Wm−2, excluding present-day total aerosol effects
(direct+ indirect) stronger than−1.7 Wm−2. The posterior
mean of the ECS is 1.8◦C, with 90 % C.I. ranging from 0.9
to 3.2◦C, which is tighter than most previously published
estimates. We find that using three OHC data sets simultane-
ously and data for global mean temperature and OHC up to
2010 substantially narrows the range in ECS compared to us-
ing less updated data and only one OHC data set. Using only
one OHC set and data up to 2000 can produce comparable
results as previously published estimates using observations
in the 20th century, including the heavy tail in the proba-
bility function. The analyses show a significant contribution
of internal variability on a multi-decadal scale to the global
mean temperature change. If we do not explicitly account for
long-term internal variability, the 90 % C.I. is 40 % narrower
than in the main analysis and the mean ECS becomes slightly
lower, which demonstrates that the uncertainty in ECS may
be severely underestimated if the method is too simple. In ad-
dition to the uncertainties represented through the estimated

probability density functions, there may be uncertainties due
to limitations in the treatment of the temporal development
in RF and structural uncertainties in the EBM.

1 Introduction

To link long-term targets of climate policy, e.g. the 2◦C tar-
get (UNFCCC, 2009, 2010), to a more specific emission mit-
igation policy, a key question in climate science is to quan-
tify the sensitivity of the climate system to perturbation in
the radiative forcing (RF). The equilibrium climate sensitiv-
ity (ECS) is defined as the global mean surface temperature
change following a doubling of the CO2 concentration when
the system has reached a new equilibrium. However, the ECS
has been poorly constrained, with significant probabilities of
high values. The ECS was given a likely (> 66 % probabil-
ity) range of 2 to 4.5◦C, with a best estimate of 3◦C by the
Intergovernmental Panel on Climate Change (IPCC) in 2007,
and values substantially higher than 4.5◦C could not be ex-
cluded (Meehl et al., 2007). To constrain the ECS there are
two main approaches. A “bottom up” approach performing
Monte Carlo simulations or a multi-model experiment with
general circulation models (GCMs) (Murphy et al., 2004;
Piani et al., 2005; Stainforth et al., 2005; Andrews et al.,
2012) and a “top down” approach constraining the ECS us-
ing RF estimates and observed data on past climate change
on various timescales: 20th century warming (Andronova
and Schlesinger, 2001; Forest et al., 2002; Gregory et al.,
2002; Knutti et al., 2002; Frame et al., 2005; Annan and
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Hargreaves, 2006; Forest et al., 2006, 2008; Tomassini et
al., 2007; Meinshausen et al., 2009; Libardoni and Forest,
2011; Huber and Knutti, 2012; Olson et al., 2012; Ring et
al., 2012; Lewis, 2013; Otto et al., 2013), the last millennium
using proxy data (Hegerl et al., 2006), the last glacial max-
imum (Annan et al., 2005; Schneider von Deimling et al.,
2006; Schmittner et al., 2011; Hargreaves et al., 2012), or us-
ing data further back in time (Royer et al., 2007; Kohler et
al., 2010; Hansen and Sato, 2012; Hansen et al., 2013).

The main challenge in determining the climate sensi-
tivity is that it is governed by complex feedback mecha-
nisms. Bottom-up estimates use prescribed CO2 perturba-
tions (i.e. the RF known with small uncertainty), but the un-
certainties in the representation of the physics and thus the
feedbacks lead to large uncertainties in the ECS (Andrews
et al., 2012). For the top-down approach the Earth can be
considered as a “laboratory” in which all feedbacks are by
definition perfectly represented, although the impact of very
slow feedbacks like melting of ice caps might not be fully
captured. The problem is that the human-induced “climate
experiment” is not very well set up in that neither the RF
nor the response is well known. There is a combination of
positive and negative forcings and the documentation of the
changes in the system is less than perfect. However, this is
an ongoing experiment and over time the net positive forcing
increases as CO2 continues to increase, while the concentra-
tions of scattering aerosols have more or less stabilized (Wild
et al., 2009; Skeie et al., 2011b). Our understanding of the
physics and magnitude of the forcings (e.g. the aerosol forc-
ings) has also improved, leading to less uncertainty in the RF
estimates (Myhre, 2009), and the time series of observations
become longer and with improved quality. This combination
is expected to provide a better constraint on the ECS. Esti-
mating the climate sensitivity using historical data implicitly
assumes that the feedbacks do not change over time, which
is equivalent to assuming that the effective climate sensitivity
(Murphy, 1995; Frame et al., 2005) and the ECS are equal.
This assumption adds some additional uncertainty to the esti-
mate of the tail of the ECS towards higher values (Armour et
al., 2012), since the slow feedbacks are not fully represented.
However, these changes are slow and the climate sensitivity
estimated here (i.e. the average effective climate sensitivity
over the 1750–2010 period) is what is required for analysis
of climate change on a century timescale (Raper et al., 2001;
Sokolov, 2006).

In this study, RF time series with uncertainty of all well-
established mechanisms are linked to the observations of
ocean heat content (OHC) and temperature change through
an energy balance model and a stochastic model, using a
Bayesian approach to estimate the climate sensitivity follow-
ing the method described in Aldrin et al. (2012), but with cer-
tain improvements (Sect. 2). Observational data up to and in-
cluding the year 2010 are used. This is at least ten additional
years compared to the majority of previously published stud-
ies (summarized in Hegerl et al., 2007; Knutti and Hegerl,

2008). A key feature of both the near-surface air tempera-
tures and the OHC (upper 700 m) is an apparent flattening
during the last decade (Easterling and Wehner, 2009; Palmer
et al., 2010). Thus the situation over the last decade with the
possibility for better quantification of the net RF and more
observations can give significant new information.

A Bayesian statistical approach also provides posterior es-
timates of all RF mechanisms and an estimate of the mag-
nitude and timescales of unforced natural variability in the
system. The ECS probability density function (PDF) with a
heavy tail has recently been discussed (Frame et al., 2005;
Roe and Baker, 2007; Fiore et al., 2009; Hannart et al., 2009;
Annan and Hargreaves, 2011; Roe and Armour, 2011) and
Allen and Frame (2007) called off the quest to find the upper
bound of the ECS. In recent years, the transient climate re-
sponse (TCR, defined as the global mean temperature change
at the time of CO2 doubling under a scenario of a 1 % per
year increase in CO2) has therefore received more attention
(Stott et al., 2006; Forest et al., 2008; Gregory and Forster,
2008; Knutti and Tomassini, 2008; Padilla et al., 2011; Gillett
et al., 2012). The TCR is non-linearly related to ECS (Allen
et al., 2000). The ECS temperature response will eventually
be realized on a timescale on century to millennia when the
system has reached a new equilibrium. The uncertainty in
TCR may therefore be more relevant for near-term transient
climate change (Cubasch et al., 2001; Hegerl et al., 2007).
Based on the updated model we also present a PDF for the
TCR.

2 Methods

In this study the climate sensitivity is estimated following the
method described in Aldrin et al. (2012), where RF time se-
ries with uncertainty of all well-established mechanisms are
linked to the observations of OHC and temperature change
through an energy balance model and a stochastic model, us-
ing a Bayesian approach.

The main differences between Aldrin et al. (2012) and this
work are (i) inclusion of a term representing the long-term
internal variability in the stochastic model, (ii) use of three
OHC series simultaneously, (iii) updated RF time series from
Skeie et al. (2011b), including updated RF priors and the
cloud lifetime and semi-direct effects, and (iv) using data up
to the year 2010.

2.1 The model

We give here an overview of the model framework, and more
details are given in Appendix A and in Aldrin et al. (2012).
The core of our model framework is a deterministic EBM
(Schlesinger et al., 1992), which calculates annual hemi-
spheric and global mean near-surface temperature change
and changes in global OHC (and can divide it into OCH
above and below 700 m) as a function of estimated RF time
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series. The ECS is an explicit parameter in the EBM and can
therefore be constrained in a Bayesian framework. The deter-
ministic model is combined with a stochastic model and fit-
ted to observations of annual hemispheric mean temperature
change and OHC. The ECS is given a vague prior, uniform
[0, 20]◦ C, while the other model parameters and the RF time
series are given informative priors based on expert judgment.

The EBM does not capture internal natural variability in
the climate system, such as the El Niño–Southern Oscillation
(ENSO). In the stochastic model we account for the effect of
ENSO using the Southern Oscillation index. Also on multi-
decadal scales there may be internal variability (e.g. Hegerl
et al., 2007). This is taken into account by an explicit term for
long-term variability. This term also represents other slowly
varying model errors due to potential limitations of the EBM
and forcing time series. Another error term is included to ac-
count for more rapidly varying model errors.

The sum of these terms then defines our model for the
yearly values of the underlying true global OHC (in the up-
per 700 m if nothing else indicated) and hemispheric temper-
atures, here put into a vectorgt for yeart :

gt = mt (x1750:t , ECS, θ) + β1et + nliv
t + nm

t . (1)

Here, all terms are three-dimensional vectors corresponding
to the hemispheric temperatures and the OHC in yeart . The
mt (x1750:t , ECS,θ ) is the EBM with RF time series from
1750 until yeart (x1750:t ) as input, and the ECS is a parame-
ter in addition to other physical parameters (θ ). Furthermore,
et is the Southern Oscillation index (http://www.bom.gov.au/
climate/current/soihtm1.shtml, Bureau of Meteorology, Aus-
tralia) andβ1 is a coefficient vector with one value for each
hemisphere, and which is 0 for OHC. The two coefficients
are estimated from observational data. The long-term inter-
nal variability is represented by the termnliv

t , which also ac-
counts for potential other slowly varying model errors. The
dependence structure of this term (i.e. correlations over time
and between the three elements) is based on control simula-
tions with GCMs from CMIP5 (Appendix A), but the stan-
dard deviations (or the amplitude) are estimated from the
observational data. In the main analysis the Canadian ESM
(CanESM2) is used; however, in a separate sensitivity test
the Norwegian ESM (NorESM) is used. Finally, the termnm

t

is the (short-term) model error. This term is modelled by a
vector autoregressive process, which accounts both for corre-
lations between years and between the three elements within
the same year.

The true values ofgt are not known exactly, but there are
published several observational-based data series for each of
the three components ofgt . There is no consensus that one
of these is considerably more precise than the others, and we
believe that combining them will be more informative than
using each series alone, because this will reduce the influ-
ence of observational errors (i.e. the combined sampling and
analysis errors). One simple way of combining them could
be to take the yearly average over data series for the same

physical component (e.g. OHC), but this would give an in-
consistent average series if the data series cover different pe-
riods (i.e. the series actually included in the average would
then vary over time). Therefore, we use instead several data
series (here three, see Sect. 2.2) for each component simulta-
neously. One advantage of this approach is that it also gives
information on the observational errors, since the difference
between two estimates of the same true quantity necessarily
must be due to observational error.

Now, letyt denote the vector with observations for year t.
The first six elements are hemispheric temperature estimates
from three different data sets (see below), and the last three
elements are estimates of OHC in the upper 700 m, from
three OHC data sets (see below), so the dimension ofyt is
nine in the present analysis. Furthermore, letg∗

t be a corre-
sponding vector of true but unknown values of temperatures
and OHC, by copying each element ofgt three times. Then,
the observations and the underlying truth are related by

yt = g∗
t + no

t , (2)

whereno
t is a vector of observational errors. It is reasonable

to expect that the elements ofno
t are correlated, both between

the three elements corresponding to the same physical quan-
tity because they use basically the same raw data, and be-
tween elements representing different hemispheres. It is also
reasonable to believe thatno

t are correlated over time. There-
fore, alsono

t is modelled by a vector autoregressive process,
but with standard deviations that vary over time according to
temporal profiles of the error estimates supplied by the data
providers. However, the actual levels of the observational er-
rors are estimated from the data within the model framework,
taking into account the possibilities for under- or overesti-
mating the reported errors (Aldrin et al., 2012).

All unknown parameters in the EBM and in the other parts
of the model are estimated from the available observations
using a Markov Chain Monte Carlo (MCMC) technique, and
the posterior distributions of the RF time series are obtained
simultaneously (see the Supplement in Aldrin et al., 2012,
for details on the MCMC algorithm).

The estimates of theno
t process partly decide the influence

of each data series. A data series with small observational
errors will tend to have more impact than a data series for
the same physical quantity (OHC, say) with higher observa-
tional errors. On the other hand, if there is a high correlation
between the observational errors of two of the data series, but
they are both uncorrelated with a third one, the importance of
two correlated data series will tend to be less than the dou-
ble of the third series. Therefore, including many more data
series for one physical quantity, for instance OHC, may be
useful, but only to a certain extent, because they will share
the same information.

Note that the standard deviations of all stochastic terms
are treated as unknowns and are estimated from the data,
which ensures that the modelled variance on the right side of
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Eq. (1) is consistent with the variance of the data. This dif-
fers from the approach of Meinshausen et al. (2009) or Huber
and Knutti (2012), whose model contains some of the same
stochastic terms, but whereall modelled variances are kept
fixed to values based on external sources. However, even if
we think it is conceptually useful to divide the errors into sep-
arate terms, each with a distinct interpretation, it is of course
a possibility that the estimated error terms may be mixed, so
one should perhaps be careful with too strict an interpretation
of each term.

Our model is of course an extreme simplification of the
real climate system. Therefore, to investigate if the model is
useful for estimating the ECS from observations, we have
previously validated its performance on artificial data gen-
erated from GCMs in the CMIP3 experiment. The estimates
of ECS were, in light of their corresponding uncertainties,
comparable with the “true” values of ECS for two different
GCMs (Aldrin et al., 2012).

2.2 Observational data

Three different sets of annual hemispheric mean near-surface
temperatures data are used simultaneously: HadCRUT3:
Brohan et al. (2006), NCDC: Smith and Reynolds (2005) and
Smith et al. (2008) and GISS: Hansen et al. (2006, 2010);
GISS and HadCRUT3 downloaded March 2011, NCDC
downloaded June 2011. An additional analysis has been per-
formed with the updated HadCRUT4 data (Morice et al.,
2012). For global mean OHC between 0 and 700 m three dif-
ferent data series are also used: Levitus et al. (2009, down-
loaded February 2011), CSIRO (Domingues et al., 2008;
Church et al., 2011) and Ishii and Kimoto (2009). Observa-
tional data for OHC below 700 m are limited. However, we
perform a sensitivity study using recent OHC data for the
deeper layers, cf. Sect. 4.3.

2.3 Radiative forcing

Input to the EBM is RF time series (natural and an-
thropogenic). The anthropogenic RF are from Skeie et
al. (2011b), where the RF of all well-established mecha-
nisms from 1750 to 2010 were estimated. Observed con-
centrations of long-lived greenhouse gases are used in forc-
ing calculations, and thus the possible impact of biogeo-
chemical feedbacks is not included in the climate sensi-
tivity estimate. For short-lived climate components, tropo-
spheric ozone and anthropogenic aerosols, detailed atmo-
spheric chemistry, aerosol and radiative transfer modelling
have been performed using emissions from Lamarque et
al. (2010). Natural forcing mechanisms included are changes
in total solar irradiance and explosive volcanic eruptions
(Appendix C). All forcings are listed in Table 1, with a mean
RF value and the 90 % uncertainty range for the year 2010.
The uncertainty ranges for the anthropogenic RF are based
on Fig. 1d in Skeie et al. (2011b) (Appendix D). Separate RF

time series for each hemisphere are used as input to the EBM
(Appendix D).

For the total direct aerosol effect the uncertainty is better
constrained for recent years utilizing both models and satel-
lites (Myhre, 2009). We adopt the same relative uncertainty
as in Forster et al. (2007) for each aerosol component, but
the standard deviation for each component is multiplied by
a factor for the years 2000–2010 to match the total direct
aerosol effect uncertainty in Skeie et al. (2011b). The factor
increases linearly back in time, reaching 1.0 in 1950 and be-
ing constant thereafter (Appendix D). For the other compo-
nents we assume the same relative uncertainty for all years,
except otherwise stated in Table 1.

We use effective radiative forcing (Boucher et al., 2013;
Myhre et al., 2013) by also including forcing mechanisms
that are not strictly radiative forcings according to the
IPCC AR4 (i.e. the cloud lifetime and the semi-direct ef-
fects, see Table 1) since they alter the hydrological processes
and act much more rapidly than the timescale of global sur-
face temperature change. We include the semi-direct effect
as a uniform distribution of−0.25 to+0.50 Wm−2 in 2007
(Isaksen et al., 2009), assuming it is proportional to the RF
of black carbon (BC) from contained combustion.

We use the common assumption that the RF mechanisms
are additive and independent (Boucher and Haywood, 2001).
The prior distributions for the RF time series are shown in
Fig. 1. The mean value for the anthropogenic RF in 2010
is 1.5 Wm−2, with a 90 % C.I. of 0.27 to 2.5 Wm−2. The
mean value is weaker than the mean value of the net an-
thropogenic RF in IPCC AR4 of 1.6 Wm−2 (Forster et al.,
2007), and our prior is wider. This is reasonable since the
RF the IPCC AR4 estimate did not include the cloud lifetime
and the semi-direct effects. The prior for the total aerosol
effect, which includes the direct effect, the cloud albedo ef-
fect, the cloud lifetime effect and the semi-direct effect, has a
mean value of−1.5 Wm−2 in 2010 and a 90 % C.I. of−2.7 to
−0.63 Wm−2. This prior is more strongly negative than the
AR5 estimate of−0.9 (−1.9 to−0.1) Wm−2 (Boucher et al.,
2013).

3 Results

In this section we present the results of our analysis where
the parameter values in the EBM are updated using observa-
tions of hemispheric temperature and OHC (0–700 m) to the
year 2010 and detailed RF time series from 1750 to 2010 (the
main analysis). We investigate the effect the last 10 years of
observational data have on the estimated ECS, and calculate
PDFs of the TCR using the joint posterior distribution of the
model parameters.
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Fig. 1. Prior and posterior distribution of the RF time series and PDF of RF in 2010 for total RF (upper panel), anthropogenic RF (middle
panel) and total aerosol effect (direct effect, cloud albedo effect, cloud lifetime effect and semi-direct effect) (lower panel) from the main
analysis. Red colour for the posterior distributions and black lines and grey shadings for the prior distribution.

3.1 Main analysis

The posterior RF time series and PDFs for the RF in 2010
are shown in Fig. 1. The posterior mean of the total RF is
higher than the prior mean (Fig. 1, upper panel), mainly due
to the weakening of the magnitude of the total aerosol effect
when the model is updated with data (Fig. 1, lower panel).
In the mid-20th century (1940s–1970s) the posterior mean
of the total anthropogenic RF time series show much weaker
change compared to the decreasing RF for the prior assump-
tions (Fig. 1, middle panel). Our analysis suggests that the
net anthropogenic RF did not cause a global cooling as is
observed (Trenberth et al., 2007) during this period.

The posterior RF for the total aerosol effect is weaker than
the prior assumptions (Fig. 1, lower panel), with a mean
posterior value in 2010 of−1.06 Wm−2 and a 90 % C.I. of
−1.7 to −0.40 Wm−2. Inverse estimates of net aerosol RF
over the 20th century that are consistent with observed warm-
ing, Hegerl et al. (2007), gave a similar likely range of
−1.7 to −0.1 Wm−2. The 90 % confidence interval of the
total aerosol effect in IPCC AR5 is slightly broader than
our posterior,−1.9 to −0.1 Wm−2 (Boucher et al., 2013).
Our result is in accordance with the residual forcing (all

aerosol effects and any unknown mechanisms) between the
pre-industrial and 1970–2000 periods of−1.1± 0.4 Wm−2

(1σ ) found by Murphy et al. (2009). This corresponds to a
90 % C.I. of−1.8 to−0.44 Wm−2 that is similar to the to-
tal aerosol RF posterior mean of−1.12 Wm−2 (90 % C.I. of
−1.7 to −0.53 Wm−2) for the 1970–2000 average in our
analysis.

A strong historical aerosol cooling implies a high ECS to
be consistent with the observed temperature trend and vice
versa (Andreae et al., 2005). Our results show a less neg-
ative aerosol forcing than our prior assumption. The ECS
posterior mean is 1.8◦C (Fig. 2a), which is below the lower
limit of the likely range (> 66 % probability) for the ECS of
2 to 4.5◦C in IPCC AR4 (Meehl et al., 2007), but within
the AR5 likely range of 1.5 to 4.5◦C (Collins et al., 2013).
The 90 % C.I. of the posterior ECS is 0.9 to 3.2◦C, and the
heavy upper tail often seen in estimates of ECS is less pro-
nounced. The probability of ECS being larger than the upper
limit of the IPCC likely range of 4.5◦C is 0.014. Tomassini
et al. (2007), who used observational data up to 2003, found
a probability of 0.16 for the ECS> 4.5◦C. We have used
observational data up through 2010, seven more years than
Tomassini et al. (2007). Recently, there have been studies
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Fig. 2.Posterior distributions for the ECS for different analyses. In(a) the main analysis,(b) with NorESM data to estimatenliv
t , (c) sensitivity

test using HadCRUT4 instead of HadCRUT3 data,(d) sensitivity test using data for OHC change below 700 m,(e) sensitivity test allowing
different ECSs in each hemisphere,(f) updating the model with data only up to 2000,(g) updating the model with data only up to 2000 and
using only one OHC data series and(h) sensitivity test without the long-term internal variability (without thenliv

t term). The estimated mean
of ECS, the 90 % C.I. and the probability of ECS being larger than 4.5◦C are given in the text box of each panel. The 90 % C.I. (the error
bar) and estimated posterior mean (triangle) and median (black dot) are also indicated in each panel.

including observations for the last decade (Lewis, 2013; Otto
et al., 2013) and using data from the last glacial maximum
(Schmittner et al., 2011) that also find climate sensitivity in
the lower range of IPCC.

The fitted posterior mean and the observed hemispheric
temperatures and OHC are compared in Fig. 3. For the SH
the model reproduces the long-term trend of the observa-
tions. In the Northern Hemisphere (NH), the fitted temper-
ature increase over the last two decades is not as rapid as in
the observations, leaving the observations just outside 90 %
C.I. of the fitted temperatures. The fitted temperature and
OHC include only the results from the deterministic model
(mt (x1750:t , ECS,θ )) and the effect of ENSO (β1et ) on the
right side of Eq. (1). In the NH, much of the discrepancies
are accounted for by the long-term internal variability rep-
resented by the termnliv

t (Fig. 4, left panel). This is further
discussed in Sect. 4.4. Figure 4 also shows the posterior esti-
mates for the ENSO termβ1et and the model errornm

t .
For the OHC the model reproduces the long-term trend

of the observations (Fig. 3). In the 1950s one of the ob-
servational time series is outside the 90 % C.I. of the fitted
OHC. The CSIRO group reports a large standard error of
up to 10∼ 1022 J in this period (Fig. B3), and the posterior

estimates of the standard errors are of the same magnitude
(Fig. B4), so the observational error term (no

t ) will explain
these discrepancies. This is discussed further in Sect. 4.3.

3.2 Updating the model with data between the years
2000 and 2010

Our 90 % C.I. for ECS is tighter compared to previous es-
timates of the ECS using observations from the 20th cen-
tury. To investigate the influence of the last ten years’ data
on our model’s estimate, we have re-estimated the model us-
ing only data up to the year 2000. The resulting posterior
distribution of ECS is shown in Fig. 2f. The estimated mean
of ECS of 2.26◦C is 23 % higher than in the main analy-
sis. The upper limit of the 90 % C.I. is 5.6◦C compared to
3.18◦C in the main analysis. Furthermore, we have updated
the model sequentially with 2 yr of additional data between
2000 and 2010. Figure 5 shows the sequence of estimated
ECS with 90 % C.I. and the relative uncertainty R90. The
R90 values decrease steadily, except from 2002 to 2004, as
we add more data, showing the value of a longer time series
in constraining the ECS estimate. The ECS estimate itself,
however, is shifted slightly towards higher values when the
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Fig. 3. Observed and fitted (posterior mean) values for the temperature series and the ocean heat content for the main analysis. The shaded
areas show the 90 % C.I. for the sum of the two first terms (mt (x1750:t , ECS,θ ) + β1et ) on the right side of Eq. (1).

model is updated with data from 2003 and 2004, and when
the model is further updated with data from 2005 and 2006
the ECS estimate is still the second highest of these six es-
timates. The reason is probably that the total RF (both prior
and posterior) remains at the same level between 2002 and
2006 (Fig. 1), whereas the OHC increases, especially be-
tween 2002 and 2004 (Fig. 3). After 2006, the RF increases
again, while there is little or no increase in the OHC.

The drastic reduction in uncertainty (R90 reduced
from 2.20 to 1.23) with ten more years of data may be sur-
prising. We believe there are two main reasons for this. First,
the RF increased significantly in this period (Fig. 1), so these
ten years of data are more informative than data from a pe-
riod of the same length, but with less variation in RF. Sec-
ond, while the temperature series is lengthened by 6–8 %,
the OHC series are extended by about 20 %. Since the OHC
data are more informative (cf. Sect. 4.3), ten years of data
therefore makes an important contribution to the information
content in the data.

3.3 Transient climate response

To determine a PDF for the TCR the EBM is run with a
1 % per year increase in CO2 using the joint posterior dis-
tribution of the model parameters. The TCR from the main
analysis has a posterior mean estimate of 1.4◦C and a 90 %
C.I. of 0.79 to 2.2◦C, while using the model parameters con-
strained by data only up to the year 2000 gives a wider dis-
tribution with a 90 % C.I. of 0.54 to 2.9◦C. Recently, Padilla
et al. (2011) also found a narrowing of the TCR over the last
decade, with a 90 % C.I. of 1.3 to 2.6◦C in 2008. Also, Gillett
et al. (2012) estimated a narrower range of TCR using obser-
vations over the period 1851–2010 rather than 1900–1999.
Our results are in line with other estimates of TCR (Stott et
al., 2006; Gregory and Forster, 2008; Knutti and Tomassini,
2008) and are slightly shifted to weaker values when the
model is updated with data up to 2010. The IPCC AR5 con-
cluded that TCR is likely (66–100 % probability) in the range
of 1.0 to 2.5◦C and extremely unlikely greater than 3◦C
(IPCC, 2013).
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Fig. 4.Posterior estimates of the long-term internal variability term (nliv
t , left column), the ENSO term (β1et , middle column) and the model

errors (nm
t , right column) for the temperature and ocean heat content.

4 Discussion

The results from our main analysis give a lower and better
constrained estimate of the climate sensitivity compared to
the majority of previous estimates. In this section we investi-
gate the role of several factors that would impact the expected
value as well as the uncertainty in the estimated climate sen-
sitivity. This includes structural features of the EBM, uncer-
tainties in the RF and in the surface air temperatures and
OHC data, and the role of internal variability. We perform
a sensitivity analysis including recent observational data on
OHC trends for depths below 700 m. In addition to the in-
clusion of uncertainties in parameters of the deterministic
model, and in the observations used that together are propa-
gated to give the pdf of the climate sensitivity, there might be
other limitations in the method and sources of uncertainties
that are not quantified in the estimated pdfs. This includes
e.g. uncertainties due to the simplified structure of the EBM
or the a priori estimates.

4.1 Uncertainties in radiative forcing

To constrain the climate sensitivity, the treatment of RF un-
certainties is important. Tanaka et al. (2009) suggested that
the probability of high climate sensitivity is even higher than
previous estimates because of insufficient handling of the
historical development of the RF uncertainty. The uncertain-
ties in the RF time series are treated simply in this study,
however in a more sophisticated way than in many previous

Equilibrium climate sensitivity [ °C ]
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Fig. 5.Posterior means (triangles), medians (dots), modes (crosses),
and 90 % credible intervals for estimates of ECS using various data
sets updated between 2000 and 2010 (2 yr intervals). The relative
uncertainty measure R90, defined as the width of the 90 % C.I. di-
vided by the posterior mean, is also shown.
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Table 1.The RF mechanisms included with information on the prior distribution assumed and the prior mean value and the 90 % confidence
interval in the year 2010. The RF values are relative to 1750.

RF mechanisms Prior Prior mean 90 % confidence
distribution (Wm−2) interval

in 2010 (Wm−2) in 2010

Long-lived greenhouse gases Normal 2.83 2.54 3.11
(LLGHGs)

Tropospheric O3 Normal 0.44 0.31 0.57

Stratospheric O3 Lognormal −0.23 −0.41 −0.11

Stratospheric H2O from CH4 Lognormal 0.07 0.04 0.13

Direct aerosol effects

Sulfate Normal −0.63 −0.83 −0.44

BC fossil fuel and biofuel (FFBF) Lognormal 0.50 0.30 0.75

OC FFBF+ secondary organic Lognormal −0.22 −0.35 −0.13
aerosols

Biomass burning aerosols Normal, −0.07 −0.14 0.00
proportional
to time

Nitrate Lognormal −0.05 −0.07 −0.03

Total direct aerosol effect Sum of −0.48 −0.80 −0.13
aerosol RFs
above

Indirect aerosol effects

Cloud albedo effect Normal −0.83 −1.35 −0.34

Cloud lifetime effect Lognormal −0.35 −1.34 −0.01

Semi-direct aerosol effect Uniform, (−0.25,+0.50)a

proportional
to BC FFBF

Surface albedo changes

Snow albedo effect Lognormal 0.02 0.00 0.06

Land use change Lognormal −0.10 −0.21 −0.04

Natural RF

Volcanoesb Lognormal −0.06 −0.11 −0.03

Solar irradiancec Normal, 0.08 0.04 0.13
proportional
to time

a See also Sect. 2.3.b The RF is the average 2001–2010.c The RF is the average over the last 11 yr compared to the
average of 11 yr around 1750.

studies that have used a scaling approach related to only the
aerosol RF (Andronova and Schlesinger, 2001; Gregory et
al., 2002; Knutti et al., 2002; Forest et al., 2006). We include
the uncertainty for all components (Table 1), as in Tomassini
et al. (2007), who scaled individually the nine RF mecha-
nisms they considered. The uncertainty in the temporal pat-
tern of each RF mechanism is not included, but the net RF
time series will have uncertainty in the temporal structure
when all the RF mechanisms are combined.

Since the ECS is better constrained by adding data for the
last 10 yr, we first investigate the RF over the last decade.
Our prior total RF increased by 0.29 Wm−2 from 2000 to
2010. There have been several studies investigating the pos-
sible changes in RF related to the apparent flattening of
the temperature trend during the last decade. Solomon et
al. (2010) explained some of the recent trend in temperature
by a reduction in stratospheric H2O. They calculated an RF
of −0.1 Wm−2 in 2000–2005 relative to 1996–2000. Data
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before the mid-1990s are sparse, but observations indicate an
increase in stratospheric H2O between 1980 and 2000, pos-
sibly being an important driver for decadal climate change
(Solomon et al., 2010). The reason for the recent decrease
is not clear, but if the change in stratospheric H2O is due to
natural variability or climate feedback (Dessler et al., 2013),
it should not be included as an RF in our setup. Only strato-
spheric water vapour change from CH4 oxidation is taken
into account in our analyses. Stratospheric aerosols have in-
creased since 2000, contributing to−0.1 Wm−2 (Solomon et
al., 2010). Vernier et al. (2011) related this to recent tropical
volcanoes. We have used the updated values for stratospheric
aerosol optical thickness from Sato et al. (1993) which give
a greatest in magnitude volcanic RF of−0.14 Wm−2 in 2003
and 2005. In addition, the Sun experienced a minimum in ac-
tivity around 2010, and the prior mean solar RF in 2010 rela-
tive to the maximum in 2000 is−0.14 Wm−2. In comparison
the net anthropogenic RF increased by 0.44 Wm−2 over the
last decade for our prior assumptions (0.33 Wm−2 from LL-
GHGs). For both the prior and posterior the increase in total
RF over the last decade is less than the increase in anthro-
pogenic RF (Fig. 1), but shows a clear increase of 0.29 Wm−2

for the prior mean and 0.31 Wm−2 for the posterior mean.
It is also suggested that strengthening of the sulfur RF due

to increased emissions in China also contributed to the flat-
tening temperature trend (Kaufmann et al., 2011). For our
prior RF time series for the direct aerosol effect, the strength-
ening of the sulfur direct aerosol effect has been offset by
the strengthening in the BC direct aerosol effect from 2000
to 2010 (Skeie et al., 2011b). The BC effect was not con-
sidered by Kaufmann et al. (2011). The BC emissions from
China used in Skeie et al. (2011b) increased by∼ 20% be-
tween 2000 and 2010, in agreement with the inventory by
Zhang et al. (2009), where it increased by 13 % between 2000
and 2005, but weaker than the 46 % increase between 2000
and 2010 from Lu et al. (2011). This inventory also shows
an increase of 46 % for the sulfur emissions between 2000
and 2010, in agreement with the∼ 50 % increase in Chinese
emissions over the same period used in Skeie et al. (2011b).
To test how the temporal structure of the RF over the last
years affect the results we did a sensitivity test (Appendix E)
where the prior mean for the direct aerosol effect strength-
ens between 2000 and 2010 compared to the main analysis
where the direct aerosol effects weakened over the same pe-
riod. This had a minor effect on the estimated ECS (Fig. E1).

We also tested the sensitivity to changes in the temporal
development of the RF early in the simulation period and to
the role of uncertain data before 1900 (update with data only
between 1900 and 2010 to exclude the uncertain early period
including the 1883 Krakatoa volcanic eruption). Both sensi-
tivity tests had only very minor effects on the estimated ECS
(Fig. E1). Limited information regarding the uncertainty in
the rate of change of RF is available. In Fig. D2 the prior
and posterior anthropogenic RF time series is plotted to-
gether with RCP historical RF time series and AR5 forcing

estimates with uncertainties (IPCC, 2013) for the years 1950,
1980 and 2011 (see Appendix). Our posterior is in good
agreement with the AR5 values; however, we have larger un-
certainty in the 1950s, a lower mean value in the 1980s, and
we do not include the upper range of IPCC AR5 for the year
2011 estimate. This indicates that the low estimate for the
ECS in our main results is not due to unreasonably high RF
estimates; however, large changes to the historical RF path
(e.g. due to indirect aerosol effects) may change the ECS
estimate.

There are other proposed RF mechanisms that are not in-
cluded here due to large uncertainties and a lack of scien-
tific understanding, which could possibly alter the ECS es-
timate. For the indirect aerosol effects we have included the
cloud albedo effect, cloud lifetime effect and the semi-direct
effect. The prior time series for the indirect effects, con-
structed in a simple way, are based on aerosol effects on liq-
uid water clouds. Aerosols may also influence mixed-phase
or ice clouds (Denman et al., 2007) and the indirect effect of
aerosols on these clouds are very uncertain, but possibly of
great importance (Penner et al., 2009). However, if all indi-
rect effects have a similar temporal pattern, there is a clear
signal that the data do not allow large negative values for the
total aerosol effect (Fig. 1, bottom panel).

We have assumed that the RF mechanisms have equal tem-
perature responses, and are additive and independent, which
may not be entirely valid. The climate efficacy, that the cli-
mate sensitivity depends on the type of forcing (Joshi et al.,
2003; Hansen et al., 2005), is not considered. However, we
include the semi-direct effect and the cloud lifetime effect
as forcings, and these effects are partly reasons for includ-
ing differences in climate efficacy in GCMs (Forster et al.,
2007). There are few studies considering efficacy, and the ef-
ficacy for different forcing mechanisms generally lies in the
range 0.6 to 1.3 (Forster et al., 2007). The efficacy can be
assumed to be partly included in the RF uncertainty, but a
proper inclusion of efficacy will increase the uncertainty in
the estimated ECS. We have also assumed that the RF errors
are independent. This may not be true, since e.g. the forcing
mechanisms related to emissions due to fossil fuel use will
be dependent. It is also plausible that the magnitudes of the
different aerosol effects are related. However, insufficient in-
formation is available to include dependent radiative forcing
error estimates.

The RF due to CO2 is calculated based on measured
changes in CO2 concentrations. With the standard formal
definition of ECS as the equilibrium temperature response
to a CO2 doubling, carbon-cycle feedbacks are by definition
not included. There is however no scientific reason for this
definition; it is based on a technical approach to setting up
GCM experiments in a simple way. A more reasonable def-
inition of the ECS would be as the equilibrium temperature
response to an external forcing with the magnitude and dis-
tribution equal to that of a CO2 doubling. In our RF estimate
for CO2 there is an implicit assumption that any contribution
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to the historic CO2 change from climate–carbon feedbacks
is negligible. However, Arora et al. (2009) estimate that as
much as 15–20 ppm of the observed CO2 increase may be
due to climate feedbacks. Allowing for such a feedback in
our analysis would lead to a lower RF estimate and thus a
somewhat higher estimate of the sensitivity.

4.2 Surface temperature observations

Our analysis suggests an almost stable total anthropogenic
RF in the middle of the 20th century (Fig. 1, middle panel)
and that the decrease in the observed temperature in this
period (all three records used in the main analysis) is not
caused by anthropogenic RF. The fitted global mean temper-
ature during this period is in accordance with Thompson et
al. (2010), who related the decrease in the observed tempera-
ture between the 1940s and the 1970s to two distinct periods.
The first one was a discontinuity in the mid-1940s, due to
uncorrected instrumental biases in the sea surface tempera-
ture (SST) (Thompson et al., 2008). The second period was
around 1970, when an abrupt drop in Northern Hemisphere
SST was observed, which is real and not related to any in-
strumental bias. The bias in the mid-1940s is not corrected
in the surface temperature data sets used in our main analy-
sis. A sensitivity test replacing HadCRUT3 with HadCRUT4
(Morice et al., 2012) which includes this SST correction has
been carried out and gave almost identical results (Fig. 2c
vs. 2a).

4.3 The role of ocean heat content

Including observations from the last decade had a large ef-
fect on the ECS estimate. The OHC time series is extended
by about 20 % and previous studies (Tomassini et al., 2007;
Urban and Keller, 2009; Aldrin et al., 2012) have shown
that OHC data have the potential to constrain the ECS es-
timate. In Appendix E we show that when adding only near-
surface temperatures between 2000 and 2010 (excluding the
OHC data for this decade, Fig. E1g) the ECS estimate is only
slightly narrower than using data up to 2000 (Fig. E1c), high-
lighting the information provided by the OHC data.

The fitted OHC from the model is compared to the three
historical estimates in Fig. 3. The fitted OHC is a smooth
curve compared to the observations but with dips related
to volcanoes, as is also seen in the observations, and two
of the three OHC data sets used in this study show a flat-
tening of the OHC since 2004. There is good agreement
with the long-term trend in OHC between the model and
the observations. Except for responses to volcanic eruptions
there is low correlation between the shorter term variabil-
ity in the 3 observational data sets (as opposed to the near-
surface temperature data). As noted in Sect. 3.1, one of the
observation curves lies outside the 90 % C.I. in the 1950s.
The reported and estimated standard errors for this data set
increase back in time (Figs. B3 and B4) and in the 1950s

the standard errors are larger than the difference between
our estimate and the data. The further back in time, the
poorer the spatial coverage of the observations (e.g. Fig. 1
in Abraham et al., 2013). In the early 2000s the Argo floats
were launched (http://www.argo.ucsd.edu/), which signifi-
cantly improved the spatial coverage of ocean observations.
Prior to the launch of Argo the main data used were collected
from expendable bathythermographs (XBT) which have sys-
tematic data errors (Gouretski and Koltermann, 2007), but
the Argo data also have known biases that need to be cor-
rected (Abraham et al., 2013). Lyman et al. (2010) found
that XBT bias correction was the main source of uncertainty
in the warming trend from 1993 to 2008. The differences
among the three data sets are larger than between the surface
temperature data series (Fig. 3d), and a further effort in esti-
mation of historical OHC data and its uncertainty is needed.

Since the sea level has continued to increase, it has been
suggested that the recent flattening in the OHC in the upper
ocean has been compensated for by an increase in the heat
content of the deep ocean. Meehl et al. (2011) used model
simulations, and found that periods with no increase in tem-
perature in the upper ocean are accompanied by an increasing
temperature in the deeper ocean. Purkey and Johnson (2010)
found that in the 1990s and 2000s there was an increase
in OHC in the abyssal and deep Southern Ocean, based on
sparse observations from ships, but it is not clear if it is a
long-term trend. Palmer et al. (2011) highlighted the impor-
tance of deep ocean observations to monitor the Earth’s en-
ergy balance; however, our main estimate is not constrained
by deep ocean data. In the EBM heat is however transported
to the deep ocean and between 1961 and 2010, 11 % of the
total increase in OHC occurred below 700 m in the main
analysis. This is lower than in Hansen et al. (2011), who
used 15 % for the period 1993–2008 and 19 % for the period
2005–2010, assuming constant heat uptake in the deep ocean
from the work by Purkey and Johnson (2010). Since added
energy to the climate system is almost exclusively stored as
heat in the oceans, a non-zero global radiative imbalance is
approximately equal to the rate of change in OHC. The in-
ferred planetary energy imbalance from Hansen et al. (2011)
was 0.58± 0.15 Wm−2 during the 6 yr period 2005–2010
assuming a stronger aerosol RF (−1.6± 0.3 Wm−2) and
a larger climate sensitivity (3± 1.0◦C) than the posterior
means in this study. We find a similar planetary imbalance
of 0.46± 0.16 Wm−2 over the same time period.

Very recently OHC data for the deeper ocean have become
available, for the layer 700–2000 m for the period 1955–
2010 (Levitus et al., 2012), and below 3000 m between 1985
and 2006 (Kouketsu et al., 2011). We have made an addi-
tional simplified sensitivity test with our model using the
three OHC data sets for 0–700 m as in the main analysis and
the new deep ocean OHC data for the two decades of data.
The sum of these OHC deep ocean trend data is included
to constrain the total OHC in our model between 700 m and
the ocean floor. Including the deep ocean data leads to an
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increased mixing of heat down to the deep ocean and a small
increase in the estimated ECS (from 1.84 to 1.92◦C, Fig. 2d
vs. Fig. 2a). For the 2005 to 2010 period the estimated in-
crease in OHC for the entire ocean is 0.37± 0.14 Wm−2 for
the main analysis and 0.40± 0.16 Wm−2 for the sensitiv-
ity with data for the deep ocean. This is in good agreement
with the heat gain of 0.39 Wm−2 (averaged over the whole
globe) in the upper 1500 m of the ocean estimated by von
Schuckmann and Le Traon (2011) based on the ARGO mea-
surement network.

As discussed above, the OHC data have the potential to
constrain the ECS estimate. However, while the temperature
series are quite similar, the three OHC series differ consid-
erably more, indicating that the observational errors for the
OHC data can be large (and perhaps larger than some of the
data providers report, see Figs. B3 and B4 in Appendix B).
Therefore, using three OHC series simultaneously instead of
only one should decrease the uncertainty of the ECS esti-
mate due to the reduced influence of observational errors.
This is demonstrated in a sensitivity test where we use only
one OHC data set (from Levitus et al., 2009) and data only
up to 2000 as in many previous studies (Fig. 2g). Using only
one OHC data set the PDF for the ECS is remarkably wider
(Fig. 2g) than using three OHC data sets (Fig. 2f), with a pos-
terior mean shifted towards the prior mean (which is 10◦C).
Using one OHC data set and data up to the year 2000, the
90 % C.I. is 1.1 to 14.5◦C, with a mean value of 4.5◦C,
in line with or even higher than previously published esti-
mates (Andronova and Schlesinger, 2001; Forest et al., 2002;
Gregory et al., 2002; Knutti et al., 2002; Frame et al., 2005;
Annan and Hargreaves, 2006; Forest et al., 2006; Tomassini
et al., 2007) that used observational data for time periods
ending between 1994 and 2003. This indicates that the nar-
row range of the ECS in the main analysis is not due to an
artifact of the model used, but indeed due to the added obser-
vational information by the two additional OHC data sets and
the 10 additional years. In the cases with one OHC data set
the posterior distribution of the total aerosol effect in 2000
is −1.4 Wm−2, with a 90 % C.I. of−1.9 to −0.71 Wm−2.
The estimated total aerosol effect is stronger than in the main
analysis that had a mean value of−1.1 Wm−2 in 2000.

4.4 Multidecadal oscillations

In the North Atlantic the observed SSTs show a multidecadal
oscillation, known as the Atlantic Multidecadal Oscillation
(AMO) (Kerr, 2000). Whether AMO is due to external forc-
ing or internal variability is however not clear (e.g. Knight,
2009; Ottera et al., 2010). DelSole et al. (2011) explicitly
identified a significant unforced multidecadal component us-
ing climate simulations and observations, and found that the
AMO is dominated by internal dynamics. Using observed
temperature Wu et al. (2011) separated the temperature trend
into a secular trend related to fossil fuel emissions and a
multidecadal variability, and found a significant contribution

to the late 20th century warming from this multidecadal
variation.

In the stochastic model multidecadal variability is rep-
resented by a separate term (nliv

t ) based on results from
long control simulations with CanESM2 (main analysis) or
NorESM. The difference between the ECS estimates using
these two GCMs (Fig. 2b vs. 2a) is minor. To investigate the
impact of prior knowledge about the multidecadal variabil-
ity we have performed a sensitivity test ignoring the explicit
term for long-term internal variability (Fig. 2h). In such a
simplified model, temporary increasing or decreasing trends
in temperature or OHC over 10–20 yr may falsely be ac-
counted as permanent trends, giving too optimistic uncer-
tainty estimate. As expected, adding unforced long-term vari-
ability gives a larger uncertainty in the estimated climate sen-
sitivity. Also, the expected value becomes somewhat higher
(Fig. 2a vs. 2h). This is reasonable since in general larger
uncertainty will move the posterior mean towards the prior
mean. The posterior estimate for the unforced multidecadal
variability is shown in Fig. 4.

The results indicate that during the periods 1910–1940 and
1970–2000 a global warming of about 0.2 and 0.12◦C can be
attributed to internal variability (Fig. 4). The magnitude of
the long-term internal variability is in reasonable agreement
with the findings of DelSole et al. (2011), who found a sig-
nificant component of unforced multi-decadal variability in
the recent acceleration of global warming, with±0.08◦C per
decade for a 30 yr trend. Wu et al. (2011) estimated that up
to one third of the late twentieth century warming could have
been a consequence of natural variability. Our results indicate
that 23 % of the increase in the near-surface NH mean tem-
perature between 1976–1985 and 2001–2010 is explained by
internal variability, in agreement with Wu et al. (2011).

There are studies indicating that there might be a forced
component in the long-term variability, e.g. the AMO (Booth
et al., 2012). In the climate system (and in GCMs) this would
mean that the forcing would affect the variability of mixing
of OHC from the surface layers to the deeper ocean. With the
simple structure of our EBM we cannot represent this possi-
bility since the parameters of the EBM are fixed over time
(although the values are estimated from the data), and long-
term variability not explained by variations in forcing will be
attributed to internal variability. There are large uncertainties
in historical forcings, and in the temporal development of the
RF. However, the forcing histories from Skeie et al. (2011b)
applied here are based on recent estimates of historical emis-
sions and detailed modelling of atmospheric chemistry, and
are significantly more detailed than RF histories applied in
many previous studies. Shortcomings in temporal develop-
ment of the historical RF could lead to either too much or
too little of the response attributed to the internal variabil-
ity term. If too little of the response attributed to the internal
variability, we would expect that the uncertainty in the ECS
estimate is underestimated and vice versa.
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4.5 Interhemispheric differences

The fitted hemispheric temperatures in Fig. 3 show that the
deterministic parts of the model (the EBM and the ENSO
terms in Eq. 1) underestimate the recent hemispheric dif-
ference in the warming compared to the observations. Pre-
vious studies (Andronova and Schlesinger, 2001; Forest et
al., 2002) have highlighted the role of the inter-hemispheric
temperature difference as a key diagnostic to determine the
aerosol forcing. However, there are several factors that in-
fluence the interhemispheric temperature asymmetry (ITA).
Anthropogenic and natural aerosols, hemispheric differences
in climate feedbacks, differences in response time (through
e.g. land/ocean fractions) and differences in internal variabil-
ity could all play a role. Anthropogenic aerosols mainly cool
the NH, thus too low an ITA could indicate that the net neg-
ative RF from aerosol is underestimated, which again would
mean that the ECS is underestimated. However, results from
the CMIP5 models (Friedman et al., 2013) indicate that since
about 1975 anthropogenic aerosols have not contributed to
an increase in the ITA, but that the increase is mostly due to
increased GHGs. In the EBM we calculate the temperature
response in each hemisphere, but we assume that the climate
feedbacks are equal. This is a simplification, as e.g. the snow-
albedo feedback can be expected to be stronger in the NH
due to more land. Other EBMs (e.g. Raper et al., 2001) have
imposed a fixed hemispheric difference in the climate sensi-
tivity parameter to emulate the response of specific GCMs.

In a sensitivity test we have allowed for hemispheric dif-
ferences in the climate sensitivity parameter. The difference
between the hemispheric ECS estimated from the data was
minor (10 %), and the posterior estimate for the ECS was
very close to the main analysis (Fig. 2e).

The EBM used here accounts for different ocean vol-
umes due to different land fractions in the two hemispheres,
thereby imposing a different effective heat capacity and thus
a different temporal response to short-term RF changes in the
two hemispheres. However, our EBM does not include an ex-
plicit representation of the energy balance for land and ocean
areas in each hemisphere (Olivie and Stuber, 2010).

The model error terms are shown in Fig. 4. In the NH and
for the global OHC the error term is mainly short-term fluc-
tuations, while for the air temperatures in the SH there is also
a multidecadal signal indicating that the correlation between
the variability in the two hemispheres is different in the data
than in CanESM2. The model error term accounts for several
factors such as lack of explicit representation of the energy
balance for land and ocean areas in each hemisphere, and
possible shortcomings in the RF, etc.

Overall it is difficult to determine which factors are re-
sponsible for the discrepancy between the observed and fit-
ted ITA, and thus it is also difficult to assess the impact of
this shortcoming on the estimated ECS.

4.6 Comparisons with results from a similar approach

Huber and Knutti (2012) used a similar approach and sim-
ilar data as us, but their PDF of ECS was remarkable dif-
ferent from ours, with a posterior estimate of 3.6◦C and a
much wider 90 % C.I. from 1.7 to 6.5◦C. Since their ap-
proach (Huber, 2011) is seemingly very similar to ours, it is
worthwhile to discuss potential reasons for the differences.
We will focus on two details that may lead to larger uncer-
tainties, which means that the ECS will be more similar to its
prior distribution. These differences are: (i) although they use
basically the same data series as us, they use onlyonetem-
perature series andoneOHC series per analysis, and make
a simple average of these separate analyses at the end. As
we have argued for above, using multiple observational se-
ries for the same quantity reduces the influence of the ob-
servational errors, especially for OHC; (ii) they do not use a
simple climate model such as our EBM, but instead they use
a so-called emulator. This emulator is based on a neural net-
work model and is an approximation to a medium complex
climate model. Therefore they have to introduce an extra er-
ror term to account for the approximation. For OHC, the ap-
proximation error is much larger than other error components
(Fig. 4.2b in Huber, 2011). We believe that the effect of this
is that the OHC data are considerably down-weighted com-
pared to the temperature data, resulting in a high uncertainty
in their ECS estimate.

5 Summary and conclusions

In this study, detailed RF time series for all well-established
forcing mechanisms and observed OHC (0–700 m) and near-
surface temperature changes to the year 2010 are combined
in a Bayesian framework using a simple EBM and a stochas-
tic model. The heavy tail often seen in PDFs of the ECS con-
strained by observed temperature change over the 20th cen-
tury (summarized in Hegerl et al., 2007; Knutti and Hegerl,
2008) is substantially reduced. The posterior mean estimate
of the ECS is 1.8◦C, in the lower part of the likely range
given in IPCC AR5 (IPCC, 2013), and the probability of val-
ues larger than 4.5◦C is only 1.4 %. The majority of previous
studies have not included temperature and OHC data over the
last decade. Here we have used observational data including
2010, and we have shown that the combination of using mul-
tiple data series for surface temperatures and OHC and the
additional 10 yr of data since the year 2000, especially the
OHC data, improve the constraint of the ECS. Using data
only up to the year 2000 and using one OHC data set as in
previous studies, gave a significantly wider posterior distri-
bution with a 90 % C.I. of 1.1 to 14.5◦C, with a heavy tail
towards larger values. One of the reasons why it is difficult
to find the upper bound of the ECS is that the ECS is non-
linearly related to the climate response time (Hansen et al.,
1985; Wigley and Schlesinger, 1985). For lower values of the
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ECS the ECS is more linearly related to the TCR, allowing a
narrower uncertainty range for the ECS. The estimated PDF
for the TCR was also narrowed using observational data over
the last 10 yr and three OHC data series. The 90 % C.I. for
TCR is 0.8 to 2.2◦C, slightly shifted towards lower values
than the likely range of 1 to 2.5◦C from IPCC AR5 (IPCC,
2013).

The analysis also suggests that there is a significant con-
tribution of internal variability on a multi-decadal timescale
to the global mean temperature change, and that both an-
thropogenic forcing and internal variability contributed to the
temperature increase at the end of the 20th century. The anal-
ysis excludes the possibility for very large negative aerosol
RF. The posterior 90 % C.I. for the total aerosol effect in
2010 was−1.7 to−0.4 Wm−2. From the data we estimate
an almost stable total anthropogenic RF in the middle of the
20th century.

There are limitations in the prior RF, including the un-
certainties in the temporal development for the RF. There-
fore, to obtain better knowledge of the ECS and future cli-
mate change, further efforts in estimating the historical RF
are needed. Especially the historical development of the in-
direct aerosol effects, which changed most from prior to pos-
terior, needs to be estimated using a more detailed approach.
There are also limitations and uncertainties that are difficult
to quantify related to the necessary simplifications that must
be done to the climate model that is the core of the method. In
future studies several alternative models, including a model
of intermediate complexity, should be applied in a controlled
experiment. This would allow us to better quantify the role
of these structural uncertainties.

We have shown that it is especially the simultaneous use of
three OHC data series and including the last 10 yr that have
constrained the ECS. However, there are large uncertainties
in the estimates of OHC time series (Lyman et al., 2010).
Therefore further efforts in re-evaluating the OHC data and
correction for instrumental biases should be a high prior-
ity, including the monitoring of the deep ocean. It should be
noted that the estimated ECS in this study does not include
very slow climate feedbacks like melting of ice sheets. Also,
the ECS estimates do not include biogeochemical feedbacks
for the LLGHGs which possibly can have affected historic
concentrations and can make a large contribution to future
climate change (Arneth et al., 2010).
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Appendix A

Model description

In a Bayesian approach, parameters are assigned prior un-
certainties, accounting for uncertainties in the knowledge of
the parameter values. By combining this prior knowledge
with observational data, the parameter values of a computer
model can be constrained (Kennedy and O’Hagan, 2001).
The Bayesian theorem is as follows:

P(θ |data) ∝ P(θ) · P(data|θ),

whereP(θ |data), the posterior distribution of the parameters
(θ ) given the observational data, is proportional to the prior
distribution of the parametersP(θ) multiplied by the like-
lihood of the dataP(data|θ). Knowledge of the parameters
can be gained by the observational data. It is important that
the observational data used to constrain the parameters have
not been used when the prior distributions of the parameters
are decided.

The parameter of interest in this paper is climate sensi-
tivity, one of several parameters in the EBM (see Table A1
below and Aldrin et al., 2012). The EBM is a deterministic
model which calculates hemispheric mean temperature and
ocean heat content with RF time series as input, and we com-
bine the EBM with a stochastic model to make an inference.

The combined process model is given by Eq. (1) in the
main paper. However, in the data process model given by
Eq. (2), we have for simplicity deleted a termβ0, so the cor-
rect process model is

yt = Agt + β0 + no
t .

Here,β0 is a vector of intercepts and is included because the
measurements and output of the computer model are given
relative to the mean of the different reference periods.

The model errors are modelled as a vector autoregressive
process of order 1 (VAR(1) process), while the observational
errors are modelled as a scaled VAR(1) process, where the
scaling factor is given by a vector of standard errors.

The long-term internal variability termnliv
t is modelled

as a vector autoregressive process of order 3 (VAR(3) pro-
cess), i.e.nliv

t =φliv
1 nliv

t−1 + φliv
2 nliv

t−2 + φliv
3 nliv

t−3 + εliv
t and

Var(εliv
t ) =6liv = diag(σ liv )Cliv diag(σ liv ), whereφ-s are ma-

trices with coefficients and whereσ liv andCliv are the stan-
dard deviations and correlation matrix of the covariance ma-
trix, respectively. To estimate the parameters of this process,
we use results for the Canadian CanESM2 in the CMIP5
experiment (Yang and Saenko, 2012) with simulations over
900 yr with zero RF. First we subtract a linear trend from the
each of the temperature and OHC series to account for drift.
Then we apply a 10 yr running mean to each of the three
resulting time series (two for temperature, one for OHC).
Furthermore, we estimate a VAR(3) process from these data,

Table A1. Priors of ECS and the other model parametersθ .

Name Unit Range

Mixed layer depth θM m 25–125

Vertical heat diffusivity θVHD cm2 s−1 0.06–0.8∗

Polar parameter θP – 0.161–0.569

Vertical velocity, upwelling rate θUV m yr−1 0.55–2.55

Air–sea heat exchange parameterθASHE W (m2 K)−1 5–25

Oceanic inter-hemispheric heat θOIHE W (m2 K)−1 0–7
exchange coefficient

Climate sensitivity ECS K 0–20

∗ θVHD =HθUV , whereH is the scale depth. Range ofH : 400–1000 m.H is uniform,
θVHD is not.

such that for instance the temperature in the Northern Hemi-
sphere depends on the values of itself and the two other quan-
tities in the three preceding years. We include this VAR(3)
process as an extra term (nliv

t ) in our model, with all param-
eter values, except the standard deviationsσ liv of the errors
εliv

t , kept fixed (see Table A2). However, this is only an es-
timate of the internal variability. The magnitude may differ
between different AOGCMs and Huber and Knutti (2012)
claim that models underestimate internal variability by a fac-
tor of 3. Therefore, we treat the standard deviations in the
VAR(3) process as unknown parameters that we estimate,
whereas the correlation structure is kept fixed. Note that in
the model presented previously in Aldrin et al. (2012), we did
not include the termnliv

t in the process model. In that model
long-term internal variability was accounted for by the model
error termnm

t .
To apply a Bayesian approach, prior distributions of the

model parameters and input data must be given. The input
data, the RF time series for all well-established mechanisms,
are estimated in this paper and given prior uncertainties based
on the ranges of published estimates and subjective assess-
ments. The priors of ECS andθ = (θVHD , θP, θUV , θASHE,
θOIHE, θM) are given in Table A1, while all remaining pa-
rameters of the stochastic model, except the standard devia-
tions in the VAR(3) process for long-term internal variability,
are given vague priors. The reasoning behind the choice of
priors of ECS andθ is given in the Supplement of Aldrin et
al. (2012). The standard deviations in the VAR(3) process are
modelled asσ liv =β2σ liv

GCM, whereσ liv
GCM is the standard de-

viation obtained when estimating the VAR(3) process from
the CanESM2 data, andβ2 is a diagonal matrix where each
diagonal element ofβ2 is uniformly distributed between 1/5
and 5.

The EBM used in this study is the hemispheric version
of the energy-balance climate/upwelling–diffusion ocean
model described in Schlesinger et al. (1992) and its global
version in Schlesinger and Jiang (1990). This model is a part
of the CICERO SCM (Fuglestvedt and Berntsen, 1999) and
has been used in several studies (e.g. Fuglestvedt et al., 2003;
Rive et al., 2007; Skeie et al., 2009). The model has been
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Table A2. Parameter estimates (posterior means) for the VAR(3)
process in the main analysis.

NH SH OHC

NH 1.428 0.004 −0.858
φliv

1 SH −0.127 1.058 1.173
OHC 0.125 0.163 2.216

NH −0.466 −0.063 1.136
φliv

2 SH 0.178 0.057 1.642
OHC −0.209 −0.280 −1.534

NH −0.015 0.066 −0.398
φliv

3 SH −0.053 −0.182 −0.565
OHC 0.086 0.118 0.316

σ liv
GCM 0.016 0.017 0.040

NH 1.000 0.438 0.146
Cliv SH 0.438 1.000 0.209

OHC 0.146 0.209 1.000

shown to reproduce GCM model results from idealized ex-
periments with a gradually changing forcing when the model
parameters are calibrated (Olivie and Stuber, 2010). In the
model the atmosphere is represented by a single layer and the
ocean is subdivided into 40 vertical layers where the upper-
most ocean layer is the mixed layer. Horizontally the model
is divided into a Northern and a Southern Hemisphere part,
with a separate energy-balance calculation for each hemi-
sphere. The hemispheric difference in the land/ocean fraction
is taken into account by scaling the efficiency of heat uptake
by the ocean. This allows for a more rapid response to forc-
ings in the Northern Hemisphere. Each ocean box is divided
into a polar and a non-polar region. In the polar region heat
is transported from the mixed layer into the deep ocean rep-
resenting deep water formation. In the non-polar region heat
is transported downwards by processes treated as diffusion
and advected upwards by slow upwelling. The representation
of the ocean mixing is very simplified and does not include
entrainment of downwelling water at intermediate depths as
some other simple climate models do (e.g. MAGICC6 de-
scribed in Meinshausen et al., 2011). As a consequence of
this, in the sensitivity test with observed deep ocean OHC
(Fig. 2d) we treat all ocean below 700 m as one compartment.

The process model is updated by observed temperature
change and ocean heat contentyt , taking into account un-
certainties in the observational data, using a Markov Chain
Monte Carlo (MCMC) algorithm. Posterior distributions of
the climate sensitivity and other parameters are obtained. The
statistical method is described in more detail in Aldrin et
al. (2012). Table A3 gives the MCMC parameter estimates
for the main analysis, and three other key analyses. The es-
timates of standard deviations of the terms for ENSO, long-
term internal variability and model errors are given in Ta-
ble A4, while standard deviations of observational errors are
given in Table A5.

Note that in the sensitivity test with two ECSs, one
for the Northern Hemisphere (ECSNH) and one for
the Southern Hemisphere (ECSSH), the prior for ECS
is as in the main analysis,ECSNH +ECSSH

2 = ECS, and

log
(

ECSNH
ECSSH

)
∼ Uniform(− log(1.5), log(1.5)). In the sensi-

tivity test with two mixed layer depths, one for the North-
ern Hemisphere (θM

NH) and one for the Southern Hemisphere
(θM

SH), the priors forθM
NH andθM

SH are set equal to the prior for
θM in the main analysis.
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Table A3. Parameter estimates with 95 % C.I. In the tableϕm andϕo are the diagonal coefficient matrices of the VAR(1) processes for the
model and observational errors, respectively, andσm/Cm andσo/Co are the standard deviations/correlation matrices of the covariance matrix
6m and6o of the error terms of the VAR(1) processes for the model and observational errors, respectively, i.e.6m = diag(σm)Cm diag(σm)
and6o = diag(σo)Co diag(σo). For each analysis there are at least 140 million iterations after burn-in in the MCMC estimation algorithm.

Parameter Main analysis Main analysis, but Main analysis, but Main analysis, but
with data up to 2000 with data up to 2000 without internal
–3 OHC –1 OHC variability

θ

θVHD 0.28 (0.1, 0.59) 0.34 (0.11, 0.68) 0.4 (0.13, 0.72) 0.24 (0.1, 0.49)
θP 0.37 (0.17, 0.56) 0.37 (0.17, 0.56) 0.37 (0.17, 0.56) 0.37 (0.17, 0.56)
θUV 1.37 (0.58, 2.46) 1.55 (0.6, 2.5) 1.72 (0.64, 2.52) 1.25 (0.57, 2.41)
θASHE 13.53 (5.25, 24.31) 13.2 (5.26, 24.27) 12.81 (5.22, 24.17) 13.63 (5.27, 24.35)
θOIHE 3.6 (0.25, 6.84) 3.69 (0.26, 6.83) 3.87 (0.4, 6.84) 3.55 (0.23, 6.83)
θM 58 (26, 114) 68 (27, 121) 80 (29, 123) 56 (26, 109)

β0

NH1 −0.01 (−0.03, 0) −0.02 (−0.03, 0) −0.02 (−0.04, 0) −0.01 (−0.03, 0)
NH2 0.01 (−0.01, 0.04) 0.01 (−0.02, 0.03) 0.01 (−0.02, 0.03) 0.01 (−0.01, 0.04)
NH3 0.03 (0.01, 0.04) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04) 0.02 (0.01, 0.04)
SH1 −0.03 (−0.06,−0.01) −0.03 (−0.06,−0.01) −0.03 (−0.06, 0) −0.03 (−0.06,−0.01)
SH2 −0.01 (−0.04, 0.01) −0.01 (−0.04, 0.02) −0.01 (−0.04, 0.02) −0.02 (−0.04, 0.01)
SH3 −0.03 (−0.04,−0.02) −0.03 (−0.04,−0.02) −0.03 (−0.04,−0.02) −0.03 (−0.05,−0.02)
OHC1 0.95 (0.39, 1.53) −0.29 (−0.79, 0.22) −0.67 (−1.04,−0.07) 0.96 (0.39, 1.56)
OHC2 3.86 (1.96, 6.15) 4.23 (1.69, 7.7) 3.91 (1.87, 6.27)
OHC3 −0.21 (−2.49, 2.57) 0.18 (−1.98, 2.98) 0 (−2.64, 2.94)

β1
NH −5e-04 (−8e-04,−3e-04) −5e-04 (−8e-04,−2e-04) −5e-04 (−8e-04,−2e-04) −5e-04 (−8e-04,−3e-04)
SH −4e-04 (−6e-04,−2e-04) −4e-04 (−7e-04,−2e-04) −4e-04 (−7e-04,−2e-04) −4e-04 (−6e-04,−2e-04)

β2

NH 1.53 (0.53, 2.99) 1.57 (0.51, 3.33) 1.58 (0.5, 3.39)
SH 1.55 (0.53, 3.07) 1.71 (0.59, 3.58) 1.77 (0.59, 3.69)
OHC 2.94 (1.27, 4.74) 3.34 (1.56, 4.87) 3.31 (1.51, 4.87)

ϕm
NH 0.56 (0.27, 0.84) 0.55 (0.26, 0.83) 0.56 (0.28, 0.83) 0.64 (0.45, 0.83)
SH 0.71 (0.43, 0.93) 0.7 (0.42, 0.92) 0.73 (0.46, 0.94) 0.74 (0.57, 0.91)
OHC 0.46 (−0.19, 0.95) 0.14 (−0.5, 0.87) −0.16 (−0.75, 0.67) 0.61 (0.13, 0.96)

ϕo
NH 0.6 (0.49, 0.71) 0.61 (0.49, 0.72) 0.61 (0.5, 0.72) 0.6 (0.49, 0.72)
SH 0.54 (0.42, 0.65) 0.57 (0.45, 0.7) 0.58 (0.46, 0.7) 0.54 (0.42, 0.66)
OHC 0.89 (0.78, 0.97) 0.87 (0.75, 0.96) 0.52 (0.04, 0.9) 0.89 (0.79, 0.97)

σm
NH 0.13 (0.11, 0.15) 0.13 (0.12, 0.15) 0.14 (0.12, 0.15) 0.13 (0.12, 0.15)
SH 0.11 (0.1, 0.13) 0.12 (0.1, 0.13) 0.12 (0.1, 0.13) 0.11 (0.1, 0.13)
OHC 0.62 (0.4, 0.87) 0.67 (0.44, 0.96) 0.67 (0.39, 1.05) 0.67 (0.47, 0.93)

Cm
NH-SH 0.19 (0.02, 0.36) 0.2 (0.02, 0.37) 0.2 (0.03, 0.37) 0.21 (0.05, 0.37)
NH-OHC 0.04 (−0.18, 0.26) 0.03 (−0.2, 0.26) −0.01 (−0.24, 0.23) 0.06 (−0.16, 0.29)
SH-OHC 0.02 (−0.19, 0.23) 0.01 (−0.21, 0.23) −0.01 (−0.23, 0.22) 0.03 (−0.17, 0.24)

σo

NH1 0.48 (0.34, 0.66) 0.49 (0.34, 0.67) 0.5 (0.35, 0.69) 0.5 (0.36, 0.69)
NH2 0.77 (0.58, 0.99) 0.77 (0.58, 0.99) 0.79 (0.59, 1.02) 0.78 (0.59, 1)
NH3 0.38 (0.26, 0.54) 0.38 (0.26, 0.54) 0.38 (0.26, 0.55) 0.39 (0.27, 0.55)
SH1 0.63 (0.5, 0.79) 0.64 (0.5, 0.81) 0.65 (0.51, 0.82) 0.65 (0.51, 0.8)
SH2 0.98 (0.78, 1.19) 0.97 (0.77, 1.2) 0.98 (0.78, 1.21) 0.97 (0.78, 1.2)
SH3 0.43 (0.28, 0.65) 0.44 (0.28, 0.67) 0.45 (0.29, 0.69) 0.45 (0.29, 0.67)
OHC1 1.59 (0.91, 2.29) 1 (0.57, 1.65) 0.85 (0.49, 1.33) 1.67 (1.02, 2.35)
OHC2 0.42 (0.31, 0.57) 0.44 (0.33, 0.57) 0.42 (0.31, 0.56)
OHC3 0.65 (0.48, 0.84) 0.6 (0.44, 0.81) 0.66 (0.49, 0.85)

Co

NH1-NH2 0.29 (−0.16, 0.63) 0.32 (−0.12, 0.65) 0.36 (−0.08, 0.68) 0.31 (−0.12, 0.64)
NH1-NH3 0.4 (−0.02, 0.72) 0.4 (−0.04, 0.73) 0.43 (−0.01, 0.74) 0.45 (0.04, 0.74)
NH1-SH1 0.2 (−0.23, 0.57) 0.2 (−0.24, 0.58) 0.19 (−0.24, 0.57) 0.2 (−0.21, 0.57)
NH1-SH2 −0.06 (−0.49, 0.38) −0.07 (−0.49, 0.37) −0.08 (−0.5, 0.37) −0.08 (−0.49, 0.35)
NH1-SH3 0.1 (−0.39, 0.54) 0.07 (−0.42, 0.53) 0.06 (−0.43, 0.53) 0.11 (−0.37, 0.55)
NH1-OHC1 −0.22 (−0.65, 0.28) −0.24 (−0.66, 0.27) −0.17 (−0.65, 0.39) −0.22 (−0.64, 0.27)
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Table A3. Continued.

Parameter Main analysis Main analysis, but Main analysis, but Main analysis, but
with data up to 2000 with data up to 2000 without internal
–3 OHC –1 OHC variability

Co

NH1-OHC2 0.06 (−0.36, 0.46) 0.13 (−0.28, 0.49) 0.05 (−0.36, 0.45)
NH1-OHC3 −0.17 (−0.55, 0.27) −0.08 (−0.49, 0.36) −0.2 (−0.57, 0.24)
NH2-NH3 0.49 (0.02, 0.79) 0.51 (0.04, 0.81) 0.55 (0.08, 0.82) 0.51 (0.05, 0.8)
NH2-SH1 0.1 (−0.23, 0.42) 0.1 (−0.24, 0.43) 0.11 (−0.24, 0.43) 0.09 (−0.24, 0.4)
NH2-SH2 0.09 (−0.26, 0.42) 0.05 (−0.31, 0.39) 0.04 (−0.31, 0.38) 0.05 (−0.29, 0.39)
NH2-SH3 −0.07 (−0.55, 0.44) −0.09 (−0.57, 0.43) −0.08 (−0.56, 0.42) −0.09 (−0.56, 0.4)
NH2-OHC1 −0.06 (−0.45, 0.34) 0.2 (−0.26, 0.6) 0.24 (−0.28, 0.68) −0.07 (−0.44, 0.32)
NH2-OHC2 0.1 (−0.21, 0.41) −0.03 (−0.34, 0.28) 0.1 (−0.22, 0.4)
NH2-OHC3 −0.02 (−0.34, 0.31) 0 (−0.34, 0.35) −0.02 (−0.34, 0.3)
NH3-SH1 0.21 (−0.25, 0.61) 0.21 (−0.27, 0.61) 0.21 (−0.28, 0.61) 0.21 (−0.25, 0.59)
NH3-SH2 0 (−0.54, 0.53) −0.07 (−0.6, 0.5) −0.07 (−0.6, 0.5) −0.05 (−0.57, 0.49)
NH3-SH3 0.04 (−0.47, 0.53) 0.01 (−0.51, 0.52) 0.01 (−0.52, 0.52) 0.03 (−0.47, 0.51)
NH3-OHC1 −0.18 (−0.68, 0.42) 0.06 (−0.5, 0.6) 0.09 (−0.49, 0.62) −0.19 (−0.67, 0.38)
NH3-OHC2 0.16 (−0.32, 0.58) −0.04 (−0.49, 0.43) 0.16 (−0.32, 0.57)
NH3-OHC3 0.08 (−0.4, 0.53) 0.04 (−0.44, 0.51) 0.05 (−0.41, 0.5)
SH1-SH2 0.25 (−0.03, 0.5) 0.23 (−0.07, 0.48) 0.25 (−0.04, 0.5) 0.26 (−0.02, 0.5)
SH1-SH3 0.49 (0.09, 0.76) 0.49 (0.09, 0.76) 0.52 (0.13, 0.78) 0.52 (0.14, 0.76)
SH1-OHC1 −0.02 (−0.38, 0.33) 0.14 (−0.29, 0.52) 0.19 (−0.33, 0.62) −0.03 (−0.39, 0.31)
SH1-OHC2 0.05 (−0.25, 0.34) −0.08 (−0.39, 0.24) 0.05 (−0.25, 0.34)
SH1-OHC3 0.13 (−0.21, 0.45) 0.14 (−0.25, 0.48) 0.13 (−0.21, 0.44)
SH2-SH3 0.51 (−0.05, 0.83) 0.53 (−0.02, 0.84) 0.56 (0.04, 0.85) 0.5 (−0.04, 0.82)
SH2-OHC1 0.01 (−0.28, 0.31) 0.31 (−0.05, 0.64) 0.4 (−0.05, 0.75) −0.02 (−0.3, 0.27)
SH2-OHC2 0.1 (−0.16, 0.35) −0.03 (−0.3, 0.25) 0.09 (−0.17, 0.34)
SH2-OHC3 0.03 (−0.25, 0.31) 0.11 (−0.2, 0.4) 0.02 (−0.27, 0.29)
SH3-OHC1 −0.03 (−0.54, 0.49) 0.13 (−0.41, 0.61) 0.2 (−0.37, 0.67) −0.06 (−0.55, 0.45)
SH3-OHC2 0.05 (−0.39, 0.47) −0.04 (−0.46, 0.4) 0.05 (−0.38, 0.46)
SH3-OHC3 0.06 (−0.41, 0.51) 0.1 (−0.37, 0.54) 0.05 (−0.41, 0.49)
OHC1-OHC2 −0.59 (−0.8,−0.28) −0.48 (−0.75,−0.09) −0.57 (−0.79,−0.27)
OHC1-OHC3 0.22 (−0.27, 0.57) 0.09 (−0.4, 0.52) 0.26 (−0.19, 0.58)
OHC2-OHC3 −0.02 (−0.37, 0.34) 0.02 (−0.34, 0.38) −0.03 (−0.37, 0.33)
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Table A4. Estimates of standard deviations ofβ1et , nliv
t , andnm

t ,
and the sum of these three terms.

β1et nliv
t nm

t β1et + nliv
t + nm

t

NH 0.045 0.098 0.157 0.191
SH 0.038 0.086 0.159 0.185
(NH + SH)/2 0.041 0.075 0.122 0.149
OHC 0.000 2.853 0.697 2.933

Table A5. Estimates of standard deviations ofno
t .

SDno
t In 1960 In 2000 Mean over Mean over

observation 1991–2010
period

NH1 0.027 0.032 0.043 0.032
SH1 0.048 0.048 0.061 0.048
(NH1+ SH1)/2 0.030 0.031 0.040 0.032
NH2 0.034 0.052 0.072 0.050
SH2 0.054 0.053 0.083 0.053
(NH2+ SH2)/2 0.040 0.048 0.071 0.047
NH3 0.012 0.026 0.041 0.024
SH3 0.016 0.014 0.034 0.014
(NH3+ SH3)/2 0.010 0.015 0.027 0.014
OHC1 1.700 1.966 2.257 1.668
OHC2 5.624 1.686 3.349 1.320
OHC3 2.090 1.802 1.898 1.696
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Appendix B

Temperature and ocean heat content data

The temperature and ocean heat content data used in the anal-
yses are shown in Figs. B1 and B2. The reported standard
errors for the data in Fig. B1 are shown in Fig. B3, while
posterior estimates of the standard deviations are shown in
Fig. B4. Note that the posterior estimates of the standard de-
viations of the observational errors in Fig. B4 differ from
those reported from the data providers (Fig. B3). Note es-
pecially that the posterior standard deviations for the three
OHC series are much more equal than the reported ones, and
that the posterior standard deviations for the Levitus series
are roughly double those of the reported ones.
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Fig. B1. Annual temperature and ocean heat content data. HadCRUT3, University of East Anglia and the Hadley Centre; GISS, Goddard
Institute for Space Studies; NCDC, National Climatic Data Center; CSIRO, Commonwealth Scientific and Industrial Research Organisation.
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Fig. B2. Annual temperature data. HadCRUT3, University of East Anglia and the Hadley Centre; HadCRUT4, University of East Anglia,
King Abdulaziz University and the Hadley Centre.
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Fig. B3.Reported standard errors of annual temperature and ocean heat content data. The standard errors for the Goddard Institute for Space
Studies (GISS) series are simply computed as the middle of the standard errors for the two other series. HadCRUT3, University of East Anglia
and the Hadley Centre; NCDC, National Climatic Data Center; CSIRO, Commonwealth Scientific and Industrial Research Organisation.
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Fig. B4.Posterior estimates of standard deviations of the annual temperature and ocean heat content data.
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Appendix C

Natural forcing mechanisms

The natural forcing mechanisms included are stratospheric
aerosols formed as a result of oxidation of sulfur dioxide
emitted by explosive volcanic eruptions and changes in solar
irradiance. The constructions of the natural radiative forcing
time series used are described below.

C1 Solar variability

The time series for solar forcing is based on total solar irra-
diance (TSI) reconstruction of Wang et al. (2005) and the
11 yr cycle variation of Lean (2000). The change in TSI
is multiplied by 0.25 to account for geometry, by 0.7 to
account for the planetary albedo and by 0.78 according
to Gray et al. (2009), accounting for changes in TSI at
wavelengths where ozone absorbs strongly. The time se-
ries are extended from 2008 to 2010 using the Physikalisch-
Meteorologisches Observatorium Davos (PMOD) composite
(Frohlich and Lean, 2004). The RF over the full amplitude of
the last solar cycle was 0.14 Wm−2. The uncertainty range
for solar RF relative to pre-industrial times based on esti-
mates from published studies given in IPCC AR4 (Forster
et al., 2007) was skewed, ranging from 0.06 to 0.3 Wm−2.
The upper limit was based on TSI reconstructions using in-
formation from sun-like stars, which are called into ques-
tion by Hall and Lockwood (2004). Recent estimates of
changes in TSI (Wang et al., 2005; Krivova et al., 2007;
Tapping et al., 2007; Steinhilber et al., 2009; Delaygue and
Bard, 2011) are significantly lower than estimates using sun-
like stars (e.g. Lean, 2000). We use the relative uncertainty
range± 50 % spanning the relative uncertainty range in both
Krivova et al. (2007) and Steinhilber et al. (2009), which
are the same as the lower limit in IPCC AR4 (Forster et al.,
2007).

C2 Explosive volcanic activity

We use three different time series for RF due to volcanoes
and assign them an equal prior belief. The first time se-
ries are based on Gao et al. (2008). They presented strato-
spheric loading of aerosols for the past 1500 yr by using
54 ice core records from both the Arctic and Antarctica. We
followed the suggestions in Gao et al. (2008) and converted
the aerosol loading to optical thickness for the years 1750 to
1980. Due to a lack of coverage in the ice core data for recent
years we have replaced the data from Gao et al. (2008) af-
ter 1980 with the stratospheric aerosol optical thickness time
series from Sato et al. (1993) based on satellite retrievals.
The conversion factor between optical thickness and forc-
ing used are−20 Wm−2 (Wigley et al., 2005). The second
time series for radiative forcing are the optical thickness data
based on ice core records from Crowley et al. (2003) multi-
plied by the same conversion factor as above. The third vol-
canic radiative forcing time series used are from Ammann
et al. (2003). The radiative forcing time series used are an-
nual hemispheric means. We have extended all data sets us-
ing the updated values from Sato et al. (1993) for the period
2001 to 2010 (http://data.giss.nasa.gov/modelforce/strataer/,
downloaded August 2011).

The reason for using three different estimates for RF from
explosive volcanoes is to account for the uncertainty in the
fluctuating pattern over time. For uncertainties in the magni-
tude of the forcing we assume the quite conservative factor
of 2. Smaller uncertainty intervals have been indicated in Gao
et al. (2008) and in Sato et al. (1993).

Earth Syst. Dynam., 5, 139–175, 2014 www.earth-syst-dynam.net/5/139/2014/

http://data.giss.nasa.gov/modelforce/strataer/


R. B. Skeie et al.: A lower and more constrained estimate of climate sensitivity 167

Appendix D

Prior and posterior distributions for RF time series

The prior for each of the RF mechanisms is constructed by
first constructing an expected or best guess time series for
each hemisphere. These expectation curves are taken from
the results in Skeie et al. (2011b). Then the uncertainties
around the expectation curves are constructed by adding or
multiplying each number in the expectation by an error term,
which gives a pair of NH and SH time series. The error
terms are either the same for all time points and both hemi-
spheres, or they are proportional to the number of years since
1750 times the expected value in 2010.

Four kinds of priors are assumed for the different RF
mechanisms (Table 1): (1) normal distribution where the un-
certainty/standard deviation is proportional to the expected
value. (2) Normal distribution where the uncertainty/standard
deviation is proportional to time. (3) Lognormal distribution
where the uncertainty/standard deviation is proportional to
the expected value. (4) Uniform distribution where the un-
certainty/standard deviation is proportional to the values of a
time series.

The uncertainty range for the RF mechanisms are based on
Skeie et al. (2011b). If the 90 % confidence interval for the
RF mechanisms include zero, there are no restrictions on the
sign of the forcing, and a distribution where the uncertainty
is proportional to time is chosen. The uncertainty in 1750
is zero. If the sign of the RF mechanisms is restricted, un-
certainty proportional to the expected value is chosen. If the
given 90 % confidence interval is skewed, a lognormal dis-
tribution is chosen. A lognormal distribution is also chosen
for forcing mechanisms with a symmetric 90 % confidence
interval and a probability greater than 0.005 of RF with the
wrong sign. Otherwise, if the probability is less than 0.005,
a normal distribution is chosen. For the lognormal distribu-
tion, the upper and lower quantiles are dependent and will
not exactly match the given 90 % confidence interval.

D1 Direct aerosol effect

The direct aerosol effect is the sum of five components: sul-
fate (SO4), black carbon (BC) from fossil fuel and biofuel
combustion (FFBF), organic matter (OM) (organic carbon
from FFBF and secondary organic aerosols), biomass burn-
ing aerosols (BB) and nitrate aerosols (Nit).

For a given year we want the following statement A to be
true: “The sum of the expected value for the aerosol com-
ponents is equal to the expected value for the total direct
aerosol effect.” Due to nonlinearities the sum of the individ-
ual aerosol direct effects is not identical to the total direct
aerosol effect (Skeie et al., 2011b). For each year we find
a constanta which is such that when we multiply each of
the expected values for BC FFBF (SO4, OM, BB, Nit) with
1+ a(1− a), the statement A is true. The values of theas are
between−0.0177 and 0.0141.

For 2010 we also want the following statement B to be
true: “In the year 2010 the sum of the variances for SO4,
BC FFBF, OM, BB and Nit is equal to the variance for the
total direct aerosol effect.” We find a constantb which is such
that when we multiply the standard deviations for SO4, BC
FFBF, OM, BB and Nit, the statement B is true. We will also
multiply the standard deviations before 2010 by a constantb.
In 2000–2010,b is 0.603; before 1950,b is 1.00; in 1950–
2000,b decreases linearly from 1.0 to 0.603.

D2 The posterior distributions

In Fig. 1 we show posterior RF time series and PDFs for RF
in 2010 for the main analysis. Here (Fig. D1) we show the
same results, but for the Northern and Southern Hemisphere
separately.

Figure D2 shows the prior and posterior for the global an-
thropogenic radiative forcing time series as in Fig. 1. In ad-
dition, the historical RF from the RCP database (http://www.
iiasa.ac.at/web-apps/tnt/RcpDb) is plotted as a dashed line.
The RCP4.5 value is used for the year 2010 as in Skeie et
al. (2011b). The RCP RF time series do not include the ef-
fect of land albedo changes, as this is included in our prior. In
our prior we also include indirect and semi-direct aerosol ef-
fects that are not RF according to the definition in IPCC AR4,
and are probably not included in the RCP historical RF time
series.

The three error bars in the figure are total anthropogenic
RF in 1950, 1980 and 2011 from the IPCC AR5 summary
for policymakers (IPCC, 2013). These error bars include the
total aerosol effects and are comparable to our forcing time
series. Our prior has a weaker forcing (stronger aerosol forc-
ing) than IPCC AR5, but our posterior is more in agreement
with the AR5. Our posterior has a larger uncertainty in the
1950s, a lower mean value in 1980 and does not span the up-
per range in 2010 compared to AR5 (AR5 values are 2011).
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Fig. D1. (a)Prior and posterior distribution of the RF time series and PDF of RF in 2010 for the Northern Hemisphere for total RF (upper
panel), anthropogenic RF (middle panel) and total aerosol effect (direct effect, cloud albedo effect, cloud lifetime effect and semi-direct effect)
(lower panel) from the main analysis. Red colour for the posterior distribution and black lines and grey shadings for the prior distribution;
(b) as(a), but for the Southern Hemisphere.
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Fig. D2. Prior and posterior distribution of the time series for anthropogenic RF from the main analysis. Red colour for the posterior
distribution and black lines and grey shadings for the prior distribution. The dashed line is the historical RCP total RF (http://tntcat.iiasa.ac.at:
8787/RcpDb/) and the three error bars are the total anthropogenic RF values in 1950, 1980 and 2011 from IPCC AR5. The error bars indicate
the very likely range (> 90 %).
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Appendix E

Sensitivity tests

Here we describe some sensitivity tests performed with a
somewhat simpler model setup using only one OHC data set
(from Levitus et al., 2009). Results are shown in Fig. E1.

There is no uncertainty in the RF time development
(i.e. the temporal form of the curve) for each component or
mechanism. We make sensitivity tests (Test 1 and Test 2) to
see how changes in the prior assumptions for the time devel-
opment of RF affect our result. In sensitivity Test 3 we test
the sensitivity of our results to the role of uncertain data be-
fore 1900 (update with data only between 1900 and 2010 to
exclude the uncertain early period including the 1883 Kraka-
toa volcanic eruption), while in sensitivity Test 4 we test how
the OHC data for the years 2001 to 2010 affect the ECS esti-
mate by excluding OHC data from 2001 to 2010.

E1 Test 1: change the BC direct aerosol effect in the
latter part of the simulation period

Skeie et al. (2011a) calculated RF time series for Black Car-
bon (BC) from fossil fuel and biofuel (FFBF) sources using
emission data from Bond et al. (2007). This emission sce-
nario has a more rapid decrease in emissions in Europe and
North America and a less rapid increase in emissions in east-
ern Asia in the latter part of 20th century compared to the
emission inventory (Lamarque et al., 2010), which are used
to construct the RF time series for the main analysis.

As a sensitivity test we replace the RF time series for
BC FFBF in the main analysis with data from Skeie et
al. (2011a). This RF time series has a less rapid increase in
the latter half of the 20th century compared to the RF time
series used in the main analysis. The time series in Skeie
et al. (2011a) ended in 2000, so the increase from 1990 to
2000 is extrapolated further to 2010. The change in the BC
FFBF RF time series will also influence the semi-direct ef-
fect. The total direct aerosol effect is assumed to be the sum
of all aerosol components in this sensitivity test.

In this sensitivity test the prior mean for the direct aerosol
effect strengthens between 2000 and 2010 by−0.04 Wm−2

compared to the main analysis, where the direct aerosol
effects weakened between 2000 and 2010 by 0.03 Wm−2.
The altering of the temporal structure of the prior RF had
only very minor effects on the estimated ECS (Fig. E1d
vs. Fig. E1b).

E2 Test 2: change the BC direct aerosol effect in the first
part of the simulation period

There are large uncertainties in the historical emission of BC
(Bond et al., 2007). We modify the RF time series for BC
FFBF (from the main analysis) from pre-industrial times and
up to 1960 to see if changes in the RF pattern early in the

period affect the estimated ECS. There are indications of too
large a BC concentration around 1850 and too low a concen-
tration in the early 20th century (Figs. 11 and 12 in Skeie
et al., 2011a). As a sensitivity test we modify the time se-
ries of BC FFBF to have a more rapid increase at the end of
the 19th century. Between 1750 and 1850 the RF time series
is multiplied by 0.2 and between 1910 and 1940 multiplied
by 1.3. We have linearly interpolated the multiplication fac-
tors for the years in between. After 1960 we use the same RF
time series as in the main analysis, i.e. a multiplication factor
of 1. As in Test 1, the change in the BC FFBF RF time series
will also influence the semi-direct effect and the total direct
aerosol effect.

The altering of the temporal structure of the prior RF
had only very minor effects on the estimated ECS (Fig. E1e
vs. Fig. E1b).

E3 Test 3: updating the model with data between 1900
and 2010

Due to the large uncertainties in both the historical RF and
observed temperature change, we did another test where the
model is only updated with data between 1900 and 2010, ex-
cluding the uncertain early period including the 1883 Kraka-
toa volcanic eruption. This sensitivity test slightly shifts the
ECS to larger values, increasing the posterior mean value
by 0.3 to 2.2◦C and a 90 % C.I. of 1.4 to 3.3◦C, but val-
ues larger than 4.5◦C are still basically excluded (Fig. E1f
vs. Fig. E1b). The probability of ECS greater than 4.5◦C
is 0.005.

E4 Test 4: the role of ocean heat content – excluding
OHC data for the years 2001 to 2010

To test how the OHC data for the years 2000 to 2010 affect
the ECS estimate, a sensitivity test is performed where the
OHC data from 2000 to 2010 is excluded, i.e. OHC data be-
tween 2001 and 2010 are not used to update the model. The
resulting PDF for the ECS (Fig. E1g) is significantly wider
than in the corresponding full analysis (Fig. E1b) and only
slightly narrower than when data only up to year 2000 are
used to estimate the ECS (Fig. E1c). The posterior mean for
the ECS is 3.5◦C and the probability of ECS being larger
than 4.5◦C is 0.17, so the estimated ECS is significantly con-
strained using the OHC data after the year 2000.

E5 An additional sensitivity test with two mixed layer
depths

We have performed an additional sensitivity test where we
included two instead of one mixed layer depths. More pre-
cisely, we included one mixed layer depth for the North-
ern Hemisphere and one for the Southern Hemisphere. Note
that in this sensitivity test long-term internal variability is in-
cluded explicitly in the model and three OHC series are used,
i.e. the sensitivity test is as in the main analysis, except for the
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inclusion of two mixed layer depths. The results are shown
in Fig. E2. We observe that the inclusion of two mixed layer
depths instead of one had only minor effects on the estimated
ECS.

E6 The role of the ECS prior

In the main analysis the ECS is given a uniform prior (0–
20◦C). To test the role of the prior distribution of ECS we
have re-calculated the posterior PDF for ECS based on two
other priors; one taken from Hegerl et al. (2006) and another
that is uniform for 1/ECS. Technically, this is done by re-
weighting the MCMC samples from the estimation of our
main model according to the alternative priors. This can be
seen as a variant of importance sampling.

Hegerl et al. (2006) calculated a PDF for the climate sen-
sitivity that was a combination of PDFs from several au-
thors, all on the basis of reconstructed temperature data be-
fore 1850. Since this PDF is based on data other than we use
in our work, it can be reasonable to use this PDF as an infor-
mative prior. The median of this prior is around 3.5◦C, with
a 90 % C.I. from 1.2 to 8.6◦C.

The other prior is a uniform prior for 1/ECS, which is
equivalent to a prior for ECS that is proportional to 1/ECS2.
This prior was discussed in Frame et al. (2005). As we stated
in our previous paper (Aldrin et al., 2012), “this prior is
strongly informative towards low climate sensitivities with
76 % probability for ECS being lower than the pure black-
body radiation of 1.1 K”, and it is perhaps not very realistic.

We observe that the estimates when using Hegerl’s prior
are slightly larger than those obtained with a uniform prior
with a mean value of 1.9◦C, while the credible intervals are
slightly narrower (90 % C.I. from 1.1 to 3.1◦C) compared to
the main analysis (Fig. 2a). When using a uniform prior for
1/ECS, the PDF is shifted considerably towards lower values,
with a mean value of 1.3◦C and 90 % C.I. of 0.46 to 2.3◦C
compared to 1.8◦C and 90 % C.I. of 0.9 to 3.2◦C in the main
analysis.
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Fig. E1. Posterior distributions for the ECS for analyses where long-term internal variability is not included explicitly in the model (i.e. the
term nliv

t is not included in the model) and only one OHC series is used (except for the analysis in(a) that is included to show the effect
of using three instead of one OHC series). In(a) the main analysis (no long-term internal variability term, three OHC series),(b) only one
OHC series,(c) use data up to 2000,(d) sensitivity Test 1, changing the direct aerosol BC effect in the latter part of the simulation period,
(e)sensitivity Test 2, changing the direct aerosol BC effect in the early part of the simulation period,(f) sensitivity Test 3, using data between
1900 and 2010,(g) sensitivity Test 4, excluding OHC data for the years 2001 to 2010. The estimated mean of ECS, the 90 % C.I. and the
probability of ECS being larger than 4.5◦C are given in the text box of each panel. The 90 % C.I. (the error bar) and estimated posterior mean
(triangle) and median (black dot) are also indicated in each panel.
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Fig. E2. Posterior distributions for the ECS for(a) the main analysis (same as Fig. 2a), and(b) the sensitivity test with two mixed layer
depths, one for the Northern Hemisphere (θM

NH) and one for the Southern Hemisphere (θM
SH). The estimated mean of ECS, the 90 % C.I. and

the probability of ECS being larger than 4.5◦C are given in the text box of each panel. The 90 % C.I. (the error bar) and estimated posterior
mean (triangle) and median (black dot) are also indicated in each panel.
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Appendix F

Pair plots of samples from the posterior distribution

Figure F1 shows pair plots of samples from the posterior dis-
tribution for ECS, total RF in 2010 and total aerosol effect in
2010, giving the bivariate posterior for these quantities. The
estimate of ECS are naturally negatively correlated with total
RF, which means that if the true ECS is high, the true total RF
is probably low, and vice versa. Furthermore, the posterior
probability for high values of ECS is decreased considerably
when data up to 2010 are included.

Likewise, Fig, F2 shows pair plots of samples from the
posterior distribution for the parameters in the EBM.
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Figure F1. Pairs plots of samples from the posterior distribution for ECS, total RF in 2010 and 4 

total aerosol effect in 2010. In (a) the model is updated with data up to 2010, while in (b) the 5 
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Fig. F1. Pair plots of samples from the posterior distribution for ECS, total RF in 2010 and total aerosol effect in 2010. In(a) the model is
updated with data up to 2010, while in(b) the model is updated with data up to 2000.
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Fig. F2. Pair plots of samples from the posterior distribution for the model parameters ECS andθ = (θVHD , θP, θUV , θASHE, θOIHE, θM ).
In (a) the model is updated with data up to 2010, while in(b) the model is updated with data up to 2000.
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