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Abstract. On interannual- to multidecadal timescales vari-
ability in sea surface temperature appears to be organized
in large-scale spatiotemporal patterns. In this paper, we in-
vestigate these patterns by studying the community structure
of interaction networks constructed from sea surface tem-
perature observations. Much of the community structure can
be interpreted using known dominant patterns of variability,
such as the El Niño/Southern Oscillation and the Atlantic
Multidecadal Oscillation. The community detection method
allows us to bypass some shortcomings of Empirical Orthog-
onal Function analysis or composite analysis and can pro-
vide additional information with respect to these classical
analysis tools. In addition, the study of the relationship be-
tween the communities and indices of global surface temper-
ature shows that, while El Niño–Southern Oscillation is most
dominant on interannual timescales, the Indian West Pacific
and North Atlantic may also play a key role on decadal
timescales. Finally, we show that the comparison of the com-
munity structure from simulations and observations can help
detect model biases.

1 Introduction

An important issue in climate research is to understand the
behavior of the global mean surface temperature (GMST)
over the last century (Sutton et al., 2007). Both internal
variability and changes in radiative forcing, in particular by
anthropogenic emissions of greenhouse gases (GHG), con-
tribute to changes in GMST. The impact of GHG forcing
has been extensively studied, being highly relevant to cli-

mate sensitivity and hence for projections on future changes
of the GMST. The important role of internal variability of
ocean heat storage on GMST has been highlighted in the re-
cent study byBalmaseda et al.(2013).

On interannual- to multidecadal timescales, climate vari-
ability appears to be organized into large-scale patterns with
the El Niño/Southern Oscillation (ENSO) and the Atlantic
Multidecadal Oscillation (AMO) as prominent examples.
These phenomena are characterized by well-defined spa-
tiotemporal patterns in sea surface temperature (SST). The
ENSO variability in the equatorial Pacific is the dominant
pattern of variability on interannual timescales (Mcphaden
et al., 1998; Wang et al., 2004). ENSO influences the cli-
mate of many regions over the globe (Alexander and Bladé,
2002; Deser et al., 2010) and the El Niño 1997–1998 event
was estimated to have caused a GMST increase of about
0.6◦C (Trenberth, 1997). The AMO is the dominant pattern
of SST variability in the North Atlantic on decadal- to mul-
tidecadal timescales (Enfield, 2001). The AMO is thought to
be strongly related to variations in the Atlantic Meridional
Overturning Circulation (Srokosz et al., 2012), which affect
the oceanic meridional heat transport.Sutton and Hodson
(2005) show that the AMO has an influence on European
Summer temperatures and relations of the AMO with US
rainfall were suggested inEnfield (2001). Recently, it was
suggested that the variability of global land surface tempera-
tures (GLST) is strongly connected to the AMO (Canty et al.,
2013), with a correlation coefficient of 0.65± 0.04 (Muller
et al., 2013).

In most studies so far on the connection between patterns
of variability and GMST, variants of Empirical Orthogonal
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2 A. Tantet and H. A. Dijkstra: Network view of SST variability

Function analysis (EOF,von Storch and Zwiers, 1999a) have
been used to identify spatial patterns of variability. The dis-
advantage of EOFs, when computed from the global SST
field, is that only the dominant mode can be clearly as-
sociated to a spatiotemporal pattern of variability. Higher-
order modes, which are required to be orthogonal to the
first mode, are usually difficult to relate to the patterns of
variability as known from regional EOF analyses (Monahan
et al., 2009). It is therefore still quite unclear how and how
much the different patterns and their interaction contribute to
GMST variability.

Here we address the problem on the connection between
patterns of SST variability and GMST using complex net-
works theory. Although this theory has already been success-
fully applied to many different technological and scientific
problems (e.g. in computer sciences, neurosciences, social
sciences) it has only recently that it been used in climate re-
search. So-called interaction networks, where links are based
on a correlation measurement between variables at specific
locations, have been reconstructed to analyze the connectiv-
ity of the climate system (Tsonis and Roebber, 2004; Tso-
nis et al., 2010; Donges et al., 2009b, a), teleconnections
(Tsonis et al., 2008), the behavior of El Niño (Gozolchi-
ani et al., 2008, 2011; Tsonis and Swanson, 2008; Yamasaki
et al., 2008), synchronization between different spatiotem-
poral patterns (Tsonis et al., 2007; Wyatt et al., 2011) and
the connections between the variability in different climate
variables (Donges et al., 2011).

One of the many interesting properties of a network is
its possible partition into communities or groups of highly
connected nodes which are only weakly connected to the
rest of the network. Community detection has recently been
applied to climate interaction networks of different atmo-
spheric variables from observations and simulations by (Tso-
nis et al., 2010) where some of the known patterns of at-
mospheric variability, such as the North Atlantic Oscillation,
could be identified.

We focus in this study on communities in interaction net-
works reconstructed from global SST observations. The data,
their preprocessing and the network reconstruction and anal-
ysis tools are presented in Sect. 2. In Sect. 3, results on
the SST communities in the reconstructed networks are pre-
sented and interpreted, and connected to results in the litera-
ture based on EOF and composite analysis. Then in Sect. 4,
we address the connection between the SST communities
and the GMST and also compare the results from observa-
tions with those from Earth system model (ESM) simula-
tions. In the Sect. 5, the main results are summarized and
discussed with a focus on the benefits of the interaction
network approach.

2 Data and methods

2.1 Data and network reconstruction

Monthly mean SST observations over the period 1870 to
2011 compiled in the HadISST data set (Rayner, 2003) were
used. The seasonal cycle was removed from the linearly de-
trended monthly data. Even though the leading order effect
of the annual cycle is removed by producing anomaly val-
ues, boreal winter anomalies are still larger than in summer.
In order to avoid spurious high values of correlations,Tso-
nis and Roebber(2004) andTsonis et al.(2010) only used
the December-January-February months of each year. Since
our results were not significantly affected by the selection of
the winter months, we decided to use complete years. The
detrended monthly anomalies were then low-pass filtered via
a Lanczos filter (Duchon, 1979) with a cutoff frequency of
1/13 month−1 and order 144.

Because more grid points are located towards the poles
on a regular longitude-latitude grid, which could lead to bi-
ases in our network measures, the data was linearly inter-
polated on a sinusoidal grid in order to conserve the arc
length with latitude. In this study, we used a resolution at
the equator of 2◦ but the results presented below are quali-
tatively similar when using grid resolutions ranging from 1◦

to 5◦. Because of the poor sampling of the region south of
50◦ S (Deser et al., 2010, Fig. 3), only the grid points lo-
cated between 50◦ S and 80◦ N were kept, resulting in a total
of N = 6280 grid points (land surface points excluded) for
L = 142× 12= 1704 months.

Each ocean grid point is considered as a node in the net-
work and we indicate the time series at nodei, i = 1, . . . ,N

by pi(tk),k = 1, . . . ,L. Contrary to a network as derived
from a power grid or the world-wide web, the links of a cli-
mate network are not directly tangible because the observ-
ables derive from continuous fields. In an interaction net-
work, a link between two nodes is based on a measure of
the correlation between the time series of these two nodes.
In this study, we used the Pearson correlation coefficient at
lag zero, sayRij , between the time series of nodesi andj ,
defined by

Rij =

∑L
k=1pi(tk)pj (tk)√

(
∑L

k=1p2
i (tk))(

∑L
k=1p2

j (tk)))

(1)

as the measure defining the links in the network (Tsonis and
Roebber, 2004). A pair of nodes is then considered to be con-
nected if their correlationRij is over a chosen thresholdτ .
The elementsaij of the N × N adjacency matrixA of the
undirected and unweighted network are thus given by

aij = 2(Rij − τ) − δij , (2)

where2 and δ are the Heaviside function and Kronecker
symbol, respectively. Even though the links in the network
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are based on SST correlations at zero lag, a connection
should not be considered instantaneous, since the time se-
ries were low-pass filtered for 13 months. However,Foster
and Rahmstorf(2011) found that lags ranging from 0 to 7
months are relevant to the study of interannual climate vari-
ability. Our results have been tested for lagged correlations
in this range. Since no qualitative differences were found and
correlations were generally weaker for longer lags, only the
results for 0 lag correlation are presented in this study.

We based our choice of the thresholdτ on parametric and
non-parametric significance tests. Considering a decorrela-
tion time of 13 months (corresponding to the cut-off fre-
quency of the filter), we found that all correlations over 0.17
are statistically significant at the 5 % level according to a t-
test withL/13= 131 degrees of freedom.

In order to better account for the persistence in the time se-
ries, a moving block bootstrap (MBB) test was also applied to
the time series (Mudelsee, 2010). The bootstrap works with
artificially produced resamples of the time series. In an MBB,
blocks of lengthLB are randomly picked out of the original
time series to create a set sizeNS of surrogate time series.
Correlations are then calculated between surrogate time se-
ries for each pair of nodes. The choice of the block length
is a trade-off between conserving the memory of the origi-
nal time series and producing maximally independent surro-
gate time series. For the data set used in this study, we found
that the estimated 5 % significance level was robust for block
lengths ranging from 15 to 50 yr. Consequently, we chose
a block length ofLB of 20 yr and a sample set sizeNS of
4000 for all our MBB tests. Because a grid of 6280 nodes
results in∼ 2× 107 pairs, the MBB tests were realized on
a coarser grid of 5◦ × 5◦ resulting in 1144 nodes. We found
that in the worst case thep values of the 5 % significance
level was 0.39.

Additionally, an approximate test was used, where corre-
lations were calculated between pairs of surrogate time se-
ries associated with the same node for the 6280 nodes of the
2◦ grid. Thep values found in this case were close to the
maximump values found for each grid point of the first test,
suggesting that the approximated version of the MBB test is
a good alternative for large gridded data sets.

The results of both parametric and non-parametric tests in-
dicate that a thresholdτ = 0.4 guarantees that a link between
a pair of nodes of the HadISST data represents a statistically
significant correlation at the 5 % level. In addition, thresh-
olds ranging from 0.4 to 0.6 were used to build the network
and we found that our results were not qualitatively sensitive
to the threshold value over this range, although teleconnec-
tions appear weaker as the threshold increases. Subsequently,
a threshold of 0.4 will be used and the resulting interaction
network built from the HadISST data set will be referred to
as the H-SST network.

2.2 Analysis techniques

Extended reviews of commonly used network measures can
be found inCosta and Rodrigues(2007) and Barthélemy
(2011). We here focus on degree centrality, first neighbours
maps and communities. The degree centralitydi of a nodei
counts its number of connections with other nodes of the net-
work. This measure is directly accessible from the adjacency
matrix through

di =

N∑
j=1

aij (3)

and allows one to reveal nodes sharing a common variability
with other nodes of the network. The edge densityρ of a
network

ρ =
1

N(N − 1)

N∑
i,j=1

aij (4)

is the total number of links in the network normalized by the
maximum number of possible links and is an indicator of the
sparseness of the network. First neighbours maps describe
the fraction of nodes belonging to a given group any node in
the network is connected to. They are defined as

FNi→G =
1

NG

∑
nj ∈G

aij , (5)

where “G” is the selected group ofNG nodes. A node of a
first neighbours map reaches a maximum (minimum) value
of 100 % (0 %) if it is connected to all (none) of the nodes of
the selected group of nodes.

Much focus has recently been given to the partitioning
of networks into communities (Newman and Girvan, 2004).
Communities are groups of nodes tightly connected together
and weakly connected to the rest of the network. As such,
they can be regarded as subsystems which operate relatively
independently of the other communities (Arenas et al., 2006).
Considerable improvements have been made during the past
decade regarding the speed and efficiency of the commu-
nity detection algorithms. InTsonis et al.(2010), the algo-
rithm of Newman and Girvan(2004) based on the progres-
sive removal of dominant links (in terms of information flow)
was applied to determine the community structure of several
fields (500 hPa height, sea level pressure and surface tem-
perature) derived from the NCEP/NCAR reanalysis (Kistler
et al., 2001) and simulations from the Geophysical Fluid
Dynamics Laboratory (GFDL) climate model CM2.1 (Del-
worth, 2006).

We tested the Multilevel algorithm ofBlondel et al.(2008)
and the Leading Eigenvector algorithm ofNewman(2006)
which, as the algorithm used byTsonis et al.(2010), is based
on the optimization of the modularity (cf. Sect. 3.1) but has a
faster implementation. However, results presented in Sect. 3
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Fig. 1: Degree centrality, as defined by Eq. (3), of the nodes of the H-SST network. A threshold

τ = 0.4 was used to construct the network giving an edge density ρ= 0.14.
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Fig. 1. Degree centrality, as defined by Eq. (3), of the nodes of the
H-SST network. A thresholdτ = 0.4 was used to construct the net-
work giving an edge densityρ = 0.14.

below are generated using the Infomap algorithm byRos-
vall and Bergstrom(2007) which is based on the compression
of the paths of random walkers traveling along the network.
This algorithm was the most efficient in the LFR benchmark
(Lancichinetti and Fortunato, 2009) among the different al-
gorithms tested.

3 Spatial structure of SST variability

3.1 Communities in the H-SST network: detection

The map of degree centrality of the H-SST networks (Fig.1)
indicates that nodes located in the tropics tend to have a
higher degree centrality than those located in the extra-
tropics, in agreement with atmospheric surface temperature
analyses inTsonis and Roebber(2004). The tropical Atlantic
shows a rather low degree centrality compared to the Indian
and Pacific Oceans except over its northwestern part. The
eastern tropical Indian Ocean also shows a low degree cen-
trality. Surrounding the tropics, patches of high degree cen-
trality are found in the mid-latitude North Pacific, South Pa-
cific and along the western coast of the American continent.

In order to assess whether the variability in high-degree
regions arises from distinct spatial patterns, the community
structure of the H-SST network is determined (Fig.2a). The
communities are ordered by the total “PageRank” of their
nodes (Brin and Page, 1998). The PageRank corresponds to
the fraction of random walkers which would flow through the
nodes of a community out of a population of random walkers
traveling around the network by the links. In a directed net-
work, a large flow of random walkers can arise from the large
inward-degree of the nodes they go through but also from the
large inward-degree of the nodes pointing to them and so on.
However, in our case, the network is undirected so that the
flow of random walkers through a node is equal to its degree
centrality divided by the edge density. The total PageRank of
a community is thus given by

PRi =
1

ρ

∑
j∈Ci

dj =
1

ρ

∑
j∈Ci

∑
k

ajk, (6)

Fig. 2: Top panel (a): Infomap communities in the H-SST network. Each color represents one

community and each node is assigned the color of the community it belongs to. The communities

are ordered by decreasing total PageRank of their nodes which is written to the right of the scale.

Bottom panel (b): Infomap communities after filtration of nodes which are connected to a fraction

of their community smaller than twice the density of the network or belong to communities with

nodes smaller than 2% of the network. Nodes in white are unassigned, they do not belong to any

community.
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Fig. 2. (a)Infomap communities in the H-SST network. Each color
represents one community and each node is assigned the color of the
community it belongs to. The communities are ordered by decreas-
ing total PageRank of their nodes, which is written to the right of
the scale.(b) Infomap communities after filtration of nodes that are
connected to a fraction of their community smaller than twice the
density of the network or belong to communities with nodes smaller
than 2 % of the network. Nodes in white are unassigned, they do not
belong to any community.

whereCi is the set of nodes belonging to communityi. Con-
sequently, the PageRank of a community is a measure of the
co-variability of its nodes.

A common measure of the quality of a partition of a net-
work into communities is the modularity of this partition
(Newman and Girvan, 2004). For a particular division into
m communities anm × m symmetric matrixe is defined,
for which an elementeij is the fraction of all connections
in the network that link nodes in communityi to nodes in
communityj . As such,

∑
i eii gives the fraction of edges in

the network that connect nodes in the same community and
fi =

∑
j eij represents the fraction of all edges in the net-

work that connect to nodes in communityi. In a (random)
network, for which edges connect nodes independent of the
communities they belong to, we would haveeij = fifj so
that

∑
i f

2
i corresponds to the fraction of all edges that con-

nect to the same community in such a randomly wired net-
work. In a modular network, the(eii) must be high compar-
atively to the(f 2

i ), thus, the modularityM is defined as in
Newman and Girvan(2004):

M =

m∑
i=1

(eii − f 2
i ). (7)

The modularity of the Infomap partition of the H-SST net-
work into 11 communities (Fig.2a) is M = 0.23, which is
smaller than the modularities of 0.29 and 0.28 of the parti-
tions into 5 and 7 communities of the Multilevel and Leading

Earth Syst. Dynam., 5, 1–14, 2014 www.earth-syst-dynam.net/5/1/2014/



A. Tantet and H. A. Dijkstra: Network view of SST variability 5

Eigenvector algorithms, for the same network. We will now
justify our choice of the Infomap algorithm in spite of the
lower modularity of its partition of the H-SST network.

The main problematic issue we encountered when apply-
ing community detection algorithms to SST networks arises
from the spatial heterogeneity of the modularity of these
networks. Regions where one spatial pattern of variability
dominates (e.g. ENSO) are obviously highly modular. How-
ever, regions where the variability is dominated by the ef-
fect of atmospheric noise can also be weakly modular, so
that the existence of communities in such regions is ques-
tionable. It is often more optimal in terms of modularity to
associate the nodes of such weakly modular regions to one
broad but weakly interconnected community. Such a com-
munity cannot be considered as a coherent physical pattern
of variability, so that it would be preferable not to associate
nodes of weakly modular regions to any community. The
community detection algorithms we know must distribute ev-
ery node to a community no matter how modular the net-
work is. Thus, it would be preferable to distribute nodes of
weakly modular regions into several small but densely in-
terconnected communities (even if small means one node,
in the case of very weakly modular regions). For our net-
works, the Infomap algorithm was the most capable one to
divide weakly modular regions into small communities. Be-
cause these small communities are more interconnected, they
are more likely to represent physical spatial patterns of vari-
ability than the broad sparsely interconnected communities
detected by the modularity based algorithms. However, we
focus in this study on the dominant patterns. For these rea-
sons, we decided to filter out nodes connected to a fraction
of their community smaller than twice the density of the net-
work (i.e. connected to less thanρ(Ni −1) nodes of the com-
munity, whereNi is the number of nodes in the community
i) and to remove communities including less than 2% of the
total number of nodes in the network.

In the case of the Infomap partition of the H-SST network,
20% of the nodes are removed from their community and 1
community is filtered (Fig.2b) out of the initial 11 communi-
ties (Fig.2a). When applying the same filtering process to the
partitions found by the Multilevel and Leading Eigenvector
algorithms, more nodes are removed and fewer communities
remain. For the multilevel algorithm, 32% of the nodes are
removed and the same initial number of 5 communities re-
main, while for the Leading Eigenvector algorithm, 28% of
the nodes are removed and the same initial number of 7 com-
munities remain.

From these results, we conclude that the ability of the In-
fomap algorithm to distribute nodes of weakly modular re-
gions into several small but dense communities penalizes its
modularity score. On the contrary, the modularity-based al-
gorithms tend to distribute the nodes of these weakly mod-
ular regions in a few large but sparsely interconnected com-
munities which are less likely representative of any physical
pattern variability. In the study of a climate network, it is

Fig. 3: First six EOFs determined for the same dataset as used to build the H-SST network.
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Fig. 3. First six EOFs determined for the same data set as used to
build the H-SST network.

preferable to filter out such weakly modular regions because
partitioning them into communities could be misleading. Be-
cause (i) the detected Infomap partition is less affected by
this filtration process than the modularity-based partitions
and (ii) the fact that the random walkers in the Infomap algo-
rithm are closely related to the flow in a dynamical networks,
the Infomap algorithm appears to be the best choice for the
study of patterns of climate variability.

As representations of spatial patterns of variability, the
communities of the network can be compared to EOFs. To
assess the potential similarities and improvements brought
by the detection of communities compared to EOFs, an EOF
analysis was also conducted on the same data as used to build
the H-SST network. EOF and rotated EOFs (R-EOFs) anal-
ysis of SST fields have been used by, e.g.Weare(1976) and
Kawamura(1994), respectively. The first 6 EOFs of the SST
field are shown in Fig.3 and the R-EOFs using these 6 EOFs
in Fig. 4. The R-EOFs are linear combinations of the 6 ini-
tial EOFs maximizing a given simplicity function or crite-
rion, here the normalized varimax criterion ofKaiser(1958).
Note that the eigenvector decomposition in the EOF analy-
sis is based on the same correlations used to build the H-
SST network. When the correlation matrix is used (and not
the covariance matrix), every node is given the same weight
without regard to their variance. We can see (Fig.3) that only
the first EOF can be associated to a community. The higher-
order EOF modes cannot be associated to any communities
and they do not appear to represent any physical pattern of
variability. On the contrary, the first 6 rotated EOFs can be as-
sociated with the dominant communities (Fig.4). However,
even higher-order rotated-EOFs are very noisy and cannot be
associated with any communities or known physical pattern
of variability.

www.earth-syst-dynam.net/5/1/2014/ Earth Syst. Dynam., 5, 1–14, 2014
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Fig. 4: First six varimax-rotated EOFs estimated from the same dataset as used to build the H-SST

network.
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Fig. 4.First six varimax-rotated EOFs estimated from the same data
set as used to build the H-SST network.

3.2 Communities in the H-SST network: interpretation

In this section, a physical interpretation of the communities
of the H-SST network (Fig.2b) is given. Community #1 is by
far the dominant community in terms of PageRank (69%) and
size. Most of the nodes are located in the tropical Pacific but
remote patches – located in the Pacific extra-tropics, tropical
Indian ocean and northwestern tropical Atlantic – are also
part of the community. This result suggests that teleconnec-
tions exist between the tropical Pacific and remote regions
over the globe. These teleconnections can be deduced from
the first neighbours map which is plotted in Fig.5a for com-
munity #1. For each node in the network, this map shows to
which percentage of the nodes in the community it is con-
nected to. For example, a node in the equatorial Atlantic is
connected to about 25% of the nodes in the community.

From Fig.5a, it can be seen that community #1 is well de-
fined (nodes inside the community are connected to most of
the other nodes of this community and are only sparsely con-
nected to nodes outside the community) and that the differ-
ent remote patches of the community are connected to each
other. We have verified that the equatorial Pacific nodes are
anti-correlated with those of the two small patches located
around 30◦ in the North and South Pacific and to those near
New Zealand, while they are positively correlated with the
other nodes of the community. The spatial pattern of the com-
munity #1 also coincides with the EOF and R-EOF (Fig.3a
and Fig.4a, respectively), explaining most of the variance. It
also corresponds with the (December–February) El Niño/La
Niña composites of HadISST SST determined inAlexander
and Bladé(2002) (their Fig. 6a). Thus, these results suggest
that community #1 is representative of the dominant pattern
of variability on interannual timescales, i.e. ENSO.

The teleconnections shown in Fig.5a have been described
extensively in the literature. Perhaps the most well-known re-

Fig. 5: First neighbours map of communities (a) #1, (b) #2, and (c) #3 in the H-SST network. For

each node, the color scale indicates the percentage of the nodes in the community to which that node

is connected.
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Fig. 5. First neighbours map of communities(a) #1, (b) #2, and(c)
#3 in the H-SST network. For each node, the color scale indicates
the percentage of the nodes in the community to which that node is
connected.

mote impacts of ENSO are the changed atmospheric circula-
tion over the northern Pacific and North America region and
the associated SST anomalies in the North Pacific (Wallace
and Gutzler, 1980; Deser and Blackmon, 1995; Lau, 1997).
A similar relationship between the tropical and the south Pa-
cific (Liu et al., 2002; Ciasto and Thompson, 2008) as well
as the warming of the tropical Indian ocean (Lanzante, 1996;
Klein et al., 1999) and tropical Atlantic (Curtis and Hasten-
rath, 1995; Lanzante, 1996; Enfield and Mayer, 1997; Klein
et al., 1999) basins have also been reported. Previous stud-
ies suggest that the main mechanism involved in these tele-
connections on interannual timescales is the “atmospheric
bridge” (Lau and Nath, 1996). This bridge occurs through
changes in the Hadley and Walker cells and through the in-
teraction of Rossby waves with the quasi-stationary flow and
storm tracks (Trenberth et al., 1998; Alexander and Bladé,
2002).

Community #2, in terms of PageRank, is located in the
northern Atlantic. None of the EOFs in Fig.3 resemble this
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(a)

(b)

Fig. 6: (a) Degree centrality of the H-SST-LP8y network. The network was built using the same

methodology as the H-SST network except that the time series were 8 years low-pass filtered and a

threshold τ = 0.6 was used for significance; this results in an edge density ρ= 0.087. (b) Filtered

communities in the H-SST-LP8y network.
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Fig. 6. (a)Degree centrality of the H-SST-LP8y network. The net-
work was built using the same methodology as the H-SST network
except that the time series were 8 yr low-pass filtered and a thresh-
old τ = 0.6 was used for significance; this results in an edge density
ρ = 0.087.(b) Filtered communities in the H-SST-LP8y network.

community but the third R-EOF (Fig.3c) exhibits clear sim-
ilarities with it. This spatial pattern bears the signature of the
AMO (Guan and Nigam, 2009).

The next community, #3, covers the maritime continent
and the Philippine and East China seas, a region below re-
ferred to as the Indian Ocean-West Pacific (IWP). The sec-
ond R-EOF (Fig.3b) has a similar pattern as this com-
munity although it also shows strong variance in the In-
dian ocean. The IWP is located at the confluence of the Pa-
cific and Indian Oceans and connects the two oceans by the
Indonesian Throughflow (ITF).Ramage(1968) has shown
that the IWP is one of the greatest sources of energy for
the extratropical circulation. Deep convection takes place in
this region and the overlying atmosphere is highly sensi-
tive to changes in SST (seeQu et al., 2005 for a review).
Interannual variability in this region can be largely under-
stood in terms of Kelvin and Rossby waves generated by
remote zonal winds along the Indian and Pacific equatorial
regions as well as by changes in the volume transport of the
Indonesian Throughflow.

Although the other communities (#4–#10) also exhibit
similarities with known spatial patterns of variability, we will
not discuss this as their PageRank is much lower than the first
three communities. For example, communities #8 and #9 are
located in the region of the pathways of the northern West-
ern Boundary Currents (Qiu, 2000; Frankignoul, 2001) and
community #4 appears to connect the southern wind-driven
gyres (Speich et al., 2002). The first 6 communities can be as-
sociated with the first 6 R-EOFs, however, when more EOFs
are rotated, no additional pattern of variability could be iden-
tified (not shown here). Hence, the community analysis al-

(c)

Fig. 7: Regression of the mean time series of the IWP and NA communities of the H-SST-LP8y

network to the (a) GMST and (b) GLST.
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Fig. 7. Regression of the mean time series of the IWP and NA
communities of the H-SST-LP8y network to the(a) GMST and(b)
GLST.

lowed us to detect more detailed features of SST variability
represented in the HadISST data set.

4 Decadal SST variability and its connection with the
GMST

4.1 Observations

We have seen that the community structure of the H-SST
network is dominated by the first one and related to ENSO
variability on interannual timescales. In order to focus on
decadal variability we build a new network following the
same methodology as before but using low-pass filtered time
series of SST with a cutoff period of 8 yr to filter out the
2 to 7 yr band which is influenced strongest by ENSO. The
thresholdτ was set to 0.6 in order to only keep absolute
correlations above the maximump value of the 5% sig-
nificance levels calculated over the globe using the MBB
method (see Sect.2). The resulting network, below referred
to as the H-SST-LP8y network, has an edge density of 0.087
which is about 30 % smaller than the edge density of the
H-SST network.
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(a)

(b)

Fig. 8: (a) Degree centrality of the ESM-SST network. The network was built using the same

methodology as for the H-SST network but using SST from the MPI-ESM-LR historical simulations.

A threshold τ = 0.4 was used as for the H-SST network leading to an edge density ρ= 0.073. (b)

Filtered communities in the ESM-SST network.
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Fig. 8. (a)Degree centrality of the ESM-SST network. The network
was built using the same methodology as for the H-SST network but
using SST from the MPI-ESM-LR historical simulations. A thresh-
old τ = 0.4 was used as for the H-SST network leading to an edge
densityρ = 0.073. (b) Filtered communities in the ESM-SST net-
work.

The degree centrality and the community structure of the
H-SST-LP8y network are plotted in Fig.6a and b, respec-
tively. Overall, the spatial patterns appear similar to those
of the H-SST network but important differences exist in the
tropics. First of all, the degree centralities of the nodes in
the H-SST-LP8y network located in the tropical Pacific and
Indian ocean have decreased significantly, compared to those
in the H-SST network; in the extra-tropics the opposite effect
occurs (Fig.6a). Community #1 (Fig.6b) of the H-SST-LP8y
network (which exhibits a similar pattern as the ENSO com-
munity in the H-SST network) has a much lower PageRank
(31% versus 69% in the H-SST network). This result is ex-
pected when interannual variability and, a fortiori, variability
related to ENSO, is filtered out. A second important differ-
ence is that the nodes lying in the Indian Ocean are no longer
part of the same community as the nodes of the tropical Pa-
cific. They are, instead, part of the same community as the
nodes in the IWP region (community #2 in the H-SST-LP8y
network). Furthermore, this IWP community has a PageR-
ank of 26 % which is comparable to the PageRank of the
tropical Pacific community #1 (31%). The community of the
North Atlantic (NA, community #3 in the H-SST-LP8y net-
work) and the community of the southern wind-driven gyres
(community #4 in the H-SST-LP8y network) also exhibit
higher PageRanks (15 and 11%, respectively) than the cor-
responding communities in the H-SST network. These high
PageRanks (or high number of links) are representative of the
strong co-variability of the nodes in these regions on decadal
timescales, indicating that important components of decadal
variability are present in the IWP region, the NA and the
southern wind-driven gyres communities.

(a)

(b)

Fig. 9: (a) Degree centrality of the ESM-SST-LP8y network. The network was built using the

same methodology as for the H-SST-LP8y network but using SST from the MPI-ESM-LR historical

simulations. A threshold of τ = 0.6 was used as for the H-SST network leading to an edge density

ρ= 0.077. (b) Filtered communities in the ESM-SST-LP8y network.
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Fig. 9. (a) Degree centrality of the ESM-SST-LP8y network. The
network was built using the same methodology as for the H-SST-
LP8y network but using SST from the MPI-ESM-LR historical sim-
ulations. A threshold ofτ = 0.6 was used as for the H-SST network
leading to an edge densityρ = 0.077. (b) Filtered communities in
the ESM-SST-LP8y network.

In order to investigate the relationship between the spa-
tial patterns of variability represented by the communities
and the global mean state of the climate system, correlations
were calculated between mean SST time series associated
with each community (in both H-SST and H-SST-LP8y data
set) and three indices of global mean surface temperature
(GMST). The time series representing the SST of a specific
community was calculated by spatially averaging the time
series of the nodes of the community. This spatial averag-
ing is equivalent to projecting the data set on the community
vectorsCj of sizeN whereCij equals 1 if nodei belongs
to communityj , 0 otherwise. Thus, these community time
series are to communities what expansion coefficients are to
EOFs.

The Global Surface Temperature Anomalies of the NOAA
(Smith and Reynolds, 2005) averaged over land and ocean
(GMST), land only (GLST) and ocean only (GOST) were
used as indices of the mean state of the climate system. The
indices were processed using the same methodology as for
the H-SST and H-SST-LP8y data sets (1 and 8 yr, respec-
tively, low-pass filtered detrended anomalies) and cover the
period 1880–2011. The correlations between the time se-
ries of the communities and the indices for the H-SST and
H-SST-LP8y networks are presented in Tables1 and2, re-
spectively. For each correlation, a 95% confidence interval is
given in brackets and correlations significant at the 5% level
in bold face. The confidence intervals and significance lev-
els were estimated using the MBB method as described in
Sect.2.

From both tables Tables1 and2, it is found that each of the
communities is more correlated with the GOST than with the
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Fig. 10: Regression of the mean time series of the ENSO and IWP communities of the ESMP-LP8y

network to the (a) GMST and (b) GLST.
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Fig. 10.Regression of the mean time series of the ENSO and IWP
communities of the ESMP-LP8y network to the(a) GMST and(b)
GLST.

GLST. Only communities #1–#3 and #5 in the H-SST net-
work (Table1) are significantly correlated with the GLST.
On decadal timescales (Table2), the first three communi-
ties also show significant correlations with the GLST but the
ENSO community (#1) does not display anymore the largest
correlation to the GLST and to the GOST (as in the H-SST
network). Now the Indian Ocean-West Pacific (IWP) com-
munity (#2) and the NA community (#3) are best correlated
to the GOST with the IWP community displaying largest cor-
relations to the GLST. The correlations of 0.77 and 0.84 be-
tween the IWP time series of SST and GLST and GMST,
respectively, is striking and the IWP region appears to play a
major role in decadal climate variability.

Figure 7 represents the linear regressions against the
GMST and GLST indices of the time series of the IWP
community (#2), the NA community (#3) and of the bivari-
ate time series of the IWP and NA communities (multiple-
regression) in a least-square sense. The bivariate fits to
the GMST and GLST result in coefficients of multiple-
determination (a measure of how much the fitted time series
determine the original time series,von Storch and Zwiers,
1999b) of 0.87 and 0.66, respectively. This shows that the
patterns of both communities can, together, statistically ex-
plain most of the decadal variability of the GMST and the
largest part of the decadal variability of the GLST. Using
the ENSO time series does not significantly improve the fits.
However, this analysis is only statistical and no causality be-
tween the time series of the communities and the temperature

Table 1.Correlations between the mean time series of the commu-
nities of the H-SST network and the indices of mean, land and ocean
surface temperatures (all time series 1y low-pass filtered). The 95 %
confidence intervals are given in brackets and correlations signifi-
cant at 5 % in italic face.

# GMST GLST GOST

1 (ENSO) 0.66 [0.62, 0.73] 0.44 [0.36, 0.51] 0.71 [0.67, 0.79]
2 (NA) 0.59 [0.43, 0.68] 0.43 [0.19, 0.55] 0.59 [0.47, 0.68]
3 (IWP) 0.50 [0.30, 0.54] 0.44 [0.23, 0.50] 0.45 [0.24, 0.52]

4 0.41 [0.13, 0.50] 0.22[−0.06,0.35] 0.45 [0.21, 0.54]
5 0.42 [0.33, 0.54] 0.30 [0.18, 0.42] 0.43 [0.34, 0.53]
6 0.25 [0.07, 0.40] 0.11[−0.06,0.24] 0.30 [0.11, 0.46]
7 0.26 [0.11, 0.44] 0.11[−0.02,0.21] 0.32 [0.16, 0.52]
8 0.22[0.02,0.35] 0.17[−0.07,0.35] 0.21[0.02,0.32]
9 0.14[−0.18,0.37] 0.07[−0.29,0.35] 0.16[−0.08,0.32]
10 0.27 [0.05, 0.37] 0.07[−0.12,0.18] 0.35 [0.12, 0.45]

Table 2. Correlations between the mean time series of the com-
munities of the H-SST-LP8y network and the indices of mean, land
and ocean surface temperatures (all time series 8y low-pass filtered).
The 95 % confidence intervals are given in brackets and correlations
significant at 5 % in italic face.

# GMST GLST GOST

1 (ENSO) 0.52 [0.36, 0.73] 0.47 [0.28, 0.68] 0.50 [0.33, 0.66]
2 (IWP) 0.84 [0.72, 0.91] 0.77 [0.55, 0.89] 0.78 [0.59, 0.87]
3 (NA) 0.65 [0.38, 0.83] 0.49 [0.06, 0.77] 0.67 [0.43, 0.82]

4 0.55 [0.18, 0.74] 0.28[−0.22,0.56] 0.62 [0.33, 0.78]
5 0.35 [-0.15, 0.59] 0.29[−0.24,0.57] 0.34 [-0.11, 0.56]
6 0.45 [0.18, 0.62] 0.34[0.02,0.59] 0.44 [0.18, 0.61]
7 0.51 [0.30, 0.77] 0.19[−0.06,0.47] 0.63 [0.39, 0.85]
8 0.55 [0.16, 0.69] 0.24[−0.23,0.44] 0.64 [0.25, 0.75]
9 0.12[−0.37,0.49] 0.04[−0.53,0.56] 0.14[−0.27,0.44]
10 −0.14[−0.53,0.29] −0.51[−0.70,−0.12] 0.07[−0.43,0.44]

indices can be stated. Also, the increase in GMST since the
1970s may be explained by the phase synchronization of the
time series of the IWP and NA communities, although, once
again, the increase of both this index and the time series of
the communities could also arise from other factors such as
an increased radiative forcing (Fig.7).

4.2 ESM simulations

As communities are able to distinguish patterns of climate
variability in the HadISST data, the network methods poten-
tially offer also a more detailed tool to assess the quality of
state-of-the-art Earth System Models (ESMs) in simulating
these patterns. To investigate this, SST fields from a three-
member ensemble of historical simulations (1870–2005), ob-
tained with the MPI-ESM-LR model (Jungclaus et al., 2013;
Stevens and Giorgetta, 2013) for the CMIP5 project (Taylor
et al., 2012), were used to reconstruct two networks follow-
ing the same methodology as for the H-SST and H-SST-LP8y
networks. The time series of the three members were con-
catenated giving time series three times as long as the time
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Table 3.Correlations between the mean time series of the commu-
nities of the ESM-SST network and the indices of mean, land and
ocean surface temperatures (all time series 1y low-pass filtered).
The 95 % confidence intervals are given in brackets and correlations
significant at 5 % are italic face.

# GMST GLST GOST

1 (ENSO) 0.63 [0.56, 0.67] 0.65 [0.56, 0.69] 0.67 [0.61, 0.71]
2 0.68 [0.58, 0.71] 0.41 [0.25, 0.45] 0.47 [0.32, 0.51]

3 (IWP) 0.42 [0.26, 0.45] 0.38 [0.21, 0.41] 0.38 [0.22, 0.42]
4 0.35 [0.18, 0.41] 0.34 [0.19, 0.40] 0.33 [0.16, 0.40]

5 (NA) 0.44 [0.31, 0.50] 0.44 [0.31, 0.49] 0.49 [0.36, 0.56]
6 −0.05[−0.19,0.01] −0.11[−0.22,−0.03] −0.04[−0.18,0.04]
7 0.31 [0.18, 0.36] 0.33 [0.21, 0.38] 0.30 [0.16, 0.36]
8 0.33 [0.17, 0.38] 0.30 [0.17, 0.35] 0.35 [0.21, 0.39]
9 0.16 [-0.05, 0.23] 0.14 [-0.03, 0.21] 0.13 [-0.08, 0.20]
10 0.16 [0.00, 0.20] 0.18 [0.04, 0.23] 0.14 [-0.02, 0.20]
11 0.14 [-0.15, 0.21] 0.10 [-0.14, 0.19] 0.11[−0.16,0.18]
12 0.40 [0.24, 0.47] 0.39 [0.25, 0.43] 0.43 [0.28, 0.49]

series of one simulation (thus increasing statistical signifi-
cance). These model networks will be referred to below as
the ESM-SST and ESM-SST-LP8y networks, respectively.

The degree centrality distribution and community struc-
ture of the ESM-SST network are plotted in Fig.8a and b,
respectively. Similar to the results for the H-SST network,
the ENSO community (#1) and the IWP community (#3)
are visible (Fig.8b) and the ENSO community also domi-
nates with a PageRank of 81%. However, only the southern
half of the NA community is present (community #5 in Fig.
8b), likely indicative of an under-representation of the AMO-
related variability in the model. Also, fewer connections be-
tween the ENSO community and the extratropical Pacific are
visible (Fig.8a and b) than in the H-SST network. A weaker
atmospheric bridge may be responsible for the absence of
such teleconnections. Finally, we can see in Table3 that the
ENSO, IWP and NA communities are, as in the observations,
strongly correlated to the GOST and GLST.

For the ESM-SST-LP8y network, the degree distribution
and community structure (shown in Fig.9a and b, respec-
tively) are quite similar to those of the ESM-SST network.
However, most of the nodes located in the extra-tropics are
unassigned, indicative of a weak spatial coherence of the ex-
tratropical SST variability. Interestingly, the PageRank of the
ENSO community (community #1) is still very high (81%)
so that decadal variability is also dominated by the ENSO
community. This too strong decadal tropical variability has
already been reported byJungclaus and Keenlyside(2006)
for a previous configuration of this model (ECHAM5/MPI-
OM). Zanchettin et al.(2012) also showed that the tropical
Indian SSTs are over-sensitive to tropical Pacific fluctuations
in this model. Decadal variability in the GLST within this
ESM can be largely explained (statistically) by the ENSO
and IWP communities (Fig.10), but misses the connection
to the NA as found in the observations (Table4). Contrary to
Fig. 7, the fits in Fig.10 were made without the time series

Table 4.Correlations between the mean time series of the commu-
nities of the ESM-SST-LP8y network and the indices of mean, land
and ocean surface temperatures (all time series 8y low-pass filtered).
The 95 % confidence intervals are given in brackets and correlations
significant at 5 % in italic face.

# GMST GLST GOST

1 (ENSO) 0.68 [0.51, 0.74] 0.75 [0.60, 0.80] 0.68 [0.50, 0.73]
2 (NA) 0.60 [0.36, 0.67] 0.66 [0.44, 0.73] 0.62 [0.38, 0.70]
3 (IWP) 0.75 [0.55, 0.77] 0.75 [0.55, 0.78] 0.69 [0.46, 0.72]

4 0.77 [0.55, 0.80] 0.63 [0.29, 0.67] 0.62 [0.30, 0.67]
5 0.46 [0.13, 0.52] 0.48 [0.21, 0.53] 0.48 [0.18, 0.54]

of the NA community, the regressions were not significantly
improved using this time series.

To conclude, the main aspects of the SST variability found
in the observations are also visible in the MPI-ESM-LR
model but the variability related to ENSO (NA) is over-
represented (under-represented). These model biases could
be efficiently identified using the network approach.

5 Summary and discussion

In order to study the global climate variability, we have an-
alyzed SST observations and ESM simulations using a cli-
mate network approach focusing on the detection of commu-
nities. The network techniques provide an innovative and ef-
ficient complementary approach to more traditional methods
like EOF analysis, composite analysis and correlation maps.

An EOF analysis is usually efficient in detecting the domi-
nant mode of variability but the secondary modes, being con-
strained to be orthogonal to the first one, are less likely to rep-
resent regional patterns of variability (Monahan et al., 2009).
Thus, when applying an EOF analysis on the HadISST SST
data over the globe, only the first EOF can be attributed to a
physical pattern of climate variability, namely ENSO, while
the higher EOF modes could not be connected to any known
patterns of variability. This shortcoming can be by-passed
by rotating the EOFs like was done byKawamura(1994).
However, one of the drawbacks of this method is that the re-
sults are sensitive to the choice of the rotation criterion, to the
choice of the number of loadings and to the normalization of
the EOFs (von Storch and Zwiers, 1999a).

On the contrary, when calculating the degree centrality of
the nodes of a network, the connections between nodes are
evaluated without respect to any specific mode or direction
in the space of the nodes, allowing for the coexistence of
different modes of variability. This explains why patterns of
variability not, or weakly, related to ENSO are also apparent
in the degree centrality distribution of the H-SST network
(Fig. 1). However, contrary to an EOF analysis, the degree
centrality does not allow one to distinguish different patterns
of variability from one another. Thus, a community analysis
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must subsequently be applied to distribute the nodes into dis-
tinct groups of co-varying nodes.

Detecting communities in the HadISST and MPI-ESM
networks was more efficient in revealing non-overlapping
spatial patterns of SST variability than EOF analysis. We
have indeed shown in Sect.3 that most of the communities in
the H-SST network (Fig.2) can be associated to known phys-
ical patterns of variability, which could not have been done
using a regular EOF analysis on the global oceans. More pat-
terns could be found using 6 rotated EOFs but the choice
of the number of loadings could only be done by evaluating
the correspondence of the rotated EOFs with the communi-
ties. However, the main drawback of the Infomap community
detection algorithm is that it is not able to detect overlap-
ping spatial patterns of variability. For example, we can see
from Fig. 5 that the nodes in the Caribbean Sea associated
with the second community (NA) could also be associated
with the first community (ENSO) which was also suggested
by Guan and Nigam(2009). Overlapping community detec-
tion algorithms exist (e.g.Shen et al., 2009; Lancichinetti
et al., 2009), however, because of their complex implemen-
tation and slower execution application of these techniques
are outside the scope of this study.

By augmenting the community analysis with first neigh-
bours maps (Fig.5), teleconnections and links between com-
munities can be revealed. The study of these maps offers
several advantages over correlation maps or composites. The
main interest of the network approach is that neither a sta-
tistical event nor an index has to be defined a priori. For ex-
ample, the results obtained using the first neighbours of the
ENSO community in the H-SST network (Fig.5a) are sim-
ilar to those ofAlexander and Bladé(2002) using compos-
ites, but we did not need to define what El Niño and La Niña
events represent statistically. Correlation maps obtained by
Klein et al.(1999) andAlexander and Bladé(2002) are also
similar to Fig.5a, but once again, we did not need to define
over which domain to spatially average to obtain the relevant
time series. In short, using community detection algorithms
neither prior information nor a choice of a pattern of vari-
ability to be studied is necessary, making pioneering studies
easier and maybe also less biased.

The community structure of the H-SST network (Fig.2)
proved to be in good agreement with known spatial pat-
terns of climate variability, further supporting the use of this
method to identify climate patterns of variability from large
gridded data sets. On interannual timescales, the main com-
munity could be associated with the dominant pattern of vari-
ability, ENSO and its remote influences were visible as part
of the community or in the first neighbours maps. These tele-
connections could in part be interpreted using the “atmo-
spheric bridge” concept. Other patterns of variability, such
as the AMO, were also visible as independent components
of the system.

One of the key differences between the H-SST and the
H-SST-LP8y networks is that the Indian Ocean-West Pa-

cific (IWP) region appears an independent and strongly intra-
connected community in the H-SST-LP8y network whereas
its western part is connected to the tropical Pacific in the
H-SST network. This suggests that decadal variability in
the IWP region is not driven by tropical Pacific variability
through the atmospheric bridge as on interannual timescales.
Furthermore, a large component of the observed global land
surface temperature (GLST) variability can be explained by
the time series associated with the IWP community.

To infer whether the IWP SST drives or responds to
decadal variability of the overlying atmosphere is a difficult
problem, since little is known about the sources of such low-
frequency variability in the climate system. Several argu-
ments support the idea that SST decadal variability can drive
land surface temperature (LST) changes. First, the maximum
cross-correlation of the time series associated to the IWP
community in the H-SST-LP8y network and the GLST in-
dex is found for the IWP time series leading the GLST of
18 months, although significant correlations are also found
for lags ranging from−240 months (IWP leading) to 77
months (GLST leading). Secondly,Dommenget(2009) sug-
gests, using observations and GCM simulations, that the
“ocean’s variability is leading to variability with enhanced
magnitude over the continents, causing much of the longer
timescale (decadal) global-scale continental climate variabil-
ity”. In particular, several studies show that decadal SST fluc-
tuations in the IWP region may influence the East Asian
Monsoon (Hu, 1997; Zhou et al., 2009) through changes in
the West Pacific subtropical high.Zhang et al.(2004) suggest
that the warming of the IWP region can lead to enhanced pre-
cipitation over the Tibetan Plateau and that the resulting in-
creased snow cover over the plateau in spring can further in-
duce changes in circulation and precipitation over East Asia
during the subsequent summer. Consequently, the Asian con-
tinent appears to be very sensitive to SST fluctuations in the
IWP region.

If SST decadal variability in the IWP region can indeed
account for most of the GLST variability, the next question
would be whether SST decadal variability in this region is
due to internal variability of the ocean or to the integra-
tion of atmospheric stochastic forcing (Hasselmann, 1976).
Decadal variations of the Indian Ocean’s shallow overturn-
ing (Lee, 2004), thermocline (McDonagh and Bryden, 2005)
and subtropical gyre (Bindoff et al., 2000) waters and path-
ways of the Indonesian Throughflow (Valsala et al., 2010)
have been reported, which could be related to Indian Ocean
internal variability. To prove or discredit these hypothesis is
difficult by the lack of long-term vertical profile measure-
ments in the Indian ocean. However, a comparison of GCM
and mixed-layer model simulations as inDommenget and
Latif (2008) could help to assess whether the atmospheric
stochastic forcing alone can explain SST decadal variability
in the IWP region. Anyway, it is crucial to investigate the rea-
sons of the apparent link of the IWP and NA regions to the
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GLST on decadal timescales as well as the sources of this
low-frequency variability.

Finally, we showed that networks techniques can also be
efficiently used to identify model biases. Using one specific
ESM (the MPI-ESM-LR model), we found that decadal vari-
ability in the tropical Pacific is too strong compared to obser-
vations as well as its influence on the tropical Indian Ocean
basin. On the other hand, other patterns such as the NA are
much weaker than in observations. Most of the extratropi-
cal nodes of the network are unassigned, indicative of a low
coherence in the simulated SSTs. However, we also found a
strong relationship between the IWP region and the GLST,
which is in agreement with that found the observations. How
the IWP region and the GLST interact in the model needs
further investigation but is outside the scope of this paper.
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