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Abstract. On interannual- to multidecadal timescales vari- mate sensitivity and hence for projections on future changes
ability in sea surface temperature appears to be organizedf the GMST. The important role of internal variability of
in large-scale spatiotemporal patterns. In this paper, we inocean heat storage on GMST has been highlighted in the re-
vestigate these patterns by studying the community structureent study byBalmaseda et a(2013.
of interaction networks constructed from sea surface tem- On interannual- to multidecadal timescales, climate vari-
perature observations. Much of the community structure carability appears to be organized into large-scale patterns with
be interpreted using known dominant patterns of variability,the EI Nifio/Southern Oscillation (ENSO) and the Atlantic
such as the El Nifio/Southern Oscillation and the Atlantic Multidecadal Oscillation (AMO) as prominent examples.
Multidecadal Oscillation. The community detection method These phenomena are characterized by well-defined spa-
allows us to bypass some shortcomings of Empirical Orthog-tiotemporal patterns in sea surface temperature (SST). The
onal Function analysis or composite analysis and can proENSO variability in the equatorial Pacific is the dominant
vide additional information with respect to these classicalpattern of variability on interannual timescaléddphaden
analysis tools. In addition, the study of the relationship be-et al, 1998 Wang et al. 2004. ENSO influences the cli-
tween the communities and indices of global surface tempermate of many regions over the glob&léxander and Bladé
ature shows that, while EI Nifio—Southern Oscillation is most2002 Deser et al.2010 and the El Nifio 1997-1998 event
dominant on interannual timescales, the Indian West Pacifizwvas estimated to have caused a GMST increase of about
and North Atlantic may also play a key role on decadal 0.6°C (Trenberth 1997). The AMO is the dominant pattern
timescales. Finally, we show that the comparison of the com-of SST variability in the North Atlantic on decadal- to mul-
munity structure from simulations and observations can helgidecadal timescale€ffield 2001). The AMO is thought to
detect model biases. be strongly related to variations in the Atlantic Meridional
Overturning Circulation$rokosz et a).2012), which affect
the oceanic meridional heat transpdsutton and Hodson
(2005 show that the AMO has an influence on European
1 Introduction Summer temperatures and relations of the AMO with US
rainfall were suggested i&nfield (2001). Recently, it was
An important issue in climate research is to understand thesuggested that the variability of global land surface tempera-
behavior of the global mean surface temperature (GMST)ures (GLST) is strongly connected to the AMCenty et al.
over the last centurySutton et al. 2007). Both internal 2013, with a correlation coefficient of 85+ 0.04 (Muller
variability and changes in radiative forcing, in particular by et al, 2013.
anthropogenic emissions of greenhouse gases (GHG), con- In most studies so far on the connection between patterns
tribute to changes in GMST. The impact of GHG forcing of variability and GMST, variants of Empirical Orthogonal
has been extensively studied, being highly relevant to cli-
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2 A. Tantet and H. A. Dijkstra: Network view of SST variability

Function analysis (EOR/on Storch and Zwierd9993 have 2 Data and methods
been used to identify spatial patterns of variability. The dis- _
advantage of EOFs, when computed from the global SS12.1 Data and network reconstruction

field, is that only the dominant mode can be clearly as- ) )
sociated to a spatiotemporal pattern of variability. Higher- MOnthly mean SST observations over the period 1870 to

order modes, which are required to be orthogonal to the?011 compiled in the HadISST data sRefney 2003 were

first mode, are usually difficult to relate to the patterns of Used. The seasonal cycle was removed from the linearly de-
variability as known from regional EOF analyséédnahan trended monthly dat_a. Even though the Iez_idlng order effect
et al, 2009. It is therefore still quite unclear how and how ©Of the annual cycle is removed by producing anomaly val-

much the different patterns and their interaction contribute toU€S Poreal winter anomalies are still larger than in summer.
GMST variability. In order to avoid spurious high values of correlatiofhso-

Here we address the problem on the connection betweeRiS and Roebbef2004 and Tsonis et al(201Q only used
patterns of SST variability and GMST using complex net- the December-January-February months of each year. Since
works theory. Although this theory has already been success2Ur re_sults were not S|gn|f|c_antly affected by the selection of
fully applied to many different technological and scientific the winter months, we decided to use complete years. The
problems (e.g. in computer sciences, neurosciences, socidetrended monthly anomalies were then low-pass filtered via
sciences) it has only recently that it been used in climate re@ Lanczos fliter Puchon 1979 with a cutoff frequency of
search. So-called interaction networks, where links are basedy/13 montit= and order 144.
on a correlation measurement between variables at specific Because more grid points are located towards the poles
locations, have been reconstructed to analyze the connecti2" @ regular longitude-latitude grid, which could lead to bi-
ity of the climate systemTsonis and RoebbeR004 Tso- ases in our net_work_measgre_s, the data was linearly inter-
nis et al, 2010 Donges et a).2009 &), teleconnections polated on a ;musmdal grld in order to conserve the arc
(Tsonis et al. 2008, the behavior of El Nifio Gozolchi- length with latitude. In this study, we used a resolution at
ani et al, 2008 2011 Tsonis and Swanso8008 Yamasaki the equator of 2 but the results presented below are quali-
et al, 2008, synchronization between different spatiotem- ttively similar when using grid resolutions ranging frofn 1
poral patternsTsonis et al.2007 Wyatt et al, 201) and  © 5°. Because of the poor sampling of the region south of

the connections between the variability in different climate 50" S (Deser et al.201Q Fig. 3), only the grid points lo-
variables Donges et a).2011). cated between 3@ and 80 N were kept, resulting in a total

One of the many interesting properties of a network is of N =6280 grid points (land surface points excluded) for
its possible partition into communities or groups of highly L =142x12=1704 months. _
connected nodes which are only weakly connected to the E&ch ocean grid point is considered as a node in the net-
rest of the network. Community detection has recently beeyV0rk and we indicate the time series at néde=1,..., N
applied to climate interaction networks of different atmo- PY Pi(%),k=1,...,L. Contrary to a network as derived
spheric variables from observations and simulationsTisp ~ from & power grid or the world-wide web, the links of a cli-
nis et al, 2010 where some of the known patterns of at- mate network are not directly tangible because the observ-

mospheric variability, such as the North Atlantic Oscillation, 8Ples derive from continuous fields. In an interaction net-
could be identified. work, a link between two nodes is based on a measure of

We focus in this study on communities in interaction net- the correlation between the time series of these two nodes.

works reconstructed from global SST observations. The data this study, we used the Pearson correlation coefficient at
their preprocessing and the network reconstruction and anal®9d Z€ro, saR;;, between the time series of nodeand j,

ysis tools are presented in Sect. 2. In Sect. 3, results of€fined by

the SST communities in the reconstructed networks are pre- L

sented and interpreted, and connected to results in the IiteraRij — Qi1 Pi ()P () (1)

ture based on EOF and composite analysis. Then in Sect. 4, \/(Z,le P2t (Xiey P2(10))

we address the connection between the SST communities

and the GMST and also compare the results from observaas the measure defining the links in the netwdrkdnis and
tions with those from Earth system model (ESM) simula- Roebber2004). A pair of nodes is then considered to be con-
tions. In the Sect. 5, the main results are summarized an@lected if their correlatiork;; is over a chosen threshotd
discussed with a focus on the benefits of the interactiontpe elements;;; of the N x N adjacency matrixA of the
network approach. undirected and unweighted network are thus given by

aij = O(R;j — 1) — §ij, @

where® andé are the Heaviside function and Kronecker
symbol, respectively. Even though the links in the network
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A. Tantet and H. A. Dijkstra: Network view of SST variability 3

are based on SST correlations at zero lag, a connectio.2 Analysis techniques

should not be considered instantaneous, since the time se-

ries were |0W_pass filtered for 13 months. Howe\fewster Extended reviews of Commonly used network measures can
and Rahmstorf2011) found that lags ranging from 0 to 7 be found inCosta and Rodrigue€2007 and Barthélemy
months are relevant to the study of interannual climate vari{2013). We here focus on degree centrality, first neighbours
ability. Our results have been tested for lagged correlationgnaps and communities. The degree centralitpf a nodei

in this range. Since no qualitative differences were found andcounts its number of connections with other nodes of the net-
correlations were genera”y weaker for |0nger |agsy on|y [heWOfk. This measure is direCtIy accessible from the adjacency

results for O lag correlation are presented in this study. matrix through

We based our choice of the thresheldn parametric and N
non-parametric significance tests. Considering a decorrela(—li _ Z“"' 3)
tion time of 13 months (corresponding to the cut-off fre- = /

quency of the filter), we found that all correlations over 0.17
are statistically significant at the 5% level according to a t-and allows one to reveal nodes sharing a common variability
test withL /13= 131 degrees of freedom. with other nodes of the network. The edge dengitpf a
In order to better account for the persistence in the time senetwork
ries, a moving block bootstrap (MBB) test was also applied to N
the time seriesNludelsee 2010. The bootstrap works with . 1 Z @
artificially produced resamples of the time series. Inan MBB,p T N(N=-1 ; Y
blocks of lengthLg are randomly picked out of the original
time series to create a set sidg of surrogate time series. is the total number of links in the network normalized by the
Correlations are then calculated between surrogate time senaximum number of possible links and is an indicator of the
ries for each pair of nodes. The choice of the block lengthsparseness of the network. First neighbours maps describe
is a trade-off between conserving the memory of the origi-the fraction of nodes belonging to a given group any node in
nal time series and producing maximally independent surrothe network is connected to. They are defined as
gate time series. For the data set used in this study, we found
that the estim_ated 5 % significance level was robust for bIockFNHG _ 1 Z aij., (5)
lengths ranging from 15 to 50yr. Consequently, we chose
a block length ofLg of 20yr and a sample set si?2és of
4000 for all our MBB tests. Because a grid of 6280 nodeswhere “G” is the selected group &fg nodes. A node of a
results in~2 x 10 pairs, the MBB tests were realized on first neighbours map reaches a maximum (minimum) value
a coarser grid of 5x 5° resulting in 1144 nodes. We found of 100 % (0 %) if it is connected to all (none) of the nodes of
that in the worst case the values of the 5% significance the selected group of nodes.
level was 039. Much focus has recently been given to the partitioning
Additionally, an approximate test was used, where corre-of networks into communitiedNewman and Girvar2004).
lations were calculated between pairs of surrogate time seCommunities are groups of nodes tightly connected together
ries associated with the same node for the 6280 nodes of thend weakly connected to the rest of the network. As such,
2° grid. The p values found in this case were close to the they can be regarded as subsystems which operate relatively
maximump values found for each grid point of the first test, independently of the other communitiégénas et a].2006.
suggesting that the approximated version of the MBB test isConsiderable improvements have been made during the past
a good alternative for large gridded data sets. decade regarding the speed and efficiency of the commu-
The results of both parametric and non-parametric tests innity detection algorithms. Ifsonis et al(2010, the algo-
dicate that a threshold= 0.4 guarantees that a link between rithm of Newman and Girvatf2004 based on the progres-
a pair of nodes of the HadISST data represents a statisticallgive removal of dominant links (in terms of information flow)
significant correlation at the 5% level. In addition, thresh- was applied to determine the community structure of several
olds ranging from (4 to 0.6 were used to build the network fields (500 hPa height, sea level pressure and surface tem-
and we found that our results were not qualitatively sensitiveperature) derived from the NCEP/NCAR reanaly$isstler
to the threshold value over this range, although teleconnecet al, 2001 and simulations from the Geophysical Fluid
tions appear weaker as the threshold increases. Subsequentynamics Laboratory (GFDL) climate model CM2.D€l-
a threshold of & will be used and the resulting interaction worth, 20086.
network built from the HadISST data set will be referred to  We tested the Multilevel algorithm @&londel et al (2008
as the H-SST network. and the Leading Eigenvector algorithm éwman (2006
which, as the algorithm used Bysonis et al(2010, is based
on the optimization of the modularity (cf. Sect. 3.1) but has a
faster implementation. However, results presented in Sect. 3

4

Jj=1
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Fig. 1. Degree centrality, as defined by Eq. (3), of the nodes of the
H-SST network. A threshold = 0.4 was used to construct the net-
work giving an edge density = 0.14.
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below are generated using the Infomap algorithmRns- °S [
vall and Bergstron(2007 which is based on the compression L
of the paths of random walkers traveling along the network.
This algorithm was the most efficient in the LFR benchmark Fig. 2. (a)Infomap communities in the H-SST network. Each color

(Lancichinetti and Fortunat®009 among the different al-  represents one community and each node is assigned the color of the

gorithms tested. community it belongs to. The communities are ordered by decreas-
ing total PageRank of their nodes, which is written to the right of
the scale(b) Infomap communities after filtration of nodes that are
connected to a fraction of their community smaller than twice the

180“ 120°W  60°W 0°

3 Spatial structure of SST variability density of the network or belong to communities with nodes smaller
S ) than 2 % of the network. Nodes in white are unassigned, they do not
3.1 Communities in the H-SST network: detection belong to any community.

The map of degree centrality of the H-SST networks (Ejg.
indicates that nodes located in the tropics tend to have avhereC; is the set of nodes belonging to communitZon-
higher degree centrality than those located in the extrasequently, the PageRank of a community is a measure of the
tropics, in agreement with atmospheric surface temperatureo-variability of its nodes.
analyses imsonis and Roebbg¢P004. The tropical Atlantic A common measure of the quality of a partition of a net-
shows a rather low degree centrality compared to the Indiawork into communities is the modularity of this partition
and Pacific Oceans except over its northwestern part. ThgNewman and Girvan2004. For a particular division into
eastern tropical Indian Ocean also shows a low degree cenn communities ann x m symmetric matrixe is defined,
trality. Surrounding the tropics, patches of high degree cenfor which an element;; is the fraction of all connections
trality are found in the mid-latitude North Pacific, South Pa- in the network that link nodes in communityto nodes in
cific and along the western coast of the American continent.community j. As such,y"; e;; gives the fraction of edges in

In order to assess whether the variability in high-degreethe network that connect nodes in the same community and
regions arises from distinct spatial patterns, the communitys; — Zj e;; represents the fraction of all edges in the net-
structure of the H-SST network is determined (F4g). The  work that connect to nodes in communityln a (random)
communities are ordered by the total “PageRank” of theirnetwork, for which edges connect nodes independent of the
nodes Brin and Page1998. The PageRank corresponds to communities they belong to, we would hawe = fi f; so
the fraction of random walkers which would flow through the thaty", fl_2 corresponds to the fraction of all edges that con-
nodes of a community out of a population of random walkersnect to the same community in such a randomly wired net-
traveling around the network by the links. In a directed net-work. In a modular network, thé;;) must be high compar-
work, a large flow of random walkers can arise from the largeatively to the(fl.z), thus, the modularity is defined as in
inward-degree of the nodes they go through but also from theNewman and Girva2004):
large inward-degree of the nodes pointing to them and so on.

However, in our case, the network is undirected so that the a 2
. : M= (ei — ). (7)
flow of random walkers through a node is equal to its degre . i
centrality divided by the edge density. The total PageRank of i=1
a community is thus given by The modularity of the Infomap partition of the H-SST net-
work into 11 communities (Fig2a) is M = 0.23, which is
PR = L Z dj = L Z Zajk, (6)  smaller than the modularities ofZ® and 028 of the parti-
P ice, Pice % tions into 5 and 7 communities of the Multilevel and Leading
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Eigenvector algorithms, for the same network. We will now 2) EOF #1 explains 21% of variance b) EOF #2 explains 12% of variance
justify our choice of the Infomap algorithm in spite of the 60"-“"5} ‘?‘,éfﬁ _ ﬁ‘{”@ 60"”5;:‘?,"55’%\( \ﬁiv";ﬁ
lower modularity of its partition of the H-SST network. 30°NR N T 20N R TN
The main problematic issue we encountered when apply-30?5T M 0 oy | Lo 1\ 3035’” ) ML
ing community detection algorithms to SST networks arises S : _ e : _
from the spatial heterogeneity of the modularity of these _ geox T ejjg”f%géﬁf;i“; IO - i AT
networks. Regions where one spatial pattern of variability ke~ “2" "X %2 fd  ke- 3" "} WA
dominates (e.g. ENSO) are obviously highly modular. How- .} V‘;{d;/?\ e b ok ‘V‘{% ' <
ever, regions where the variability is dominated by the ef- 30°sf? L5 \1“ Y sorsft i~y \!, —~
fec': Of atmospheric nOise can aISO be Weakly mOdUIar’ SO e) EOF #5 explains 4% of variance f) EOF #6 explains 3% of variance
that the existence of communities in such regions is ques-eo-nETRE o 5285 Vv@ R A2 T o AN
tionable. It is often more optimal in terms of modularity t0  3penRtk- .\ Ll 30°NRSe j .\ >z é
associate the nodes of such weakly modular regions to one ?“.UW%~ ¢ %’ fﬂde N S }'
broad but weakly interconnected community. Such a com- > i . o Y fd
munity cannot be considered as a coherent physical patterr _1_0-_0'_T 0_10 #o

of variability, so that it would be preferable not to associate

nodes of weakly modular regions to any community. TheFig. 3. First six EOFs determined for the same data set as used to
community detection algorithms we know must distribute ev- build the H-SST network.

ery node to a community no matter how modular the net-

work is. Thus, it would be preferable to distribute nodes of i .
weakly modular regions into several small but densely in_preferable to filter out such weakly modular regions because

terconnected communities (even if small means one noder’)artitioqing them into communities qu.“d pe misleading. Be-
in the case of very weakly modular regions). For our net. cause (i) the detected Infomap partition is less affected by

works, the Infomap algorithm was the most capable one toth's filtration process than the modularity-based partitions

divide weakly modular regions into small communities. Be- and (ii) the fact that the random walkers in the Infomap algo-

cause these small communities are more interconnected, thd! hm are closely related to the flow in a dynamical networks,

are more likely to represent physical spatial patterns of vari-t € Infomap algorithm appears to be the best choice for the

ability than the broad sparsely interconnected communitiesStUdy of patterns of climate variability.

detected by the modularity based algorithms. However, we As representations of spatial patterns of variability, the
communities of the network can be compared to EOFs. To

focus in this study on the dominant patterns. For these rea- S .
sons, we decided to filter out nodes connected to a fractiof>oco> the potential similarities and improvements brought

of their community smaller than twice the density of the net- by the _detectlon of communities compared to EOFs, an EOF.
work (i.e. connected to less thaii; — 1) nodes of the com- analysis was also conducted on the same data as used to build

munity, whereN; is the number of nodes in the community the H-SST network. EOF and rotated EOFs (R-EOFs) anal-

i) and to remove communities including less than 2% of theySiS of SST fields have b(_aen used bY' dipare(1979 and
total number of nodes in the network. Kawamura(1994), respectively. The first 6 EOFs of the SST

In the case of the Infomap partition of the H-SST network, field are shown in Fig3 and the R-EOFs using these 6 EOFs

20% of the nodes are removed from their community and " Fig. 4. The R-EOFs are linear combinations of the 6 ini-

community is filtered (Fig2b) out of the initial 11 communi- tial EOFs maximizing a given simplicity function or crite-

ties (Fig.2a). When applying the same filtering process to the:\'lort]’ ?ﬁr? :Ee n(_)rmallzid vgrlmax crlti_rlon_lﬁe;rs]erl(zlgga. |
partitions found by the Multilevel and Leading Eigenvector ote that the eigenvector decomposition in he analy-

algorithms, more nodes are removed and fewer communitie I;I'S b?sedko\r/]v;he ?ﬁme corlretl_atlons tu.s e.d to béjlld tge |_,:
remain. For the multilevel algorithm, 32% of the nodes are NEetwork. en the correlation matrix is used (and no

removed and the same initial number of 5 communities re—the covariance matrix), every node is given the same weight

main, while for the Leading Eigenvector algorithm, 28% of without regard to their variance. We can see (Bjghat only

the nodes are removed and the same initial number of 7 comthe first EOF can he associated to a community. The higher-

munities remain. order EOF modes cannot be associated to any communities

From these results, we conclude that the ability of the In-an(.j th_ey do not appear to repr'esent any physical pattern of
fomap algorithm to distribute nodes of weakly modular re- variability. On the contrary, the first 6 rotated EOFs can be as-

gions into several small but dense communities penalizes it§0Clated with the dominant communities (RY. However,

modularity score. On the contrary, the modularity-based al-cven higher-order rotated-EOFs are very noisy and cannot be

gorithms tend to distribute the nodes of these weakly mod_afssoqatt)(_eﬁ with any communities or known physical pattern
ular regions in a few large but sparsely interconnected com?' vanabiity.
munities which are less likely representative of any physical

pattern variability. In the study of a climate network, it is
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a) R-EOF #1 explains 13% of variance b) R-EOF #2 explains 12% of variance

. First neighbours of community 1, PR, =68.7%
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Fig. 4. First six varimax-rotated EOFs estimated from the same data 30°S

set as used to build the H-SST network.

c) First neighbours of community 3, PR;=6.1%

¥ :
3.2 Communities in the H-SST network: interpretation 60°NpM ,d&‘ "'J’b%’,,-\" '\.\L hid ¢

Y
In this section, a physical interpretation of the communities 30°Nfs V
of the H-SST network (Figgb) is given. Community #1 is by o ‘%v\ ,.,{’_'.g'
far the dominant community in terms of PageRank (69%) and . \
size. Most of the nodes are located in the tropical Pacific but 30°S

remote patches — located in the Pacific extra-tropics, tropical 4
Indian ocean and northwestern tropical Atlantic — are also | ] S |

part of the community. This result suggests that teleconnec- 09, 25% 50% 75% 100%

tions exist between the tropical Pacific and remote regions

over the globe. These teleconnections can be deduced frofnig- 5. First neighbours map of communitiés) #1, (b) #2, and(c)

the first neighbours map which is plotted in Fig for com- #3 in the H-SST network. Fo.r each node, the color §cale indicatgs
munity #1. For each node in the network, this map shows tothe percentage of the nodes in the community to which that node is
which percentage of the nodes in the community it is con—connecmd'

nected to. For example, a node in the equatorial Atlantic is

connected to about 25% of the nodes in the community.

From Fig.5a, it can be seen that community #1 is well de- mote impacts of ENSO are the changed atmospheric circula-
fined (nodes inside the community are connected to most ofion over the northern Pacific and North America region and
the other nodes of this community and are only sparsely conthe associated SST anomalies in the North Padifialiace
nected to nodes outside the community) and that the differand Gutzley 198Q Deser and Blackmqril995 Lau, 1997).
ent remote patches of the community are connected to each similar relationship between the tropical and the south Pa-
other. We have verified that the equatorial Pacific nodes areific (Liu et al, 2002 Ciasto and Thompser2009 as well
anti-correlated with those of the two small patches locatedas the warming of the tropical Indian ocedma(zante 1996
around 30 in the North and South Pacific and to those nearKlein et al, 1999 and tropical Atlantic Curtis and Hasten-
New Zealand, while they are positively correlated with the rath 1995 Lanzante 1996 Enfield and Mayer1997 Klein
other nodes of the community. The spatial pattern of the comet al, 1999 basins have also been reported. Previous stud-
munity #1 also coincides with the EOF and R-EOF (FHg. ies suggest that the main mechanism involved in these tele-
and Fig.4a, respectively), explaining most of the variance. It connections on interannual timescales is the “atmospheric
also corresponds with the (December—February) El Nifio/Labridge” (Lau and Nath1996. This bridge occurs through
Nifia composites of HadISST SST determined\axander  changes in the Hadley and Walker cells and through the in-
and Blad&2002 (their Fig. 6a). Thus, these results suggestteraction of Rossby waves with the quasi-stationary flow and
that community #1 is representative of the dominant patterrstorm tracks Trenberth et a).1998 Alexander and Bladé
of variability on interannual timescales, i.e. ENSO. 2002.

The teleconnections shown in Fiep have been described ~ Community #2, in terms of PageRank, is located in the
extensively in the literature. Perhaps the most well-known re-northern Atlantic. None of the EOFs in Fig.resemble this
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work was built using the same methodology as the H-SST network
except that the time series were 8 yr low-pass filtered and a thresh- o.2
old r = 0.6 was used for significance; this results in an edge density

p = 0.087.(b) Filtered communities in the H-SST-LP8y network.
0.0F

-0.2

community but the third R-EOF (Fi@c) exhibits clear sim-

ilarities with it. This spatial pattern bears the signature of the

AMO (Guan and Nigan2009. ~Oihso 1900 1920 1940 1960 1980 2000 2011
The next community, #3, covers the maritime continent

and the Philippine and East China seas, a region below regig. 7. Regression of the mean time series of the IWP and NA

ferred to as the Indian Ocean-West Pacific (IWP). The seCcommunities of the H-SST-LP8y network to tf@ GMST and(b)

ond R-EOF (Fig.3b) has a similar pattern as this com- GLST.

munity although it also shows strong variance in the In-

dian ocean. The IWP is located at the confluence of the Pa- ) o

cific and Indian Oceans and connects the two oceans by th[g)wed us to Qetect more detailed features of SST variability

Indonesian Throughflow (ITF)Ramage(1969 has shown 'ePresented in the HadISST data set.

that the IWP is one of the greatest sources of energy for

th_e extrgtropical circulation_. Deep convectio_n tal_<es place i_n4 Decadal SST variability and its connection with the

this region and the overlying atmosphere is highly sensi-  gusT

tive to changes in SST (se@u et al, 2005 for a review).

Interannual variability in this region can be largely under- 4.1 Observations

stood in terms of Kelvin and Rossby waves generated by

remote zonal winds along the Indian and Pacific equatoriaMe have seen that the community structure of the H-SST

regions as well as by changes in the volume transport of thenetwork is dominated by the first one and related to ENSO

Indonesian Throughflow. variability on interannual timescales. In order to focus on
Although the other communities (#4—#10) also exhibit decadal variability we build a new network following the

similarities with known spatial patterns of variability, we will same methodology as before but using low-pass filtered time

not discuss this as their PageRank is much lower than the firsteries of SST with a cutoff period of 8 yr to filter out the

three communities. For example, communities #8 and #9 ar@ to 7 yr band which is influenced strongest by ENSO. The

located in the region of the pathways of the northern West-thresholdt was set to 0.6 in order to only keep absolute

ern Boundary CurrentsQiu, 200Q Frankignou) 2001 and  correlations above the maximum value of the 5% sig-

community #4 appears to connect the southern wind-drivemificance levels calculated over the globe using the MBB

gyres Gpeich et al.2002). The first 6 communities can be as- method (see Sec®). The resulting network, below referred

sociated with the first 6 R-EOFs, however, when more EOFgo0 as the H-SST-LP8y network, has an edge density of 0.087

are rotated, no additional pattern of variability could be iden-which is about 30% smaller than the edge density of the

tified (not shown here). Hence, the community analysis al-H-SST network.

(©)
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Fig. 8. (a)Degree centrality of the ESM-SST network. The network Fig. 9. (a) Degree centrality of the ESM-SST-LP8y network. The
was built using the same methodology as for the H-SST network bunetwork was built using the same methodology as for the H-SST-
using SST from the MPI-ESM-LR historical simulations. A thresh- LP8y network but using SST from the MPI-ESM-LR historical sim-
old r = 0.4 was used as for the H-SST network leading to an edgeulations. A threshold of = 0.6 was used as for the H-SST network

densityp = 0.073. (b) Filtered communities in the ESM-SST net- leading to an edge densigy= 0.077.(b) Filtered communities in
work. the ESM-SST-LP8y network.

The degree centrality and the community structure of the In order to investigate the relationship between the spa-
H-SST-LP8y network are plotted in Figa and b, respec- tial patterns of variability represented by the communities
tively. Overall, the spatial patterns appear similar to thoseand the global mean state of the climate system, correlations
of the H-SST network but important differences exist in the were calculated between mean SST time series associated
tropics. First of all, the degree centralities of the nodes inwith each community (in both H-SST and H-SST-LP8y data
the H-SST-LP8y network located in the tropical Pacific and set) and three indices of global mean surface temperature
Indian ocean have decreased significantly, compared to tho&MST). The time series representing the SST of a specific
in the H-SST network; in the extra-tropics the opposite effectcommunity was calculated by spatially averaging the time
occurs (Figba). Community #1 (Figeb) of the H-SST-LP8y  series of the nodes of the community. This spatial averag-
network (which exhibits a similar pattern as the ENSO com-ing is equivalent to projecting the data set on the community
munity in the H-SST network) has a much lower PageRankvectorsC; of size N whereC;; equals 1 if node belongs
(31% versus 69% in the H-SST network). This result is ex-to community j, O otherwise. Thus, these community time
pected when interannual variability and, a fortiori, variability series are to communities what expansion coefficients are to
related to ENSO, is filtered out. A second important differ- EOFs.
ence is that the nodes lying in the Indian Ocean are no longer The Global Surface Temperature Anomalies of the NOAA
part of the same community as the nodes of the tropical Pa(Smith and Reynolds2005 averaged over land and ocean
cific. They are, instead, part of the same community as th GMST), land only (GLST) and ocean only (GOST) were
nodes in the IWP region (community #2 in the H-SST-LP8y used as indices of the mean state of the climate system. The
network). Furthermore, this IWP community has a PageR-indices were processed using the same methodology as for
ank of 26 % which is comparable to the PageRank of thethe H-SST and H-SST-LP8y data sets (1 and 8yr, respec-
tropical Pacific community #1 (31%). The community of the tively, low-pass filtered detrended anomalies) and cover the
North Atlantic (NA, community #3 in the H-SST-LP8y net- period 1880—2011. The correlations between the time se-
work) and the community of the southern wind-driven gyresries of the communities and the indices for the H-SST and
(community #4 in the H-SST-LP8y network) also exhibit H-SST-LP8y networks are presented in Taklesnd 2, re-
higher PageRanks (15 and 11%, respectively) than the corspectively. For each correlation, a 95% confidence interval is
responding communities in the H-SST network. These highgiven in brackets and correlations significant at the 5% level
PageRanks (or high number of links) are representative of thén bold face. The confidence intervals and significance lev-
strong co-variability of the nodes in these regions on decadagls were estimated using the MBB method as described in
timescales, indicating that important components of decadabect.2.
variability are present in the IWP region, the NA and the From both tables Tablesand?, it is found that each of the
southern wind-driven gyres communities. communities is more correlated with the GOST than with the

Earth Syst. Dynam., 5, 144, 2014 www.earth-syst-dynam.net/5/1/2014/



A. Tantet and H. A. Dijkstra: Network view of SST variability

a) Linear least-square fit of the dominant communities to the GMST

0.4 — GMST

- 0.63 x ENSO, R* =0.46
0.52 X IWP, R* =0.57
— 0.26 x ENSO + 0.48 x IWP, * =0.75

0.3

0.2

0.1

Table 1. Correlations between the mean time series of the commu-
nities of the H-SST network and the indices of mean, land and ocean
surface temperatures (all time series 1y low-pass filtered). The 95 %
confidence intervals are given in brackets and correlations signifi-
cant at 5% in italic face.

oof | A JN s i # GMST GLST GOST
o1 j 1(ENSO) 0.66[0.62,0.73] 0.44[0.36,0.51] 0.71[0.67,0.79]
2 (NA) 0.59[0.43,0.68] 0.43[0.19,0.55] 0.59[0.47,0.68]
02 3(IWP)  0.50[0.30,0.54] 0.44[0.23,0.50]  0.45[0.24, 0.52]
4 0.41[0.13,0.50] 0.22(—0.06,0.35] 0.45[0.21, 0.54]
%70 1920 1970 2006 1920 1970 2006 1920 1970 2006 5 0.42[0.33, 0.54] 0.30[0.18,0.42] 0.43[0.34,0.53]
6 0.25[0.07,0.40] 0.11[—0.06,0.24] 0.30[0.11, 0.46]
os b) Fit of the dominant communities to the GLST 7 0.26 [Oll, 044] 0.11{—0.02,0.21] 0.32 [016, 052]
: - gLf‘eTx NSO 055 8 0.22[0.02,0.35] 0.17-0.07,0.35]  0.21{0.02,0.32]
0.6 115 x WP, K —038 9 0.14[—0.18,0.37]  0.07[—0.29,0.35] 0.16[—0.08,0.32]
— 0.54xENSO +0.84 x WP, i’ =082 10 0.27[0.05,0.37] 0.07-0.12,0.18] 0.35[0.12, 0.45]
04

0.2
i
i -
0.0 0 d—alt

—0.2 A

-0.4

0.6 L L
1870 1920 1970 2006 1920 1970 2006 1920 1970 2006

Table 2. Correlations between the mean time series of the com-
munities of the H-SST-LP8y network and the indices of mean, land
and ocean surface temperatures (all time series 8y low-pass filtered).
The 95 % confidence intervals are given in brackets and correlations
significant at 5% in italic face.

Fig. 10. Regression of the mean time series of the ENSO and IWP # GMST GLST GOST

communities of the ESMP-LP8y network to tfe GMST and(b) 1(ENSO)  0.52[0.36, 0.73] 0.470.28, 0.68] 0.50 [0.33, 0.66]
GLST. 2(IWP)  0.84[0.72,0.91] 0.77[0.55,0.89]  0.78[0.59, 0.87]
3(NA)  0.65[0.38,0.83] 0.49[0.06,0.77]  0.67[0.43,0.82]

4 0.55[0.18,0.74]  0.28-022056]  0.62[0.33,0.78]

" ) 5 0.35[-0.15,0.59]  029-024,057  0.34[-0.11,0.56]

GLST. Only communities #1-#3 and #5 in the H-SST net- 6 0.45[0.18, 0.62] 0.34{0.02, 0.59] 0.44[0.18, 0.61]

work (Tablel) are significantly correlated with the GLST. ; 8-?; %8-?2, 8-;;} 8;2{—8-22 8-3‘71} g-gi {8-;? 8-33

On decadal timescales (Tabl, the first three communi- 9 012-037 049 004053056 014027 0.44]

ties also show significant correlations with the GLST butthe 10 —0.14—053,029] —0.51-0.70,—0.12] 0.07[—0.43,0.44|

ENSO community (#1) does not display anymore the largest
correlation to the GLST and to the GOST (as in the H-SST
network). Now the Indian Ocean-West Pacific (IWP) com-

munity (#2) and the NA community (#3) are best correlatedindices can be stated. Also, the increase in GMST since the
to the GOST with the IWP community displaying largest cor- 1970s may be explained by the phase synchronization of the
relations to the GLST. The correlations o @ and 084 be-  time series of the IWP and NA communities, although, once
tween the IWP time series of SST and GLST and GMST, again, the increase of both this index and the time series of
respectively, is striking and the IWP region appears to play ahe communities could also arise from other factors such as
major role in decadal climate variability. an increased radiative forcing (Fig).

Figure 7 represents the linear regressions against the
GMST and GLST indices of the time series of the IWP 4.2 ESM simulations
community (#2), the NA community (#3) and of the bivari-
ate time series of the IWP and NA communities (multiple- As communities are able to distinguish patterns of climate
regression) in a least-square sense. The bivariate fits teariability in the HadISST data, the network methods poten-
the GMST and GLST result in coefficients of multiple- tially offer also a more detailed tool to assess the quality of
determination (a measure of how much the fitted time seriestate-of-the-art Earth System Models (ESMs) in simulating
determine the original time seriegon Storch and Zwiers  these patterns. To investigate this, SST fields from a three-
1999 of 0.87 and 066, respectively. This shows that the member ensemble of historical simulations (1870-2005), ob-
patterns of both communities can, together, statistically extained with the MPI-ESM-LR model(ngclaus et 312013
plain most of the decadal variability of the GMST and the Stevens and Giorgetta013 for the CMIP5 project Taylor
largest part of the decadal variability of the GLST. Using et al, 2012, were used to reconstruct two networks follow-
the ENSO time series does not significantly improve the fits.ing the same methodology as for the H-SST and H-SST-LP8y
However, this analysis is only statistical and no causality be-networks. The time series of the three members were con-
tween the time series of the communities and the temperatureatenated giving time series three times as long as the time
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Table 3. Correlations between the mean time series of the commu-Table 4. Correlations between the mean time series of the commu-
nities of the ESM-SST network and the indices of mean, land andnities of the ESM-SST-LP8y network and the indices of mean, land
ocean surface temperatures (all time series 1y low-pass filtered)yand ocean surface temperatures (all time series 8y low-pass filtered).
The 95 % confidence intervals are given in brackets and correlation¥he 95 % confidence intervals are given in brackets and correlations

significant at 5 % are italic face.

significant at 5% in italic face.

# GMST GLST GOST # GMST GLST GOST
1(ENSO)  0.63[0.56, 0.67] 0.65[0.56, 0.69] 0.67[0.61,0.71] 1(ENSO) 0.68[0.51,0.74] 0.75[0.60,0.80] 0.68[0.50, 0.73]
303\/ 5 8-22 {8-22 g-zg g-g; {g;i g-jﬂ 8-‘3‘; %8;; 8-2;} 2(NA)  0.60[0.36,0.67] 0.66[0.44,0.73] 0.62[0.38,0.70]

-4210.26, 0. -3810.21, 0. -3810.22, 0. 3(WP) 0.75[0.55,0.77] 0.75[0.55,0.78] 0.69 [0.46, 0.72

4 0.35[0.18, 0.41] 0.34[0.19, 0.40] 0.33[0.16, 0.40] (4 ) 07 {0 o2 0 80} 0.6 {0 590 67} 0.62 {0 20,0 67}
5 (NA) 0.44[0.31, 0.50] 0.44[0.31, 0.49] 0.49[0.36, 0.56] : 0461013 0521 04810.21 053] 048 10.18. 0.54

6 —005-019,001] -0.11-022—0.03 —0.04—0.18 0.04] 46[0.13,0.52] 0.48[0.21,0.53] 0.48[0.18, 0.54]

7 0.31[0.18, 0.36] 0.33[0.21, 0.38] 0.30[0.16, 0.36]

8 0.33[0.17, 0.38] 0.30[0.17, 0.35] 0.35[0.21, 0.39]

9 0.16[0.05,023]  0.14[-0.03,021]  0.13[-0.08,0.20]

10 0.16 [0.00, 0.20] 0.18[0.04, 0.23] 0.14 [-0.02, 0.20]

11 0.14 [-0.15, 0.21] 0.10[-0.14,0.19]  0.11[—0.16,0.18] ; ; T

1 0.40 [0.24, 0.47] 0.39 [0.25, 0.43] 0.43 [0.28, 0.46] of the NA community, the regressions were not significantly

improved using this time series.

To conclude, the main aspects of the SST variability found
in the observations are also visible in the MPI-ESM-LR
model but the variability related to ENSO (NA) is over-
series of one simulation (thus increasing statistical signifi-represented (under-represented). These model biases could
cance). These model networks will be referred to below asbe efficiently identified using the network approach.
the ESM-SST and ESM-SST-LP8y networks, respectively.

The degree centrality distribution and community struc-
ture of the ESM-SST network are plotted in F&a and b,
respectively. Similar to the results for the H-SST network,
the ENSO community (#1) and the IWP community (#3) In order to study the global climate variability, we have an-
are visible (Fig.8b) and the ENSO community also domi- alyzed SST observations and ESM simulations using a cli-
nates with a PageRank of 81%. However, only the southernmate network approach focusing on the detection of commu-
half of the NA community is present (community #5 in Fig. nities. The network techniques provide an innovative and ef-
8b), likely indicative of an under-representation of the AMO- ficient complementary approach to more traditional methods
related variability in the model. Also, fewer connections be- like EOF analysis, composite analysis and correlation maps.
tween the ENSO community and the extratropical Pacific are An EOF analysis is usually efficient in detecting the domi-
visible (Fig.8a and b) than in the H-SST network. A weaker nant mode of variability but the secondary modes, being con-
atmospheric bridge may be responsible for the absence dtrained to be orthogonal to the first one, are less likely to rep-
such teleconnections. Finally, we can see in T&dtleat the  resent regional patterns of variabilityionahan et a).2009.
ENSO, IWP and NA communities are, as in the observations,Thus, when applying an EOF analysis on the HadISST SST
strongly correlated to the GOST and GLST. data over the globe, only the first EOF can be attributed to a

For the ESM-SST-LP8y network, the degree distribution physical pattern of climate variability, namely ENSO, while
and community structure (shown in Figa and b, respec- the higher EOF modes could not be connected to any known
tively) are quite similar to those of the ESM-SST network. patterns of variability. This shortcoming can be by-passed
However, most of the nodes located in the extra-tropics aréy rotating the EOFs like was done iawamura(1994.
unassigned, indicative of a weak spatial coherence of the exHowever, one of the drawbacks of this method is that the re-
tratropical SST variability. Interestingly, the PageRank of the sults are sensitive to the choice of the rotation criterion, to the
ENSO community (community #1) is still very high (81%) choice of the number of loadings and to the normalization of
so that decadal variability is also dominated by the ENSOthe EOFsYon Storch and Zwiers9993.
community. This too strong decadal tropical variability has On the contrary, when calculating the degree centrality of
already been reported bjungclaus and Keenlysid2006 the nodes of a network, the connections between nodes are
for a previous configuration of this model (ECHAM5/MPI- evaluated without respect to any specific mode or direction
OM). Zanchettin et al(2012 also showed that the tropical in the space of the nodes, allowing for the coexistence of
Indian SSTs are over-sensitive to tropical Pacific fluctuationsdifferent modes of variability. This explains why patterns of
in this model. Decadal variability in the GLST within this variability not, or weakly, related to ENSO are also apparent
ESM can be largely explained (statistically) by the ENSO in the degree centrality distribution of the H-SST network
and IWP communities (FiglO), but misses the connection (Fig. 1). However, contrary to an EOF analysis, the degree
to the NA as found in the observations (TaljeContraryto  centrality does not allow one to distinguish different patterns
Fig. 7, the fits in Fig.10 were made without the time series of variability from one another. Thus, a community analysis

5 Summary and discussion
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must subsequently be applied to distribute the nodes into diseific (IWP) region appears an independent and strongly intra-
tinct groups of co-varying nodes. connected community in the H-SST-LP8y network whereas

Detecting communities in the HadISST and MPI-ESM its western part is connected to the tropical Pacific in the
networks was more efficient in revealing non-overlapping H-SST network. This suggests that decadal variability in
spatial patterns of SST variability than EOF analysis. Wethe IWP region is not driven by tropical Pacific variability
have indeed shown in Se&that most of the communities in  through the atmospheric bridge as on interannual timescales.
the H-SST network (Fig2) can be associated to known phys- Furthermore, a large component of the observed global land
ical patterns of variability, which could not have been donesurface temperature (GLST) variability can be explained by
using a regular EOF analysis on the global oceans. More patthe time series associated with the IWP community.
terns could be found using 6 rotated EOFs but the choice To infer whether the IWP SST drives or responds to
of the number of loadings could only be done by evaluatingdecadal variability of the overlying atmosphere is a difficult
the correspondence of the rotated EOFs with the communiproblem, since little is known about the sources of such low-
ties. However, the main drawback of the Infomap communityfrequency variability in the climate system. Several argu-
detection algorithm is that it is not able to detect overlap- ments support the idea that SST decadal variability can drive
ping spatial patterns of variability. For example, we can sedand surface temperature (LST) changes. First, the maximum
from Fig. 5 that the nodes in the Caribbean Sea associate@ross-correlation of the time series associated to the IWP
with the second community (NA) could also be associatedcommunity in the H-SST-LP8y network and the GLST in-
with the first community (ENSO) which was also suggesteddex is found for the IWP time series leading the GLST of
by Guan and Nigan2009. Overlapping community detec- 18 months, although significant correlations are also found
tion algorithms exist (e.g.Shen et al.2009 Lancichinetti ~ for lags ranging from—240 months (IWP leading) to 77
et al, 2009, however, because of their complex implemen- months (GLST leading). Second®pmmengef{2009 sug-
tation and slower execution application of these techniquegests, using observations and GCM simulations, that the
are outside the scope of this study. “ocean’s variability is leading to variability with enhanced

By augmenting the community analysis with first neigh- magnitude over the continents, causing much of the longer
bours maps (Figh), teleconnections and links between com- timescale (decadal) global-scale continental climate variabil-
munities can be revealed. The study of these maps offergty”. In particular, several studies show that decadal SST fluc-
several advantages over correlation maps or composites. Theations in the IWP region may influence the East Asian
main interest of the network approach is that neither a staMonsoon Hu, 1997 Zhou et al, 2009 through changes in
tistical event nor an index has to be defined a priori. For ex-the West Pacific subtropical highhang et al(2004) suggest
ample, the results obtained using the first neighbours of thehat the warming of the IWP region can lead to enhanced pre-
ENSO community in the H-SST network (Fi§a) are sim-  cipitation over the Tibetan Plateau and that the resulting in-
ilar to those ofAlexander and Bladé2002 using compos-  creased snow cover over the plateau in spring can further in-
ites, but we did not need to define what El Nifio and La Nifiaduce changes in circulation and precipitation over East Asia
events represent statistically. Correlation maps obtained byluring the subsequent summer. Consequently, the Asian con-
Klein et al. (1999 andAlexander and Bladé2002 are also  tinent appears to be very sensitive to SST fluctuations in the
similar to Fig.5a, but once again, we did not need to define IWP region.
over which domain to spatially average to obtain the relevant If SST decadal variability in the IWP region can indeed
time series. In short, using community detection algorithmsaccount for most of the GLST variability, the next question
neither prior information nor a choice of a pattern of vari- would be whether SST decadal variability in this region is
ability to be studied is necessary, making pioneering studieslue to internal variability of the ocean or to the integra-
easier and maybe also less biased. tion of atmospheric stochastic forcinblgsselmann1976.

The community structure of the H-SST network (F&y.  Decadal variations of the Indian Ocean’s shallow overturn-
proved to be in good agreement with known spatial pat-ing (Leg 2004, thermocline icDonagh and Bryder?005
terns of climate variability, further supporting the use of this and subtropical gyreBindoff et al, 2000 waters and path-
method to identify climate patterns of variability from large ways of the Indonesian Throughflowdlsala et al. 2010
gridded data sets. On interannual timescales, the main confiave been reported, which could be related to Indian Ocean
munity could be associated with the dominant pattern of vari-internal variability. To prove or discredit these hypothesis is
ability, ENSO and its remote influences were visible as partdifficult by the lack of long-term vertical profile measure-
of the community or in the first neighbours maps. These tele-ments in the Indian ocean. However, a comparison of GCM
connections could in part be interpreted using the “atmo-and mixed-layer model simulations as Dommenget and
spheric bridge” concept. Other patterns of variability, suchLatif (2008 could help to assess whether the atmospheric
as the AMO, were also visible as independent componentstochastic forcing alone can explain SST decadal variability
of the system. in the IWP region. Anyway, it is crucial to investigate the rea-

One of the key differences between the H-SST and thesons of the apparent link of the IWP and NA regions to the
H-SST-LP8y networks is that the Indian Ocean-West Pa-
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GLST on decadal timescales as well as the sources of thi€urtis, S. and Hastenrath, S.: Forcing of anomalous sea surface tem-
low-frequency variability. perature evolution in the tropical Atlantic during Pacific warm
Finally, we showed that networks techniques can also be eévents, J. Geophys. Res., 100, 15835-15847, 1995.
efficiently used to identify model biases. Using one specificP&/worth, T.. GFDL's CM2 Global Coupled Climate Models, Part
ESM (the MPI-ESM-LR model), we found that decadal vari- g;goé;n;'zg%g and Simulation Characteristics, J. Climate, 19,
abl.“ty in the ”Op'c"’?' P.aCIfIC IS to0 strong Compareq to Olc)Ser_Deser, C. and Blackmon, M.: On the relationship between tropi-
vations as well as its influence on the tropical Indian Ocean cal and North Pacific Sea Surface Temperature Variations, J. Cli-
basin. On the other.hand, other patterns such as the NA are yate, 8, 1677-1680, 1995.
much weaker than in observations. Most of the extratropi-peser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.:
cal nodes of the network are unassigned, indicative of a low sea Surface Temperature Variability: Patterns and Mechanisms,
coherence in the simulated SSTs. However, we also found a Annu. Rev. Mar. Sci., 2, 115-143, db.1146/annurev-marine-
strong relationship between the IWP region and the GLST, 120408-1514532010.
which is in agreement with that found the observations. HowbDommenget, D.. The Ocean's Role in Continental Cli-
the IWP region and the GLST interact in the model needs mate Variability and Change, J. Climate, 22, 4939-4952,

further investigation but is outside the scope of this paper. ~ d0i:10.1175/2009JCLI2778,2009. _
Dommenget, D. and Latif, M.: Generation of hyper climate modes,

Geophys. Res. Lett., 35, L02706, dd:1029/2007GL031087
2008.
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