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Abstract. An analysis of so-called early warning signals
(EWS) is proposed to identify the spatial origin of a sud-
den transition that results from a loss in stability of a current
state. EWS, such as rising variance and autocorrelation, can
be indicators of an increased relaxation time (slowing down).
One particular problem of EWS-based predictions is the re-
quirement of sufficiently long time series. Spatial EWS have
been suggested to alleviate this problem by combining differ-
ent observations from the same time. However, the benefit of
EWS has only been shown in idealised systems of predefined
spatial extent. In a more general context like a complex cli-
mate system model, the critical subsystem that exhibits a loss
in stability (hotspot) and the critical mode of the transition
may be unknown.

In this study we document this problem with a sim-
ple stochastic model of atmosphere–vegetation interaction
where EWS at individual grid cells are not always detectable
before a vegetation collapse as the local loss in stability can
be small. However, we suggest that EWS can be applied as a
diagnostic tool to find the hotspot of a sudden transition and
to distinguish this hotspot from regions experiencing an in-
duced tipping. For this purpose we present a scheme which
identifies a hotspot as a certain combination of grid cells
which maximise an EWS. The method can provide infor-
mation on the causality of sudden transitions and may help
to improve the knowledge on the susceptibility of climate
models and other systems.

1 Introduction

The existence of potential tipping points in the climate sys-
tem has received growing attention in recent years (Lenton
et al., 2008; Lenton, 2011). In the narrower sense, a tip-
ping point occurs when a system becomes very susceptible
to an external forcing due to large positive feedbacks. In the
extreme case the system’s attractor disappears at a thresh-
old value of the forcing (bifurcation) and the state has to
approach a different attractor.

In order to predict the collapse at a preconceived bifur-
cation or to distinguish such changes in stability from ran-
dom state transitions, it has been proposed to exploit statisti-
cal precursors of instabilities (Wiesenfeld, 1985a,b, Wiesen-
feld and McNamara, 1986), also called early warning signals
(EWS; Scheffer et al., 2009). The fundamental assumption
behind their applicability is that the system is close to a deter-
ministic solution and perturbed by small fluctuations which
can be described as white noise. In case of the climate system
this approach resembles Hasselmann’s concept of stochas-
tic climate models (Hasselmann, 1976). When the system’s
stable fixed point loses stability when approaching a local
bifurcation (e.g. a saddle-node bifurcation), an eigenvalue
approaches 0 (if time is continuous). As a result, the linear
relaxation time of the corresponding mode increases (Wis-
sel, 1984). This phenomenon has recently been referred to as
“critical slowing down” (Rietkerk et al., 1996; Scheffer et al.,
2009; Ditlevsen and Johnsen, 2010; Dakos et al., 2010, 2011;
Lenton, 2011; Lenton et al., 2012b). To avoid confusion with
the phenomenon of algebraic (rather than exponential) de-
cay in systems with second-order phase transitions (Strogatz,
1994), we will refer to the increased relaxation time simply
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64 S. Bathiany et al.: Detecting hotspots via slowing down

as “slowing down”. As a consequence of slowing down, the
system’s autocorrelation and variance can increase (Scheffer
et al., 2009), and the spectrum is reddened (Kleinen et al.,
2003). Considering non-linear terms in the stability analysis,
it follows that the skewness of the state variable can also in-
crease in magnitude (Guttal and Jayaprakash, 2008).

However, the external parameter change must be slow
enough for the system to stay close to equilibrium and to al-
low sufficiently long time series for a statistically significant
detection of EWS. A lack of detectability can thus impede
any final conclusion on the existence of slowing down prior
to an abrupt event. For example,Dakos et al.(2008) detected
a consistent increase in autocorrelation with 95 % probabil-
ity in only 2 out of 8 palaeo records (see their Table S3),
and the results seem to depend on the choice of the analysis
method, parameter values and the particular proxy (Lenton
et al., 2012a,b). This problem becomes worse close to the
tipping point (for example seeDakos et al., 2012) because
the uncertainty of an estimate from one sample of a fixed
number of data points increases. In statistical terms, the sam-
pling variances of the estimators of variance and autocorre-
lation increase with autocorrelation (Priestley, 1981). Better
resolved time series may not always provide a solution as a
sampling below the dynamic timescale of the system will not
add relevant information.

Instead, the use of spatial EWS has been suggested (Gut-
tal and Jayaprakash, 2009; Donangelo et al., 2010; Dakos
et al., 2010): in analogy to the time domain, spatial variance
and cross-correlations between different units of a spatially
explicit system as well as the spatial correlation length in-
crease towards a tipping point. Such spatial EWS use each
time step as a sample to infer the stability, while tempo-
ral EWS need a window of many subsequent time steps. As
forcing changes over time in transient cases, temporal EWS
thus involve information on previous states of the system. It
is therefore often argued that spatial EWS could provide a
more precise estimate of the current stability. However, in
these previous studies on spatial EWS, the system’s bound-
aries are known and well-defined. In addition, the application
of the one-dimensional concept of EWS to high-dimensional
systems, though justified by theory (Ditlevsen and Johnsen,
2010; Sieber and Thompson, 2012), in practice requires a
priori knowledge on the critical mode of the transition (Held
and Kleinen, 2004). This critical mode indicates in which di-
rection in phase space the bifurcation occurs and thus how
the information should be combined to yield EWS.

In this study, we consider the case where both, the critical
mode as well as the critical subsystem, are unknown. First,
we demonstrate that under such general conditions EWS may
not be detectable at any particular location of the system.

Second, we propose an alternative application of EWS: the
diagnostic detection of critical regions of slowing down
(hotspots) in time series.

The potential tipping point we analyse is the decline of
North African vegetation cover in the mid-Holocene. In the
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Fig. 1.Stability diagram for the one-dimensional conceptual model
with k = 300. Blue lines: equilibrium precipitationP ∗ as calculated
from P ∗(V ) = Pd + kV for different Pd. Green line: equilibrium
vegetation coverV ∗(P ) (Eq.1).

Sahara and Sahel region, vegetation cover and precipita-
tion are considered to be linked by a positive feedback on
timescales beyond years (Claussen, 2009). The reasons are
the effect of surface albedo on atmospheric stability (Char-
ney, 1975), and the vegetation’s contribution to water recy-
cling (Claussen, 1997; Hales et al., 2004). In models with a
large atmosphere–vegetation feedback, two stable equilibria
can exist (Claussen, 1998; Brovkin et al., 1998; Zeng and
Neelin, 2000; Wang and Eltahir, 2000; Irizarry-Ortiz et al.,
2003) and the gradual change in orbital forcing can cause a
sudden collapse in vegetation cover (Claussen et al., 1999;
Liu et al., 2006).

Our study is structured as follows: in Sect.2 we present
a stochastic model of atmosphere–vegetation interaction
which produces a vegetation collapse when a control param-
eter is varied. We then use the stochastic model to document
a specific limitation of local EWS in a spatially explicit set-
ting (Sect.3). Based on this finding, we explain our con-
cept of a hotspot and present an algorithm for the detection
of hotspots of slowing down (Sect.4). We then discuss the
performance of this algorithm for different properties of the
analysed time series and different parameter choices and con-
clude in Sect.5 by discussing possible applications and limi-
tations of our approach. An application of our method to the
results of an atmosphere-vegetation model of intermediate
complexity will be presented in a subsequent article.

2 A stochastic model of atmosphere–vegetation
interaction

In order to test the performance of EWS-related methods,
we generate time series with a simple stochastic model of
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S. Bathiany et al.: Detecting hotspots via slowing down 65

vegetation dynamics in subtropical deserts. The structure of
this model is similar to the conceptual model ofBrovkin et al.
(1998), Wang(2004), andLiu et al. (2006): annual precipi-
tation P is a linear function of vegetation coverV , while
equilibrium vegetation coverV ∗ as a function ofP is of sig-
moidal shape (Fig.1):

V ∗
=



0 if P < P1

1 if P > P2

1.03−
1.03

1+ α

(
P − P1

exp(γ δ)

)2
otherwise,

(1)

with

P1 = β exp(γ δ/2)

P2 = β exp(γ δ/2) +
exp(γ δ)
√

0.03α
.

This function is the result of a semi-empirical fit to observa-
tions (Brovkin et al., 2002) and referred to as the original VE-
CODE model inBathiany et al.(2012). Parameter values in
all our simulations areα = 0.0011,β = 28,γ = 1.7× 10−4,
andδ = 9100. For all time series we analyse in this study,P

is always betweenP1 andP2.
If the conditions of a specific region are described with

only one value of each,V andP , the system’s determinis-
tic equilibria can be depicted as intersections of the green
and blue curve in Fig.1. Reducing the external parameter
Pd describes the effect of decreasing Northern Hemisphere
summer insolation during the mid-Holocene, leading to a de-
crease in precipitation. When the green equilibrium disap-
pears the system experiences a saddle-node bifurcation and
vegetation cover has to collapse to the remaining desert state.

We extend this conceptual model by definingV andP for
several elements with indexi (for example to represent dif-
ferent grid cells in a climate model). At each of theN el-
ements, equilibrium vegetation cover depends only on the
local precipitation according toV ∗(P ). Vegetation cover is
updated every timestep via the dynamic equation

V t+1
i = V t

i +
V ∗(P t

i ) − V t
i

τ
1t + σV

√
1t ηt

i . (2)

As P represents mm yr−1 our time step is 1 yr, so1t = 1.
The timescaleτ describes how fast vegetation cover can es-
tablish in previously unvegetated areas (or die back in veg-
etated areas). FollowingLiu et al. (2006) we fix τ to 5 yr
which is meant to represent the dynamics of grass in arid
subtropical ecosystems. Due to atmospheric water transport
and circulation changes, local precipitationPi at a particular
time t depends on vegetation cover at all elements:

P t
i = P0i

+ siB
t︸ ︷︷ ︸

Pd

+

N∑
j=1

kij V t
j

︸ ︷︷ ︸
P ∗

+σP ηt
i . (3)

Due to the fast equilibration time of the atmosphere, Eq. (3)
is not dynamic, and theVi are all the state variables of this
dynamical system. The system is globally coupled viak and
in this regard differs from reaction-diffusion models with
interactions between adjacent elements only. The choice of
V ∗(P ) and the interaction matrixk determine the strength
and spatial structure of the atmosphere–vegetation feedback
and thus the stability properties of the system.

Brovkin et al.(1998), Wang(2004), andLiu et al. (2006)
refer to the equilibrium precipitation in the absence of any
vegetation asPd. However, asPd may differ at different el-
ements, we split it intoP0i

, which is variable in space but
not in time, andsiB with a scalarB as external control pa-
rameter. The local sensitivity of background precipitation to
B is determined by parameterssi , which are also variable in
space, but not in time. Hence, in all systems analysed in this
article,B is the bifurcation parameter, determined by one sin-
gle number. In physical terms,B describes the effect of cli-
mate forcings, while the numbers we use are chosen arbitrar-
ily. Also following Brovkin et al.(1998) andWang(2004)
we call P ∗(V ) the equilibrium precipitation at a particular
location (Fig.1). P ∗ can be interpreted as precipitation in
the noise-free case or as the long-time mean when vegetation
cover is fixed at a permanent value.

The Gaussian white noise processη with zero mean and
small noise levelσ is uncorrelated in space. We distinguish
two types of noise but always use only one of them in our
experiments:σV controls perturbations which are added to
Eq. (2) directly (additive noise), whileσP controls perturba-
tions added to precipitation and whose impact on the state
variableVi depends on the system’s state itself (multiplica-
tive noise). Atmospheric variability is more realistically ac-
counted for by the multiplicative noise case, whereas the ad-
ditive noise case may describe disturbances other than atmo-
spheric conditions, such as fire, diseases or grazing. Only the
additive noise case allows rising variance to be a generic in-
dicator of slowing down (Dakos et al., 2012), although we
will show that in our specific model rising variance is also
a useful indicator in the multiplicative noise case. In all our
simulations we use very small noise levels ofσV = 0.00013
or σP = 2. For simplicity, we providePd, kij andσP without
units, although the value ofP represents mm yr−1.

3 Performance of early warning signals (EWS) in
spatially coupled systems

In the following, we address the limitations of EWS at indi-
vidual elements. All statistical indicators are calculated from
time series of the state variablesVi . Autocorrelations are de-
termined for lag 1, cross-correlations for lag 0.

www.earth-syst-dynam.net/4/63/2013/ Earth Syst. Dynam., 4, 63–78, 2013
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Fig. 2. Characteristics of system 1 in dependency on parameter
B. (a) Equilibrium vegetation cover,(b) autocorrelation (lag 1),
(c) variance (additive noise only),(d) variance (multiplicative noise
only).

3.1 First example: induced tipping

Consider the following simple system (system 1): 2 elements
are coupled in a way that the first element can be bistable due
to a large local feedback betweenP andV . Precipitation at
the second element depends on vegetation cover at the first
element, but not vice versa. We implement this property by
choosing the interaction matrix

k =

(
300 0
200 0

)
and parameters

P0 =

(
0

100

)

s =

(
1

0.1

)
.

As B is reduced, element 2 (blue) collapses in response to
the collapse of element 1 (red; Fig.2a). The curves in all our
figures are derived from stationary time series. However, if
B was reduced very slowly during an experiment, the tran-
sient time series of the collapse would follow the equilibrium
curves, i.e. in Fig.2a, very closely because the noise level is
small and because the timescales of both elements are identi-
cal and small compared to the parameter change. Therefore,
it would not be possible to infer the causality of a transition
from the timing of the collapses at different elements.

As the collapse of element 2 is induced by element 1 it is
not related to a substantial loss of its own stability. It rather
experiences the transition as an induced tipping caused by
a sudden change in external conditions that are imposed by
element 1. The stability of element 2 is hardly affected byB

directly as the difference ins1 ands2 indicates.
Therefore, element 1 shows a clear increase in autocorrela-

tion (Fig.2b) and variance (Fig.2c) in the additive noise case,
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Fig. 3. Characteristics of system 2 in dependency on parameterB

for versions with a different number of elements.(a) Equilibrium
vegetation cover (identical for any number of elements),(b) auto-
correlation (lag 1),(c) cross-correlation (no lag),(d) variance (addi-
tive noise only),(e) variance (multiplicative noise only). Note that
all elements of a specific system are identical and thus have the same
measured indicators.

but element 2 does not. Only when the noise is multiplicative
the system under consideration shows an increased variance
(Fig. 2d; note that the scale differs from Fig.2c by a factor
100), but results for autocorrelation are similar to the addi-
tive noise case. The increase in variance in the multiplica-
tive noise case is specific to the conceptual model and results
from the increasing sensitivity ofV ∗ to precipitation changes
whenP is reduced (Fig.1). In case of a single isolated ele-
ment without anyP -V -feedback (k = 0) there would still be
an increase in variance in the multiplicative noise case, but
not in the additive noise case. In our system 1, the slowing
down at element 1 also affects element 2 due to the interac-
tion term. This is the reason for the rise of the blue curve in
Fig. 2c.

To obtain sufficiently precise estimates of the statistical
properties in Fig.2, we performed stationary time series of
10 million data points each for different values ofB. In a

Earth Syst. Dynam., 4, 63–78, 2013 www.earth-syst-dynam.net/4/63/2013/
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Table 1.ParametersP0i
andsi in example system 3 for 4 different

types of elements. Colours correspond to those in Fig.4.

red blue green brown

P0 −50 40 210 40
s 1.7 0.8 0.2 0.9

transient situation where the sampling error is much larger,
the collapse of element 2 would hardly be predictable with
EWS.

3.2 Second example: collective bistability

To pursue this further, we now consider a system (system
2) with a different number of elements, distinguishing ver-
sions with 1, 2, 5, 10, and 20 elements, where any particu-
lar element has the identical parametersP0i

= 0, si = 1, and
kij = 300/N . By dividing the entries of interaction matrix
k by the number of elements in the system, we equally dis-
tribute theP -V -feedback over all elements. When more and
more elements are coupled, the spatial resolution increases
but the bifurcation diagram of this globally coupled system
(Fig.3a) does not change. As local feedbacks (determined by
kii) are weak, no single element would be bistable anymore
if all other elements were fixed. This fact distinguishes our
model from those inGuttal and Jayaprakash(2009), Dakos
et al. (2010) and Donangelo et al.(2010), where individu-
ally bistable elements are coupled. However, the system as a
whole still shows a bifurcation due to the spatial interactions
kij with i 6= j .

As we couple more and more elements, it is evident that
EWS like rising autocorrelation and variance at individual el-
ements, as well as rising cross-correlation, tend to disappear
(Fig. 3b–d). Again, variance in the multiplicative noise case
(Fig.3e) is an exception due to the increased slope inV ∗(P ).

The one element-case here (red curves in Fig.3) is iden-
tical to element 1 from system 1 (red curves in Fig.2), and
also to the system in Fig. 1 inBathiany et al.(2012). For
EWS to appear exactly like in this single element case, the
system’s time series need to be projected on the critical mode
of the transition, a technique introduced as “degenerate fin-
gerprinting” byHeld and Kleinen(2004). The critical mode
implies the direction in phase space in which the bifurcation
occurs. Slowing down particularly occurs for this mode and
can be revealed by the appropriate projection. In contrast,
other modes of the system’s variability are not necessarily
influenced by slowing down as the changes of the stabil-
ity landscape in other directions (characterised by changes
of the according eigenvalues) are unrelated to the bifurca-
tion. Hence, EWS in projections on other modes cannot be
expected. The analysis of local EWS at individual elements
would generally contain information on these other modes of
variability and would therefore be a futile strategy. It has to

Table 2. Interaction matrixk in system 3, distinguishing 4 different
types of elements. Colours correspond to those in Fig.4. A number
in some row A and column B stands for the impact of any single
element of type B on any single element of type A (for example:
impact of red on blue: 15, impact of blue on red: 5).

red blue green brown

red 27 5 10 10
blue 15 4 3 3
green 8 2 15 2
brown 2 3 2 5

be concluded that if the critical mode of the transition is not
known beforehand, the tipping can be unpredictable even in
cases of very long time series.

4 Early warning signal – based hotspot detection
method

So far we have chosen systems of simple structure. In a more
general case like a spatially resolved climate model, the sta-
bility structure will be more complicated. Certain subsystems
of the climate may show a loss of stability during a change
in external forcing while the rest of the system may respond
only indirectly, or even evolve independently. In Sect.3 we
documented that in multidimensional settings individual el-
ements can fail to show EWS before a sudden transition.
While this constitutes a caveat for the prediction of sudden
transitions, one may make a virtue out of this caveat by using
EWS to diagnostically infer information on the causality of
a sudden transition. In terms of system 1, we aim at finding
the nucleus of slowing down (hotspot) by distinguishing el-
ements of the red and the blue kind. This is not possible by
looking at the system’s state directly because red and blue
elements collapse in synchrony. Of course, in complex sys-
tems there will be a continuum from red to blue and the def-
inition of a threshold in between will be somewhat arbitrary.
In principle, we expect that the hotspot can be identified as
the combination of elements which (when projected on their
critical mode) maximises an indicator of slowing down. In
the following, we present an algorithm for hotspot detection
which we apply to our stochastic model.

4.1 Highly idealised North African vegetation dynamics

As yet another example of the stochastic model framework
in Sect.2, consider 25 elements which can be interpreted
as a highly idealised Northern Africa (Fig.4). We refer to
this system as system 3. Again we choose parameter val-
ues which lead to preconceived properties of the model: 5 of
the 25 elements gradually become desert whenB is reduced
(brown elements). 5 elements stay mostly vegetated (green
elements), a set of 9 elements becomes bistable and finally

www.earth-syst-dynam.net/4/63/2013/ Earth Syst. Dynam., 4, 63–78, 2013
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Table 3. Example signal list for elements 19, 20 and 25 in system
3. Parameter settings correspond to set 1 in Table4.

Area Signal× 1000

19 9.1611
20 4.8099

19, 20 11.5094
25 1.0391

19, 25 7.8746
20, 25 4.0192

19, 20, 25 11.7716

Weights (19,20,25): 40.32, 32.11, 24.70

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig. 4. Structure of system 3. Red: area with strongP -V -feedback
(hotspot), blue: passively dependent on red area, brown: dry area,
green: moist area.

collapses due to a saddle-node bifurcation (red elements) and
6 elements substantially depend on the red ones but show
a much weaker local atmosphere–vegetation feedback (blue
elements; see Fig.5). Elements with identical colours have
identical parameter values and thus have the same state in
equilibrium. Hence, there are 4si andP0i

(Table1), and 16
kij (Table2). In similarity to the examples in Sect.3.2, no
element is bistable on its own, as local feedbackskii are too
small. It is only due to the strong spatial interactions between
the red elements that the system can bifurcate and thus show
a vegetation collapse atB ≈ 43.

The nucleus of the transition is the red area because this
is where the system loses stability due to strong atmosphere–
vegetation interaction. In the following, we refer to the red
area as a hotspot.

4.2 Strategy for the detection of hotspots

We now explain our method of analysis by applying it to sys-
tem 3. As several modifications of our algorithm are possible,
we provide the explanation in two steps:

1. In this section we address the general strategy of our
approach. This strategy sets the framework of analysis

050100150200250
0

0.2

0.4

0.6

0.8

1

B

V
*

Fig. 5. Equilibrium vegetation cover at different elements of sys-
tem 3 and for different bifurcation parameter valuesB. The colours
correspond to the elements in Fig.4. The vertical black dashed lines
indicate the values ofB used for the four stationary simulations (the
smallest one also lying above the tipping point). They correspond to
BV1 in Table4 and are used for Figs.7–11and Table3.

which is presented in Fig.6 and is the same for all ver-
sions of our method. To illustrate our explanation we
complement our step by step description with a simple
example. This example is referred to at the end of each
particular step and presented in Fig.7 and Table3.

2. The framework of analysis presented in this section is
too general to cover all technical details as presented in
Fig. 7 and Table3. These details can differ from case
to case. We therefore introduce the different versions of
our algorithm together with a discussion of their advan-
tages and disadvantages in Sect.4.3.

In all cases the analysis is applied toJ preferably long
stationary simulations for fixed but different forcingsBj

(j = 1,2, ...,J ) before the bifurcation point. In our example
and for all figures which follow we choose time series of veg-
etation cover forB1 = 150,B2 = 90, B3 = 55, andB4 = 43
(henceJ = 4; vertical dashed lines in Fig.5). All steps that
follow are an analysis of these time series and do not involve
the model which generated them. We describe the individ-
ual steps of the analysis by starting with part B in Fig.6, as
this part of the analysis corresponds to the original degener-
ate fingerprinting byHeld and Kleinen(2004), without time
aggregation.

B1. For a given part of the system withNp elements, we
select a subset ofn elements from theseNp elements.
We refer to this subset as an area. Hence, there are three
levels of selected elements where each set is a subset of
the previous one: the number of elements in the com-
plete system (N ; here: 25), the number of elements in a

Earth Syst. Dynam., 4, 63–78, 2013 www.earth-syst-dynam.net/4/63/2013/
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Fig. 6.General flowchart of the hotspot detection scheme.

part of the system (Np), and the number of elements in
an area of this part (n). Example: we choose elements
19, 20 and 25 as a part. Hence,Np = 3, andn can be 1
(3 possible combinations), 2 (3 possible combinations)
or 3 (1 possible combination).

B2. For then selected elements, we calculate the leading
empirical orthogonal function (EOF; eigenvector of the
covariance or correlation matrix which represents the
largest variance). To construct the EOFs, we use the
freely-available linear algebra package LAPACK. In our
example, there are 7 combinations of the 3 elements (top
left corner of panels in Fig.7). The 3 cases with sin-
gle elements are trivial and each EOF is 1. The 3 cases
with 2 elements are also trivial (

√
1/2,

√
1/2) because

the (symmetric) correlation matrix contains ones on its
main diagonal.

B3. In the general case, we calculate the leading EOF for all
time slicesBj from j = 2 to J . For every EOFj , we
project all time slices fromB1 to Bj on EOFj . Special
cases: The projection of time seriesBj on EOFj is the
principal component of EOFj . In case of areas consist-
ing of one single element, the projections are identical
with the time series themselves. The standard version of
our algorithm only involves projections on EOFJ (see
Sect.4.3). In our example, there are therefore 4 projec-
tions for each area (small panels in Fig.7).

B4. We calculate a statistical property like autocorrelation or
variance of the corresponding projections to use it as an
EWS. For all projections on some EOFj the result is a
curve of this EWS versusB, just like those in Figs.2b–
d and3b–e, but less well resolved (j points only). In
our example, we useJ = 4 and autocorrelation as EWS,
hence there are 4 values of AC for each of the 7 areas,
shown as a line plot in each panel of Fig.7.

To automatically compare the results for different areas, we
expand this degenerate fingerprinting method with the fol-
lowing steps:

B5 As it is not the absolute value of a statistical property but
its increase which indicates slowing down, we shift the
curve vertically in order to be 0 atj = 1. Fig.7 (bottom
right) shows the shifted AC-curves of all 7 areas of our
example.

B6 Based on the aligned curves, we define asignalwhich is
one number to quantify the strength of an indicator and
to compare different areas. The definition of the signal
can differ, but it always involves all time slices. We do
so to take into account not only the difference between
the first and lastB, but the whole evolution of an EWS
vs. B as is suggested by our results in Fig.2. Table3
gives an example of all areas and their associated signals
for the part consisting of elements 19, 20, and 25.

We repeat steps B1–6 for all possible combinations of ele-
ments. If theNp elements mentioned in step 1 represent the
whole system under consideration (Np = N ), one can then
determine the area with the maximum signal, or the areas
with a signal above a certain threshold. However, this re-
quires the calculation of 2N -1 such signal (not 2N because
selecting 0 elements is not an option). This becomes unfeasi-
ble already forN beyond 10. Therefore, not all possible com-
binations can be calculated and we use an iterative selection
process to decide which elements can be dropped from the
analysis:

A. We randomly divide the whole system into a number
of non-overlapping parts. The number of parts is cal-
culated from the fixed parameternmax via the ceiling
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Fig. 7.Example to illustrate the hotspot detection scheme using elements 19, 20, and 25 of system 3. All panels except bottom right: in each
top left corner the particular area is highlighted by bold lines. The numbers inside the elements give the eigenvectors of the correlation matrix
(EOF) forB = 43. All four time slices (forcings BV1 as in Fig.5) are projected on this EOF. The four time series in each panel show a chunk
of 500 yr from these projections (normed to standard deviation 1 and mean 0). The autocorrelation at lag 1 for each projection is depicted
as a line plot in dependency onB. Bottom right: all seven curves are shifted to 0 atB = 150 in order to compare the signals of the areas.
Parameter settings correspond to set 1 in Table4.
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functiond
N

nmax
e. The number of parts is thus as small as

possible for a givennmax. The size of each part is then
determined by distributing theN elements as equally as
possible, so that eachNp fulfills 2 <= Np <= nmax.

B. For each part, steps 1–6 are applied. As an example,
imagine that system 3 is analysed withnmax = 3. Hence,
the system is subdivided into 9 parts, of which 7 parts
contain 3 elements, and 2 parts contain 2 elements.

C. From asignal listlike Table3, the contribution of differ-
ent elements can be disentangled, with the aim to drop
unimportant elements from the analysis completely. The
removal of an element means that it is not considered to
be part of the system anymore and is not used from that
point on. In this sense, the total system sizeN succes-
sively decreases and with it the number of parts is also
reduced automatically.

In principle, our selection process resembles the logic of
a football world cup: each team (element) does not com-
pete directly against every other team, but only against
those of the same group (part). Only teams performing
well enough in their group remain in the tournament.

The best rules of how to remove an element can depend
on the system and will be discussed under the termelim-
ination rule(ER) in Sect.4.3.

D. As a criterion for removing elements, we set a thresh-
old which is adjusted interactively to prevent that too
many elements are removed at once and too early. The
threshold is a relative number in % and relates to dif-
ferent things depending on the elimination rule. In our
example as well as all following figures, we set the ini-
tial thresholdtini to 5 %. As long as no element can
be removed in any part, we increase the threshold by
tinc = 5%. If the threshold would reach or exceeded
100 %, we set the threshold to 99.5 %. If at least one
element can be removed, we reset the threshold to its
initial value tini . In both cases, we then partition the re-
maining elements anew, starting from step A (large loop
in Fig. 6).

This way, the considered number of elements is gradually re-
duced. After each calculation of the signals in all possible
areas of all current parts and the potential removal of ele-
ments the procedure is repeated. It ends as soon as one of
the following conditions is true: (1) the total number of re-
maining elements is not larger thannmax, in which case the
analysis is repeated one last time with one part only. (2) The
relative threshold reaches 99.5 %, but still no elements can
be removed because the remaining elements are too similar
to be discriminated.

The algorithm serves as a sieve in order to filter out the
important elements with a sufficiently small number of cal-
culations. Without the removal of elements, the number of
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Fig. 8. Performance of the hotspot detection algorithm for system
3 with additive noise using time series of 2000 yr. The frequencies
show the number of times a particular element remains until the
end of the selection process for 500 repetitions. Each repetition in-
volves the generation of a new time series and its analysis with the
hotspot detection algorithm. The solid black line marks the expec-
tation value for a random selection where all elements are selected
with equal probability. The red dashed line marks the 95% probabil-
ity threshold of the corresponding cumulative binomial distribution.
Parameter settings correspond to set 1 in Table4.

possible combinations would be too large to achieve a ro-
bust hotspot detection within a feasible amount of time. As
the results depend on the random distribution of elements to
different parts, they will be very similar but not completely
identical when the analysis is repeated. The hotspot of slow-
ing down can be identified if the time series are long enough
(or if enough realisations are available) because the remain-
ing elements at the end of the analysis tend to contribute most
to slowing down.

To obtain more quantitative results, all signals calculated
during the procedure can be collected in a sorted list for fur-
ther analysis. Elements belonging to the hotspot tend to be
part of the areas with the strongest signals and are on top
of the list. However, elements that have been removed early
during the analysis are not well sampled. The method there-
fore only provides information on the nature of the hotspot,
but less on the stability properties of the rest of the system.

4.3 Parameter options and performance analysis

It has become obvious in the previous sections that the al-
gorithm involves a number of options and parameter val-
ues which have to be chosen in advance. Also, the perfor-
mance of the method will depend on properties of the original
time series. For a quantitative comparison of the algorithm’s
performance under different conditions (parameter settings,
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Fig. 9. Autocorrelation changes of projections on leading EOFs for
system 3 with multiplicative noise. The leading EOFs have been
calculated for (a)B2 = 90, (b)B3 = 55, (c)B4 = 43. In each case,
all previous time series (including the one used for the EOF) are
projected on the according EOF. The analysis is applied to the full
system (black) as well as only parts of the system (other colours).
The colours correspond to the elements in Fig.4. Parameter settings
correspond to set 21 in Table4.

choice of algorithm and time series properties), we perform
500 Monte Carlo experiments for each condition (Table4).

In each experiment a new realisation of the time series is
generated with system 3 and then analysed with the hotspot
detection algorithm. Figure8 shows how often each element
remains until the end of each experiment for the additive
noise case and a time series length of 2000 yr. After the 500
repetitions, we evaluate which fractionf1 of the 500× nmax
potentially identified elements belongs to the hotspot, and
which fractionf2 of the actually obtained elements belongs
to the hotspot.f1 andf2 can differ because it is not always
nmax elements that remain in the end.

As a measure of the method’s performanceη, we define
for both variants off :

η1,2 = (f1,2 −
H

N
)/(1−

H

N
), (4)

with N as the size of the system (25) andH as the size
of the hotspot (9). If we assume that all 25 elements have
an equal chance to be selected, the probability for any ob-
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Fig. 10.Signal list for system 3 with additive noise using time se-
ries of 100 000 yr. Ordinate: absolute signal; abscissa: elements of
the system. Any area that has been calculated during the analysis is
represented at the ordinate value of its signal. All elements that are
part of this area are marked as blue dots. Parameter settings corre-
spond to set 1 in Table4.
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Fig. 11.Signal list for system 3 with multiplicative noise using time
series of 10 000 yr. Ordinate: absolute signal; abscissa: elements of
the system. Any area that has been calculated during the analysis
is represented at the ordinate value of its signal. All elements that
are part of this area are marked as blue dots. Parameter settings
correspond to set 21 in Table4.

tained element to be part of the hotspot isH/N = 9/25. A
detection which does not differ from this random case has
performance 0.

If exactlynmax elements are returned in every experiment,
a detection which only returns hotspot elements has perfor-
mance 1 for both variants off (which is of course only pos-
sible because we choose annmax smaller than the hotspot).
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The expectation value for the occurrence of every element
would be 100 in case of performance 0 (the solid black line
in Fig. 8), and 500× 5/9 in case of performance 1 (end of
vertical scale in Fig.8). Potential deviations fromnmax ele-
ments in the output can lead to performances lower than 0
and larger than 1 if we applyf1.

The decision for 500 repetitions can be justified by boot-
strapping our Monte Carlo results (Efron, 1979): for any list
of 500 sets of residual elements we drawn sets and mea-
sure their performances. We calculate the standard devia-
tion of the obtained performances for many differentn. It
turns out that for 500 repetitions, the standard deviation is
approx. 0.015 and rather independent of the parameter and
time series properties. Therefore, we round all performances
in Table4 two decimal places. Above 500 repetitions, the un-
certainty of the performance decreases very slowly while the
computation time for the Monte Carlo experiments increases
beyond feasibility.

From theoretical considerations, the performances in Ta-
ble 4 as well as the qualitative appearance of the resulting
signal lists, we draw the following conclusions with regard
to different parameter choices and time series properties:

– Different EWS can be used within the same frame-
work. Here, we use the increase in autocorrelation (AC)
and the relative increase in variance (var). Relative in-
creases in variance usually show better performances
because of a larger signal-to-noise ratio, in agreement
with Ditlevsen and Johnsen(2010). However, AC is
the more generic EWS and also works if multiplica-
tive noise leads to a reduction in variance (Dakos et al.,
2012). For Figs.7–11 and Table3 we use AC as an
EWS.

– We distinguish twosignal definitions(SD). The most
simple approach is to only use the projections on the
EOF of the last time slice (B4 in our example). The anal-
ysis is based on the assumption that this pattern resem-
bles the critical mode, if the selected area is the hotspot.
We then integrate the EWS-curve over B (calculate the
area of theJ − 1 segments). We refer to this signal def-
inition as SD1. SD1 is used in our example Fig.7 and
Table3.

An alternative (referred to as SD2) is to also consider
projections on previous EOFs. This approach can add
information if the leading EOF smoothly approaches
the critical mode whenB approaches the Tipping Point.
We thus obtainJ − 1 curves of an EWS vs.B (Fig. 9).
To calculate the signal for a specific area, we perform
a double integration. In terms of Fig.9: first, we cal-
culate the area under a curve with a certain colour for
EOFB=90 (Fig. 9a), EOFB=55 (Fig. 9b), and EOFB=43
(Fig. 9c). The resulting trajectory of integrated EWS is
then again integrated overB. This way, not only the

shape of the projection on the last EOF is accounted for,
but also the shape of previous projections.

– The choice of anelimination rule (ER) should be
adapted to the signal definition. Again, we distinguish
two elimination rules, ER1 and ER2. For SD1 we use
ER1, which works as follows: for each specific element,
we add up the signals of all areas this element is part of
(last row, second column in Table3), and refer to it as
the element’sweight. The threshold to remove unimpor-
tant elements is defined relative to the maximum weight
of all elements in a specific part. The absolute value of
the threshold therefore depends on the maximum weight
and differs among the system’s parts, while the rela-
tive threshold is a parameter that is independent of the
parts. For example, a threshold of 70 % means that all
elements with a weight smaller than 70 % of the max-
imum weight are removed. In our example (Fig.7 and
Table3), element 19 belongs to the hotspot, so it con-
tributes more to the signal than elements 20 and 25,
whose weight is therefore smaller. Element 25 has a
particularly small weight (24.70) as it neither belongs
to the hotspot nor is it much affected by it. Its relative
weight compared to the maximum weight of 40.32 is
below 70 %. It would therefore be removed from the
analysis if the threshold is above 70 %.

For SD2 we use a simpler approach, referred to as
ER2: we divide the signal list in the set of signals above
the current threshold and the set of signals below this
threshold. All elements which are part of any area above
the threshold remain, the other elements are removed.
Hence, the threshold is directly applied to the signals
itself without the calculation of weights. This measure
allows a better discrimination of the elements. In the ad-
ditive noise case it cannot be applied because there the
maximum signal usually belongs to the complete area.

– EOFs can be calculated as an eigenvector of the sys-
tem’s covariance matrix or alternatively its correlation
matrix. If based on the covariance matrix, elements with
large variance will be emphasised. Whether this im-
proves the performance of a hotspot detection generally
depends on the system under analysis. In case of system
3 with multiplicative noise, variance is enhanced partic-
ularly at the hotspot whenB approaches the bifurcation
point. Therefore, SD2 with ER2 yield the most signifi-
cant results when using covariance-based EOFs.

In general, other signal definitions and elimination rules
could be devised that may be tailored to a specific system.

The most generic approach is to use SD1 in combina-
tion with ER1, correlation-based EOFs and autocorrelation
as EWS. The last EOF (the only one used in SD1) must re-
semble the critical mode in any system approaching a bifur-
cation (although it can be difficult to come very close to the
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Table 4. Performances of the hotspot detection algorithm for different sets of versions, parameter choices and time series properties.
SD = signal definition, ER = elimination rule, BV = vector of forcingsBj . Performances are calculated from fractionsf1, italic results in
parenthesis fromf2 (Sect.4.3).

Parameters for hotspot detection Time series properties

Set EWS SD ER EOF nmax tini tinc BV τ noise T = 1000 T = 2000 T = 5000 T = 10000

1 AC 1 1 corr. 5 5 % 5 % BV1 5 add. 0.16 (0.22) 0.27 (0.33) 0.41 (0.50) 0.56 (0.69)
2 AC 1 1 covar. 5 5 % 5 % BV1 5 add. 0.13 (0.19) 0.24 (0.30) 0.43 (0.54) 0.54 (0.68)

3 AC 1 1 corr. 5 5 % 5 % BV1 2.5 add. 0.29 (0.36) 0.40 (0.48) 0.55 (0.70) 0.66 (0.84)

4 AC 1 1 corr. 3 5 % 5 % BV1 5 add. 0.19 (0.22) 0.29 (0.34) 0.44 (0.51) 0.58 (0.67)
5 AC 1 1 corr. 7 5 % 5 % BV1 5 add. 0.13 (0.18) 0.24 (0.31) 0.39 (0.49) 0.49 (0.60)

6 AC 1 1 corr. 5 5 % 5 % BV2 5 add. 0.10 (0.13) 0.13 (0.18) 0.23 (0.30) 0.37 (0.46)
7 AC 1 1 corr. 5 5 % 5 % BV3 5 add. 0.04 (0.08) 0.12 (0.16) 0.21 (0.27) 0.36 (0.43)

8 AC 1 1 corr. 5 5 % 1 % BV1 5 add. 0.18 (0.19) 0.28 (0.30) 0.45 (0.47) 0.63 (0.67)
9 AC 1 1 corr. 5 5 % 2,5 % BV1 5 add. 0.17 (0.20) 0.28 (0.32) 0.46 (0.51) 0.62 (0.69)
10 AC 1 1 corr. 5 5 % 7,5 % BV1 5 add. 0.17 (0.24) 0.22 (0.31) 0.40 (0.51) 0.49 (0.68)
11 AC 1 1 corr. 5 5 % 10 % BV1 5 add. 0.13 (0.23) 0.20 (0.31) 0.37 (0.53) 0.47 (0.70)
12 AC 1 1 corr. 5 5 % 12,5 % BV1 5 add. 0.12 (0.23) 0.21 (0.35) 0.32 (0.52) 0.44 (0.67)
13 AC 1 1 corr. 5 5 % 15 % BV1 5 add. 0.08 (0.23) 0.21 (0.37) 0.28 (0.56) 0.37 (0.70)
14 AC 1 1 corr. 5 5 % 17,5 % BV1 5 add. 0.08 (0.24) 0.17 (0.37) 0.30 (0.54) 0.41 (0.67)
15 AC 1 1 corr. 5 5 % 20 % BV1 5 add. 0.11 (0.27) 0.19 (0.37) 0.30 (0.54) 0.27 (0.69)
16 AC 1 1 corr. 5 5 % 30 % BV1 5 add. -0.01 (0.27) 0.11 (0.42) 0.26 (0.54) 0.36 (0.68)
17 AC 1 1 corr. 5 5 % 40 % BV1 5 add. 0.11 (0.28) 0.21 (0.39) 0.28 (0.54) 0.30 (0.68)
18 AC 1 1 corr. 5 5 % 50 % BV1 5 add. -0.08 (0.31) 0.05 (0.39) 0.27 (0.51) 0.44 (0.59)
19 AC 1 1 corr. 5 5 % 100 % BV1 5 add. 0.10 (0.27) 0.23 (0.33) 0.37 (0.47) 0.46 (0.54)
20 AC 1 1 corr. 5 80 % 5 % BV1 5 add. 0.12 (0.27) 0.25 (0.39) 0.41 (0.53) 0.56 (0.69)

21 AC 2 2 covar. 5 5 % 5 % BV1 5 mult. 0.60 (0.62) 0.66 (0.66) 0.87 (0.84) 1.10 (0.94)
22 AC 1 1 covar. 5 5 % 5 % BV1 5 mult. 0.29 (0.36) 0.44 (0.53) 0.61 (0.71) 0.74 (0.87)
23 AC 2 2 corr. 5 5 % 5 % BV1 5 mult. 0.43 (0.46) 0.50 (0.53) 0.70 (0.64) 0.95 (0.70)
24 AC 1 1 corr. 5 5 % 5 % BV1 5 mult. 0.31 (0.38) 0.40 (0.48) 0.56 (0.65) 0.67 (0.81)

25 AC 2 2 covar. 5 5 % 5 % BV2 5 mult. 0.57 (0.62) 0.64 (0.66) 0.71 (0.71) 0.82 (0.79)
26 AC 2 2 covar. 5 5 % 5 % BV3 5 mult. 0.68 (0.69) 0.74 (0.75) 0.87 (0.85) 1.09 (0.96)

27 AC 2 2 covar. 5 5 % 5 % BV1 2.5 mult. 0.64 (0.67) 0.79 (0.79) 1.12 (0.94) 1.63 (0.99)

28 var 1 1 corr. 5 5 % 5 % BV1 5 add. 0.28 (0.33) 0.43 (0.51) 0.60 (0.74) 0.67 (0.86)
29 var 1 1 covar. 5 5 % 5 % BV1 5 add. 0.29 (0.36) 0.42 (0.51) 0.62 (0.75) 0.71 (0.87)

30 var 1 1 corr. 5 5 % 5 % BV1 2.5 add. 0.38 (0.45) 0.53 (0.63) 0.67 (0.83) 0.73 (0.94)

31 var 1 1 corr. 5 5 % 1 % BV1 5 add. 0.31 (0.33) 0.48 (0.50) 0.69 (0.72) 0.81 (0.85)
32 var 1 1 corr. 5 5 % 2,5 % BV1 5 add. 0.32 (0.35) 0.45 (0.50) 0.64 (0.71) 0.76 (0.86)
33 var 1 1 corr. 5 5 % 7,5 % BV1 5 add. 0.27 (0.36) 0.41 (0.51) 0.57 (0.73) 0.62 (0.87)
34 var 1 1 corr. 5 5 % 10 % BV1 5 add. 0.28 (0.39) 0.41 (0.56) 0.51 (0.74) 0.59 (0.86)
35 var 1 1 corr. 5 5 % 12,5 % BV1 5 add. 0.22 (0.36) 0.35 (0.55) 0.48 (0.74) 0.60 (0.88)
36 var 1 1 corr. 5 5 % 15 % BV1 5 add. 0.20 (0.38) 0.31 (0.55) 0.42 (0.75) 0.54 (0.87)
37 var 1 1 corr. 5 5 % 17,5 % BV1 5 add. 0.19 (0.38) 0.28 (0.57) 0.45 (0.74) 0.56 (0.86)
38 var 1 1 corr. 5 5 % 20 % BV1 5 add. 0.25 (0.43) 0.33 (0.56) 0.34 (0.75) 0.23 (0.88)
39 var 1 1 corr. 5 5 % 30 % BV1 5 add. 0.10 (0.42) 0.21 (0.51) 0.42 (0.74) 0.50 (0.85)
40 var 1 1 corr. 5 5 % 40 % BV1 5 add. 0.20 (0.39) 0.30 (0.54) 0.33 (0.74) 0.27 (0.88)
41 var 1 1 corr. 5 5 % 50 % BV1 5 add. 0.06 (0.43) 0.24 (0.51) 0.45 (0.65) 0.54 (0.71)
42 var 1 1 corr. 5 5 % 100 % BV1 5 add. 0.22 (0.35) 0.36 (0.45) 0.49 (0.59) 0.57 (0.70)
43 var 1 1 corr. 5 80 % 5 % BV1 5 add. 0.27 (0.43) 0.41 (0.55) 0.60 (0.74) 0.69 (0.87)

44 var 2 2 covar. 5 5 % 5 % BV1 5 mult. 1.70 (1.00) 2.04 (1.00) 2.22 (1.00) 2.25 (1.00)
45 var 1 1 covar. 5 5 % 5 % BV1 5 mult. 0.68 (1.00) 0.53 (1.00) 0.32 (1.00) 0.37 (1.00)
46 var 2 2 corr. 5 5 % 5 % BV1 5 mult. 1.59 (1.00) 1.99 (1.00) 2.21 (1.00) 2.25 (1.00)
47 var 1 1 corr. 5 5 % 5 % BV1 5 mult. 0.69 (1.00) 0.50 (1.00) 0.31 (1.00) 0.36 (1.00)

Earth Syst. Dynam., 4, 63–78, 2013 www.earth-syst-dynam.net/4/63/2013/



S. Bathiany et al.: Detecting hotspots via slowing down 75

edge of the Tipping Point in practice). In the case of addi-
tive noise, considering previous EOFs like in SD2 may not
improve the signal-to-noise ratio because the signal is much
weaker away from the Tipping Point. This is of particular
importance if the curves of EWS vs.B do not differ sub-
stantially between different EOFs. Furthermore, autocorre-
lations and correlations are more generic indicators while
variances can be affected by multiplicative noise in any way.
When analysing a system whose variability is of unknown
nature, the generic approach is thus probably the most ad-
equate choice. Fig.10 shows the resulting signal list when
using time series of length 100 000 yr and such generic op-
tions (referred to as set 1 in Table4).

Although these options should be applicable to many sys-
tems, they may not lead to the most robust results. In sys-
tem 3 with multiplicative noise, SD2 and ER2 in combination
with covariance-based EOFs are of particular advantage. Fig-
ure11 shows the signal list for the multiplicative noise case
when using time series of length 10 000 yr and options as
set 21 in Table4. While for the additive noise case the AC’s
trajectories at the hotspot (red area) and the complete area al-
ways look alike (not shown), they differ substantially in the
multiplicative case: at the hotspot the signal starts to emerge
early, even when projecting on a leading EOF far from the
Tipping Point (red curves in Fig.9). This is not the case
for the other areas because the variability of the system dif-
fers substantially from the critical mode. As variances at the
hotspot are very small, the EOF pronounces other elements
than the hotspot and slowing down will thus not be observed
in the projection. Close to the Tipping Point, the variance at
the hotspot increases not only due to slowing down, but also
due to the multiplicative noise which enhances variance as
vegetation cover decreases. Therefore, the relative increase
in variance is particularly large at the hotspot. Close to the
Tipping Point, the system’s variability becomes dominated
by the critical mode and slowing down can be seen in the
complete as well as the hotspot area. By using SD2, ER2 and
covariance-based EOFs, we use this property of the system to
better distinguish the elements from each other. As a result,
the hotspot can be detected much easier than in the additive
noise case. Using time series of 10 000 yr each, the hotspot is
clearly visible in the signal list fornmax = 5 (Fig.11). Hence,
an even more robust hotspot detection can be achieved from
time series ten times shorter than in the additive noise case.

In a more general case, additive and multiplicative noise
may occur at the same time. In our system 3, the multiplica-
tive noise would dominate the results if noise levels leading
to similar variance inV were chosen. However, it is not a pri-
ori clear what would happen in other systems whose proper-
ties are not well-known. Under such conditions the generic
approach using cross- and autocorrelations with SD1 and
ER1 would be the safest option in the light of our results.

We now continue with our list of conditions:

– The choice oftime slicesshould cover a range ofB
where the changes in steady state are already pro-
nounced to achieve a good signal-to-noise ratio. In Ta-
ble4 we distinguish three different vectors of B-values:
BV1: (150, 90, 55, 43),
BV2: (300, 200, 100, 75, 43),
BV3: (150, 90, 55).
For Figs.7–11and Table3 we use BV1 (dashed vertical
lines in Fig.5).

– The initial threshold, tini , and increment, tinc, should be
chosen small (a few percent of the maximum signal). If
they are larger, the calculation is faster and not neces-
sarily worse in performance, but the signal list will not
be well sampled. A better sampling of each element’s
contribution to the signal allows a clearer discrimination
between the elements in figures like Figs.10 and 11.
Particularly lowη1 for some largertinc (Table4) result
from the effect that too many elements are removed at
once after increasing the threshold.

– The maximum number of elements per part, nmax, can
be chosen small for first results. The smallernmax, the
faster the algorithm. When repeating the analysis with
largernmax, the signal list gives an indication of the size
of the hotspot (or hotspots). As long as the maximum
signal in the list clearly increases withnmax, the number
of elements which form a common hotspot is larger than
nmax. As Figs.10and11document, the full hotspot may
already be identified fornmaxsmaller than the hotspot, if
tini andtinc are small to allow a robustly sampled signal
list.

– The length of the time series, T , as compared to the
key variable’s timescaleτ has a major influence on the
method’s performance. As the time series provide only
a limited sample, the performance will increase withT .
If a single available realisation of the time series is too
short, the statistical properties of the variations are in-
sufficiently sampled and a hotspot detection can yield
wrong results. It should therefore be checked whether
the identified hotspot is robust toT by comparing dif-
ferent parts of the time series. Methods of block boot-
strapping suited for time series (Politis, 2003) could in
principle be applied to the full analysis to derive uncer-
tainty estimates.

– The detectability of a hotspot, given a specific length of
the time series, very much depends on intrinsic system
properties like itsconnectivity and the strength of the
destabilising feedback. The more elements contribute to
a hotspot, the more difficult it is to detect.nmax should
be chosen large in such a case to determine the large
extent of the hotspot which slows down the algorithm.
More importantly, the stronger the slowing down and
the better the elements can be distinguished, the easier
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the hotspot detection. Our system 3 may already provide
a rather demanding case as several 10 000–100 000 yr
long time slices are required for a robust hotspot detec-
tion. This time is rather beyond feasibility for climate
models of intermediate or high complexity and a hotspot
like in system 3 would hardly be detectable. However,
if hotspots of a more pronounced structure exist, they
could be detected more easily. As an example, consider
the most optimistic case of an univariate process where
autocorrelation increases substantially over time. This
increase would be detectable within the order of some
100 time steps (Ditlevsen and Johnsen, 2010). Part II
of our two-part paper presents a hotspot detection from
climate model time series of hundreds to thousands of
years length as another example. It is therefore not pos-
sible to provide a general statement on the required
length of time series. The required length depends on
the nature of the potential hotspot, the exact thing that
one aims to infer with the analysis. However, this prob-
lem does not impose any restrictions to the applicability
of the method, but it implies that a negative result can
either be due to the non-existence of slowing down at a
hotspot or to too short time series.

5 Summary and conclusions

By applying a simple stochastic model, we have demon-
strated that EWS at individual elements of a coupled sys-
tem are no generic precursors of a sudden transition at a tip-
ping point. If the local feedback of a particular element is
weak or if the element’s tipping is induced by other elements,
EWS are not apparent until the bifurcation parameter is very
close to its critical point. In this case the signal cannot be
called early anymore, and a prediction of a sudden transi-
tion, together with the area where it will occur, must fail. On
the other hand, we have documented that indicators of slow-
ing down can potentially be used to infer knowledge on the
causality of a sudden transition from sufficiently long time
series. To this end, we have devised an algorithm to detect
the hotspot or hotspots of slowing down in a many-element
system. As slowing down indicates a loss in stability of the
current state, the detected hotspot indicates a region where
the system’s susceptibility to perturbations becomes large.

Although our system is meant to represent the vegetation-
atmosphere interaction in Northern Africa, the method of
analysis is generic in the sense that it can be applied to any
system satisfying the basic assumptions common to EWS ap-
proaches:

– The system is supposed to be close to a deterministic
state (in terms of dynamical systems, a slow manifold),
which loses stability.

– The system’s variability results from small white noise.

It should be noted that the existence of a bifurcation is
not a prerequisite of our method. Even in the case of weaker
feedbacks and a more gradual transition will a change in sta-
bility be reflected in slowing down. However, the detectabil-
ity of the signal tends to decrease as compared to a bifur-
cation where the system approaches a random walk. The
main difference to previous applications of EWS is that our
method does not only calculate the magnitude of slowing
down but also identifies the subsystem where it occurs.

In principle, a prediction of sudden transitions could also
be attempted with this approach. As new data points become
available, new EOFs and projections may be constructed.
As for any prediction based on EWS, it must of course be
known in advance which maximum signal is to be expected
(Thompson and Sieber, 2011). For example, autocorrelation
only comes close to 1 when there is a bifurcation, but peaks
at lower values in less extreme cases.

In addition, the very large data requirements imply a vast
separation between the timescale of changing external con-
ditions and the intrinsic timescale of the system, a condi-
tion that is not often satisfied. Although we focus on auto-
correlation and temporal variability, other indicators of slow-
ing down such as spatial variability could be applied within
the same iterative framework and may lead to better perfor-
mances. As our additive and multiplicative noise case illus-
trate, the more the analysis method is tailored to a specific
system, the more a priori knowledge on the data generating
process is needed. For example, variance may increase or de-
crease when approaching a threshold, depending on the sys-
tem under consideration (Brock and Carpenter, 2010; Dakos
et al., 2012).

Additional caveats are imposed by unaccounted or chang-
ing properties of the external noise, which would affect EWS
(Carpenter and Brock, 2006; Scheffer et al., 2009; Ditlevsen
and Johnsen, 2010). In particular, we have only used white
noise which is uncorrelated in space. However, it would
physically be more reasonable to account for spatial correla-
tions in the atmospheric variability. This could reduce the de-
tectability of hotspots because correlations between the state
variables could not be attributed to spatial interactions alone,
but would partly result from correlations in the noise.

Other problems may arise in cases of large noise. The lo-
cal stability of the deterministic state may not be represented
well anymore in EWS, and the noise can lead to an early tip-
ping. More fundamentally, the system’s mean behaviour in
the large noise regime may not reflect its deterministic struc-
ture anymore due to noise-induced transitions (Horsthemke
and Lefever, 1984). The link between a system’s suscepti-
bility and statistical properties of its variability breaks down
under such conditions.

Within these limitations, our results suggest an alternative
applicability of EWS which may contribute to a better un-
derstanding of numerical models. In this regard our study
is a concretion of Lenton’s recent conclusion: “Even if fur-
ther research shows that early warning is unachievable in
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practice, it could still provide valuable information on the
vulnerability of various tipping elements to noise-induced
changes.” (Lenton, 2011). To this end, more systematic stud-
ies on the performance of indicators of slowing down for dif-
ferent classes of models will be particularly beneficial.
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