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Abstract. We use statistical methods for nonstationary time
series to test the anthropogenic interpretation of global
warming (AGW), according to which an increase in atmo-
spheric greenhouse gas concentrations raised global temper-
ature in the 20th century. Specifically, the methodology of
polynomial cointegration is used to test AGW since dur-
ing the observation period (1880–2007) global temperature
and solar irradiance are stationary in 1st differences, whereas
greenhouse gas and aerosol forcings are stationary in 2nd dif-
ferences. We show that although these anthropogenic forc-
ings share a common stochastic trend, this trend is empiri-
cally independent of the stochastic trend in temperature and
solar irradiance. Therefore, greenhouse gas forcing, aerosols,
solar irradiance and global temperature are not polynomially
cointegrated, and the perceived relationship between these
variables is a spurious regression phenomenon. On the other
hand, we find that greenhouse gas forcings might have had a
temporary effect on global temperature.

1 Introduction

Considering the complexity and variety of the processes that
affect Earth’s climate, it is not surprising that a completely
satisfactory and accepted account of all the changes that oc-
curred in the last century (e.g. temperature changes in the
vast area of the Tropics, the balance of CO2 input into the
atmosphere, changes in aerosol concentration and size and
changes in solar radiation) has yet to be reached (IPCC, AR4,
2007). Of particular interest to the present study are those

processes involved in the greenhouse effect, whereby some
of the longwave radiation emitted by Earth is re-absorbed by
some of the molecules that make up the atmosphere, such
as (in decreasing order of importance): water vapor, car-
bon dioxide, methane and nitrous oxide (IPCC, 2007). Even
though the most important greenhouse gas is water vapor, the
dynamics of its flux in and out of the atmosphere by evapo-
ration, condensation and subsequent precipitation are not un-
derstood well enough to be explicitly and exactly quantified.

While much of the scientific research into the causes of
global warming has been carried out using calibrated gen-
eral circulation models (GCMs), since 1997 a new branch
of scientific inquiry has developed in which observations of
climate change are tested statistically by the method of coin-
tegration (Kaufmann and Stern, 1997, 2002; Stern and Kauf-
mann, 1999, 2000; Kaufmann et al., 2006a,b; Liu and Ro-
driguez, 2005; Mills, 2009). The method of cointegration,
developed in the closing decades of the 20th century, is in-
tended to test for the spurious regression phenomena in non-
stationary time series (Phillips, 1986; Engle and Granger,
1987). Non-stationarity arises when the sample moments of
a time series (mean, variance, covariance) depend on time.
Regression relationships are spurious1 when unrelated non-
stationary time series appear to be significantly correlated be-
cause they happen to have time trends.

The method of cointegration has been successful in de-
tecting spurious relationships in economic time series data2.

1“Spurious regression” was originally discovered by Yule (1897).
2For example, Enders (1988) in the case of Purchasing

Power Parity theory, Johansen and Juselius (1998) in the case
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Indeed, cointegration has become the standard econometric
tool for testing hypotheses with nonstationary data (Maddala,
2001; Greene, 2012). As noted, climatologists too have used
cointegration to analyse nonstationary climate data (Kauf-
mann and Stern, 1997). Cointegration theory is based on the
simple notion that time series might be highly correlated even
though there is no causal relation between them. For the re-
lation to be genuine, the residuals from a regression between
these time series must be stationary, in which case the time
series are “cointegrated”. Since stationary residuals mean-
revert to zero, there must be a genuine long-term relationship
between the series, which move together over time because
they share a common trend. If on the other hand, the resid-
uals are nonstationary, the residuals do not mean-revert to
zero, the time series do not share a common trend, and the
relationship between them is spurious because the time se-
ries are not cointegrated. Indeed, theR2 from a regression
between nonstationary time series may be as high as 0.99,
yet the relation may nonetheless be spurious.

The method of cointegration originally developed by En-
gle and Granger (1987) assumes that the nonstationary data
are stationary in changes, or first-differences. For example,
temperature might be increasing over time, and is there-
fore nonstationary, but the change in temperature is station-
ary. In the 1990s cointegration theory was extended to the
case in which some of the variables have to be differenced
twice (i.e. the time series of the change in the change) be-
fore they become stationary. This extension is commonly
known as polynomial cointegration. Previous analyses of the
non-stationarity of climatic time series (e.g. Kaufmann and
Stern, 2002; Kaufmann et al., 2006a; Stern and Kaufmann,
1999) have demonstrated that global temperature and solar
irradiance are stationary in first differences, whereas green-
house gases (GHG, hereafter) are stationary in second differ-
ences. In the present study we apply the method of polyno-
mial cointegration to test the hypothesis that global warming
since 1850 was caused by various anthropogenic phenom-
ena. Our results show that GHG forcings and other anthro-
pogenic phenomena do not polynomially cointegrate with
global temperature and solar irradiance. Therefore, despite
the high correlation between anthropogenic forcings, solar
irradiance and global temperature, AGW is not statistically
significant. The perceived statistical relation between tem-
perature and anthropogenic forcings is therefore a spurious
regression phenomenon.

2 Data and methods

We use annual data (1850–2007) on greenhouse gas (CO2,
CH4 and N2O) concentrations and forcings, as well as on
forcings for aerosols (black carbon, reflective tropospheric
aerosols). We also use annual data (1880–2007) on solar

of the influential Keynesian IS-LM model, and Hendry and
Ericsson (1991) on the demand for money.

irradiance, water vapor (1880–2003) and global mean tem-
perature (sea and land combined 1880–2007). These widely
used secondary data are obtained from NASA-GISS (Hansen
et al., 1999, 2001). Details of these data may be found in the
Data Appendix.

We carry out robustness checks using new reconstructions
for solar irradiance from Lean and Rind (2009), for globally
averaged temperature from Mann et al. (2008) and for global
land surface temperature (1850–2007) from the Berkeley
Earth Surface Temperature Study.

Key time series are shown in Fig. 1 where panels a and b
show the radiative forcings for three major GHGs, while
panel c shows solar irradiance and global temperature. All
these variables display positive time trends. However, the
time trends in panels a and b appear more nonlinear than their
counterparts in panel c. Indeed, statistical tests reported be-
low reveal that the trends in panel c are linear, whereas the
trends in panels a and b are quadratic. The trend in solar irra-
diance weakened since 1970, while the trend in temperature
weakened temporarily in the 1950s and 1960s.

The statistical analysis of nonstationary time series, such
as those in Fig. 1, has two natural stages. The first consists
of unit root tests in which the data are classified by their
order and type of non-stationarity. If the data are nonsta-
tionary, sample moments such as means, variances and co-
variances depend upon when the data are sampled, in which
event least squares and maximum likelihood estimates of pa-
rameters may be spurious. In the second stage, these nonsta-
tionary data are used to test hypotheses using the method of
cointegration, which is designed to distinguish between gen-
uine and spurious relationships between time series. Since
these methods may be unfamiliar to readers ofEarth System
Dynamics, we provide an overview of key concepts and tests.

2.1 Unit root tests

A time series is (weakly) stationary if its sample moments
(means, variances and covariances) do not depend on when
they are measured. By definition, a time series is nonstation-
ary or integrated to orderd, I (d) for short, if itsd-th differ-
ence is stationary but itsd − 1-th difference is not. We quan-
tify the order of the data’s non-stationarity using a variety
of unit root tests. The most well-known is the Dickey–Fuller
(DF) test statistic (Dickey and Fuller, 1981), which is based
on the null hypothesis that the variable is nonstationary, and
d = 1. The KPSS test statistic (Kwiatkowski et al., 1992) is
based on the null hypothesis thatd = 0, in which case the vari-
able is stationary. The DF and KPSS tests assume thatd is an
integer equal to 1 and 0, respectively. In fact a variable is non-
stationary ifd ≥ 1/2 (Granger and Joyeaux, 1980). Rejection
of the KPSS null means therefore thatd does not equal zero,
but the variable could still be stationary. Rejection of the DF
null means thatd <1, but it would still be nonstationary if
1/2≤ d <1. Therefore, the two tests are not mirror images
of each other. In any case, failure to reject a hypothesis is
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not logically equivalent to establishing that its antithesis is
false3. Given the low power of these tests there is a case for
using both types of test (Maddala and Kim, 1998). Geweke
and Porter-Hudak (1983) suggested an estimator for d as a
fraction, which we use below. For an application to climate
data see Mills (2007).

If d = 1 the variable is “difference stationary”. If deviations
of the variable from a deterministic linear trend are station-
ary, the variable is “trend stationary”. In the latter case ran-
dom shocks to the variable are expected to dissipate over
time as the trend is re-established, and the time trend is
therefore deterministic. In the former case, random shocks
are expected to persist over time and the trend is therefore
stochastic. Critical values for the DF and KPSS statistics are
more stringent in the former case because the trend station-
ary model involves the estimation of an additional parameter
(time trend). In the event that both models appear to be con-
sistent with the data, Dickey and Fuller (1981) have proposed
a test that distinguishes between trend stationarity and differ-
ence stationarity. If a variable is trend stationary, it obviously
cannot be stationary.

The DF and KPSS statistics assume that the residuals in
the data generating process are serially independent. If they
are not, these statistics have to be corrected. The augmented
DF statistic (ADF, see Said and Dickey, 1984) assumes that
the serial correlation is induced by dynamics in the data gen-
erating process (DGP). Another correction for the DF statis-
tic is the DF-GLS statistic (i.e. DF statistic estimated by Gen-
eralised Least Squares see Elliott et al., 1996), which as-
sumes that serial correlation in the DGP is inherent and is
estimated by generalised least squares (GLS). The Phillips–
Perron (PP) statistic (Phillips and Perron, 1988) is a robust
estimate of the DF statistic, which corrects its standard devi-
ation for serial correlation in the DGP. A similar correction
method is also used by KPSS. Unfortunately, there is no con-
sensus on the best way to handle this serial correlation prob-
lem although the PP statistic is reckoned to be inferior (Mad-
dala and Kim, 1998; Davidson and MacKinnon, 2009, chap-
ter 14). Our own preference is to augment the ADF test until
its residuals are serially independent according to a lagrange-
multiplier test statistic.

Stationary time series which contain structural breaks may
appear nonstationary because their mean varies over time.
The same applies to trend stationary time series which con-
tain structural breaks. For example, Kaufmann et al. (2010)
show that global temperature is not trend stationary in the
presence of structural breaks, and that it is difference sta-
tionary. See Perron and Vogelsang (1992) regarding DF tests
in the presence of structural breaks and Lee and Strazi-
cich (2001) for KPSS tests in the presence of structural
breaks.

3Just as failure to establish guilt is not equivalent to establishing
innocence.

2.2 Cointegration tests

Cointegration tests typically refer to hypothesized steady-
state relationships in the data. This feature is particularly use-
ful because it means that it is unnecessary to specify aux-
iliary hypotheses regarding dynamic convergence processes
towards steady states. Although this methodological simpli-
fication applies asymptotically, it has a number of impor-
tant advantages. First, steady states may be inherently more
interesting than adjustment paths. In the case of AGW the
main interest is the long-term anthropogenic impact on cli-
mate rather than how it diffuses over time. Secondly, tests of
the steady state are robust asymptotically with respect to un-
known paths of adjustment. Often, steady state theory is more
developed than its ancillary theory of adjustment. These ad-
justment theories may be nonlinear, as they commonly are in
GCMs, but cointegration does not require the specification
of these details. Third, estimates of long-term cointegrated
relationship are “super-consistent”; the relationship between
temperature and forcing is asymptotically identified even if
there happens to be reverse causality from temperature to
forcing.

If the steady state is linear (i.e. the assumed relationship
between the variables in the regression model is linear) then
linear cointegration theory is sufficient to test restrictions
regarding the steady state. If the steady state is nonlinear
then nonlinear cointegration theory may be used to test rel-
evant restrictions about the steady state (Choi and Saikko-
nen, 2010). Nonlinear cointegration theory is naturally more
complex than its linear counterpart. GCMs are nonlinear be-
cause they embody nonlinear terms and adjustment processes
rather than nonlinear steady states. Therefore, for the most
part we focus on linear cointegration tests. However, we also
use nonlinear cointegration theory to test AGW in nonlinear
contexts.

Several different cointegration methodologies are avail-
able. The original methodology proposed by Engle and
Granger (1987), based on ordinary least squares (OLS), is
designed for “asymptotic samples” in which the steady state
is repeatedly observable. Typically, this requires long time
series in terms of calendar time. In our case we use annual
data from 1850 or 1880. If the adjustment process of temper-
ature with respect to forcings is very protracted this sample
may be too short to test hypotheses about steady states. Engle
and Yoo (1991) have suggested a test to determine whether
estimates based on the Engle-Granger methodology are sub-
ject to finite sample bias. We use this test to show that the
sample is sufficiently long.

Other cointegration methodologies have been proposed
for non-asymptotic samples in which the steady state may
be concealed by short-term adjustment processes in the
data. These include the methodology of Johansen (1988),
the dynamic ordinary least squares (DOLS) methodology of
Stock and Watson (1993) and the error correction (ECM)
methodology (Ericsson and MacKinnon, 2002). All these
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methodologies filter out (in different ways) short-term dy-
namics in the data that may conceal the hypothesized steady
states. In all of these methodologies the null hypothesis
is “no cointegration, or spurious regression relationships”.
Shin (1994) has extended the KPSS methodology (see above)
to test the null hypothesisd = 0 for the model residuals, in
which case the model is cointegrated.

2.3 Polynomial cointegration

In standard cointegration tests the variables must be differ-
ence stationary in which case all the variables areI (0). Just
as I (0) and I (1) variables cannot be cointegrated, soI (1)
andI (2) variables do not cointegrate. An exception arises in
the case of polynomial cointegration. Therefore, if some of
the variables happen to beI (2) the null hypothesis of AGW
may be tested using polynomial cointegration. In the present
context this happens when theI (2) variables, which are an-
thropogenic, are cointegratedI (1). We refer below to this
I (1) variable as the “anthropogenic anomaly”. If the latter
is cointegrated with temperature and solar irradiance, which
are bothI (1) variables, the variables are polynomially coin-
tegrated, and AGW would be corroborated.

There are also different methodologies for polyno-
mial cointegration, which have been reviewed by Mad-
dala and Kim (1998). Haldrup (1994) extended the Engle-
Granger methodology to polynomial cointegration, as did
Johansen (1995) for his methodology, and Stock and Wat-
son (1993) for their methodology. There are conceptual dif-
ferences between these methodologies. Haldrup’s methodol-
ogy hypothesizes that theI (2) variables may “cointegrate
down” to anI (1) variable, i.e. they share a common stochas-
tic trend. Johansen’s methodology hypotheses the existence
of a deterministic trend among theI (2) variables4. In the
context of greenhouse gas forcing this means that there is an
autonomous time trend causing forcing to diverge over time.

We prefer Haldrup’s methodology over Johansen’s for sev-
eral reasons. First, there is no physical justification for an au-
tonomous time trends in greenhouse gas forcing. For exam-
ple, the anthropogenic component of CO2 forcing depends
on world consumption of hydrocarbons, which has a stochas-
tic trend rather than a deterministic trend. Therefore, CO2
forcing should not have a deterministic trend (as confirmed
by our unit root tests). Second, Johansen’s method is less ro-
bust than least squares methods (Maddala and Kim, 1998,
p. 173) due to its greater parametricity5. On the other hand,

4In reference to Johansen’sI (2) estimator Juselius (2007) notes
(p. 315) that, “In particular, this means that we need to allow for
trend-stationary relations as a starting hypothesis.”

5Juselius (2007) writes (p. 55) in relation to the assumption that
the residuals in Johansen’s method must be multivariate normal, “If
they do not pass these tests, for example, because they are autocor-
related or heteroscedastic, or because the distribution is skewed or
leptokurtic, then the estimates may no longer have optimal proper-
ties and cannot be considered full-information maximum likelihood

Johansen’s method takes account of feedback between the
covariates. However, this advantage does not apply in our
case since for physical reasons there is no feedback between
solar irradiance and greenhouse gas forcing, nor does temper-
ature feedback onto solar irradiance and greenhouse gas forc-
ing. Fourth, as noted by Davidson and MacKinnon (2009,
p. 617), Johansen’s methodology is more prone to finite sam-
ple bias than its least squares alternatives. Therefore, if we
suspect that our sample is insufficiently long, it is prefer-
able to use least squares methods. Fifth, as noted by Mad-
dala and Kim (1998, p. 203), the Engle-Granger procedure
upon which Haldrup’s method is based is statistically under-
powered, i.e. it tends to accept false negative results by more
than it should. In the present context this means that our poly-
nomial cointegration methodology is too “soft” with respect
to AGW. Since a positive result might have been incorrect,
rejection of AGW is in some sense against the odds, and
therefore more convincing. A final reason is that previous
researchers have used least squares methods. Therefore, Hal-
drup’s method enables us to reconstruct incorrect inferences
in previous least squares studies which ignored the important
fact that greenhouse gas forcing isI (2).

Parameters estimated from stationary time series are root-
T consistent, whereT denotes the number of observations.
If the data areI (1), have stochastic trends and are coin-
tegrated, the parameter estimates areT 3/2-consistent, or
“super-consistent”6. If the data areI (2) and are polynomially
cointegrated the parameter estimates areT 5/2-consistent, or
“super-super consistent”7. The higher the order of consis-
tency, the faster the parameter estimates converge in proba-
bility to their true values. The super-super consistency prop-
erty of polynomial cointegration means, in theory, that one
learns from 150 yr of climate data what would have required
at least a millennium of stationary data.

We do not reportt-statistics for the parameter estimates in
the cointegrating vector because it is well-known that when
the data are nonstationary the parameter estimates based on
OLS typically have non-standard distributions. This is partic-
ularly the case when variables such as temperature and green-
house gas forcing may be dynamically dependent. Sincet-
tests and chi-squared tests are invalid, we test rival hypothe-
ses by carrying out nested cointegration tests. For example,
suppose that temperature, solar irradiance and greenhouse

(FIML) estimates. The obtained parameter estimates may not have
any meaning, and since we do not know their “true” properties, in-
ference is likely to be hazardous.” We might add that the Johansen
method is based on concentrated ML, which assumes that short-run
dynamics in the data may be concentrated out independently of their
long-run behavior. In short, the robustness of Johansen’s method is
weakened by its numerous assumptions.

6If, instead, the data areI (1) because they are driftless random
walks then the parameter estimates are root –T consistent. See
Maddala and Kim (1998), p. 59.

7In the absence of drift the parameter estimates would beT 2-
consistent as in Haldrup (1994).
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gas forcings seem to be cointegrated. To test whether cointe-
gration arises because of the specification of greenhouse gas
forcings, we omit these forcings from the model (jointly or
severally) and test whether temperature and solar irradiance
are still cointegrated. If they are not cointegrated, we confirm
that greenhouse gas forcings should be specified and AGW
is confirmed. In the opposite case the model is cointegrated
without greenhouse forcings, AGW is rejected and tempera-
ture in the steady state depends entirely on solar irradiance.

2.4 Stochastic energy balance models (SEBM)

We use the stochastic energy balance model (SEBM) to mo-
tivate our cointegration tests. SEBM (North et al., 1981) is
written as

C
1Tt

1t
= −λTt−1 + Ft + et (1)

where T here denotes temperature,F denotes forcing,e
denotes a stochastic iid (identically and independently dis-
tributed) component, subscriptt denotes discrete time at the
end of the period, andλ/C is the rate at which temperature
converges to its steady state. Normalizing1t to unity, the
general solution to Eq. (1) forT is

Tt =
1

C

t∑
i=0

ρi (Ft−i + et−i) + κρt (2)

where 0<ρ = 1− λ/C <1 and κ is an arbitrary constant
reflecting initial conditions. Sinceρ <1 the final term in
Eq. (2) tends zero. Suppose forcing is a random walk with
drift:

1Ft = φ + ft , (3)

wheref is a random variable which is identically and inde-
pendently distributed (iid). Substituting Eq. (3) into Eq. (2)
for Ft−i gives

Tt = α + βFt + ut

α = −
ρφ

C (1 − ρ)2
; β =

1

C(1 − ρ)

ut =
1

C

t∑
i=0

ρi et−i −
1

λ

t∑
i=0

ρi+1ft−i . (4)

Equation (4) decomposes temperature into a stationary, se-
rially correlated component (u) and a nonstationary compo-
nent,F . Finally, we disaggregate forcing (F ) into its compo-
nent parts:

Tt = α + βs St + βgGt − βaAt + ut , (5)

whereS denotes solar irradiance,G denotes greenhouse gas
forcing,A denotes aerosols and theβ coefficients are param-
eters to be estimated. SEBM predicts that the steady-state
parameters in Eq. (5) are positive. The model is cointegrated

if the residual error, u, is stationaryI (0). If the residuals are
nonstationary the estimated model is spurious. Equation (5)
is assumed to be linear, but it may also be specified to be
nonlinear.

2.5 Dependent and independent forcings

We distinguish between dependent or endogenous forcing
and independent or exogenous forcing, denoted byFA and
FB, respectively, whereF =FA +FB. Dependent forcing de-
pends on global temperature and perhaps other forcing, while
independent forcing is also driven by factors other than those
considered here. For example, greenhouse gas and aerosol
forcings are independent because they do not depend on tem-
perature. Solar irradiance is obviously independent because
what happens to the sun is independent of what happens on
earth. Water vapor forcing on the other hand is dependent
because it depends on temperature.

Suppose that dependent forcings are linearly related in the
long run to their independent counterparts and global tem-
perature as follows:

FBt = π FAt + µTt + ωt (6)

whereπ denotes the effect of independent forcing on depen-
dent forcing,µ denotes the effect of temperature on depen-
dent forcing andω denotes a stationary error. Equation (6)
states that dependent forcings are cointegrated with inde-
pendent forcings and temperature. Substituting Eq. (6) into
Eq. (4) gives

Tt = ψ0 + ψ1FAt + vt (7)

where:

90 =
α

1 − βµ
, 91 = β

1 + π

1βµ
, vt =

βωt + ut

1 − βµ
. (8)

Equation (7) states that temperature varies directly with in-
dependent forcing. However, the coefficientψ1 reflects the
direct effect of forcing (β) and the indirect effect ofFA and
temperature throughFB. Typically, ψ1>β becauseπ >0
andβµ<1, i.e. the total long-run effect of independent forc-
ing is greater than its direct effect. Sinceω andu are station-
ary so mustv be stationary.

What is important for our purposes is that cointegration
tests do not require data on dependent forcing sinceψ1 = 0
whenβ = 0. Therefore, dependent variables, such as water
vapor and ocean heat, do not in principle affect cointegration
tests. This conclusion is consistent with Stern (2006) who
shows that cointegration tests of the relationship between
temperature and forcing do not depend on the relationship
between temperature and ocean heat. If Eq. (6) is cointe-
grated, so must Eq. (4) be cointegrated. If, however, Eq. (6)
is not cointegrated becauseπ =µ= 0 (ocean heat and water
vapor do not depend in the long-run on temperature and solar
irradiance) Eq. (4) may still be cointegrated, becauseψ1 =β
in Eq. (7).

www.earth-syst-dynam.net/3/173/2012/ Earth Syst. Dynam., 3, 173–188, 2012



178 M. Beenstock et al.: Polynomial cointegration tests of anthropogenic impact on global warming
W
 x
 m
-2

W
 x m

-2

W
 x
 m
-2

W
 x
 m
-2

OC

Year

A.

 

B.

C.

Fig. 1.Time series of the changes that occurred in several variables
that affect or represent climate changes during the 20th century.
(a) Radiative forcings (rf, in units of W m−2) during 1880 to 2007
of CH4 (methane) and CO2 (carbon dioxide);(b) same period as
in panel a but for Nitrous-Oxide (N2O); (c) solar irradiance (left
ordinate, units of W m−2) and annual global temperature (right or-
dinate, units of◦C) during 1880–2003.

Although they are not of direct importance here, the pa-
rameters of Eq. (6) may be estimated if data are available on
dependent forcings. However, the estimates ofπ andµ may
not be uniquely identified since according to Eq. (4) there
is reverse causality from dependent forcing to temperature.
Since consistent estimate ofβ require consistent estimates
of π andµ as well as consistent estimates ofψ1, β is not
identified. What is required for identification is a variable
that directly affects dependent forcings (FB), but which does
not directly affect temperature. Nevertheless, below we re-
port some empirical estimates of Eq. (6).

Finally, FA may be decomposed intoI (1) andI (2) com-
ponents.FA must beI (2) if at least one of its components is
I (2). In the next section we show that although solar irradi-
ance isI (1), anthropogenic forcings areI (2).

Fig. 2.Time series of the first differences of rfCO2.

3 Results

3.1 Time series properties of the data

Informal inspection of Fig. 1 suggests that the time series
properties of greenhouse gas forcings (panels a and b) are
visibly different to those for temperature and solar irradiance
(panel c). In panels a and b there is evidence of acceleration,
whereas in panel c the two time series appear more stable.
In Fig. 2 we plot rfCO2 in first differences, which confirms
by eye that rfCO2 is notI (1), particularly since 1940. Similar
figures are available for other greenhouse gas forcings. In this
section we establish the important result that whereas the first
differences of temperature and solar irradiance are trend free,
the first differences of the greenhouse gas forcings are not.
This is consistent with our central claim that anthropogenic
forcings areI (2), whereas temperature and solar irradiance
areI (1).

What we see informally is born out by the formal statis-
tical tests for the variables in Table 1. Although the KPSS
and DF-type statistics (ADF, PP and DF-GLS) test differ-
ent null hypotheses, we successively increase d until they
concur. If they concur whend = 1, we classify the variable
asI (1), or difference stationary. For the anthropogenic vari-
ables concurrence occurs whend = 2. Since the DF-type tests
and the KPSS tests reject that these variables areI (1) but do
not reject that they areI (2), there is no dilemma here. Mat-
ters might have been different if according to the DF-type
tests these anthropogenic variables areI (1) but according to
KPSS they areI (2).

The required number of augmentations for ADF is moot.
The frequently used Schwert criterion uses a standard for-
mula based solely on the number of observations, which
is inefficient because it may waste degrees of freedom. As
mentioned, we prefer instead to augment the ADF test until
its residuals become serially independent according to a la-
grange multiplier (LM) test. In most cases 4 augmentations
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Table 1.Stationarity tests for forcings and temperature.

Data d Trend ADF DF-GLS Phillips- KPSS Estimate
period Perron (PP) ofd

rfCO2 1850–2007 0 No 2.147 1.249 10.589 3.60 1.61
0 Yes 0.716 −1.438 4.41 0.809
1 No −0.459 0.676 −3.253 2.66
2 No −5.583 −8.548 −20.856 0.0349

rfCH4 1850–2007 0 No −1.990 0.689 3.341 3.84 1.14
0 Yes −3.523 −3.064 −1.962 0.963
1 No −1.324 −0.971 −2.005 1.91
2 No −4.932 −1.701 −15.517 0.107

rfN2O 1850–2007 0 No 1.210 0.285 14.461 3.56 1.45
0 Yes −0.298 −2.338 5.013 0.897
1 No 0.394 −1.334 −6.398 3.17
2 No −6.745 −9.230 −40.369 0.0508

Temperature 1880–2007 0 No 0.135 0.371 −1.821 2.46 0.94
(NASA-GISS) 0 Yes −2.138 −1.481 −5.514 0.321

1 No −8.228 −11.285 −17.921 0.139

Temperature 1850–2007 0 No 0.227 0.540 −2.999 3.01 1.05
(BEST) 0 Yes −2.393 −4.238 −7.077 0.397

1 No −8.377 −0.713 −23.996 0.0624

Solar 1880–2003 0 No −1.258 1.094 −2.034 2.68 0.80
irradiance 0 Yes −4.129 −1.016 −4.162 0.185
(NASA-GISS) 1 No −9.489 −0.895 −6.613 0.0153

Reflective 1880–2003 0 No −0.796 −0.714 1.941 3.03 1.23
tropospheric 0 Yes −2.450 −2.121 −1.458 0.757
aerosols 1 No −1.691 −1.486 −1.718 0.991

2 No −4.724 −7.290 −10.932 0.168

Black 1880–2003 0 No 0.056 0.462 1.323 2.94 1.66
carbon 0 Yes −1.945 −2.030 −0.892 0.692

1 No −2.795 −2.440 −2.731 0.527
2 No −4.696 −7.272 −11.053 0.059

Stratospheric 1880–2003 0 No −4.743 −4.183 −5.330 0.212 0.10
aerosols

Stratospheric 1880–2003 0 No −2.862 −2.703 3.272 3.04 1.16
H2O 0 Yes −3.896 −4.908 −1.843 0.762

1 No −3.021 −8.446 −1.954 1.61
2 No −4.129 −8.872 −16.445 0.287

Ocean heat 1952–1996 0 No −1.200 −1.307 −0.824 1.3
content 0 Yes −4.232 −2.746 −2.462 0.107

1 No −5.621 −2.471 −4.834 0.13

Notes: in the ADF, PP and DF-GLS statistics test the null hypothesis is that thed-th difference of the variable in the first column isI (1).
In the KPSS statistic tests the null hypothesis is that thed-th difference isI (0). The final column reports the fractional estimate of d using
the method of Geweke and Porter-Hudak (1983).

are needed, however, in the cases of rfCO2, rfN2O and strato-
spheric H2O 8 augmentations are needed. In any case, the
classification is robust with respect to augmentations in the
range of 2–10. Therefore, we do not think that the num-
ber of augmentations affects our classifications. The KPSS
and Phillips–Perron statistics use the standard nonparametric

Newey-West criteria for calculating robust standard errors. In
practice we find that these statistics use about 4 autocorrela-
tions, which is similar to our LM procedure for determining
the number of augmentations for ADF.

For each variable we begin in step 1 by testing whether
it is stationary (d = 0, no deterministic trend). This is easily
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rejected for all the variables in the table below except for
stratospheric aerosols. Next, in step 2 we test whether the
variables are trend stationary (d = 0 with a deterministic time
trend). According to the KPSS statistic none of the variables
is trend stationary. However, in some cases (temperature, so-
lar irradiance) the Phillips–Perron statistic suggests trend sta-
tionary as does the ADF statistic for ocean heat.

In step 3 we test for difference stationary (d = 1, no de-
terministic trend). The concurrence criterion is achieved for
both measures of temperature (GISS and BEST), solar irra-
diance and ocean heat content. Therefore, we classify these
variables asI (1). Notice that none of these variables is
anthropogenic.

In step 4 we test whether these anthropogenic variables
areI (2). The test statistics unanimously concur thatd = 2 for
rfCO2, rfN2O, reflective tropospheric aerosols, black carbon
and stratospheric H2O. The same applies to rfCH4 except for
the DF-GLS statistic. Notice that this classification is implied
by DF – type tests as well as KPSS. For example, the ADF
test statistics reject the hypothesis thatd = 1 but do not reject
the hypothesis thatd = 2.

In summary, the time series properties of anthropogenic
forcings are fundamentally different to the time series prop-
erties of temperature and solar irradiance. Whereas the latter
areI (1) variables and are stationary in first differences, the
former areI (2) variables and are stationary in second differ-
ences. Moreover, this classification is robust and unanimous;
all of the anthropogenic forcings areI (2). A joint test of the
probability that all anthropogenic forcings areI (2) variables
would surely show even more powerfully that anthropogenic
forcings areI (2). This unanimity stems from the fact that
these forcings are driven by a common anthropogenic factor
as we demonstrate below.

We also check whether rfCO2 is I (1) subject to a struc-
tural break. A break in the stochastic trend of rfCO2 might
create the impression thatd = 2 when in factd = 1. We apply
the test suggested by Perron and Vogelsang (1992) for the
null in which rfCO2 is I (1) with a structural break at some
unknown date. The VP statistic (which is the minimal ADF
statistic allowing for a break) for the first difference of rfCO2
is −3.877. Despite the fact that Fig. 2 suggests that this break
occurred mid-century, the estimated break point is 1964, but
since the critical value of the VP statistic is−4.27, we can
safely reject the hypothesis that rfCO2 is I (1) with a break
in its stochastic trend.

3.2 An anthropogenic trend?

Normally, I (1) andI (2) variables cannot be cointegrated in
which case observed relationships between them are spuri-
ous. Since the radiative forcings of greenhouse gases, tro-
pospheric aerosols and black carbon areI (2) they cannot
be cointegrated with global temperature and solar irradi-
ance, which areI (1). An exception arises if theI (2) vari-
ables happen to be cointegrated between themselves and they

cointegrate into anI (1) variable. If thisI (1) variable is coin-
tegrated with otherI (1) variables, the relationship between
the I (2) andI (1) variables is not spurious. In this case the
variables are polynomially cointegrated8.

We therefore test the hypothesis that the anthropogenic
I (2) forcings are cointegrated, and if so, whether they coin-
tegrate into anI (1) variable, which we refer to as the “an-
thropogenic anomaly”. We carry out this test with and with-
out tropospheric aerosols and black carbon (Eqs. 9 and 10
respectively). The least squares estimate of the cointegrat-
ing vector for the three greenhouses gases (rfCO2, rfCH4 and
rfN20) using data from 1850–2007 is

rfCO2 = 10.972+ 0.046rfCH4 + 10.134rfN2O + g1 (9)

where g1 denotes the residual andR
2

of this regression
is 0.994. When tropospheric aerosols and black carbon are
included, the OLS estimate using data from 1880 to 2003 is

rfCO2 = 12.554+ 0.345rfCH4 + 9.137rfN2O

+1.029BC+ 0.441Reflaer+ g2 (10)

where BC denotes radiative forcing of black carbon con-
centration, Reflaer is the radiative forcing of all reflective

aerosols andg2 denotes the residual. TheR
2

of this regres-
sion is 0.996.

We use a variety of cointegration test statistics to esti-
mate the order of integration of the estimates ofg1 andg2 in
Eqs. (9) and (10). Since the ADF and PP statistics forg1 and
g2 exceed their critical values (i.e. they are less negative than
H as defined in Table 2),̂g1 andĝ2 are clearly nonstationary.
Matters are quite different in the case of the first differences
of these estimates. For1ĝ1 the ADF and PP statistics are
smaller than their critical value, in which caseĝ1 is I (1).
According to the PP statistic so iŝg2 I (1), while the ADF
statistic falls slightly short of its critical value atp = 0.05.

Whereas critical values are available for ADF and PP
tests for polynomial cointegration, there are no KPSS tests
for polynomial cointegration. Such critical values, how-
ever, must be smaller than the critical values calculated
by Shin (1994) forI (1) variables, just as Haldrup’s criti-
cal values are more negative than MacKinnon’s (1991) for
I (1) variables. Therefore, we may use Shin’s critical val-
ues to bound polynomial cointegration tests using the KPSS
methodology. For example, the KPSS statistic forĝ1 is 0.75.
Since this clearly exceeds Shin’s critical value (0.21)ĝ1 is
not I (0). The KPSS statistic for1ĝ1 is 0.13. Since this is
less than 0.21, it might beI (0). A similar pattern is found

8Enders (2010) refers to this phenomenon by “multicointegra-
tion”. Granger and Lee (1989, 1990) originally defined multicoin-
tegration if the difference between the integrals ofI (1) variables is
I (1). Subsequently, Engsted et al. (1997) interpreted multicointe-
gration in anI (2) context since integrals ofI (1) variables areI (2)
by definition. Although formally correct, polynomial and multiple
cointegration are conceptually different.
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Table 2.Cointegration tests for anthropogenic anomalies.

ĝ1 1ĝ1 ĝ2 1ĝ2

ADF −2.29 −4.25 −2.95 −3.83
PP −1.53 −12.78 −2.37 −10.57
H −3.85 −4.1
KPSS 0.72 0.13 0.16 0.08
Shin 0.21 0.11

Notes:H is the critical value of the polynomial cointegration
test statistic (p = 0.05) according to Haldrup (1994). “Shin” is
the critical value (p = 0.05) of the cointegration test from
Shin (1994).

for ĝ2 and1ĝ2. Had the KPSS statistics for1ĝ1 and1ĝ2 ex-
ceeded 0.21 we would have been able to reject the hypotheses
that these anthropogenic forcings are cointegrated.

In summary, both types of cointegration tests in Table 2
suggest that anthropogenic forcings, all of which areI (2)
variables “cointegrate down” to anI (1) variable which we
refer to as the “anthropogenic anomaly” (g). The existence
of this anomaly means that there is an “anthropogenic trend”,
which is the predicted value of rfCO2 from Eq. (9) in the case
of g1 and the predicted values of rfCO2 from Eq. (10) in the
case ofg2.

3.3 Polynomial cointegration test

We now test whether anthropogenic forcings are polynomi-
ally cointegrated with solar irradiance. In Table 3 results are
reported using the anthropogenic anomalies estimated in the
previous subsection. Model 1 is based on Eq. (9) and uses
g1 which is estimated from the three greenhouse gases, and
model 2 is also based on aerosols and black carbon. Because
of data constraints for temperature, aerosols and black carbon
the estimation period begins in 1880.

In model 1 there is a positive effect of solar irradiance on
temperature, but the effect of the anthropogenic anomaly is
negative. According to AGW this effect should have been
positive. In the case of model 1 the critical value of the poly-
nomial cointegration test isH =−4.56. The (4th order) ADF
statistic is−2.476 and the PP statistic is−4.78. According
to the ADF statistic the null hypothesis of polynomial coin-
tegration is easily rejected, but according to the PP statistic it
is not rejected. The KPSS statistic massively rejects the hy-
pothesis that the residuals from model areI (0) since its value
greatly exceeds its critical value forI (1) variables. Given the
methodological preference for ADF over PP (Sect. 2) and the
KPSS statistic, model 1 is not polynomially cointegrated and
AGW is rejected.

Similar results are obtained for model 2 except the coef-
ficient on the anthropogenic anomaly is positive instead of
negative. According to the ADF and KPSS statistics model 2
is clearly not polynomially cointegrated, but the PP statistic
fails to reject atp = 0.05.

Table 3.Polynomial cointegration tests.

Model 1 2

Intercept 13.80 13.79
Solar irradiance 1.763 1.806
Anthropogenic anomaly −0.0120 1.822
ADF −2.476 −2.709
PP −4.78 −4.96
H −4.56 −4.80
KPSS 0.561 0.55
Shin 0.121 0.080
R2 adjusted 0.447 0.468
Data period 1880–2007

Notes: temperature is regressed on solar irradiance and the
anthropogenic anomaly. Model 1 is estimated using the
anthropogenic anomaly (g1) from Eq. (9). Model 2 is estimated
usingg2 from Eq. (10). The first three rows report regression
coefficients. The ADF, PP and KPSS statistics refer to the
regression residuals. See Table 2 for notes onH and Shin.

3.4 Reconstructing invalid cointegration tests

As noted, a number of studies (Kaufmann and Stern, 2002;
Kaufmann et al., 2006b, 2010; Mills, 2009) recognise that
greenhouse gas forcings areI (2) variables, but their coin-
tegration tests treat theI (2) variables as if they wereI (1)
variables. To explore the implications of this oversight we
use the model specification used in these studies9 estimated
with data for 1880–2000:

T = −18.05 + 1.06rfCO2 + 0.66S − 1.89rfCH4 + 0.71rfN2O (11)

whereR
2

is 0.6829. According to Eq. (11) temperature varies
directly with solar irradiance and CO2 forcing, implying that
a doubling of atmospheric rfCO2 raises global temperature
by almost 4 degrees. The cointegration test statistics are
ADF4 =−4.76, PP =−7.73, KPSS = 0.11. Since the critical
values of ADF and PP are−4.18 (MacKinnon, 1991) and
the critical value for KPSS is 0.121 (Shin, 1994), it would
appear that Eq. (11) is cointegrated. But this result ignores
the fact that greenhouse gas forcings areI (2).

The correct cointegration test involves specifying anI (2)
variable as a regressand (Haldrup, 1994). Using rfCO2 for
such purposes we estimate

rfCO2 = 11.92 + 0.03T − 0.12S + 0.15rfCH4 + 9.36rfN2O (12)

where R
2

= 0.996. According to Eq. (12) temperature is
more sensitive to forcings than in Eq. (11), however, de-
spite the high goodness-of-fit, the regression relation is spu-
rious. The critical value of ADF for polynomial cointegration
is −4.56 (Haldrup, 1994) when their test values are−2.22.
The KPSS statistic is 0.277. Although there is no KPSS-type

9Since tropospheric aerosols and black carbon did not feature
in their model, we do not include these variables. However, this
omission does not affect the results.
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test statistic for polynomial cointegration, its critical value
must be smaller than 0.121, which is its critical value for
I (1) variables from Shin (1994). The ADF and KPSS statis-
tics strongly suggest that Eq. (12) is not polynomially cointe-
grated. Therefore, treating theI (2) variables, which are ex-
clusively anthropogenic, as if they wereI (1) variables, pre-
disposes the results into falsely accepting the anthropogenic
interpretation of global warming.

In summary, ignoring the fact that greenhouse gas forc-
ings areI (2) and treating them as if they wereI (1) variables
creates the false impression that global temperature is coin-
tegrated with solar irradiance and greenhouse gas forcings.
This spurious relation suggests (spuriously) that a doubling
of carbon forcing will raise temperature by about 4 degrees.
Once theI (2) status of anthropogenic forcings is taken into
consideration, there is no significant effect of anthropogenic
forcing on global temperature.

3.5 Water vapor and ocean heat content

It has been suggested by Stern (2006) that cointegration tests
should take into account the transfer of heat that occurs be-
tween the atmosphere and the oceans. The heating of earth
by the sun is absorbed mostly by the oceans, and part of this
energy is transformed into evaporated water (i.e. latent heat)
that heats the atmosphere and cools the ocean. The top ten
metres of the water column stores as much heat as the entire
atmosphere. There are two issues that are relevant to the sta-
tistical tests performed here. First, as discussed in Sect. 2, be-
cause water vapor and ocean heat content are entirely depen-
dent on temperature, they cannot affect cointegration tests
asymptotically. Therefore, omitting these variables does not
affect the tests that we have reported because their effect is
intermediated by other variables in the model.

Secondly, because water vapor is dependent onI (1) vari-
ables, it is anI (1) variable (see Table 2) as expected. Ta-
ble 4 reports a cointegration test between water vapor and
temperature. The critical value (p = 0.05) for the ADF, PP
and DF-GLS statistics is−3.426, which is satisfied by the
DF-GLS statistic for the regression residuals, but not by the
ADF and PP statistics. On the other hand, the KPSS statis-
tic (0.166) is clearly less than its critical value (0.314), sug-
gesting that the regression residuals areI (0). Therefore, the
KPSS statistic suggests that water vapor and temperature are
cointegrated, whereas the DF-type tests are ambiguous. Wa-
ter vapor isI (1) because global temperature isI (1), not the
other way around.

The results reported in Table 4 indicate that ocean heat and
temperature are not cointegrated. Only one of the cointegra-
tion tests (PP) does not reject the null hypothesis. However,
this result is obtained from only 45 yr of data, which may
be too short for estimating the long-run relationship between
ocean heat and surface temperature. Since water vapor and
ocean heat are notI (2) variables their omission from mod-
els 1 and 2 in Table 3 and Eq. (12) cannot affect our main

Table 4. Water vapor and ocean heat: cointegration tests with
temperature.

Model Water Ocean
vapor heat

Intercept 13.747 14.11
Temperature 1.763 0.018
ADF −2.805 −2.370
DF-GLS1 −3.587 −2.84
PP −1.530 −3.57
MacKinnon −3.426 −3.47
KPSS 0.166 0.44
Shin 0.314 0.314
R2 adjusted 0.658 0.260
Data periods 1880–2007 1952–1996

Notes: temperature is regressed (OLS) on water vapor and
on ocean heat content. The first two rows report the
regression coefficients. “MacKinnon” is the critical value
of the cointegration test from MacKinnon (1991) and
“Shin” is the critical value of the cointegration test
statistic in Shin (1994).

result that the anthropogenicI (2) variables are not polyno-
mially cointegrated with temperature and solar irradiance.

3.6 Nonlinear cointegration

Thus far our results reject a linear representation of AGW.
Suppose instead that AGW is nonlinear. Naturally, a test of
this hypothesis requires an explicit nonlinear specification of
AGW. Two types of nonlinearity might be involved. First, al-
though anthropogenic forcings areI (2), there might be some
nonlinear transformation of them that isI (1). An example of
such a nonlinear transformation of a linearI (2) series is eco-
nomic activity, which is typicallyI (2) but its logarithm is
I (1) (Banerjee et al., 1993, 30–32 pp.). Nonlinear cointegra-
tion testing would include nonlinear transformations of the
I (2) variables in the cointegrating vector. If these nonlinear
transformations turn out to be cointegrated with temperature
and solar irradiance, nonlinear AGW would be corroborated.
We have experimented with numerous nonlinear transforma-
tions10 of GHG forcings (n-th roots, reciprocals, logarithms
etc), but none of them was found to beI (1).

A second type of nonlinearity might be induced by inter-
actions between variables. However, these interactions would
have to beI (1) since temperature isI (1). It would therefore
be necessary to interact anthropogenic forcings with some
other variable such that their product isI (1). Normally, the
product of anI (1) variable and anI (2) variable is notI (1).

10Choi and Saikkonen (2010) limit their tests to cases in which
the covariates areI (1) and their nonlinear transformations areI (1).
The nonlinear transformations must beI (1), but there is no reason
why the covariates should beI (1). If x∼ I (0) nonlinear cointegra-
tion requires thatf (x)∼ I (1). If x∼ I (2), it requiresf (x)∼ I (1).
See Granger and Hallman (1991) on nonlinear transformations of
I (1) variables.
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We have been unable to find a nonlinear specification of
AGW even after extensive data-mining. Based on many ex-
periments, we conclude that anthropogenic forcings are not
nonlinearly cointegrated with temperature and solar irradi-
ance. Nor, of course, are they linearly cointegrated.

3.7 A model of short-run AGW

The first differences ofI (2) variables are necessarilyI (1)
variables. Although AGW is rejected by polynomial cointe-
gration tests, we investigate a modified version of AGW in
which the first differences of anthropogenic forcings are hy-
pothesized to be cointegrated with temperature and solar ir-
radiance. Although there is no physical theory for this modi-
fied theory of AGW, we report it out of curiosity and simply
because it turns out to be cointegrated. Indeed, it is the only
model for which we can find a statistically significant role for
anthropogenics.

In this test all the variables areI (1) in which case stan-
dard cointegration tests apply. In this modified AGW the null
hypothesis is that anthropogenic forcings have a temporary
rather than a permanent effect on global temperature. Using
data for 1880 to 2007, we find that the statistically signif-
icant variables include solar irradiance and the first differ-
ences (denoted by1) in the forcings of three greenhouse
gases:

T = 13.821+ 1.508S + 10.7651rfCO2

−46.2561rfCH4 + 36.1991rfN2O (13)

whereR
2

is 0.6539. According to Eq. (13) temperature varies
with solar irradiance and it varies directly with changes
in rfCO2 and rfN2O and inversely with the change in
rfCH4. This difference between methane and other green-
house gases has been noted by Liu and Rodriguez (2005)
and others. The ADF and PP statistics for the residuals of
Eq. (13) are−5.17 and−7.10, respectively. Since accord-
ing to MacKinnon (1991) the critical value for cointegra-
tion is −4.85 (p = 0.05) the variables in Eq. (13) are coin-
tegrated. Note that since the variables in Eq. (13) areI (1) we
do not use critical values for polynomial cointegration. The
KPSS statistic for the residuals of Eq. (13) is 0.303, which
exceeds its critical value (0.121) in Shin (1994). Therefore,
even Eq. (13) is not unambiguously cointegrated.

3.8 Error correction

Cointegration implies error correction, which is the dynamic
process through which temperature converges to its long-
term equilibrium level (Engle and Granger, 1987). We re-
port the error correction model (ECM) for global temper-
ature since this is the main variable of interest here. This
model uses the residuals (u) from Eq. (13), which mea-
sure the deviation of temperature from its long-term equi-
librium level. Its dynamic specification is estimated using
the general-to-specific methodology, which nests-down to a

restricted dynamic specification (see e.g. Hendry, 1995 for
details of this methodology) which in the present case yields:

1Tt = 0.005− 0.141Tt−2− 0.201Tt−3+ 0.7112
2St

(0.05) (1.71) (2.51) (2.09)

+4.7213 rfCO2t + 29.7412 rfN2Ot−2− 0.50ut−1
(4.08) (2.41) (6.38)

(14)

R2adj = 0.379se= 0.12DW = 1.98LM = 4.36.

Since the variables in Eq. (14) are stationary and their coef-
ficient estimates have standard distributions, we report ab-
solute t–statistics in parentheses. Since the critical value
for the t-statistic (p = 0.05) is 1.98, all the parameter esti-
mates in Eq. (14) are statistically significant with the pos-
sible exception of the first. In Eq. (14) the change in tem-
perature varies directly with the 3rd difference in rfCO2 and
the twice lagged 2nd difference in rfN2O. It also varies di-
rectly with the 2nd (“seasonal”) difference of solar irradi-
ance (12

2St =1St −1St−2). It does not depend at all on
methane. There is evidence of 2nd and 3rd order negative
autoregression in the change in temperature. Finally, the er-
ror correction coefficient is very significant and is equal to
a half. This means that when the temperature deviates from
its steady state equilibrium as determined in Eq. (14) about
half of the deviation is corrected within a year. These es-
timated speeds of adjustment are similar to those obtained
from time series models (Liu and Rodriguez, 2005; Kauf-
mann et al., 2006a). The Durbin Watson (DW) and Lagrange
Multiplier (LM) statistics for serial correlation in the residu-
als indicate that the dynamic specification of Eq. (14) is ap-
propriate. Thet-statistic on the error correction term is large
and negative (−6.38). This constitutes further evidence that
Eq. (14) is cointegrated. Finally, the standard error of esti-
mate (se) means that the standard deviation of the predicted
value of temperature is 0.12◦C which is large relative to the
change in temperature that occurred during 1880–2007.

3.9 Robustness checks

We carry out a variety of robustness checks regarding the re-
jection of AGW by polynomial cointegration tests reported
in Table 3, and the non-rejection of modified AGW (Eq. 13).
These checks are additional to those that we have already re-
ported, such as nonlinear cointegration tests. The robustness
checks fall into three distinct groups. First, we check for the
presence of finite sample bias. Second, we check whether our
results are robust with respect to different estimation meth-
ods. Finally, we check whether they are robust with respect
to different data measurements.

We use the 3-stage procedure11 suggested by Engle and
Yoo (1991) to test for finite sample bias in the estimates of

11The residuals of Eq. (13) are regressed on the covariates in
Eq. (13) multiplied by the error correction coefficient from Eq. (14),
which is−0.5. If these residuals areI (0) R2 should be zero since
the covariates areI (1). The adjustedR2 is 0.0033 and the largest
t-statistic is 1.4.
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equation (13). Since thep-value of theF -statistic for the
3rd stage (for which Eq. 13 is the 1st stage and Eq. 14 is
the 2nd stage) is 0.36, we may reject the hypothesis of finite
sample bias in Eq. (13). We can only apply this test to cointe-
grated results. We therefore cannot apply it to models 1 and 2
in Table 3 since they are not polynomially cointegrated. Nev-
ertheless, the fact that finite sample bias cannot be detected in
Eq. (13) suggests that finite sample bias does not explain why
AGW is not polynomially cointegrated. If there is no finite
sample bias in Eq. (13) where the parameter estimates are
T 3/2-consistent, there is all the more reason to believe that
finite sample bias is not present in our polynomial cointegra-
tion tests where the estimates areT 5/2-consistent. Therefore,
our failure to corroborate AGW according to which tempera-
ture and solar irradiance are polynomially cointegrated with
anthropogenic forcings is not attributable to lack of data and
associated finite sample bias.

Next, we use DOLS (Stock and Watson, 1993) rather than
OLS to estimate models 1 and 2 in Table 3 and Eq. (13).
Since DOLS requires the specification of leads and lags in
the first differences of the covariates, we use two leads and
lags. The DOLS estimates of the coefficients are 2.1 (solar
irradiance) and 0.75 (g) for model 1 and 2.04 and 2.09 for
model 2. These estimates are larger than their OLS coun-
terparts in Table 2. The ADF polynomial cointegration test
statistics are−2.96 and−3.11, respectively, which although
smaller than their counterparts in Table 3 still exceed their
critical values of−4.56 and−4.8. Therefore, the DOLS es-
timates confirm the previous conclusion that AGW is a spu-
rious regression phenomenon.

The ADF statistic for the DOLS estimate of Eq. (13)
is −4.83 which is almost identical to its critical value (−4.85
atp = 0.05). Since the p-value of the DOLS cointegration test
exceeds its OLS counterpart we are less sure that Eq. (13) is
cointegrated. However, since thet-statistic of the error cor-
rection coefficient in Eq. (14) (−6.48) is much smaller than
its critical value (Ericsson and MacKinnon, 2002) the ECM
cointegration test serves as an independent robustness check.
Since the OLS and EC cointegration tests corroborate mod-
ified AGW and the DOLS test is borderline we are inclined
to conclude that there is a temporary effect of anthropogenic
forcings on temperature.

We have estimated Eq. (13) using revised and extended (to
2006) data for solar irradiance (Lean and Rind, 2009). Prior
to 1980 these data were based on various proxy measures.
Data since 1980 are based on instrumental measurements
taken from satellites. Whereas the data in NASA GISS used
15 yr of satellite data, the revised data use 26 yr of satellite
data. We note that the revised data behave quite differently
from the original in that the ratio between the revised data
and the original decreases during 1850 to 1950 but increases
subsequently. Also the fractional estimate of d for the revised
data is only 0.16 instead of 0.8 in Table 1, suggesting that so-
lar irradiance is stationary. We have focused on the original
data since these were used by others who claimed that global

temperature is cointegrated with solar irradiance and green-
house gas forcings.

When we use these revised data models 1 and 2 in Table 3
are still polynomially uncointegrated. However, Eq. (13)
ceases to be cointegrated. This happens because, as noted,
the revised data are quite different to the original. Therefore
these revised data reject both AGW and its modified version.
Finally, we re-estimated all the models using temperature as
measured by the Berkeley Earth Surface Temperature Study
(BEST) instead of NASA-GISS. Data for BEST are available
from 1850 rather than 1880, which adds 30 yr more data for
our cointegration tests. However, BEST unlike NASA-GISS
refers to land temperature only. BEST, like temperature in
NASA-GISS, is difference stationary. Estimates of models 1
and 2 and Eq. (13) using BEST are almost identical to their
NASA-GISS counterparts. AGW continues to be polynomi-
ally uncointegrated, while modified AGW continues to be
cointegrated.

Our results are therefore robust with respect to a variety
of misspecification tests and alternative estimators and data.
Temperature is not polynomially cointegrated with solar irra-
diance and anthropogenic forcing, but it appears to be coin-
tegrated with solar irradiance and changes in anthropogenic
forcings.

4 Discussion

We have shown that anthropogenic forcings do not polyno-
mially cointegrate with global temperature and solar irradi-
ance. Therefore, data for 1880–2007 do not support the an-
thropogenic interpretation of global warming during this pe-
riod. This key result is shown graphically in Fig. 3 where
the vertical axis measures the component of global temper-
ature that is unexplained by solar irradiance according to
our estimates. In panel a the horizontal axis measures the
anomaly in the anthropogenic trend when the latter is derived
from forcings of carbon dioxide, methane and nitrous oxide.
In panel b the horizontal axis measures this anthropogenic
anomaly when apart from these greenhouse gas forcings, it
includes tropospheric aerosols and black carbon. Panels a
and b both show that there is no relationship between tem-
perature and the anthropogenic anomaly, once the warming
effect of solar irradiance is taken into consideration.

However, we find that greenhouse gas forcings might have
a temporary effect on global temperature. This result is il-
lustrated in panel c of Fig. 3 in which the horizontal axis
measures the change in the estimated anthropogenic trend.
Panel c clearly shows that there is a positive relationship
between temperature and the change in the anthropogenic
anomaly once the warming effect of solar irradiance is taken
into consideration.

Currently, most of the evidence supporting AGW the-
ory is obtained by calibration methods and the simulation
of GCMs. Calibration shows, e.g. Crowley (2000), that to
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Fig. 3. Statistical association between (scatter plot of) anthro-
pogenic anomaly (abscissa), and net temperature effect (i.e. tem-
perature minus the estimated solar irradiance effect; ordinates). Pan-
els (a)–(c) display the results of the models presented in models 1
and 2 in Table 3 and Eq. (13), respectively. The anthropogenic trend
anomaly sums the weighted radiative forcings of the greenhouse
gases (CO2, CH4 and N2O). The calculation of the net temperature
effect (as defined above) change is calculated by subtracting from
the observed temperature in a specific year the product of the so-
lar irradiance in that year times the coefficient obtained from the
regression of the particular model equation: 1.763 in the case of
model 1(a); 1.806 in the case of model 2(b); and 1.508 in the case
of Eq. (13)(c).

explain the increase in temperature in the 20th century, and
especially since 1970, it is necessary to specify a sufficiently
strong anthropogenic effect. However, calibrators do not re-
port tests for the statistical significance of this effect, nor do

they check whether the effect is spurious12. The implication
of our results is that the permanent effect is not statistically
significant. Nevertheless, there seems to be a temporary an-
thropogenic effect. If the effect is temporary rather than per-
manent, a doubling, say, of carbon emissions would have
no long-run effect on Earth’s temperature, but it would in-
crease it temporarily for some decades. Indeed, the increase
in temperature during 1975–1995 and its subsequent stabil-
ity are in our view related in this way to the acceleration in
carbon emissions during the second half of the 20th century
(Fig. 2). The policy implications of this result are major since
an effect which is temporary is less serious than one that is
permanent.

The fact that since the mid 19th century Earth’s tempera-
ture is unrelated to anthropogenic forcings does not contra-
vene the laws of thermodynamics, greenhouse theory, or any
other physical theory. Given the complexity of Earth’s cli-
mate, and our incomplete understanding of it, it is difficult to
attribute to carbon emissions and other anthropogenic phe-
nomena the main cause for global warming in the 20th cen-
tury. This is not an argument about physics, but an argument
about data interpretation. Do climate developments during
the relatively recent past justify the interpretation that global
warming was induced by anthropogenics during this pe-
riod? Had Earth’s temperature not increased in the 20th cen-
tury despite the increase in anthropogenic forcings (as was
the case during the second half of the 19th century), this
would not have constituted evidence against greenhouse the-
ory. However, our results challenge the data interpretation
that since 1880 global warming was caused by anthropogenic
phenomena.

Nor does the fact that during this period anthropogenic
forcings are I (2), i.e. stationary in second differences,
whereas Earth’s temperature and solar irradiance areI (1),
i.e. stationary in first differences, contravene any physical
theory. For physical reasons it might be expected that over
the millennia these variables should share the same order of
integration; they should all beI (1) or all I (2), otherwise
there would be persistent energy imbalance. However, dur-
ing the last 150 yr there is no physical reason why these vari-
ables should share the same order of integration. However,
the fact that they do not share the same order of integration
over this period means that scientists who make strong in-
terpretations about the anthropogenic causes of recent global
warming should be cautious. Our polynomial cointegration
tests challenge their interpretation of the data.

Finally, all statistical tests are probabilistic and depend
on the specification of the model. Type 1 error refers to the
probability of rejecting a hypothesis when it is true (false

12GCMs embody hundreds if not thousands of unknown param-
eters to be calibrated. In practice this leaves few if any degrees
of freedom to carry out meaningful statistical tests. This explains
why observationally similar GCMs often generate quite different
forecasts.
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Data Appendix.

Variable name Unit Data source Link

Temperature ◦C anomaly NASA-GISS surface http://data.giss.nasa.gov/gistemp/
temperature analysis

Temperature (Mann, ◦C anomaly Mann et al. (2008)
2008 reconstruction)

Temperature ◦C anomaly Berkeley earth http://berkeleyearth.org/analysis.php
(Berkeley earth surface temperature
surface study
temperature)

Solar irradiance W m−2 Lean et al. (1995)

Solar irradiance – W m−2 Lean and Rind
updated (2009)

CO2 concentrations ppm NASA-GISS http://data.giss.nasa.gov

N2O concentrations ppm NASA-GISS http://data.giss.nasa.gov

CH4 concentrations ppm NASA-GISS http://data.giss.nasa.gov

Ocean heat content 1022 joules Levitus et al. (2005)

Black carbon W m−2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
(forcing)

Reflective W m2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
tropospheric
aerosols (forcing)

Stratospheric W m−2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
aerosols (forcing)

Water vapour W m2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
(forcing)

Notes: concentrations of CO2, N2O and CH4 are converted into radiative forcings using the formula provided by Myhre et al. (1998).

positive) and type 2 error refers to the probability of not
rejecting a hypothesis when it is false (false negative). In our
case the type 1 error is very small because anthropogenic
forcing isI (1) with very low probability, and temperature is
polynomially cointegrated with very low probability. Also
we have experimented with a variety of model specifications
and estimation methodologies. This means, however, that as
with all hypotheses, our rejection of AGW is not absolute;
it might be a false positive, and we cannot rule out the
possibility that recent global warming has an anthropogenic
footprint. However, this possibility is very small, and is not
statistically significant at conventional levels.

Edited by: N. de Noblet
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