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Abstract. In a prior study (Garrett, 2011), I introduced a
simple economic growth model designed to be consistent
with general thermodynamic laws. Unlike traditional eco-
nomic models, civilization is viewed only as a well-mixed
global whole with no distinction made between individual
nations, economic sectors, labor, or capital investments. At
the model core is a hypothesis that the global economy’s cur-
rent rate of primary energy consumption is tied through a
constant to a very general representation of its historically ac-
cumulated wealth. Observations support this hypothesis, and
indicate that the constant’s value isλ = 9.7± 0.3 milliwatts
per 1990 US dollar. It is this link that allows for treatment
of seemingly complex economic systems as simple physi-
cal systems. Here, this growth model is coupled to a linear
formulation for the evolution of globally well-mixed atmo-
spheric CO2 concentrations. While very simple, the coupled
model provides faithful multi-decadal hindcasts of trajecto-
ries in gross world product (GWP) and CO2. Extending the
model to the future, the model suggests that the well-known
IPCC SRES scenarios substantially underestimate how much
CO2 levels will rise for a given level of future economic pros-
perity. For one, global CO2 emission rates cannot be decou-
pled from wealth through efficiency gains. For another, like
a long-term natural disaster, future greenhouse warming can
be expected to act as an inflationary drag on the real growth
of global wealth. For atmospheric CO2 concentrations to re-
main below a “dangerous” level of 450 ppmv (Hansen et al.,
2007), model forecasts suggest that there will have to be
some combination of an unrealistically rapid rate of energy
decarbonization and nearly immediate reductions in global
civilization wealth. Effectively, it appears that civilization

may be in a double-bind. If civilization does not collapse
quickly this century, then CO2 levels will likely end up ex-
ceeding 1000 ppmv; but, if CO2 levels rise by this much,
then the risk is that civilization will gradually tend towards
collapse.

1 Introduction

Despite decades of public awareness of the potential for fos-
sil fuel consumption to lead to dangerous climate change,
anthropogenic emissions of CO2 have accelerated (Canadell
et al., 2007; Raupach et al., 2007). The implications of civ-
ilization continuing on this path are environmental changes
that are both irreversible and profound, including amplified
hydrological extremes, storm intensification, sea level rise,
and extreme mammalian heat stress (Hansen et al., 2007;
Allan and Soden, 2008; Solomon et al., 2009; Vermeer and
Rahmstorf, 2009; Sherwood and Huber, 2010).

The economic costs associated with addressing and cop-
ing with climate warming are normally quantified by cou-
pling a system of economic equations to a medium complex-
ity climate model. Normally, these Integrated Assessment
Models (IAMs) make regionally-based assessments of the
economics of production, investment, consumption, welfare,
discount rates, population and rates of technological change.
These economic functions are coupled to functions for at-
mospheric temperature and climate damage. From within
a parameter space that might be of order 100 variables, the
model outcome is a long-term optimized trajectory for long-
term societal welfare to which policy measures (for example
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Fig. 1. Schematic for the thermodynamic evolution of an open system, and its hypothesized economic rep-

resentation. Energy reservoirs, civilization, and its surroundings lie along distinct constant potential surfaces.

The number of material units n̆ defining an interface between civilization and energy reservoirs determines the

speed of downhill energetic flow at rate a, in proportion to a fixed specific potential difference ∆µ and rate

coefficient α. The interface itself grows or shrinks at rate w due to a net flux convergence into civilization. In a

positive feedback, interface growth at rate dn̆/dt expands energetic flows a by extending civilization’s access to

previously inaccessible energy reservoirs at rate da/dt. Fiscally, wealth C is proportional to both the interface

size n̆ and the rate of primary energy consumption a. The GWP P represents the net expansion of wealth at

rate dC/dt due to interface growth. C and a are linked through a constant λ. See the text and Garrett (2011)

for details.
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Fig. 1. Schematic for the thermodynamic evolution of an open system, and its hypothesized economic representation. Energy reservoirs,
civilization, and its surroundings lie along distinct constant potential surfaces. The number of material unitsn̆ defining an interface between
civilization and energy reservoirs determines the speed of downhill energetic flow at ratea, in proportion to a fixed specific potential
difference1µ and rate coefficientα. The interface itself grows or shrinks at ratew due to a net flux convergence into civilization. In
a positive feedback, interface growth at ratedn̆/dt expands energetic flowsa by extending civilization’s access to previously inaccessible
energy reservoirs at rateda/dt. Fiscally, wealthC is proportional to both the interface sizen̆ and the rate of primary energy consumptiona.
The GWPP represents the net expansion of wealth at ratedC/dtdue to interface growth.C anda are linked through a constantλ. See the
text andGarrett(2011) for details.

the Copenhagen Accord) can be compared (Nordhaus and
Boyer, 2000; Keller et al., 2004; Nordhaus, 2010). Uncer-
tainty in the optimal path, when addressed, is modeled using
Monte Carlo simulations within a portion of the total param-
eter space (Mastrandrea and Schneider, 2004).

Modern IAMs are normally based on mainstream neo-
classical economic growth models that, unlike climate mod-
els, do not explicitly represent flows as a material flux down
pressure gradients. Economic flows are allowed to become
progressively decoupled from energy consumption and CO2
emissions through gains in energy efficiency. Several of the
widely used IPCC SRES scenarios even go so far as to allow
economic growth to continue while CO2 emissions stabilize
or decline (Raupach et al., 2007).

This “have our cake and eat it too” viewpoint has been dis-
puted by many ecological economists. The argument against
decoupling is that consumption of energy is thermodynam-
ically required for any system to evolve, and there is no
physical reason that the human system should be treated as
an exception (Lotka, 1922; Georgescu-Roegen, 1993; Ayres
et al., 2003). Some have even suggested that policies aimed
at improving energy efficiency might backfire through what
is known as “Jevons’ Paradox”: energy is useful, and for
a given level of resource availability, efficiency gains make
it cheaper and more desirable, ultimately leading to greater
rates of energy consumption and CO2 emissions (Saunders,
2000; Alcott, 2005; Owen, 2010; Alcott, 2010).

This article continues in a similar conceptual vein, but it
differs by treating the human system in a more strictly phys-
ical fashion. Here, no internal resolution is made of polit-
ical divisions or economic sectors. Rather, civilization is
treated only as a whole since internal economic trade and
atmospheric mixing of CO2 are very rapid compared to the
multi-decadal evolution of civilization. Further, no explicit
account is made of people or their policies. Civilization is

part of the physical universe and it is modeled as any other
physical system. Long-term growth in global consumption
and emission rates are considered only as a thermodynamic
response to civilization’s expansion into newly available en-
ergy resources.

Thus, unlike IAMs, this article does not evaluate what
long-term policy actions will enable us to limit CO2 emis-
sions while maximizing global economic wealth. Rather, the
aim is to explore the range of future trajectories that is ac-
tually physically possible: political will can only go as far
as physical laws allow. The argument that will be presented
is that, unfortunately, wealth cannot be decoupled from re-
source consumption. In fact, at least at the global scales that
are relevant to CO2 emissions, it appears that “Jevons’ Para-
dox” does indeed apply: efficiency gains will backfire. For
this reason, it is likely that all SRES scenarios considerably
overestimate the extent of economic health that is possible
for a given future atmospheric concentration of CO2. Either
global warming acts as an inflationary drag on the production
of wealth; or, economic growth is sustained and atmospheric
CO2 concentrations accelerate their growth.

2 A physically consistent economic framework

An earlier article introduced a simple macroeconomic
growth model that treats civilization in a manner consistent
with physical conservation laws (Garrett, 2011). As illus-
trated in Fig.1, all material within civilization is treated as
being in local thermodynamic equilibrium with the same spe-
cific potential energy per unit matter; effectively, it is treated
as a surface defined by constant temperature and pressure,
constant density, or constant specific entropy. Accordingly,
no distinction is made between the internal components of
civilization. Unlike traditional economic models, no explicit
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account is made for labor, capital, households, firms, gov-
ernments or banks, nor the flows to and from these compo-
nents. Rather, civilization is considered only as a whole, or at
a sufficiently low resolution that the only resolved distinction
is between civilization and known primary energy reservoirs
(e.g. coal, oil, uranium, etc.).

Flows to civilization can be viewed as a special case within
the more general thermodynamic model shown in Fig.1, a
perspective that bears some similarities with the thermody-
namic model used byAnnila and Salthe(2009) to represent
economic flows. Energy reservoirs lie along a higher poten-
tial surface than the system of interest. The interface that
separates these two surfaces is defined by a fixed step in spe-
cific potential energy1µ (units potential energy per material
unit) and a number of material units defining the length of
the interfacĕn. The total potential difference that is available
to drive downward flows is the product of these two quanti-
ties, i.e.1G = n̆1µ. The flow redistributes the overall bal-
ance of potential energy towards the lower potential surface.
Total material is conserved as required by the First Law of
Thermodynamics, and the flow is downhill as required by
the Second Law of Thermodynamics. The flow represents a
“heating” of the lower potential system. The heating sustains
this open system against a nearly equal dissipative flow due
to the loss of energy to the system’s surroundings.

For civilization, the heating is equivalent to the ratea

(units energy per time) at which civilization consumes the
potential energy in primary energy resources. The flow rate
of energy is proportional to the material length of the inter-
facen̆ through

a = α 1G = α n̆1µ (1)

where,α is a constant rate coefficient with units inverse time
(effectively a diffusivity). This consumption of potential en-
ergy is more precisely defined as a material flux. For civi-
lization, coal and oil are examples of the agents that carry
the potential energy we consume. However, civilization is
not made of coal and oil, but rather of raw materials such as
iron and copper. Potential energy consumption enables these
raw materials to be carried downward along with the ener-
getic flow to add to civilization’s material bulk and sustain it
against decay.

If civilization’s economic activities are part of the physical
universe, then perhaps there might be a fiscal representation
for the physical flows that sustain it. A hypothesis can be
proposed that the size of civilization is expressible thermo-
dynamically by the potential difference1G driving flows,
or equivalently the heating of civilization at ratea =α1G.
Since heating sustains all of civilization’s activities against
its ultimate dissipative loss to its surroundings, the heating
rate might conceivably be what civilization intrinsically val-
ues, and therefore it might be related to a very general ex-
pression of civilization’s real, or inflation-adjusted economic
wealth through

a ≡ λC (2)

where the rate of consumption of the potential energy in
primary energy resourcesa (units energy per time) is re-
lated through a constant parameterλ to a fiscal representa-
tion of global economic wealthC (units inflation-adjusted
currency). If there is no energy consumption, then civiliza-
tion is worthless because the activities that sustain civiliza-
tion’s value cannot be maintained against civilization’s en-
ergy loss through decay. Effectively civilization becomes in-
distinguishable from its surroundings because the interfacen̆

and the gradient1G shrink to zero. We eat to sustain our-
selves against radiative heat loss. If we do not eat, eventually
we die.

Here, wealthC is defined as the historical accumulation
of gross world economic real productionP (units inflation-
adjusted currency per time). A comparison of this defini-
tion with more traditional approaches is presented in Sect. 4.
Here, real productionP is an instantaneous quantity that is
related to the familiar gross world product (GWP) through

GWP = P1t (3)

where, for the sake of economic statistics,1t is normally
equal to one year. Total economic wealth is distinct from pro-
duction in that it is not a differential but an integral quantity
(units inflation-adjusted currency). As wealth is defined here,
it is represented by the historical accumulation of production

C ≡

∫ t

0
P

(
t ′
)

dt′ '

∑
i

GWP(i) (4)

where i is an index covering the full historical record for
GWP. Equivalently, economic production is a consequence
of a convergence of the material and energetic flows associ-
ated with wealth

dC

dt
≡ P (5)

or, expressed thermodynamically, from Eqs. (1) and (2)

P =
1

λ

da

dt
= 1µ

α

λ

dn̆

dt
. (6)

Effectively, economic productionP is a fiscal representation
of the growth rate of energy consumptionda/dt through an
expansion of civilization’s material interfacĕn into the pri-
mary energy reservoirs that it consumes. Combining Eqs. (4)
and (6), global wealth arises from an accumulation of a net
material convergence over time:

C ≡
1

λ

∫ t

0

da

dt
dt′ = 1µ

α

λ

∫ t

0

dn̆

dt
dt′. (7)

Equations (1) and (2) imply a direct proportionality be-
tween wealthC, rates of primary energy consumptiona, and
the size of the interface driving flows1G = n̆1µ. In this
case, there is a rate of returnη that applies equally to each:

η ≡
d ln 1G

dt
=

d ln n̆

dt
=

d ln a

dt
=

d ln C

dt
. (8)
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Table 1. Measured values for the global rate of energy consumptiona (TW), global wealthC (trillion 1990 US $), CO2 emissions ratesE
(ppmv atmospheric equivalent yr−1), the hypothesized constant parameterλ (mW per 1990 US $) andλc (ppmv yr−1 per 10151990 US $)
wherec =E/a.

1970 1975 1980 1985 1990 1995 2000 2005 2008

a (TW) 7.2 8.4 9.6 10.3 11.7 12.2 13.2 15.3 16.4
C =

∫ t
0 P(t ′)dt ′ 821 884 960 1048 1151 1266 1398 1536 1656

λ =a/C 8.8 9.4 10.0 9.8 10.2 9.6 9.4 9.9 9.9
E 1.91 2.17 2.50 2.56 2.88 2.99 3.16 3.74 4.00
λc =E/C 2.3 2.4 2.6 2.4 2.5 2.4 2.3 2.4 2.4

Positive values ofη allow for exponential growth associ-
ated with interface expansion. Civilization wealth and en-
ergy consumption are in exponential decay if the interfacen̆

shrinks.
Thus, from Eqs. (5) and (8), the economic production

function for this framework is

P ≡
dC

dt
= ηC. (9)

The rate of returnη (units inverse time) is a time varying
quantity that relates the past accumulation of wealthC to the
current production of new wealthP . Finally, by taking the
time derivative of Eq. (9), the GWP growth rate is given by

d ln P

dt
= η +

d ln η

dt
. (10)

Thus, what is normally termed as “economic growth”
(i.e. d lnP/dt) is related to the sum of the growth rate of en-
ergy consumptionη and theaccelerationof growth in energy
consumptiond lnη/dt. The economic growth rate stalls if this
acceleration stagnates.

3 Model validation

The above discussion rests on an assumed constancy of the
parameterλ, as it is defined through Eqs. (2) and (4) by

λ ≡
a(t)∫ t

0 P (t ′) dt′
'

a(t)∑
i GWP(i)

. (11)

To evaluate the validity of a hypothetical constancy ofλ in
Eq. (11), I employed statistics for world GWP spanning more
than 2000 years (Maddison, 2003; United Nations, 2010) to
calculate wealthC from Eq. (4). Values ofC were compared
to nearly four decades of statistics for energy consumption
ratesa (AER, 2009).

Details are described in Appendix C ofGarrett(2011). As
illustrated in Table1, the comparison supports the hypoth-
esis that the value ofλ, as defined by Eq. (11), is indeed
a constant that is independent of time: energy consumption
ratesa and wealthC =

∫ t

0 Pdt′ both approximately doubled
in tandem between 1970 and 2008. On a millennial scale

this time interval is short, but it covers a tripling of GWP and
more than half of total civilization growth. The full yearly
time series indicates that, during this period,λ maintained a
mean value, with associated 95 % confidence uncertainty in
the mean, of 9.7± 0.3 milliwatts per 1990 US dollar (Garrett,
2011).

A theoretically equivalent approach to calculatingλ is to
take the respective derivatives ofa andC in order to compare
the inter-annual change in energy consumption ratesda/dt

to the real GWPP (Eq.6). Derivatives of measured quanti-
ties are always more noisy than their integrals. For example,
the magnitude ofd lna/dt is only about a couple of percent
per year, wherea itself is subject to measurement uncertain-
ties that, while unpublished, are plausibly of a similar magni-
tude. Nonetheless, the calculated mean value ofP /(da/dt) for
the 1970 to 2008 period is 11.6± 4.1 milliwatts per 1990 US
dollar, which is statistically consistent with the derived value
for λ ≡ a/C of 9.7± 0.3 milliwatts per 1990 US dollar.

This combination of theoretical and observational support
for there being a fixed relationship betweenC anda is the
key result supporting this study. It serves as the basis for
assuming that civilization is financially well-mixed and that
wealth is derived most fundamentally from a capacity to en-
able a flow of potential energy from primary energy reserves.
If it is generally correct, it enables an enormous simplifica-
tion of what is required to accurately model the global econ-
omy and its waste products. At least at a global scale, a
sophisticated IAM approach that explicitly considers people
and their lifestyles is not necessary in order to forecast future
rates of energy consumption. People do not need to be ex-
plicitly resolved in order to calculate global scale consump-
tive flows.

As a note, the constancy ofλ should not be expected to
hold at national scales. One country could easily be relatively
wealthy compared to its current rate of energy consumption,
provided that other countries are relatively poor. The value
of λ is constant only as a global quantity, whereC anda sub-
sumes all countries that are connected through international
trade.
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4 Comparison with traditional economic growth
models

The model presented here is unlike traditional models in sev-
eral regards, but it also has key similarities (see also Ap-
pendix B in Garrett, 2011). WealthC is analogous to the
term “capital” used in traditional economic growth frame-
works in the sense that it has units of currency, rather than
currency per unit time. However, it is much more general.
As shown in Fig.1, civilization is defined as a whole, and no
distinction is made between the human and non-human el-
ements of the global economic system. Economic elements
are not independent. Rather, all economic elements in civ-
ilization form a generalized capital that works in concert to
consume primary energy reserves and enable the “downhill”
flows of material in a field of potential energy.

Effectively, treating civilization as a whole means that it
is assumed to be internally at local thermodynamic equi-
librium, homogeneous, or “well-mixed”. This does not
mean that all economic elements are equal in value (they
are not), only that the speed of financial interactions between
all civilization elements is sufficiently rapid compared to the
timescales of global economic growth that internal gradients
can be ignored.

A consequence of treating civilization as a whole is that
human labor is part of a more general expression of capital
C. Traditional economic models separate “physical” capi-
tal from labor as distinct motive forces of economic produc-
tion (Solow, 1956), sometimes including supplies of energy
and raw materials in an appeal to thermodynamic constraints
(Saunders, 2000; Warr and Ayres, 2006). Labor, capital and
energy inputs are all set to exponents that are tuned to pro-
vide agreement with observed sectoral or national production
statistics. Capital grows only due to “investments” that are
separated from household and government “consumption”.
Household consumption never adds to capital. For one, peo-
ple are not normally considered to be part of capital. For
another, value that is consumed is presumed to be gone for-
ever, so consumption must be subtracted from production to
obtain the true capital investment.

Here, however, humans are subsumed into capital so that
the production function, given byP =ηC (Eq. 9), is deter-
mined only by the general expression of capital used here and
a variable rate of returnη that might be analogous to the “to-
tal factor productivity” employed bySolow (1956). Conse-
quently, human consumption cannot be selectively subtracted
from the production of new capital because humans are part
of the whole. The component of economic production that is
traditionally termed consumption is in fact an investment in
sustaining and growing humanity.

That said, physically it makes most sense to refer to con-
sumption as something that is much more extensive than
what is directly tallied in economic accounts. In Fig.1,
consumption is proportional to the global scale flow of pri-
mary energy resources as it passesthroughcivilization. This

consumptive flow of matter and potential energy is downhill
from high to low potential at right angles to the constant po-
tential surface along which civilization lies. Economic pro-
duction is proportional to the expansion of this potential sur-
face. Thus, consumption and production cannot be differ-
enced because the two quantities are mathematically orthog-
onal. Consumption is not a component of production, but
rather production is theconvergencein thermodynamic con-
sumption. Only if civilization as a whole consumes more en-
ergy than it dissipates can the interface expand and net eco-
nomic value be produced.

An added advantage of subsuming labor into capital,
where capital is fundamentally assumed to be an implicit rep-
resentation of energy consumption througha ≡ λC, is that,
unlike traditional models, there is no need for any tuning of
non-integer exponents in a production function. Tuning to
prior data can be a useful tool of last resort. But, it has its
problems because there is little guarantee that a model tuned
to the past will not need retuning to be consistent with data in
the future. While the physical approach discussed here may
be highly unorthodox by mainstream economic standards, it
does have the advantage that its absence of a tuning require-
ment allows it to rest on a testable, falsifiable hypothesis –
falsifiability is one of the key hallmarks of science. Either
there exists a constant coefficientλ, or there does not. Of
course, as discussed above, the constancy inλ does appear
to hold. But the point is that if this constancy ever fails, then
the model presented here can be safely dismissed. Retuning
is not an option.

5 Jevons’ Paradox and why efficiency gains accelerate
global CO2 emission rates

Certainly, it might seem obvious that technological advances
that increase energy efficiency or energy productivity (de-
fined asP/a) should lead to a decrease in CO2 emissions.
Less energy is required to accomplish the same economic
task. Even so, there is recognition among many economists
of the existence of a “rebound effect”, whereby increasing
energy productivity spurs greater emissions further down the
road (Dimitropoulos, 2007; Herring and Roy, 2007; Sorrell,
2007). Two types of rebound have been identified, although
in essence they both address the issue of what happens to
whatever money is saved when energy productivity goes up.
The “direct” rebound effect is limited to a particular energy
service. For example, people may choose to drive more of-
ten if a vehicle is fuel efficient, because driving is useful or
pleasurable and now more affordable. There are also “in-
direct rebound effects”, which extend response to differing
economic sectors. Less money spent on fuel for efficient ve-
hicles might enable more money to be spent on fuel for home
heating.

A few studies even point to an extreme form of rebound
termed “backfire”: gains in energy efficiency lead ultimately

www.earth-syst-dynam.net/3/1/2012/ Earth Syst. Dynam., 3, 1–17, 2012
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to more rather than less energy consumption (Saunders,
2000; Alcott, 2005; Owen, 2010; Alcott, 2010). First discus-
sion of the principle came from an 1865 exposition on energy
economics by William Stanley Jevons (Jevons, 1865). Jevons
was emphatic that the introduction of energy efficient steam
engines had accelerated Britain’s consumption of coal. The
cost of steam-powered coal extraction became cheaper and,
because coal was very useful, more attractive.

While the topic has received revived attention politically
(House of Lords, 2006), a general consensus on the total
magnitude of the effect has proved elusive (Sorrell, 2007).
One reason is that calculating the knock-on effects from
an efficiency improvement in one sector as they propagate
through the entire global economy is daunting if not impos-
sible. Suppose that efficient vehicles enable added house-
hold heating through a savings in transportation costs. Then,
by raising home comfort, workers sleep better so that they
are better able to facilitate resource extraction at their com-
panies. With higher profits, the companies then reward the
workers with raises, who in turn spend the money on goods
produced overseas with coal-generated electricity. So, in this
fashion, the ramifications of any given efficiency action can
multiply indefinitely, spreading at a variety of rates through-
out the global economy. Barring global analysis of rebound
effects over long time scales, conclusions may be quantitative
but uncertain, and dependent on the time and spatial scales
considered.

An easy way to address this problem is to not resolve eco-
nomic flows within the global economy, but rather to take
the more general approach shown in Fig.1. In this case, en-
ergy efficiency is defined only with respect to the economic
capacity of civilization, taken as a whole, to grow by doing
work on its surroundings, allowing it to expand into the re-
serves of primary energy that sustain it. The amount of net
or real work that civilization does to grow itself depends on
a balance between civilization’s consumptive and dissipative
flows. If civilization is efficient, there is a net material and
energetic convergence that allows civilization to do net pos-
itive work to “stretch” outward its interface with respect to
its primary energy supplies. If energy efficiency increases,
this accelerates civilization expansion, allowing civilization
to consume energy at an ever faster rate.

Expressed in analytical terms, consumption of primary en-
ergy resources at ratea enables work to be done at ratew in
order to extend the material sizen̆ of the interface that drives
consumptive flows. From Eq. (1), work is done at rate

w = 1µ
dn̆

dt
= εa (12)

whereε =w/a is the efficiency for the conversion of heat
transfer to work. Unlike the normal conception, where work
is done only to raise the potential of some outside agency,
here work is more self-referential. Work is done by civiliza-
tion to increase the size and consumptive capacity of civiliza-
tion itself.

If net work is positive, then there is exponential growth
in the rate of primary energy consumptiona. Interface ex-
pansion into new energy reservoirs creates a positive feed-
back loop by bootstrapping civilization into an ever more
consumptive state. Combining Eqs. (1) and (12), the rate of
increase in energy consumption is related to the work done
to expand the interface through

da

dt
= α 1µ

dn̆

dt
= αw (13)

where, as before,α is an unknown constant. Sincew = εa,
dividing by a provides an expression for the “rate of return”
on consumptionη, as defined previously in Eq. (8), that is
directly proportional to energy efficiency through

η =
1

a

da

dt
= α

w

a
= αε. (14)

Thus, global scale increases in the energy efficiencyε lead
to a higher rate of returnη and accelerated growth of energy
consumption ratesa. Treated as a whole, an efficient system
grows faster and consumes more.

That said, increasing energy efficiency does translate to
higher prosperity. Economic production is related to the rate
of return throughP =ηC (Eq. 9), where wealthC is tied
to energy consumption througha =λC (Eq. 2), λ being an
empirically measurable constant. It follows that, at global
scales, the energy productivityP/a is tied to energy effi-
ciencyε through

P

a
=

η

λ
=

α

λ
ε. (15)

The implication is that, at least for global economic sys-
tems, changes in energy efficiency and energy productiv-
ity are equivalent. Through Eq. (10), both accelerate GWP
growth even if they do not in fact lead to a decrease in over-
all energy consumption, as is commonly assumed (Pacala
and Socolow, 2004; Raupach et al., 2007). At global scales,
Jevons’ Paradox holds.

The analogy here might be to a growing child, who uses
the material nutrients and potential energy in food not only
to produce waste but also to grow. As the child grows, it eats
more food, accelerating its growth until it reaches adulthood
and growth stabilizes (in which caseη ' 0). A healthy, en-
ergy efficient child will grow faster than one who is sick and
inefficient. A diseased child may even die (in which case
η < 0).

These conclusions have direct bearing on global scale
emissions of CO2. Just as civilization can be treated as be-
ing well-mixed over timescales relevant to economic growth,
atmospheric concentrations of CO2 are also well-mixed over
timescales relevant to global warming forecasts. Thus, for
the purpose of relating the economy to atmospheric CO2 con-
centrations, what matters is only how fast civilization as a
whole is emitting CO2.
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CO2 emissions are primarily a by-product of energy com-
bustion. The emission rateE is determined by the product of
the global rate of energy consumptiona, and the carboniza-
tion of the fuel supply defined by

c ≡
E

a
(16)

where,E and a are measured quantities. It follows from
Eq. (2) that current rates of CO2 emissionsE are funda-
mentally coupled to wealthC, or past economic production,
through

E = λcC = λc

∫ t

0
P

(
t ′
)

dt′. (17)

Drawing from statistics for CO2 emissions from the Carbon
Dioxide Information Analysis Center (Marland et al., 2007),
Table1 shows that, likea andC, CO2 emissionsE have ap-
proximately doubled between 1970 and 2008. Meanwhile,
the valueλc =E/C has stayed approximately constant. Its
mean value (and uncertainty in the mean) taken from the
entire yearly time series is 2.42± 0.02 ppmv atmospheric
equivalent CO2 per year, per thousand trillion 1990 US dol-
lars of global wealth.

Note that, unlikeλ, the carbonizationc is not a funda-
mental property of the economic system within this frame-
work. At least in principle, it could be more variable in the
future than it has been in the recent past. Combining Eqs. (8)
and (17), emission rates grow at rate that is determined by the
growth rate of wealth and the rate of change of carbonization

d ln E

dt
=

d ln C

dt
+

d ln c

dt
= η +

d ln c

dt
. (18)

The implication is that, if technological changes allow en-
ergy productivity or energy efficiency to increase, then the
rate of returnη increases and CO2 emissions accelerate. This
is unless decarbonization is as rapid as the rate of growth
of wealthη. If so, then emission ratesE can be stabilized.
If, however, the carbonizationc stays approximately con-
stant, then CO2 emissions ratesE will remain fundamen-
tally linked to global economic wealthC through the con-
stant value of 2.42± 0.02 ppmv of CO2 emitted per year, per
thousand trillion 1990 US dollars of current wealth. It can
only be through an economic collapse that CO2 emissions
rates will decline.

6 Environmentally driven economic decay

6.1 Accounting of inflation and decay

The broadest available measure of the inflation rate is the
so-called GDP deflator, which is calculated from the year-
on-year increase in the prices of a very broad basket of con-
sumer and industrial goods. Effectively, the gross domes-
tic product becomes devalued by some inflationary fractioni

that makes the “real”, inflation-adjusted GDP less than its
“nominal” value. Expressed for the world as a whole

i =
nominal− real

nominal
=

ˆGWP − GWP
ˆGWP

. (19)

While there have been a wide variety of theoretical expla-
nations for what drives inflation, the field is fluid and none
have been solidly rejected (Parkin, 2008). Price inflation is
traditionally viewed as a simple imbalance between the mon-
etary supply and economic output, and therefore mostly a
matter for central bank control. What is less clear is why
high inflation appears to have a negative effect on inflation-
adjusted economic growth (Sarel, 1996). There are also
external forces that can create the initial inflationary pres-
sure, such as an external shock to primary energy supplies
(Bernanke et al., 1997), and even climate change, which
drives up food prices through adverse effects on crop pro-
duction (Lobell et al., 2011).

From the perspective of the model presented here, infla-
tionary pressures can arise from either decreasing energy
availability or increasing environmental disasters. This can
be assessed because the real value or wealth of civilization
is fixed to its current capacity to consume primary energy
resources through the constant coefficientλ, which has a
value of 9.7± 0.3 milliwatts per inflation adjusted 1990 dol-
lar: in 2008, 16.4 TW of power supported 1656 trillion 1990
US dollars of civilization worth. For interpreting inflation,
this coefficient provides an anchor for assessing real eco-
nomic worth, at least for civilization as a whole.

Supposing that natural disasters destroy the capacity of life
and property to consume energy, civilization’s real value de-
clines while plausibly keeping the availability of currency
largely intact. Alternatively, while banks do not actively de-
stroy civilization’s capacity to consume energy, they might
be excessively loose with currency. If so, the real currency
value attached to the existing capacity to consume energy be-
comes diluted by an excessive availability of new currency,
while real wealth stays fixed. Whether banks or climate ex-
tremes initiate the action, in either case, inflation should be
expected to follow as a consequence of an introduced im-
balance between real and nominal value. The availability of
currency becomes out of proportion with the true capacity of
civilization to consume primary energy supplies.

Real, inflation-adjusted wealth has been defined here by
C =

∫ t

0 Pdt′ (Eq. 2) or equivalently, the instantaneous func-
tion dC/dt≡ P (Eq. 9), whereP is the inflation-adjusted
production. Here, in effect, all production is a differential
addition to a generalized measure of wealth, provided it is
adjusted for inflation. This adjustment to the nominal (non-
inflation-adjusted) production of wealtĥP can be expressed
as a sink of existing wealthγC, whereγ represents the rate
at which existing wealth is being destroyed or lost due to nat-
ural decay (Garrett, 2011)

dC

dt
≡ P = P̂ − γC. (20)
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Thus, the rate of decay is simply

γ ≡
P̂ − P

C
=

P̂ − P∫ t

0 Pdt′
. (21)

Similarly, the rateβ at which wealthC leads to nominal pro-
ductionP̂ can be defined by

β ≡
P̂

C
=

P̂∫ t

0 Pdt′
. (22)

In this case, from Eq. (20), the growth of wealth can be ex-
pressed as a balance between a source and a sink of wealth

dC

dt
= (β − γ ) C. (23)

This is just an alternative expression for Eq. (9) with the rate
of return on wealthη replaced by the difference between the
coefficient of nominal productionβ and the coefficient of
decayγ

η = β − γ. (24)

The advantage of applying this treatment is that it leads
to a very simple expression for an inflationary pressurei in
Eq. (19)

i =

∫ t+1t

t

(
P̂ − P

)
dt′∫ t+1t

t
P̂ dt′

=

∫ t+1t

t
γ Cdt′∫ t+1t

t
β Cdt′

=
〈γ 〉

〈β〉
(25)

where brackets imply a mean over the time interval of calcu-
lation1t , which is normally one year. Inflation is determined
by the balance between the coefficientsβ andγ of produc-
tion and decay.1 If 1t is one year, then the quantityi1t

represents the difference between nominal and real GWP.
If the coefficient of decay becomes greater than the co-

efficient of production, such thatγ >β, then from Eq. (25),
nominalproductionP̂ may be positive, butreal productionP
is negative. Discussing negative real production would seem
unusual (or impossible) from a traditional economic perspec-
tive that is geared towards modeling growth. From the more
physical framework described here, it is simply a conse-
quence of environmentally driven decay being so large that
there are economic hyper-inflationary pressures associated

1In practice, statistics for nominal and real GWP are normally
provided in current and fixed-year currency, respectively, and there-
fore are in different units. Thus, for a given time period1t (say one
year),γ can be calculated from differences in the logarithmic rate
of expansion forP̂ andP , noting that ln(1+x) ' x

γ =
P̂ − P

C
'

P

C

 1

P

d
(
P̂ − P

)
dt

 1t '
P

C

d ln
(
P̂ /P

)
dt

1t.

Effectively [d ln(P̂ /P )/dt]1t is the fractional inflationi over
period 1t . Then, sinceη =P/C, it follows that γ = iη and
β =η +γ = (1+ i)η.

with a ratei =γ /β that is greater than 100 %. Historically,
and on more regional levels, this is in fact a fairly common
scenario. From Eq. (20), dC/dt< 0, and total wealth is in a
state of collapse.

As discussed in Appendix A, hyper-inflation and collapse
can be viewed thermodynamically as an interface between
civilization and its energy reserves that is shrinking inwards
rather than growing outwards. This means that the nomi-
nal work

∫ t+1t

t
ŵdt′ that is done to grow civilization is over-

whelmed by external work done on civilization through de-
cay. Real or net work done to grow civilization

∫ t+1t

t
wdt′

turns negative and civilization enjoys no return on its en-
ergetic investment. As a whole, civilization becomes less
wealthy as it becomes less able to consume primary energy
reserves.

A related concept is termed Energy Returned on Energy
Invested (or EROI), and is becoming increasingly popular as
a metric of society’s capacity to exploit primary energy re-
serves for economic benefit (Murphy and Hall, 2010). Evi-
dence suggests that the value of EROI is declining, presum-
ably as new energy reserves become increasingly difficult to
access. In Appendix A it is shown that a direct link can be
drawn between the EROI concept and inflation (or the GDP
deflator) discussed here. At global scales, the value of EROI
is equal to the inverse of the inflation rate.

6.2 Inflationary pressures and civilization resilience

The IPCC Working Group II (IPCC, 2007b) has identified
potential societal damages due to climate “extremes”, such
as droughts and floods, and “means”, such as sea-level rise.
These will exert a negative feedback on civilization wealth
such that, at some point, wealth and atmospheric CO2 be-
come intrinsically coupled because civilization is no longer
able to consume and emit as it has in the past.

Based on the above arguments, it is easy to see how natural
disasters are often expected to be inflationary since they rep-
resent an increase in the work done by the environmenton
civilization. If the decay coefficientγ suddenly rises, then
from Eq. (20), this expands the difference between nominal
and real production. From Eq. (25), the shock leads to infla-
tion and less capacity to consume energy and emit CO2.

An important point here is that, for inflationary pressures
to take hold, there must be an increase not just in total dam-
agesγC, but in thecoefficientof decayγ . Hurricane dam-
ages along the Atlantic seaboard have risen over the past cen-
tury, but not because of a long-term increase in hurricane in-
tensity or frequency (i.e.γ ). Rather, economic wealthC has
become increasingly concentrated at the coasts (Pielke et al.,
2008).

What seems reasonable is to expect that the decay rateγ

will in fact change over coming decades due to the increas-
ingly harmful effects of global warming. Impacts will be
regionally specific, but extremely difficult to predict. In light
of this, the approach taken here is to simplify representation

Earth Syst. Dynam., 3, 1–17, 2012 www.earth-syst-dynam.net/3/1/2012/
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Fig. 2. From global economic statistics (Nations, 2010), derived global values for global inflation i (Eq. 25),

the decay coefficient γ (Eq. 21), the source coefficient β (Eq. 22) and the rate of return η (Eq. 24) based on

observations of nominal and real production, and total global wealth.
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Fig. 2. From global economic statistics (United Nations, 2010),
derived global values for global inflationi (Eq.25), the decay coef-
ficient γ (Eq. 21), the source coefficientβ (Eq. 22) and the rate of
returnη (Eq.24) based on observations of nominal and real produc-
tion, and total global wealth.

of the global economic impacts of climate change by defin-
ing a global economic “resilience” to a logarithmic increase
in atmospheric CO2 concentrations

ρ = 1/(dγ /d ln [CO2]). (26)

If civilization’s resilience is high, then the coefficient of
decayγ responds weakly to logarithmically changing CO2
levels.2

There have been estimates of the regional societal and eco-
nomic impacts from extremes in climate (Patz et al., 2005;
Leckebusch et al., 2007; Hsiang et al., 2011). Unfortunately,
it is not entirely obvious how to appropriately scale these
impacts to civilization as a whole when many of the effects
of climate change will be sustained, global, and largely un-
precedented. Recent statistics do not yet provide meaningful
guidance either. Figures2 and3 show no clear trends in the
decay coefficientγ that can easily be attributed to accelerat-
ing climate change. Up until this point, the dominant signa-
ture inγ is only its inter-annual variability. A recent meta-
analysis of disaster losses has arrived at a similar conclusion
(Bouwer, 2011).

The hypothesis that is proposed here is that the effect on
society of elevated levels of atmospheric CO2 will be akin to
a prolonged natural disaster. From the standpoint of the eco-
nomic model discussed above, the effect will be to steadily
increase the coefficient of decayγ without changing the co-
efficient of nominal productionβ. From Eq. (25), this will
appear economically as an inflationary pressure that impedes

2The logarithm of CO2 concentrations is considered because the
primary insulating gases responsible for climate warming, namely
CO2 and water vapor, have a longwave absorptance that varies
roughly as the square root of their concentrations (Liou, 2002).
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Fig. 3. As for Fig. 2 but for the product of the rate coefficients and total wealth C (Eq. 4). The difference

between βC and ηC is the inflationary depreciation associated with each year γC. (Eqs. 20 and 24).
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Fig. 3. As for Fig. 2 but for the product of the rate coefficients
and total wealthC (Eq. 4). The difference betweenβC andηC is
the inflationary depreciation associated with each yearγC (Eqs.20
and24).

the growth in wealthC, as described by Eq. (23). In a phase
space of[CO2] andP , the trajectory of civilization will de-
pend on the resilienceρ of civilization to elevated carbon
dioxide levels: it is our resilience that will determine the
strength of climate’s negative feedback on economic growth.

7 The Climate and Thermodynamics Economic
Response Model (CThERM)

To explore the coupling between civilization and the atmo-
sphere, the following section introduces a very simple frame-
work for forecasting the evolution of civilization in a phase
space of[CO2] andP , for a variety of assumed values of
resilienceρ. The Climate and Thermodynamics Economic
Response Model (CThERM) couples a prognostic economic
model to atmospheric CO2 concentrations, as illustrated in
Fig. 4. The prognostic economic module has just three cou-
pled dynamic equations for wealthC, atmospheric CO2 con-
centrations [CO2], and the rate of returnη. From Eq. (8),
wealth grows at rate

dC

dt
= ηC. (27)

The balance between anthropogenic emissionsE =λcC

(Eq.17) and natural sinks is

d [CO2]

dt
= E − σ1[CO2] (28)

whereE =λcC (Eq. 17) and σ is an assumed linear sink
rate on perturbations1[CO2] = [CO2] − [CO2]0 above some
preindustrial baseline. For convenience, here it is assumed
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Fig. 4. Schematic illustrating the CThERM framework for eco-
nomic growth (Garrett, 2011), coupled to atmospheric CO2 con-
centrations. Global rates of primary energy consumption ratesa

are tied to accumulated inflation-adjusted global economic wealth
C =

∫ t
0 Pdt ′ through a constant coefficientλ = 9.7 milliwatts per

1990 dollar. Becauseλ is a constant, growth in energy consump-
tion ratesda/dtare represented economically by the real, inflation-
adjusted global GDPP . Thus,da/dt=λP determines the “rate of
return” η =d lnη/dt adding toa =λC. E represents the anthro-
pogenic rate of CO2 emissions,β is the source for a positive rate
of returnη due to increasing availability of energy reservoirs.γ is
the sink for civilization growth driven by environmental degrada-
tion. EmissionsE determine CO2 concentrations, subject to land
and ocean sinks. CO2 concentrations act as a negative feedback on
economic growth.

that the CO2 emissions are instantly diluted in the total at-
mospheric mass (Trenberth, 1981) such that 1 ppmv atmo-
spheric CO2 = 2.13 Pg emitted carbon. Thusc is expressed
in units of ppmv atmospheric CO2 emitted by civilization
per Joule of energy consumption.

The modeling approach here is aimed at the simplest of
possible approaches. In reality, the carbon cycle is much
more complicated than can be easily justified by a linear sink
model (Cox et al., 2000; Canadell et al., 2007). That said,
even the current magnitude of the CO2 sink is not well con-
strained (Le Qúeŕe et al., 2003). Given current uncertainties,
assuming a linear sink that is in line with current observations
appears to provide long-range forecasts of [CO2] that are in
good agreement with far more sophisticated models. More
detailed discussion is presented in Sect.7.3and Appendix C.

From Eqs. (24) and (26), the rate of returnη changes at a
rate given by

dη

dt
=

dβ

dt
−

1

ρ

d ln [CO2]

dt
. (29)

Model trajectories in wealthC and atmospheric carbon
dioxide concentration evolve subject to initial conditions in
[CO2], C, β andγ . Note that global productionP is a diag-
nostic quantity given by Eq. (9).

The prognostic CThERM model expressed by Eqs. (27)
to (29) is incomplete because it lacks prognostic equa-
tions for the carbonization of the world’s wealthc =E/(λC)

Fig. 5. Based on the CThERM model given by Eqs. (27) to (29), hindcast trajectories and associated uncertainty

estimates for the period 1985 to 2008 in a space of atmospheric CO2 concentrations (red) and global economic

production (blue). Observed statistics for the period 1970 to 2008 are shown by black dashed lines. The

model is initialized with observed conditions in 1985, and a linear trend in the nominal production coefficient

β between 1970 and 1984.
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Fig. 5. Based on the CThERM model given by Eqs. (27) to (29),
hindcast trajectories and associated uncertainty estimates for the pe-
riod 1985 to 2008 in a space of atmospheric CO2 concentrations
(red) and global economic production (blue). Observed statistics
for the period 1970 to 2008 are shown by black dashed lines. The
model is initialized with observed conditions in 1985, and a lin-
ear trend in the nominal production coefficientβ between 1970 and
1984.

(Eq. 17) and the coefficient of nominal productionβ = P̂ /C

(Eq. 22). A more sophisticated model will need to address
the evolution of these terms.3

A hindcast simulation that illustrates the accuracy of the
model framework is shown in Fig.5. The hindcast is ini-
tialized in 1985 and, based on results shown in Fig.2, it is
assumed thatdγ /dt= 0 and thatdβ/dt evolves on a linear tra-
jectory that is consistent with what is observed for the period
between 1970 and 1984. A linear fit fordβ/dt during this ini-
tialization time period is 0.017 % yr−1 per year with a 95 %
confidence limit of±0.01 % yr−1 per year. A second source
of uncertainty is associated with the CO2 sink coefficient
σ , which is estimated to have a value of 1.55± 0.75 % yr−1

(Appendix B).
Figure 5 shows that, with these assumptions, the mid-

range of hindcasts over a 23 year period between 1985 and
2008 faithfully reproduces both the timing and magnitude
of observed changes in atmospheric CO2 concentrations and
global economic productionP . The implication is that,
even though the model that is used is extremely simple, it is
nonetheless able to make accurate multi-decadal forecasts for

3In principle, the evolution ofβ is governed by two factors, as
illustrated in Fig.1. As civilization or any other system grows, it
depletes known available energy reservoirs; at the same time, it ex-
pands into new reservoirs that were previously unavailable or un-
known. Past bursts in growth inη =β −γ are seen to have occurred
around 1880 and 1950, perhaps due to a sudden increase in avail-
ability of important new oil reservoirs (Garrett, 2011). Presumably
the future availability of energy reservoirs will influence the value
of c as well (Sorrell et al., 2010).
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Fig. 6. As for Fig. 5, except for CThERM trajectories calculated
out to 2100, with the model initialized with conditions in 2008 and
assuming thatdβ/dt= 0 anddc/dt= 0 for a range of values of inverse
resilience 1/ρ (blue numbers expressed in % yr−1 change in the de-
cay coefficientγ per CO2 doubling). Small numbers in black cor-
respond to the calculated inflationary pressurei =γ /β (Eq. 25) in
year 2100. Green dashed lines represent the modeled year. Shown
for comparison are the IPCC SRES A1F1 and A2 scenarios based
on the CThERM linear sink model for CO2. CO2 concentrations
for these scenarios using the Bern carbon cycle model are shown
by blue diamonds. Historical data from 1 AD to 2008 is added for
reference (see Appendix C).

the coupled growth of the global economy and atmospheric
composition. Furthermore, it suggests some ability of the
model to explore thermodynamically constrained forecasts in
a space ofP and [CO2] for a range of hypothetical values of
civiilization resilienceρ and decarbonization rates−d lnc/dt.

As discussed previously, there is no good guidance yet for
what a suitable choice for the resilienceρ might be, and no
prognostic model is included here for forecasting the evo-
lution of either carbonizationc or the nominal productivity
coefficientβ. Thus, while the CThERM model is thermody-
namically constrained, it can still only provide forecasts for a
range of hypothetical scenarios in these parameters. In what
follows, two main categories of scenarios are considered.

7.1 Forecast scenario A: no decarbonization

The first scenario that is considered here is simply to assume
that for the remainder of this century, there will be no further
decarbonization, and that the coefficient of nominal produc-
tion will remain stagnant (i.e.dc/dt= 0 anddβ/dt= 0 ). Fig-
ure 6 shows examples of forecasts for these conditions for
the years between 2009 and 2100. Also shown for histori-
cal reference are past measurements between 1 AD and 2008
(Appendix C).

For this scenario, a range of resilience sub-scenarios
can be considered. If civilization is so resilient that it is

unaffected by elevated CO2 levels, then the world economy
P sustains recent growth rates of 2.2 % per year. By 2100, it
increases by nearly an order of magnitude to a value of nearly
300 trillion 1990 dollars per year. The accumulated produc-
tion of wealthC ≡

∫ 2100
0 Pdt′ corresponds to an increase in

rates of energy consumptiona =λC from 16 TW in 2008 to
126 TW in year 2100. Absent any decarbonization, the accu-
mulated and accelerating emissions push CO2 levels above
1100 ppmv.

If, however, civilization has an extremely low resilience to
elevated CO2 levels, then the decay coefficientγ increases by
5 % yr−1 per CO2 doubling. Eventually, the decay coefficient
exceeds the coefficient of nominal productionβ. In this case,
economic production shrinks due to the impacts of climate
change. Well before the year 2100, the inflationary pres-
sure exceeds 100 %: real GDP is negative and civilization
is in a phase of collapse. However, even in this scenario, en-
ergy consumption rates peak at 89 TW in 2056 and although
they fall to 21 TW in year 2100, they still exceed current lev-
els. Because rates of energy consumption remain high, even
with rapid and immediate civilization collapse, CO2 levels
still continue their rise to approximately 600 ppmv by year
2100.

What is perhaps most striking when looking at these fore-
casts is that we can expect some extraordinarily rapid near-
term changes in the global economy and atmospheric com-
position. For any plausible resilience condition, atmospheric
CO2 concentrations and civilization GWP will change by
as much in the next 40 years as they have in the past two
thousand.

7.2 Forecast scenario B: rapid decarbonization

Although there is no evidence that civilization is in fact de-
carbonizing (Raupach et al., 2007), one can imagine for the
sake of illustration a second forecast scenario shown in Fig.7
in which β stays constant, but the carbonization of civiliza-
tion c drops extremely rapidly. Supposing that carbonization
c halves in just 50 years, the value ofc ends up 73 % lower in
2100 than it is at present. This is highly imaginary, of course.
If nothing else, no consideration is made here of the costs
of decarbonizing that would be involved. These would pre-
sumably act to lowerβ and be an inflationary pressure them-
selves (Eq.25). However, it is worth considering because,
for one, it illustrates how extremely rapid decarbonization
would need to be to lower CO2 concentrations to something
that only moderately exceeds the 450 ppmv levels that might
be considered to be “dangerous” (Hansen et al., 2007). If
civilization’s resilience to climate change is extremely low,
then only a combination of rapid civilization collapse and
high decarbonization comes close to achieving a 450 ppmv
goal. Otherwise, if civilization’s resilience to climate change
is extremely high, then emissions increase from 3.95 ppmv
equivalent per year in 2008 to 8.64 ppmv per year in 2100.

www.earth-syst-dynam.net/3/1/2012/ Earth Syst. Dynam., 3, 1–17, 2012
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Fig. 7. As for Fig.6 except that it is assumed that the value of car-
bonizationc has an assumed halving time of 50 years. For compar-
ison, the IPCC SRES trajectories that are considered are the A1T,
B1 and B2 scenarios.

The reason why even rapid decarbonization still corre-
sponds with increasing emissions rates is that it has the side
benefit of aiding economic health and growth. By slowing
growth in CO2 concentrations, the worst impacts of future
climate change are constrained. Energy consumption is fun-
damentally linked to the size of civilization through the con-
stantλ (Eq.11). Thus, any improvement to economic wealth
corresponds to increased energy consumption and more rapid
growth in CO2 emissions (Eq.18).

It is counter-intuitive, but comparing two scenarios with
very low resilience to climate change, energy consumption
rates rise about twice as fast with rapid decarbonization as
with no decarbonization. The reason is that decarboniza-
tion aids society health by limiting global warming. Better
health means greater energy consumption, which then leads
to a partial offset of any environmental gains that came from
decarbonizing in the first place.

7.3 Comparison with SRES scenarios

Figures6 and 7 include for comparison’s sake the phase
space ofP and CO2 concentrations that are employed in sev-
eral well-known IPCC Special Report on Emissions Scenar-
ios (SRES) illustrative marker scenarios (IPCC, 2007a; Man-
ning et al., 2010). These scenarios provide statistics through
2100 for global GWP in 1990 MER US dollars along with
global CO2 emission rates from fossil fuel combustion. For
the sake of consistency with CThERM calculations, atmo-
spheric CO2 concentrations are calculated from the second
CThERM equation given by Eq. (28). Across the scenarios,
calculated trajectories in CO2 concentration perturbations are
lower than those presented in the IPCC Third Report for the
same emission rates, but calculated using the sophisticated

“Bern” carbon cycle model (Joos et al., 1996). Part of this
discrepancy may be because no consideration is made for the
small additional perturbations in anthropogenic CO2 emis-
sions that come from future non-fossil fuel sources. But
also, no account is made for possible future saturation of CO2
sinks (Le Qúeŕe et al., 2007). Regardless, the agreement is
still sufficiently favorable to support using the extremely sim-
ple CO2 sink model in Eq. (28) as an accessible, if conser-
vative, substitute for the more sophisticated approaches used
by the IPCC.

The comparisons between the CThERM and SRES sce-
narios are grouped according to whether or not decarboniza-
tion is included in the forecasts. CThERM trajectories in
Fig. 6 include no decarbonization, and are paired with the
A1F1 and A2 scenarios. These two SRES storylines are both
based on a fossil-fuel reliant economy, while A1F1 has faster
economic growth. For contrast, the CTheRM trajectories in
Fig. 7 do include decarbonization, and are paired with the
A1T, B1 and B2 scenarios. These storylines all include a
switch to less carbon intensive fuels, but with a range of
speeds of economic development.

Regardless of the precise scenario that is considered, there
is a basic difference between the CThERM forecasts and
the SRES scenarios. Each SRES scenario greatly under-
estimates how much atmospheric CO2 concentrations will
rise for a given level of global GWP. Or, put another way,
SRES scenarios produce an unphysical overestimate of the
wealth society can have while maintaining CO2 levels be-
low some nominal threshold. For example, the “environmen-
tally sustainable” B1 scenario suggests that a CO2 level be-
low 500 ppmv is plausible by the end of this century, while
maintaining a GWP of 360 Trillion 1990 US dollars per year.
The CThERM results suggest that this combination simply
cannot happen because, even with rapid decarbonization,
sustaining this level of economic activity would require too
much energy consumption. It is only with rapid decarboniza-
tion and civilization collapse that such CO2 concentrations
can be attained.

Perhaps the basic reason that there is a mismatch between
the CThERM and SRES scenarios is that the SRES scenar-
ios are based on an assumption that increases in energy ef-
ficiency will lower the amount of CO2 emitted for a given
amount of economic activity. The thermodynamic and ob-
servational analyses described here and inGarrett(2011) in-
dicate that the opposite should be expected to hold. From
Eq. (14), gains in efficiencyε accelerate CO2 emissions by
accelerating civilization’s capacity to access primary energy
reservoirs. While, increasing efficiency may also lead to a
higher GWP (Eq.15), feedbacks in the economic system
make it impossible to decouple the energy consumption from
economic well-being.
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8 Conclusions

This study builds on a key result presented in a prior arti-
cle (Garrett, 2011), that civilization wealth and global rates
of primary energy consumption are tied through a constant
value ofλ = 9.7± 0.3 mW per 1990 US dollar. On this basis,
a very simple prognostic model (CThERM) is introduced for
forecasting the coupled evolution of the economy and atmo-
spheric CO2 concentrations. While the model in its basic
form has just three prognostic equations, it nonetheless pro-
vides accurate multi-decadal hindcasts for global world pro-
duction and atmospheric concentrations of CO2.

The much more sophisticated formulations commonly
used in Integrated Assessment Models can have hundreds of
equations. In part this is required to forecast regional vari-
ations of specific societal indicators such as population or
standard of living. The argument made here and inGarrett
(2011) is that, at the global scales relevant to atmospheric
composition, such complexity is largely unnecessary. Both
the global economy and atmospheric CO2 can be consid-
ered to be “well-mixed”, and they both are constrained by
the global rate of primary energy consumption.

One implication of this result is that global warming
should be expected to manifest itself economically as a grow-
ing gap between the nominal and inflation-adjusted GWP.
Environmental pressures erode a material interface that en-
ables civilization to consume the primary energy resources
it requires. Normally, this erosion is more than offset by in-
creasing access to primary energy reservoirs; in fact, it is an
increasing access to energy supplies that has enabled a pos-
itive (and growing) inflation-adjusted gross world product,
and has led to the generally high standard of living we enjoy
today. However, in a global warming scenario, it can be ex-
pected that environmental pressures will increase, and these
will act to slow growth in energy consumption. Fiscally, this
will appear as an inflationary drag on the growth of economic
wealth. Ultimately, it is conceivable that it will push civiliza-
tion towards an accelerating decline.

Another implication is that the commonly used
IPCC SRES scenarios make unphysical underestimates
of how much energy will be needed to be consumed, and
CO2 emitted, to sustain prosperity growth. At the globally
relevant scales, energy efficiency gains accelerate rather
than reduce energy consumption gains. They do this by
promoting civilization health and its economic capacity to
expand into the energy reserves that sustain it.

Reductions in CO2 emissions can be achieved by decar-
bonizing civilization’s sources of fuel. But this has an im-
portant caveat. Decarbonization does not slow CO2 accu-
mulation by as much as might be anticipated because it
also alleviates the potential rise in atmospheric CO2 con-
centrations. If decarbonization leads to fewer climate ex-
tremes, then economic wealth is supported; and, because
wealth is tied to energy consumption through a constant, im-
proving wealth partly offsets the anticipated CO2 emission

reductions. Ultimately, civilization appears to be in a double-
bind with no obvious way out. Only a combination of
extremely rapid decarbonization and civilization collapse
will enable CO2 concentrations to be stabilized below the
450 ppmv level that might be considered as “dangerous”
(Hansen et al., 2007).

Appendix A

Thermodynamic accounting of decay

The fiscal arguments for inflation discussed in Sect.6.1 can
be represented within the context of the generalized ther-
modynamic framework illustrated in Fig.1. Global wealth
can be related to thermodynamic flows through the constant
λ, as framed by Eq. (11) and validated through observa-
tions (Table1). From Eq. (12), thermodynamic workw
can be defined as the net growth rate in an interface with
potential difference1G and number of material units̆n.
The interface drives downhill thermodynamic flows at rate
a =α1G = n̆1µ, where1µ is a fixed potential jump per unit
matter.

Thus, from Eq. (8), thermodynamic work is done by civi-
lization to expand the interface at rate

w =
d1G

dt
= 1µ

dn̆

dt
. (A1)

Equation (8) dictates that, sinceλ is a constant, the rate of re-
turn η applies equally to thermodynamic flowsa, the size of
the potential difference at the interface that drives flows1G,
and wealthC. It follows that the thermodynamic analog for
the economic growth equations given by Eqs. (20) or (23) is

d1G

dt
= η1G = ŵ − γ 1G = (β − γ ) 1G. (A2)

What this expresses is the details of how the interface shown
in Fig. 1 grows. Civilization grows by doing “nominal”
work to stretch the interface driving flows outward at rate
ŵ =β1G. By extension of Eq. (6), nominal work is the
thermodynamic expression of nominal economic production
through

P̂ =
α ŵ

λ
=

α

λ
β 1G. (A3)

However, it is only the “real” portion of workw =d1G/dt
that contributes to the net or real rate of interface growth:
for real growth to occur, nominal workβ1G must be suf-
ficiently rapid to overcome natural decayγ1G. Thus, real
productionP is related the size of the interface1G through

P =
αw

λ
=

α

λ
(β − γ ) 1G. (A4)

Expressed in this fashion, real economic production is a bal-
ance between two opposing thermodynamic forces shown in
Fig. 1. There is an interface that connects civilization to
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available energy reservoirs. Flow across this interface arises
from a consumption of primary energy resources. By con-
suming energy, civilization both sustains its current size and
does nominal work to “stretch” outward the size of the inter-
face at rateβ. As the interface grows, it makes previously
innaccessible or unknown reservoirs of high potential energy
(such as oil, coal, uranium, etc.) newly available. It is by
consuming and doing work that consumption accelerates.

However, this stretching only drives “nominal” growth.
“Real” growth takes into account environmental pressures
that erode the interface at rateγ . Such “predation” of civi-
lization by the environment is due to a loss of matter as things
fall apart. There are many forms of material loss. Photons
are radiated through thermal heat loss; mass falls down due
to gravitation, and electrons are redistributed due to chemi-
cal reactions. What matters from civilization’s perspective is
that this constant loss of material hinders gains from nominal
work ŵ. This slows the growth of the interface1G =1µn̆

that drives flows, and consequently it dampens growth in en-
ergy consumptiona and wealthC. Due to material loss, only
net or real work is done at ratew.

Thus, from Eqs. (A3) and (A4), the thermodynamic form
of the expression for economic inflation given by Eq. (25) is

i =

∫ t+1t

t

(
P̂ − P

)
dt′∫ t+1t

t
P̂ dt′

=

∫ t+1t

t

(
ŵ − w

)
dt′∫ t+1t

t
ŵ dt′

=

∫ t+1t

t
γ1G dt′∫ t+1t

t
β1G dt′

=
〈γ 〉

〈β〉
. (A5)

As a note, a direct link can be drawn here to the increas-
ingly popular concept of Energy Returned on Energy In-
vested (EROI) (Murphy and Hall, 2010). The dimensionless
EROI factor expresses how much energy society is able to
recoup for consumption, relative to the amount of energy it
must expend to access the energy. A point that is sometimes
made is that the EROI is declining as new oil reserves be-
come increasingly difficult to discover.

Here, the real rate of doing workw is defined as the expan-
sion in the potential gradient1G, where the potential drives
the flows of energy to society at ratea. Real work expands
energy consumption at rateda/dt=αw =αd1G/dt (Eq.13).
From Eq. (A2), civilization expansion is positive if there is a
convergence of flows and the amount of potential energy that
must be “expended” in an effort to grow civilization energy
consumption

∫ t+1t

t
αγ1Gdt′ is less than the increase in the

amount of potential energy that becomes newly available to
be “consumed”

∫ t+1t

t
αβ1Gdt′. Thus, the EROI concept is

expressible thermodynamically as

EROI =
Energy Consumption Gain

Energy Expenditure
=

∫ t+1t

t
ŵ dt′∫ t+1t

t
(ŵ − w) dt′

=

∫ t+1t

t
αβ1G dt′∫ t+1t

t
αγ1G dt′

=
〈β〉

〈γ 〉
. (A6)

Since this is just the inverse of Eq. (A5), the EROI is in-
versely tied to inflationary pressures through

i =
1

EROI
. (A7)

For example, a global EROI of 20 calculated over a given
time period1t , corresponds to a corresponding inflationary
pressure of 5 %. If global civilization ever gets to the point
that it expends as much energy during the extraction pro-
cess as it is able to consume in return, then the inflationary
pressure is 100 %, the EROI value is unity and civilization
wealthC is on the verge of tipping into collapse. Any ex-
pansion work that civilization does serves only to maintain a
standstill.

Appendix B

Parameterization of a linear sink term for CO2

A portion of the anthropogenic CO2 that is accumulating in
the atmosphere has a concurrent sink to the land and oceans,
both from natural processes and changes associated with
land-use. The nature of the sink is complex, and depends
on multiple processes with timescales that vary by orders of
magnitude. Detailed assessments of the magnitude, trends,
and uncertainties in the airborne fraction of CO2 emissionsE
are provided byCanadell et al.(2007), and ideally would re-
quire a fully coupled earth system model.

For the sake of simplicity of argument, the carbon dioxide
sink is assumed here to be a linear function of the disequi-
librium in atmospheric CO2 concentrationsC. To see why
this might not be as terrible a choice as it might initially ap-
pear, consider the simple analytic representation of a detailed
carbon cycle model (Joos et al., 1996), which shows that a
small pulse of CO2 into the atmosphere decays over multiple
timescales (Hansen et al., 2007):

CO2 (%) = 18+14e−t/420
+18e−t/70

+24e−t/21
+26e−t/3.4. (B1)

This formulation points to multiple sink coefficients with de-
cay weighted towards shorter timescales, meaning that re-
cent, faster emissions decay at a more rapid rate than older,
slower contributions. Thus, super-exponential (i.e. the expo-
nent of an exponent) emissions growth would progressively
bias the instantaneous, or effective, value of the sink rate to
ever shorter timescales. If, however, CO2 emissions grow
nearly at a logarithmically constant rate, then the linear sink
rate for these CO2 emissionsσ (Eq. 28) should be approxi-
mately constant with time.

Currently, CO2 emissions growth is nearly exponential, so
assuming thatσ is nearly constant, its value can be estimated
by combining data for the ocean and land sink (Le Qúeŕe
et al., 2003) with an assumed pre-industrial equilibirum con-
centration of 275 ppmv (Wigley, 1983). This leads to an
approximate value forσ of 1.55± 0.75% per annum, cor-
responding to a sink timescale of about 65 years (TableB1).
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Table B1. Estimates of the annual ocean and land net sink for
carbon (in Pg C yr−1), including those associated with land-use
changes (Le Qúeŕe et al., 2003), the total sink (in ppmv CO2 yr−1),
the decadal mean value of the carbon dioxide disequilibrium above
275 ppmv [1CO2], and the associated linear sink coefficientσ

(% yr−1). For convenience, the total sink is expressed in units of
ppmv atmospheric CO2 per year through division by the total at-
mospheric mass (Trenberth, 1981), such that 1 ppmv CO2 = 2.13 Pg
emitted carbon.

Ocean sink Land sink Total sink
[
1CO2

]
σ

(in ppmv (% yr−1)
CO2 yr−1)

1980s 1.8± 0.8 0.3± 0.9 1± 0.6 70 1.4± 0.9
1990s 1.9± 0.7 1.2± 0.8 1.5± 0.5 85 1.7± 0.6

The above framework neglects changes in CO2 sinks that
might be expected to change in the future if, for example,
there is saturation of the ability of the earth’s ecosystems and
oceans to uptake carbon (Cox et al., 2000; Le Qúeŕe et al.,
2007). Certainly the systems involved are complex and this
adds to the difficultly of making confident quantification of
future behavior. Simply estimating a constant linear sink
coefficient for atmospheric CO2 based on recent observa-
tions is aimed more at simplicity than accuracy, and certainly
more sophisticated forecasts than presented here could im-
plement some functional dependence forσ([1CO2]). How-
ever, given that there are such large uncertainties on even the
current magnitude of the CO2 sink, assuming a linear sink
coefficient seems adequate until estimates of carbon fluxes
can be further constrained.

Appendix C

Historical records of economic production and CO2
concentrations

Historical measurements of atmospheric CO2 perturbations
from an assumed baseline of 275 ppmv are shown in Fig.C1.
Measurements come from a combination of in-situ measure-
ments from Mauna Loa (Keeling and Whorf, 2005), and
Antarctic ice core data from the EPICA Dome C (Flückiger
et al., 2002) and the Law Dome (Etheridge et al., 1996).
These data are compared to a time series for measurements
of global world production that is derived from a combina-
tion of statistics in 1990 market exchange rate dollars avail-
able since 1970 (United Nations, 2010) and more intermit-
tent, long-term historical estimates for the years 0 to 1992
derived byMaddison(2003). For details seeGarrett(2011).
Although it is unclear exactly why, the two millennia data in
productionP and and [1CO2] are well-represented by a re-
markably simple power-law fit that accounts for 90 % of the
variance (r = 0.952)
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Fig. C1. Measured perturbations in atmospheric CO2 concentra-
tions from a baseline of 275 ppmv, compared with historical esti-
mates of global GDP in inflation adjusted 1990 dollars, with asso-
ciated year markers, and a linear fit to the data.

[1CO2] = 2.5 P 0.61.

The results suggest a fairly long term anthropogenic influ-
ence on atmospheric composition. It might be tempting to
infer from these data that CO2 measurements at Mauna Loa
could be used to gauge the size of the global economy. How-
ever, obviously the observed relationship between [1CO2]
andP must break down sometime in the future.P is an in-
stantaneous quantity, whereas CO2 perturbations decay over
timescales of hundreds to thousands of years (Eq.B1).
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J. G.: Property loss potentials for European midlatitude storms
in a changing climate, Geophys. Res. Lett., 34, L5703,
doi:10.1029/2006GL027663, 2007.

Liou, K.: An Introduction to Atmospheric Radiation, International
Geophysics Series, Academic Press, 2002.

Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate trends
and global crop production since 1980, Science, 333, 616–620,
doi:10.1126/science.1204531, 2011.

Lotka, A. J.: Contribution to the energetics of evolution, P. Natl.
Acad. Sci., 8, 147–151, 1922.

Maddison, A.: The World Economy: Historical Statistics, OECD,
2003.

Manning, M. R., Edmonds, J., Emori, S., Grubler, A., Hibbard, K.,
Joos, F., Kainuma, M., Keeling, R. F., Kram, T., Manning, A. C.,
Meinshausen, M., Moss, R., Nakicenovic, N., Riahi, K., Rose,
S. K., Smith, S., Swart, R., and van Vuuren, D. P.: Misrepre-
sentation of the IPCC CO2 emission scenarios, Nat. Geosci., 3,
376–377, 2010.

Marland, G., Boden, T. A., and Andres, R. J.: Trends: A Com-
pendium of Data on Global Change, chap. Global, Regional, and
National CO2 Emissions, Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, US Department of En-
ergy, Oak Ridge, Tenn., USA, 2007.

Mastrandrea, M. D. and Schneider, S. H.: Probabilistic integrated
assessment of “dangerous” climate change, Science, 304, 571–
575, 2004.

Murphy, D. J. and Hall, C. A. S.: Year in review–EROI or energy
return on (energy) invested, Ann. New York Acad. Sci., 1185,
102–118,doi:10.1111/j.1749-6632.2009.05282.x, 2010.

Nordhaus, W. D.: Economic aspects of global warming in a post-
Copenhagen environment, P. Natl. Acad. Sci., 107, 11721–
11726, 2010.

Earth Syst. Dynam., 3, 1–17, 2012 www.earth-syst-dynam.net/3/1/2012/

http://dx.doi.org/10.5194/acp-7-2287-2007
http://dx.doi.org/10.5194/acp-7-2287-2007
http://dx.doi.org/10.1029/2006GL027663
http://dx.doi.org/10.1126/science.1204531
http://dx.doi.org/10.1111/j.1749-6632.2009.05282.x


T. J. Garrett: Coupled evolution of the economy and the atmosphere 17

Nordhaus, W. D. and Boyer, J.: Warming the World: Economic
Models of Global Warming, MIT Press, Cambridge, USA, 2000.

Owen, D.: The efficiency dilemma, The New Yorker, 78–85, 2010.
Pacala, S. and Socolow, R.: Stabilization Wedges: Solving the Cli-

mate Problem for the Next 50 Years with Current Technologies,
Science, 305, 968–972, 2004.

Parkin, M.: The New Palgrave Dictionary of Economics, 2nd Edn.,
chap. Inflation, Palgrave Macmillan, 2008.

Patz, P. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.:
Impact of regional climate change on human health, Nature, 438,
310–317, 2005.

Pielke, R. J., Gratz, J., Landsea, C., Collins, D., Saunders, M., and
Musulin, R.: Normalized hurricane damage in the United States:
1900–2005, Nat. Hazards Rev., 9, 29–42, 2008.

Raupach, M. R., Marland, G., Ciais, P., Le Quéŕe, C., Canadell,
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