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Abstract. In the current multi-model ensemble approach cli- institutes around the world complex climate models have
mate model simulations are combined a posteriori. In thebeen developed over the past decades. Despite the improve-
method of this study the models in the ensemble exchange inments in the quality of the model simulations, the models are
formation during simulations and learn from historical obser- still far from perfect. For instance a temperature bias of sev-
vations to combine their strengths into a best representatioeral degrees in annual mean temperatures in large regions of
of the observed climate. The method is developed and testethe globe is not uncommon in the simulations of the present
in the context of small chaotic dynamical systems, like theclimate (PCC, 2007).
Lorenz 63 system. Imperfect models are created by perturb- Nevertheless these models are used to simulate the re-
ing the standard parameter values. Three imperfect modelgponse of the climate system to future emission scenarios
are combined into one super-model, through the introductioryf greenhouse gasses. It turns out that the models differ
of connections between the model equations. The connecsypstantially in their simulation of the response: the global
tion coefficients are learned from data from the unperturbednean temperature rise varies by as much as a factor of 2
model, that is regarded as the truth. and on regional scales the response can be reversed, e.g. de-
The main result of this study is that after learning the creased precipitation instead of an increase. It is not clear
super-model is a very good approximation to the truth, muchhow to combine these outcomes to obtain the most realistic
better than each imperfect model separately. These illustraresponse. The standard approach is to take some form of
tive examples suggest that the super-modeling approach is & weighted average of the individual outcom@staldi and
promising strategy to improve weather and climate simula-Knutti, 2007, but is this the best strategy?

tions. We think we can do better by letting the models exchange
information during the simulation instead of combining the
results of the individual models afterwards. We propose to
combine the individual models into one super-model by pre-
scribing connections between the model equations. The con-
There is a broad scientific consensus that our climate i§1ection coefficients are learned from historical observations.

warming due to anthropogenic emissions of greenhousérhiS V\(ay_the super-mod_el leamns 1o c_ombine the strengths
gassesIPCC, 2007. Due to the large impacts of climate of the_lnd|V|_duaI model_s in order to optl_mally reproduce the
change on society there is a growing need to widely samplé"smr'c":lI climate. Is this approach feasible?

and assess the possible climate change related to the plausi-An example of combining models successfully is found in

ble scenarios for future emissions. At about a dozen climatéhe study byKirtman et al.(2003 in which they coupled two
different atmospheric models to one ocean model. It turned

out that the most realistic simulation in terms of the annual
Correspondence tdf. M. Selten mean, annual cycle and interannual variability of sea sur-
BY (selten@knmi.nl) face temperatures over the tropical pacific was obtained by
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coupling the momentum fluxes from one model and the heatty = ox (yx — xx) + Z C,ij,. (Xj — xk)

and fresh water fluxes from the other to the ocean model. j#k

Another indication that this approach might be feasible ; _ _ _ Y (v, _
. i . o k= Xk (Pk — 2k) k+§ Cii k 2
is found in the practice of data assimilatiodmpo et al. Y Y ot ki (i = %) @

2006. It turns out that with a limited amount of informa- . .

tion, the complete state of the atmosphere can be recoveredt = * — P + Z Ciilzj—w), k=123

Synchronization in chaotic systems provides an explanation i#k

why this is at all possible, since linking chaotic systems with wherek indexes the three imperfect models with perturbed

a signal from one system to the other is known to lead to synparameter valuesy, 8; and p; and ij, C,ij and C,*:J. are

chronization of their state®€cora and CarrglLl99Q Duane  referred to as connection coefficients.

etal, 2009. Therefore we expect that in the super-modeling  Each variable of each model is connected to the other two

approach only limited information needs to be exchanged tanodels. This gives two connection coefficients for each of

effectively influence the combined behaviour of the imper- the variables and a total number o&«3x 3 =18 connec-

fect models. tion coefficients. These 18 coefficients will be learned from
In this paper we use simple chaotic systems to developlata that sample the truth. The solution of the super-model,

and demonstrate the super-modeling approach. We regardenoted by subscript “s”, is taken to be the average of the

the model with standard parameter values as ground truth anghperfect models

create imperfect models by perturbing the parameter values.

Three imperfect models are connected and combined into g, — 1 (x1 + x2 + x3)
super-model. The strength of the connections are determined :i
from data from the ground truth through a learning Process.,. — = (y; + yp + y3) ©)

w

The learning process takes the form of the minimisation of a
cost function that measures the difference between the trutlgS _
and the super-model during short integrations.

In Sect.2 the form of the connections is introduced, fol-  Note that Egs.2) define a new dynamical system with
lowed by the introduction of the cost function and the min- ihree times the number of degrees of freedom. The super-
imisation method. The super-modeling approach is appliedyodel is not merely a sort of average system. Depending
to the Lorenz 63, Bssler and Lorenz 84 systems in Se8tS. o the connections, it can have a very different dynamics.
and4. Discussion and conclusion of the method and ideasrne super-model has the potential to outperform the ensem-
forimprovement can be found in Sebt. ble averaged simulations of the individual models because
it can display richer dynamical behavior. The learning must
ensure that the behavior after learning is more realistic.

1
3 (z1 + z2 + 23).

2 The super-modeling approach

To introduce the super-modeling approach we use the?-2 Costfunction
Lorenz 63 systemlorenz 1963. The Lorenz 63 system . : .
. assume that we have a long time series of observations
is often used as a metaphore for the atmosphere, because g L . )
. . .~ of the truthx,. We pick initial conditionsxq(z;) from this
its abrupt regime changes and unstable nature. The equations = " : . C_ .
for the Lorenz 63 system are ang time series aK_Umesrl-,_ i=1,..,K, separated by fixed
distancesi. Short integrations of lengtiA are performed
=0 (y — x) with the super-model starting from thegg initializations
(1) (see Fig.1). To measure the ability of the super-model to
] follow the truth we introduce the following cost functidm
L=xy - pz. that depends on the vector of connection coeffici€nts

The standard parameter values ares 10, ﬁzg and fH4A

K
p=28. Numerical solutions are obtained by a fourth order F(C) = 1 Z / Ixs(C, 1) — xo()2y' dt  (4)
Runge-Kutta time stepping scheme, with a time step of 0.01. KA = Uy

y=x(p—-2)—y

2.1 Connecting imperfect models The cost function is normalized b}L so that it repre-
sents the time averaged mean squared error. The fattor

Imperfect models are created by taking three copies of thavith 0 <y <1 is introduced to give stronger weight to the
Lorenz 63 system with perturbed parameter values. A supererrors close to the initial conditions. The idea behind this is
model is created by the introduction of linear connectionthat the Lorenz 63 system displays sensitive dependence on
terms initial conditions. Trajectories diverge not only due to model
imperfections, but also due to internal error growth: even a
perfect model deviates from the truth if started from slightly
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oce\ Table 1. Standard and perturbed parameters for the Lorenz 63
é?> > system.
O,
. > o p B
N . Truth 10 28 8
N7 Time . Model 1 13.25(32%) 19 (32%) 3.5(31%)
series o Model 2 7(30%) 18(36%) 3.7 (39%)

observations Model 3 6.5(35%) 38(36%) 1.7 (36%)

first for a small number of initializations. Subsequently we
take this solution as the initial guess of the minimum for an
t > increased number of initializations to find the minimum for
1 this set. This process is repeated until we found that the min-
imum did not change any longer by increasing the number of
Fig. 1. The cost function is based on short integrations of the superinpitializations. This issue is discussed further in S&ct.

model starting from observed initial conditions of the truth at times To avoid negative solutions for the connection coefficients
t e_md measures the mean-squared dn‘feren(_:e l_)etween the short eVOH added an extra term in the cost function in case one of
lutions of the super-model and the truth as indicated by the shadeﬁ:

areas. The short integrations span a time intetvaindd denotes

the fixed time interval between the initial conditions

e coefficients becomes negative. This term is just the abso-
lute value of the negative connection coefficient, which easily
dominates the value of the cost function.

different initial conditions and leads to a nhon-zero cost func-

tion due to chaos. This implies that the cost function mea-3 Results Lorenz 63

sures a mixture of model errors and internal error growth. ] .

Model errors dominate the inital divergence between modelT h"e€ imperfect models are created by perturbing the stan-
and truth, but at later times in the short term integrations in-dard parameter values as displayed in Tdblehe perturbed

ternal error growth dominates. Since we wish to measure th¥@lues differ from the standard values by 30 % to 40 % and in
model errors, the factar’ discounts the errors at later times each imperfect model parameter values have been increased

to decrease the contribution of internal error growth. as well as decreased. With these perturbations the imperfect

We base the choice af on the doubling time of errors. models behave quite differently from the truth as can be seen
From a large number of runs (A0from randomly perturbed in Fig. 2. Both model 1 and 2 are attracted to a point, whereas
initial conditions we estimate the average doubling tir model 3 has a chaotic solution that resembles the truth, but
the initial error. We choosg such thaty ™ = 1 go attime the attractor is displaced and larger. All models were initi-
¢ the weight is reduced té For the Loreznz 63 system ated from the same state and the transient evolution towards
7=0.75, which givesy =0.4. The length of the short inte- the attrgctor IS plott.ed as well. _ .

By using bifurcation methods, it can be analytically shown

grations is taken to b& =1, which is a little bit longer than . . !
the doubling time. By comparison the average time for onethat there exists a Hopf bifurcation for the Lorenz 63 system

o . — o(B3+o+p) ‘< i : : .
rotation in the Lorenz 63 system is 0.8. The separation &tpH="—1—;— This bifurcation marks different kinds of
between the initializations is 0.2 time units. dynamical behaviour. Both model 1 and 2 have valuegfor

below the Hopf bifurcation, whereas model 3 has a value for
2.3  Minimisation o that lies far above the Hopf bifurcation. For the truth the

value of p lies above the Hopf bifurcation as well, which is

For a fixed choice of the number of initializatioRsthe cost ~ why model 3 and the truth have similar behaviour.
function solely depends on the connection coefficights The minimisation procedure outlined above successfully
Eg. @). The super-model can be determined by finding aidentified a minimum of the cost function with a value
minimum in the cost function in the 18 dimensional spaceof 0.02. By comparison the value of the cost function for an
of C. For this we employ the Fletcher-Reeves-Polak-Ribierearbitrary choice of all connection coefficients equal to unity
Conjugate Gradient methoé&létcher and Reeve$963. It is 0.5. With the connection coefficients of this minimum
uses the gradient of the cost function to approach minima andve performed a long integration with the super-model and
stops when the gradient is (close to) zero. plotted the trajectory in Fig3. The attractor of the super-

We found it advantageous to make use of the dependencmodel is very close to the true attractor. While integrating
of the cost function on the number of initializatios to the super-model, the imperfect models fall into an approx-
avoid shallow local minima. We minimize the cost function imate synchronous behaviour due to the connections: the
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oo 1 Lorenz 63 (connected, after learning)
Model 1
: Truth
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Fig. 3. Trajectories for the super-model (black) and the standard

. . . . Lorenz 63 system (grey) from two different points of view.
Fig. 2. Trajectories for the three unconnected imperfect models

(black) and the standard Lorenz 63 system (grey). The trajectory
for the imperfect models includes the transient evolution from the
initial condition towards the attractor. 3.1 Robustness

The minimum of the cost function is determined on a limited
temporal correlations between thegy, andz variables of the period of observations of lengttk — 1)-d + A that we refer
three models are in excess of 0.95 (not shown) and the sum s the training set. We have chosér: 200 to determine
of the time-mean distances between the three model stat@e minimum and subsequently evaluate the cost function us-
normalized by the sum of the standard deviations®fys  ing theC values of this minimum for subsets of the training
andzs is 0.34. In particular the-values of the third model gt of length corresponding t = 20, 50, 100, 150. Cross
are systematically larger than those of the other two modelsections of the cost function around the minimum can be cre-
(see Fig4). The improvement in the behaviour of the con- ated by changing one connection coefficient and keeping the
nected imperfect model solutions as depicted in &ilo be  others fixed at the values of the minimum. The cross sections
compared with Fig2) is a clear indication of the feasibil- for the different subsets are plotted in Figfor connection
ity of super-modeling in the context of this low-dimensional Coefﬁcientscévs andC3,, since these are typical examples.

chaotic system. , In Fig. 5a the cost function fok =200 displays one well

In addition to this minimum, we found that by choosing defined minimumcy.=10.1. The position of the minimum
different initial values for the connection coefficients in the yoes not change 22 oh when the cost function is calculated
minimisation procedure different local minima in the cost using the different subsets. The minimum becomes more
function are obtained with values of the cost function that arepronounced as the training set is enlarged. The values of the
of comparable magnitude. In the remainder of this section We&ost function monotonically converge ad= 200 seems a

will test the robustness of the learning process, research thFeasonabIe size of the training set. FigBbedoes not show
issue of local minima and develop measures to determine thg well defined minimum for any. Note that the scale is

quality of the different super-model solutions. smaller than in Fig5a. The values of the cost function do

not change much in the different subsets and the slopes are
very flat. Changing connection coefficieGt, apparently
does not change the quality of the solutions much. A family
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Lorenz 63 (model 1, connected, after learning) Table 2. The connection coefficients of two super-model solutions
of the Lorenz 63 system and their differences.
Truth
Model 1 -———
28 Super-model 1 Super-model 2  Difference
;% ct, -0.01 1.52 1.53
0 Ci, 4.81 0.03 -4.78
10 > C3 5.69 13.28 7.59
0 C3s 13.75 14.99 1.24
(a) Model 1 C3y 17.64 21.51 3.87
C3, -0.01 1.09 1.10
Lorenz 63 (model 2, connected, after learning) y
Cl’2 7.67 3.53 —-4.14
Truth Cr3 18.14 27.36 9.22
Model 2 ———— C3, 3.64 0.00 —3.64
&0 Cq 10.06 6.50 —3.56
20 Cyy 2.71 3.89 1.18
Z 30 C3, 9.79 6.93 —2.86
20
19 , 3, 5.47 3.95 -152
C% 4.03 12.24 8.21
13
(b) Model 2 C3q 10.72 3.50 ~7.22
Csa 13.54 220 1134
Lorenz 63 (model 3, connected, after learning) C3, 8.70 2.89 -581
C3p 1.50 3.85 2.35
Truth
Model 3 ———
60
50
40 L.
z 30 3.2 Local minima
20
10 . . .
0 In the previous section we noted that there is a large fam-

(c) Model 3 ily of super-model solutions with similar values of the cost
function connected to the minimum found by the minimisa-
Fig. 4. Trajectories for the three connected imperfect models withtion. The minimisation was repeated starting from random
connections determined by the learning process (black) and th&alues for the connection coefficients between [0, 10] that
standard Lorenz 63 system (grey). were drawn from a uniform probability distribution. In this
way we found other minima that are distinct in many more
connection coefficients. For one of these minima, the con-
of super-models of similar quality can be found by changingnection coefficients are shown in Tatetogether with the
connection coefficient’, between 8 and 14. values for the first minimum. In the fourth column the differ-
Ideally the super-model found by the learning process isence between the connection coefficients of minima 1 and 2
not dependent on the training set. To test whetkier200  jndjcates that the minima are clearly distinct and do not be-
is large enough for this to be true the cost function is pIotted|ong to the same family of solutions.
in Fig. 6 for different periods of observations: the training  p plot of the attractor of the second super-model solu-
set and independent sets of the same size that were obtainggy, in its phase space (not shown) looks almost exactly the
from a longer consecutive integration of thye truth. Again the g me as the plots of the first super-model solution in Bgs.
cross sections for connection coefficiedts; and C3; are  anda. The value of the cost function for the second solution
shown (Fig 6). In Fig. 6a the position and value of the min- 5 s|ightly lower (0.003 instead of 0.02) and is a first indi-

imum remain close to that of the training set. In F89.the  cation that the second solution might be better. In the next
cost function is flat for all sets of observations. We concludesection we will use various measures to evaluate the quality

dependent data, sk =200 seems a reasonable size of the

training set. 3.3 Quality measures
The cost function is a measure of the quality of the short term

behaviour of the super-model in which the initial conditions
play a role as is the case in weather predictions. To evaluate

www.earth-syst-dynam.net/2/161/2011/ Earth Syst. Dynam., 2,11612011
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Costfunction Lorenz 63 Costfunction Lorenz 63
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Fig. 5. Cross section of the cost function for the super-model of the Lorenz 63 system calculated for different subsets of the original training
set that was based dti=200 initializations. The subsets vary in the number of initializations ki.e.20, 50, 100, 150. A cross sections is
created by changing connection coeﬁicieﬁ% in (a) andCé1 in (b) and keeping the other coefficients fixed at the values of the minimum
found by the learning process using the training set.

Table 3. Mean, standard deviation (SD) and covariance for the threeTable 4. Mean, standard deviation (SD) and covariance for the truth
unconnected imperfect models of the Lorenz 63 system. The valueand for the two super-models of the Lorenz 63 system. Statistics are
for the first two models are calculated analytically. Statistics for based on 500 runs of 5000 time units. Between brackets the 95 %
model 3 are based on 500 runs of 5000 time units. Between bracketsrror estimation is given.

the 95 % error estimation is given.

Truth  Super-model 1  Super-model 2
Meanx —0.006 (0.22) 0.007 (0.21) —0.000 (0.25)

Model1 Model2 Model 3

Meanr +7.94 +7.93  0.003(0.002) Meany —0.006(0.22)  0.007 (0.21) —0.000 (0.25)
Meany +7.94 +7.93  0.003(0.010) Mean: 23549 (0.02)  22.93(0.02)  23.19 (0.03)
Meanz 1800  17.00  34.23(0.030) SDx  7.924(0.005) 7.717(0.003)  7.812 (0.005)
SDx 0 0 7.628(0.002) SDy  9.011(0.008) 8.791(0.009) 8.723(0.009)
SDy 0 0  9.416(0.010) SDz  8623(0.025) 8596 (0.016)  8.549 (0.032)
SD: 0 0 8765(0.030) Cov.xy 62.786(0.07) 58.952(0.05) 60.6416 (0.08)
Covxy O 0  58.19(0.036) Cov.xz —0.020(0.76)  0.023(0.74)  0.000 (0.88)
Covxz 0 0 0.007(0.44) Cov.yz —0.016(0.61)  0.021(0.65) —0.001 (0.69)
Covyz 0 0  0.012(0.68)

. .. Mean, standard deviation and covariance
the quality of the super-model beyond the range that is in-

fluenced by the initial conditions, different measures can bE"I'he calculation of these statistics is based on 500 runs of

used as in climate simulations. . . ;
The most straightforward measures are the different mo_5000 time units of the truth, the imperfect models and both

. ; . . super-models. An error estimation of these quantities is
ments of the probability density function of the states in be%sed on the spread of the 500 estimates of each quantity.

phase space, such as the mean, variance and covarianceﬂ]e results for the imperfect models are given in Tabiad
the state variables. Since these do not take into account thF .
or the truth and both super-models in Tablle

temporal evolution through phase space, we will also evalu-

ate the ability of the super-model to reproduce the autocorre- For the parameter vaIL!es of model 1 and 2 the attractor
lation functions of the state variables. As a final measure Wéeduces to tW,O Stabl? point attractors. They and; val-

will check the ability of the super-model to synchronize with ues of these f|?<ed pomts can _be gaICUIated anqutlcally from
the truth at the end of this section. Egs. @) by setting the time derivatives to zero. Since the sys-

tem settles in one of these point attractors depending on the
initial condition, the mean values are equal to these values.

Earth Syst. Dynam., 2, 16147, 2011 www.earth-syst-dynam.net/2/161/2011/
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Costfunction Lorenz 63 Costfunction Lorenz 63
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Fig. 6. As in Fig. 5, except that the cost function is calculated for the training set With200 initializations (thick line) and 9 additional
independent sets of observations of the same length (thin lines) that were taken from a consecutive longer integration of the truth.

The statistics of the chaotic solution of model 3 (see T&ple assimilation. Followingrang et al(2006 we add a so-called

differ substantially from the truth (see Tablg especially  simple nudging term to the equations of thevariable for

the mean value of is much larger. each of the three connected imperfect models as in Bjs. (
Both super-models (see Tabdg have statistics that are This term “nudges” the actual values gf to the observed

close to that of the truth with the largest differences of ordervaluey, and the value of parametedetermines the strength

5% in the covariance betweanandy. The second super- of the nudging.

\r:;?s;lé: sgcn;iv&/;]fat closer to the truth, especially in the co t=or % — ) + Z C;’é, (xj _ xk)

J#k
3.4 Autocorrelation e =x(ok—2) — i+, Ci (v =) +n(vo— 1) (5)
J#k
The a_utocorrelaﬂon is a sf[ans_tlcal measure of the tem_porakk = vk — Bk + Z ci, (zj—z) k=123
evolution. It gives an indication of the memory and time et

scales present in a system. The plots in Figre based on
100 runs of 3000 time units and the shading corresponds to

the 95 % error range of the autocorrelation of the truth. Definition 1 A model is synchronized with the truth if the

Both super-models capture the fast decorrelationahd  RMS difference between the model state and observed true
y and the slow decorrelation efwell, but the second super-  state atr = 1 is smaller thans and remains smaller thaa
model is closer to the truth. It also better represents the domifor  — co.

nant time scale which is most apparent in the autocorrelation ) .
of z. After 9 oscillations super-model 1 runs out of phase € IS chosen larger thafy since synchronized systems of-
with the truth somewhat, whereas super-model 2 is still inten deviate somewhat during short extreme excursions of the

We take the following definition of synchronization:

phase. trajectory, but remain synchronized. As a measure of syn-
chronization we use the minimum strength of the nudging
3.5 Synchronization with the truth n for which synchronization is accomplished independent of

the initial condition, for integen. For practical purposes we

Pecora and Carro{l1990 have shown that limited informa- choose a time interval df =1000 time units during which
tion exchange between two identical Lorenz systems can leathe models must remain withindistance of each other.
to synchronization of the model states even when the systems How quickly systems synchronize very much depends on
are initialized from very different initial conditions and differ the initial conditions Yang et al, 2006, therefore we check
slightly in parameter values. The ability to synchronize with synchronization for 100 restarts from different initializations.
the truth is another measure of the quality of a model. In thisBy trial and error we found that two identical Lorenz systems
section we will compare how well the super-models comparewith standard parameter values (what we call the truth) syn-
to a perfect model in this respect. chronize using = 3,5 =2 ande = 4 for all 100 initializations.

Yang et al. (2006 extended the study of synchro-  To compare the two super-model solutions the same set
nized Lorenz systems, re-interpreted in the context of dataf 100 initializations are used. The first super-model needs

www.earth-syst-dynam.net/2/161/2011/ Earth Syst. Dynam., 2,11612011
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Fig. 7. Autocorrelation as a function of delay time for y and
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Fig. 8. Probability density function of the distance between the
truth and the models while nudging the models to the truth in the
y-variable with strengtle =6. Plots are for a copy of the truth
(thin solid), the first (thick solid) and the second super-model (thick
dashed). The PDF is calculated from a simulation of Iengﬁ’tim]e
units and is normalized to one.

a nudging strength of =11 in order to synchronize with
the truth. The second super-model needs a somewhat larger
valuen =13. Using the same experimental setup, we found
that the imperfect models individually are not able to syn-
chronize with the truth at all. Both super-models need a
stronger nudging than the perfect model. In this measure,
the first super-model is closer to the truth, despite the fact
that the mean temporal evolution, as measured by the auto-
correlation, is more faithfully captured by the second super-
model that also has a smaller cost function value. However,
if we calculate the probability density function of the dis-
tance between the truth and the super-model fronPaifre
units long integration of the super-model nudged to the truth
as in Egs. ) for n =6, we find that more often the second
super-model remains closer to the truth than the first super-
model (see Fig8). Nevertheless, the second super-model
needs a slightly larger nudging strength to synchronize with
the truth than the first because for nudging values larger than
n =5, it has larger probability, albeit small, of exceeding the
thresholde =4. Forn =6 the distance between the second
super-model and the truth is larger than 4 during 1.6 % of the
time whereas it is 1.3 % for the first. Far=10 it is 0.27 %

for the second and 0.075 % for the first. This probability be-
comes small enough to meet the synchronization criterium of
Definition 1 forn =13 for the second super-model, whereas
for the first this happens for=11. We conclude that the

z for the standard Lorenz 63 system and both super-models. Théterpretation of the ability of a model to synchronize with
shaded area indicates the 95 % error band for the autocorrelation dhe truth as a measure of the quality of a solution is not so

the truth, based on 100 runs of 3000 time units.

Earth Syst. Dynam., 2, 161+%7, 2011

straightforward. It serves more as a measure of the stability
of the model.

All measures indicate that the second super-model is
closer to the truth than the first. It turns out that the value
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. Lorenz 63 (response after learnin
Table 5. Standard and perturbed parameters for thedRer system. 263 (resp "o
Truth
Super-model
True response

a b C Super-model response
100
Truth 0.2 0.2 5.7 80
Model1 0.26 (30%) 0.14(30%) 7.5 (32%) 60
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30 %) T
Model 3 0.27 (35%) 0.12 (40%) 4. (30%) 20

Fig. 9. Trajectories for the second super-model (black) and the stan-
dard Lorenz 63 system (grey). The larger attractor corresponds to
p =56, the smaller to the standard valpe 28. The super-model
was trained on the standard parameter value.

of the cost function is indeed a good indication of the quality
of the solution and that the approach of minimizing the cost
function is a fruitful strategy.

3.6 Simulating climate change With these parameter perturbations marked changes occur

In order to check whether the super-model is also able to simi" the attractor as can be seen in FI§. The attractor of

ulate climate change, for instance the response of the truth tinPerfect model 1is still chaotic and has a similar shape but
a parameter perturbation, we doubled the parameteithe the amplitude of the irregular oscillations is larger. Imperfect
true system and in the imperfect models in the super-modelM°del 2 and 3 have a periodic attractor of different shapes.
The response of the attractor is an increase in size, the shape 10 determine the super-model we first need to choose val-
remains very similar (see Fig). Although the connection U€S for the different parameters in the cost function. For the
coefficients are learned far= 28, the super-model quite ac- Rossler system the time it takes for initial errors to double
curately simulates the attractor for=56. The mean-value IS On average 6.7. Following the same procedure as for the
increases with a factor of 2.2 for both the truth as well as the-0renz 63 system we sgt=0.9 andA =12 time units. The

super-model. The response is practically the same for botffumber of initializations in this case I = 300. _
super-models. We minimized the cost function by varying the connection

coefficients of the super-model. This minimum is plotted in

Fig. 11in a cross section along3,. The value at the min-
4 Results Fssler and Lorenz 84 imum is approximately 0.0001, which is much lower than

a typical value of the cost function (0.004 for all connec-
In this section the super-modeling approach is applied to thgjon coefficients equal to 1). To check the robustness of this
Rossler and the Lorenz 84 systems. Both display chaotiGninimum with respect to the limited size of training set, we
behaviour for standard parameter settings, but the attractorgy|cylated the cost function for 9 additional sets of 300 ini-
are quite different. tializations, that were taken from a longer simulation of the
truth. The figure shows that 300 initializations are enough
to reliably estimate the cost function. This minimum is not
unigue. By changing the initial values of the connection co-
efficients in the minimisation procedure, we found different
minima with similar values of the cost function as was the
case for the Lorenz 63 system. Here we evaluate the quality

4.1 ROssler

The Lorenz 63 attractor is also calledbatterfly, because
of its shape. As a simplification of this example of chaos
to one where the attractor only has one “wing”, thésBler
equations were proposeldssler 1976. The time evolution R
is less chaotic than in the Lorenz 63 system, since it Iacks.Of this minimum only.

the irregular transitions between two unstable points. The With the connection coefficients of this minimum, we inte-
equations are grated the super-model and plotted the trajectory of the three

connected imperfect models in Fi2. The three models
x=—0O+2 fall into an approximate synchronous behaviour, but espe-
y=x + ay (6) cially the amplitudes of the excursion in thedirection are
i=b+z(x — o). different with model 3 making the largest excursions. The
temporal correlations between thgy, andz variables of the
The parameter values for the truth arésBlers values: three models are in excess of 0.99 (not shown) and the sum of
a=0.2,b=0.2 andc=5.7. The values for the parameters the time-mean distances between the three model states nor-
for the three imperfect models can be found in Tebldhe malized by the sum of the standard deviations0fs andzs
parameter perturbations applied are again of the order 30 %s 0.18. The super-model solution, which is defined as the av-
to 40 % and in each of the imperfect models parameters haverage of the three imperfect models, is plotted in Egjfor
been decreased as well as increased. two points of view. Visually the attractor of the super-model
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Table 6. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of thédRler system. The 95 % er-
ror estimation based on 500 runs of 5000 time units is given between
brackets.

Model 1 Model 2 Model 3
Meanx 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Meany —1.603 (0.099) —0.710 (0.0009) —1.26 (0.0009)
Meanz 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)
SDx 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SDy 6.567 (0.099) 6.400 (0.0009)  4.080 (0.0009)
SDz 6.853 (0.229) 1.787 (0.0015)  3.896 (0.0022)

Covariancexy -11.21 (0.33) —4.492(0.005) —4.49 (0.004)
Covariancexz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covarianceyz -0.35(0.39) 2.784 (0.004) 2.06 (0.003)

Rossler, Costfunction
0.0008 T T T T T T

0.0007 | g
0.0006 ‘
0.0005
0.0004

0.0003 -

Value of the costfunction

0.0002 -

0.0001 -

4.5

Fig. 11. Cross sections of the cost function for the super-model
of the Rbssler system for the training set (thick line) with length
corresponding tX =300 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficient5, and keeping the others fixed.

is very similar to the true attractor. We will apply the same
measures as for the Lorenz 63 system to check the quality of
the super-model.

First we compare the means, standard deviations and co-
variances for the unconnected imperfect models in Table
and for the super-model and the truth in TaBleThe super-
model turns out to be closer to the truth than the best im-
perfect model (model 3). Its statistics almost fall within the
95 % error bounds of the true values.

To compare the temporal behaviour we calculated the au-
tocorrelation functions as plotted in Fity4 for the truth and
the super-model. They indicate a strongly periodic behaviour
with a long decorrelation time scale. For all three variables

Fig. 10. Trajectories for the three unconnected imperfect modelsyhe 4 tocorrelation function is close to and sometimes within
(black) and the standarddRsler system (grey). Note the different the 95 % error band, again indicating that the super-model is

scales on the axes. The truth is the same in all three plots.

Earth Syst. Dynam., 2, 161+%7, 2011

a very good approximation of the truth.
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Rossler, after learning

35

30

25

20

z 15

10

5

0

%
y

(a) Model 1
Rossler, after learning

35

30

25

20

z 15

10

5

0

8%
y

(b) Model 2
Rossler, after learning

35 Truth
30 Model 3 ———-

(c) Model 3

Fig. 12. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and th
standard Rssler system (grey).
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Rossler, after learning

Truth
Super model

(a) Point of view 1

Rossler, after learning

Truth

25 Super model
20
15
10
5

() Point of Viw 2

Fig. 13. Trajectories for the super-model (black) and the standard
Rossler system (grey) for two different points of view.

Finally we look at the minimum nudging strength needed
to enable synchronization with the truth. We use the same
definition of synchronization as for the Lorenz 63 model with
the following values for the parametets 0.05,¢ =0.4 and
T =1000 time units. When the nudging term is applied to the
y variable only, we find that the standard$sler system syn-
chronizes with a copy of itself for a hudging strength equal
ton=1. The super-model also synchronizes when nudging
only they variable, but it needs a stronger nudging:ef 2.

It outperforms model 3 in this measure; even by replacing the
y variable with the true value (which corresponds effectively

to an infinitely large nudging strength), synchronization does
not occur.

To conclude, also in the case of thés3ler system, super-
model solutions can be found by combining imperfect mod-
els that give a very good approximation to the truth. This may
not be surprising since thedRsler system is less chaotic than
the Lorenz 63 system (note the long autocorrelation time-
scale in Fig.14) and more regular behaviour is presumeable
easier to reproduce. On the other hand, a more chaotic sys-
tem has richer dynamics (more time-scales, instabilities etc.)

%hus the connected models have more degrees of freedom to

mimick the truth. Beforehand it is hard to predict whether

Earth Syst. Dynam., 2,11&]1 2011
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Table 7. Mean, standard deviation (SD) and covariance for the truth
. and super-model of the@®sler system. The 95 % error estimation
Autocorrelation Rossler (x) based on 500 runs of 5000 time units is given between brackets.

' ' ' " Truth -

%‘Uper mOd?' TR Truth Super-model

n
i

A i A i i

Meanx 0.177 (0.003)  0.175 (0.003)
Meany —0.886 (0.009) —0.878 (0.009)
Meanz 0.886 (0.009)  0.874 (0.009)

SDx 5.16 (0.04) 5.10 (0.03)
SDy 4.84 (0.03) 4.82 (0.02)
SDz 2.84 (0.04) 2.95 (0.03)

VUV v vy Covariancey  —4.693 (0.05) —4.702 (0.04)

-1 : . . . . Covariancexz 4.693 (0.05) 4.644 (0.04)
0 10 20 30 40 50 60 Covarianceyz 2.183(0.12) 2.025 (0.19)
Time

(a) x

Autocorrelation

Autocorrelation Rossler (y) more chaos helps or hurts, so we test the super-modeling ap-
' ' ' proach also on the more chaotic Lorenz 84 system.

1 " Truth -
i Super model -

I

4.2 Lorenz 84

The Lorenz 84 system was proposed by Lorenz as a toy
model for the general atmospheric circulation at midlatitudes
(Lorenz 1984. The model equations are

2

Autocorrelation

x=—-y2 - 72 —ax+ aF
y=xy—bxz—y+ G @)
z=Dbxy+ xz— z.

0 10 20 30 40 50 60 The x variable represents the intensity of the globe-
(b) Time encircling westerly winds ang andz represent a travelling
Y large-scale wave that interacts with the westerly wind. Pa-
rametersF’ andG are forcing terms representing the average
north-south temperature contrast and the east-west asymme-
" Truth - tries due to the land-sea distribution respectively.
0.8 Super model - | The standard parameter values for the trutmaxé, b=4,
F =8 andG =1, for which the model displays chaotic be-
0.6 i ) 1 haviour fzan Veen2001). In Table8 the perturbed parameter
' i i values of the imperfect models are given. The perturbations
1 are again about 30 % and in each imperfect model parameters
have been decreased as well as increased.

With these parameter perturbations the attractor of the
b imperfect models differs substantially from the truth (see
Fig. 15). Both model 1 and 3 have periodic attractors,
-0.2 : : : : : whereas model 2 has a point attractor (the transient evolu-
tion towards the point attractor is shown for model 2). The
periodic behaviour corresponds to the wave traveling period-
ically around the hemisphere.

Fig. 14. Autocorrelation for the super-model (black) and the stan- FoIIowmg the same proce_dure as before to find th_e param-
dard Rossler system (grey). The thickness of the grey line corre-e,ters u§ed in the cost function We, foupet 0.5 and.A.—. 2.2
sponds to the 95 % error band for the truth, based on 100 runs ofime units, based on the average time it takes for initial errors
3000 time units. to double (on average 1.1 time units). However with these
values the minimisation algorithm did not produce a well de-
fined minimum of the cost function. The high value of the

Autocorrelation Rossler (z)
1 T T T

0.4

Autocorrelation

0.2 f

Time

(©) z
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Table 8. Standard and perturbed parameters for the Lorenz 84 sys-
tem.

U — a b F G

Truth 0.25 4 8 1
Model1 0.33(32%) 5.2(30%) 10.4(30%) 0.7 (30%)
Model2 0.18 (28%) 5.2(30%) 5.6(30%) 1.3 (30%)
Model3 0.18 (28%) 2.7 (33%) 10.4(30%) 1.3 (30%)

NP OoORNW

Lorenz 84, Costfunction
0.0009 T T T T T T

0.0008

0.0007

(a) Model 1

0.0006 |

0.0005 |.

Truth

Model 2 -~ 0.0004

Value of the costfunction

0.0003

0.0002 . L L I 1 .
4.5 5 55 6 6.5 7 7.5 8

NP OoORNW

Fig. 16. Cross section of the cost function for the super-model of
the Lorenz 84 system for the training set (thick line) with length
corresponding t& =200 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficierlt‘:i:2 and keeping the others fixed.

(b) Model 2 autocorrelation function of (0.6 at 8 time units, see Fi§8)

indicates that the initial conditions still have an impact on
the evolution after 8 time units. Therefore we decided to in-

VA — creaseA to 8 andy to 0.8. In addition it turned out that it

was easier to find good minima using the amoeba minimisa-
tion algorithm (Nelder and Meadl1965 instead of the con-
jugate gradients minimisation. The amoeba method does not
need gradient information and is less susceptible to getting
stuck in local minima. The training set is based K 200
initializations, each 0.2 time units apart selected from a long
simulation of the truth.

-1 Starting from different initial values for the connection co-
efficients we found different minima of the cost function. A
cross section through the best minimum that we found is
shown in Fig.16. The value at this minimum is approxi-
mately 0.0003, which is again much lower than the value
of the costfunction for all connection coefficients equal to 1
(0.08). To check the robustness the cost function is evaluated

Fig. 15. Trajectories for the three unconnected imperfect modelson 9 additional independent sets of 200 initializations. In all

(black) and the standard Lorenz 84 system (grey). 9 sets the minimum is reproduced around the same value of

the connection coefficient. The same is true for cross sections
of the other connection coefficients (not shown).

NP OoRNW

(c) Model 3
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Truth

Supermodel Table 9. Mean, standard deviation (SD) and covariance for the

super-model and the standard Lorenz 84 system. The 95% error

i- estimation based on 500 runs of 5000 time units is given between
0. brackets.
-0.
Y Truth Super-model
-2.
Meanx 1.015 (0.008)  1.013 (0.008)
Meany 0.060 (0.018) 0.058 (0.017)
a Meanz 0.271(0.005)  0.272 (0.004)
SDx 0.589 (0.014)  0.596 (0.014)
SDy 0.919 (0.002)  0.920 (0.002)
SDz 0.908 (0.002)  0.906 (0.002)
(a) Point of view 1 Covariancexy —0.053 (0.018) —0.050 (0.022)
Covariancexz  —0.038 (0.004) —0.039 (0.003)
Truth Covarianceyz  —0.075 (0.006) —0.063 (0.005)
Supermodel -
z.g r
15¢ well reproduced by the super-model both in shape as well as
O'§ I in periodicity.
‘0_'1 [ The Lorenz 84 system with standard parameter values
130 synchronizes with the truth for a strength of the nudging
25 ¢ termn =1 in the y variable only, usingg =0.1,¢=0.5 and

T =1000 in Definitionl. The super-model also synchronizes
with the truth, but it needs a larger nudgingmof 4. None
of the imperfect models is able to synchronize with the truth,
when the nudging is in the variable only.

Concluding this section, super-model solutions can be
found that reproduce the true system very well and outper-
form the individual imperfect models for the Lorenz 84 sys-

. . tem as well. For this system, the minimisation process was
tegrated the super-model and plotted the trajectory infg. found to be more sensitive to the length of the short integra-

A visual comparison with the truth indicates a very good ions A and the discount parameter requiring the use of
agreement. In this case the three imperfect models are almo%f parametel Teq 9
e more robust amoeba minimisation procedure.

perfectly synchronized (not shown). The synchronization is
stronger in this case as compared to the other two systems.
The temporal correlations between they andz variablesof 5§ conclusion and discussion
the three imperfect models in the super-model are in excess
of 0.99 and the sum of the time-mean distances between thin this study we developed and tested a novel multi-model
three model states normalized by the sum of the standard deensemble approach in which imperfect models of an ob-
viations ofxs, ys andzs is only 0.03. The model trajectories servable system are combined into a single super-model by
stay very close together on average. The reason for this mighetting the models exchange information during the simula-
be found in the high value of several connection coefficientstion. The information exchange takes the form of linear con-
(for instanceC3, =115,C55 =147 andC3,; = 169). Such high  nections with weights that are learned from historical data
values make synchronization easier since these connectiosuch that the super-model minimizes the mean squared er-
terms in the equations bring the model solutions closer totors in short simulations initialized from past observed states.
gether. Maximum values of the connection coefficients inThe main result of this study is that it is possible to con-
the other two systems are a factor of 10 smaller. struct super-models in the context of simple low-dimensional
Again we use the same measures to evaluate the quality afhaotic systems that outperform the constituent imperfect
the super-model solution. The mean, standard deviation anchodels.
covariance for the truth and the super-model are presented in This result motivates an alternative strategy to the weather
Table9. These statistics are in excellent agreement. and climate prediction problem. Current practice is that ex-
In order to evaluate the temporal behaviour we compardsting imperfect models of the climate system are integrated
the autocorrelation functions in Fi@8. Up to a delay time independently of one another, starting from observed ini-
of 14 time units the autocorrelation functions of the truth aretial conditions to provide forecasts for the future. To gauge

(b) Point of view 2

Fig. 17. Trajectories for the super-model (black) and the standard
Lorenz 84 system(grey) for two points of view.

With the connection coefficients for this minimum, we in-
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model uncertainty, the outcomes of the different models are
combined into a single estimate of the probability density
function of climate variables. This study indicates that better
estimates of the true probability function can be obtained if
the models are taught, using past observations, to combine
the strengths of each into a single forecast of the probability
density function.

In case the models synchronize perfectly, all models fol-
low the same trajectory and no information is lost by en-
semble averaging. A sudden loss of synchronization and in-
crease of spread between the individual model solutions in
the super-model might indicate a loss of predictability dur-
ing that period. Also, the distance from the ensemble mean
might be an indication of model error, the larger the distance,
the larger the model error. We note that, since the models are
coupled (rather than independent), the super-model is not an
ensemble in the classical sense of probability theory. But in
addition to evaluating the ensemble mean, valuable informa-
tion might be obtained from the spread between the individ-
ual model realizations.

A large gap exists between the simple, chaotic systems of
this study and the complex, state-of-the-art climate models.
Many questions need to be addressed in order to apply the
same approach to these models. There is the practical limita-
tion of computer capacity to enable the parallel execution of
an ensemble of state-of-the-art models that need to exchange
information at every time step. In the studyKiftman et al.
(2003 two atmospheric models were coupled to one ocean
model so in principle it should be feasible to couple sev-
eral atmospheric models to several ocean models. Compu-
tational grids in the various climate models differ, so regrid-
ding should be part of the information exchange. Regridding
is standard practice in the information exchange between the
atmosphere and ocean components of climate models.

An important issue is the choice of state variables for the
connections and the number of connections. In this study
all state variables were connected and had similar dynamics.
In the climate models the different state variables are driven
by different physical processes and display distinct dynami-
cal behaviour at various time scales. It is not clear a priori
which state variables should be connected. In addition the
number of connections that can be learned on the basis of
historical data is limited and therefore careful choices for the
connections need to be made. Optimizing many parameters
leads to the risk of overfitting and failure to simulate the be-
havior outside the training set. In the implementation of the
super-modeling approach with complex weather or climate
models one must strive to keep the number of connections
as few as possible in order to limit the number of parame-
ters that need to be optimized. One possible approach would

Fig. 18. Autocorrelation for the super-model (black) and the stan- be to not connect the state variables, but the various parame-
dard Lorenz 84 system (white) The shaded area corresponds to therized physical processes that contribute to the tendency of
95 % error band for the truth based on 100 runs of 3000 time units.the state variables. Most of the model uncertainty resides in

www.earth-syst-dynam.net/2/161/2011/

these parameterized processes, so it makes sense to direct the
learning to these processes.
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The introduction of connections between models intro- 2001, 2004). A fruitful strategy might be to start from a rel-
duces non-physical terms in the equations and might disatively simple climate model and add to the complexity in
rupt physical balances present in the original equations. Orsmall steps and address a specific issue at each step. In a sim-
the true climate attractor, the physical balances are natuilar fashion as in this study a ground truth model is assumed
rally obeyed. In case the models synchronize with the ob-at each step and an ensemble of imperfect models is created
servations and each other, the physical balances are obeyéy perturbing parameters and/or using different formulations
also, and the precise implementation of the connections doefor unresolved processes.
not matter. With regard to the approximate balances that An alternative learning strategy that is explicitly based
are observed in the atmosphere, like the hydrostatic or th®n synchronization is outlined in the study Byane et al.
geostrophic balance, we note that if the connections be{2007). In this strategy the super-model equations contain
tween the state variables remain sufficiently weak, these balnudging terms to the truth as in our EgS) é&nd additional
ances will be restored continuously by dynamical adjust-evolution equations are formulated for the parameters. The
ments within each individual model. moment the super-model synchronizes with the truth the pa-

An additional complicating factor for the learning phase is rameters stop updating. This alternative learning strategy
the difference in time-scale between atmosphere and oceafeads to a particularly simple learning law that could be use-
Adjustments in the atmosphere have a short time-scale, buful in the implementation of the super-model approach us-
the ocean adapts to these changes on a much longer timég more complex models. The strategy has been demon-
scale. Through its influence on the atmosphere, the oceastrated with Lorenz system®q(ane et al.2009. Quinn et
introduces longer time-scales in the atmosphere as well. Sal. (2009 present a learning strategy based on the minimisa-
short integrations during the learning phase do not probdion of a similar cost function by varying parameters and the
these effects. This might hamper the learning. On the othemitial state of a single model simulation with an additional
hand, there are well documented examples that certain modeludging term to the truth that allows the model to synchro-
errors develop very quicklyRodwell and Jung2008 is an nize with the truth during the learning. In this sense it re-
example of how a particular model error, namely the amountsembles the approach Buane et al(2007. Our approach
of aerosols over the Sahara, leads to remote biases in winds different in that we consider an ensemble of short model
and precipitation through a sequence of fast atmospheric prosimulations from different initial states, do not nudge to the
cesses. It is a nice example of how difficult it can be to di- truth and only vary the parameters and not the initial state to
agnose the origin of a particular model bias. But at the sameminimize the cost function.
time itillustrates that model biases develop quickly anditim-  The main caveat is that the super-model is trained on his-
plies that improving climate models on the short time-scalegtorical data and in a climate prediction problem is subse-
(as in the super-model approach) could be a fruitful approachguently applied to simulate the response of the system to an
to reduce model biasesung(2005 shows that most of the external forcing. It is not guaranteed that the super-model
climatogical errors in the circulation are already developedwill also simulate this response more realistically, since the
after ten days of integration when starting from observedresponse was not part of the training. Therefore the super-
states. In addition idung et al.(2009 it is reported that model approach is more likely to be successful in weather-
a change in the deep convection scheme, which describesnd seasonal predictions since the cases to be predicted re-
fast turbulent processes on the time-scales of hours, led tmain closer to the cases present in the training set.

a marked reduction of the climatological model bias. See The problem is not peculiar to the super-modeling ap-
furtherPalmer and Weisheimg2010 for a more theoretical proach, but arises with climate models generally. Climate
view on the origin of systematic model errors. models contain numerous empirical parameters with values

A main result of this study is that super-model solutions that are optimized to reproduce observed historical behav-
are not unique. However, the different super-models haveor as close as possible. Parameter values are adjusted such
similar quality and therefore this does not pose a severe probas to reduce the errors in the climatological mean fields using
lem and makes finding a suitable super-model solution easiehistorical observationsSgverijns and Hazeleg&2005 Med-

The existence of quite distinct super-model solutions of goodvigy et al, 2010. It is not guaranteed that this automatically
quality remains a bit of a mystery. implies that the response to a future greenhouse gas forcing

A hierarchy of earth system models of intermediate com-will be simulated more realistically. Other processes might
plexity (EMIC’s) could be used to address these various is-play a role thereKlocke et al, 2011).
sues. The EMIC's resemble the state-of-the-art climate mod- On the other hand, there are also more optimistic argu-
els in their structure, but differ in that the parameterization ments indicating that super-modeling might work as a strat-
schemes for the physical processes are much less elaboratgy for improving climate change predictions. In this study
fewer processes are explicitly modeled and the spatial reswe obtained the encouraging result that for the Lorenz 1963
olution is much coarser. It has already been demonstratedystem the super-model was able to accurately predict the
that two different quasi-geostrophic channel models will syn-change of the attractor after doubling parametehis re-
chronize with only limited connection®(ane and Tribbia  sult gives hope that the super-modeling strategy applied to
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climate models will help in improving predictions of the cli- Jung, T.: Systematic errors of the atmospheric circulation in the
mate response to future greenhouse gas forcing. ECMWEF forecasting system, Q. J. Roy. Meteorol. Soc., 131,

To conclude, as argued above, the super-modeling apj 104?‘18073’ 200:53' Bechtold. P. Bel sohier M. Mil
proach might work or might fail in the context of complex ung, T., Balsamo, G., Bechtold, P., Beljaars, £ohker, M., Hier,

. . . M., Morcrette, J.-J., Orr, A., Rodwell, M., and Tompkins, A.
climate models. This remains to be seen. We propose to fur-

h dv th . fth deli h Usi M.: The ECMWF model climate: Recent progress through im-
ther study the merits of the super-modeling approach using proved physical parametrizations, available from the ECMWF

a similar hypothetical model setting as in this paper with a \yepsite: http://fecmwf.intECMWE last access: 29 June 2011,
hypothetical perfect model simulating the truth and a set of  Seminar Proceedings on Parameterization of Subgrid-scale Pro-
imperfect models simulating state-of-the-art approximations cesses, 233-249, 2009.

of this hypothetical truth. For this super-modeling research Kirtman, B., Min, D., Schopf, P., and Schneider, E.. A new ap-
model classes of increased complexity — both for the hypo- proach for CGCM sensitivity studies, COLA Technical Report,

thetical truth as for the imperfect model approximations —are 154, 50 pp., 2003.
then to be explored. Klocke, D., Pincus, R., and Quaas, J.. On constraining estimates of

. . . climate sensitivity with present-day observations through model
Finally, we wish to stress that we believe that long-term weighting, J. Climate, in pressjoi:10.1175/2011JCLI4193,1

improvements in climate predictions must come from im- 54,7

proving the description of the physical processes on the bag grenz, E.: Deterministic Nonperiodic Flow, J. Atmos. Sci., 20,

sis of dedicated process studies and observational databases30-140, 1963.

This is a slow, but necessary process. In the meanwhilelorenz, E.: Irregularity, a fundamental property of the atmosphere,
given a set of imperfect models, we could try to improve pre- Tellus A, 36, 98-110, 1984.

dictions by combining the strengths of the individual models Medvigy, D., Walko, R. L., Otte, M. J., and Avissar, R.: The Ocean-

either through multi-model or super-model approaches. Land-Atmosphere Model: Optimization and evaluation of simu-
lated radiative fluxes and precipitation, Mon. Weather Rev., 138,
1923-1939, 2010.
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