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Abstract. In the current multi-model ensemble approach cli-
mate model simulations are combined a posteriori. In the
method of this study the models in the ensemble exchange in-
formation during simulations and learn from historical obser-
vations to combine their strengths into a best representation
of the observed climate. The method is developed and tested
in the context of small chaotic dynamical systems, like the
Lorenz 63 system. Imperfect models are created by perturb-
ing the standard parameter values. Three imperfect models
are combined into one super-model, through the introduction
of connections between the model equations. The connec-
tion coefficients are learned from data from the unperturbed
model, that is regarded as the truth.

The main result of this study is that after learning the
super-model is a very good approximation to the truth, much
better than each imperfect model separately. These illustra-
tive examples suggest that the super-modeling approach is a
promising strategy to improve weather and climate simula-
tions.

1 Introduction

There is a broad scientific consensus that our climate is
warming due to anthropogenic emissions of greenhouse
gasses (IPCC, 2007). Due to the large impacts of climate
change on society there is a growing need to widely sample
and assess the possible climate change related to the plausi-
ble scenarios for future emissions. At about a dozen climate
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institutes around the world complex climate models have
been developed over the past decades. Despite the improve-
ments in the quality of the model simulations, the models are
still far from perfect. For instance a temperature bias of sev-
eral degrees in annual mean temperatures in large regions of
the globe is not uncommon in the simulations of the present
climate (IPCC, 2007).

Nevertheless these models are used to simulate the re-
sponse of the climate system to future emission scenarios
of greenhouse gasses. It turns out that the models differ
substantially in their simulation of the response: the global
mean temperature rise varies by as much as a factor of 2
and on regional scales the response can be reversed, e.g. de-
creased precipitation instead of an increase. It is not clear
how to combine these outcomes to obtain the most realistic
response. The standard approach is to take some form of
a weighted average of the individual outcomes (Tebaldi and
Knutti, 2007), but is this the best strategy?

We think we can do better by letting the models exchange
information during the simulation instead of combining the
results of the individual models afterwards. We propose to
combine the individual models into one super-model by pre-
scribing connections between the model equations. The con-
nection coefficients are learned from historical observations.
This way the super-model learns to combine the strengths
of the individual models in order to optimally reproduce the
historical climate. Is this approach feasible?

An example of combining models successfully is found in
the study byKirtman et al.(2003) in which they coupled two
different atmospheric models to one ocean model. It turned
out that the most realistic simulation in terms of the annual
mean, annual cycle and interannual variability of sea sur-
face temperatures over the tropical pacific was obtained by
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coupling the momentum fluxes from one model and the heat
and fresh water fluxes from the other to the ocean model.

Another indication that this approach might be feasible
is found in the practice of data assimilation (Compo et al.,
2006). It turns out that with a limited amount of informa-
tion, the complete state of the atmosphere can be recovered.
Synchronization in chaotic systems provides an explanation
why this is at all possible, since linking chaotic systems with
a signal from one system to the other is known to lead to syn-
chronization of their states (Pecora and Carroll, 1990; Duane
et al., 2006). Therefore we expect that in the super-modeling
approach only limited information needs to be exchanged to
effectively influence the combined behaviour of the imper-
fect models.

In this paper we use simple chaotic systems to develop
and demonstrate the super-modeling approach. We regard
the model with standard parameter values as ground truth and
create imperfect models by perturbing the parameter values.
Three imperfect models are connected and combined into a
super-model. The strength of the connections are determined
from data from the ground truth through a learning process.
The learning process takes the form of the minimisation of a
cost function that measures the difference between the truth
and the super-model during short integrations.

In Sect.2 the form of the connections is introduced, fol-
lowed by the introduction of the cost function and the min-
imisation method. The super-modeling approach is applied
to the Lorenz 63, R̈ossler and Lorenz 84 systems in Sects.3
and4. Discussion and conclusion of the method and ideas
for improvement can be found in Sect.5.

2 The super-modeling approach

To introduce the super-modeling approach we use the
Lorenz 63 system (Lorenz, 1963). The Lorenz 63 system
is often used as a metaphore for the atmosphere, because of
its abrupt regime changes and unstable nature. The equations
for the Lorenz 63 system are

ẋ = σ (y − x)

ẏ = x (ρ − z) − y (1)

ż = xy − βz.

The standard parameter values areσ = 10, β = 8
3 and

ρ = 28. Numerical solutions are obtained by a fourth order
Runge-Kutta time stepping scheme, with a time step of 0.01.

2.1 Connecting imperfect models

Imperfect models are created by taking three copies of the
Lorenz 63 system with perturbed parameter values. A super-
model is created by the introduction of linear connection
terms

ẋk = σk (yk − xk) +

∑
j 6=k

Cx
kj

(
xj − xk

)
ẏk = xk (ρk − zk) − yk +

∑
j 6=k

C
y
kj

(
yj − yk

)
(2)

żk = xk yk −βk zk +

∑
j 6=k

Cz
kj

(
zj −zk

)
, k = 1, 2, 3,

wherek indexes the three imperfect models with perturbed
parameter valuesσk, βk and ρk and Cx

kj , C
y
kj and Cz

kj are
referred to as connection coefficients.

Each variable of each model is connected to the other two
models. This gives two connection coefficients for each of
the variables and a total number of 2× 3× 3 = 18 connec-
tion coefficients. These 18 coefficients will be learned from
data that sample the truth. The solution of the super-model,
denoted by subscript “s”, is taken to be the average of the
imperfect models

xs =
1

3
(x1 + x2 + x3)

ys =
1

3
(y1 + y2 + y3) (3)

zs =
1

3
(z1 + z2 + z3).

Note that Eqs. (2) define a new dynamical system with
three times the number of degrees of freedom. The super-
model is not merely a sort of average system. Depending
on the connections, it can have a very different dynamics.
The super-model has the potential to outperform the ensem-
ble averaged simulations of the individual models because
it can display richer dynamical behavior. The learning must
ensure that the behavior after learning is more realistic.

2.2 Cost function

We assume that we have a long time series of observations
of the truthxo. We pick initial conditionsxo(ti) from this
long time series atK timesti , i = 1, ...,K, separated by fixed
distancesd. Short integrations of length1 are performed
with the super-model starting from theseK initializations
(see Fig.1). To measure the ability of the super-model to
follow the truth we introduce the following cost functionF ,
that depends on the vector of connection coefficientsC.

F(C) =
1

K1

K∑
i=1

∫ ti+1

ti

|xs (C, t) − xo(t)|
2 γ t dt (4)

The cost function is normalized by1
K1

, so that it repre-
sents the time averaged mean squared error. The factorγ t

with 0< γ ≤ 1 is introduced to give stronger weight to the
errors close to the initial conditions. The idea behind this is
that the Lorenz 63 system displays sensitive dependence on
initial conditions. Trajectories diverge not only due to model
imperfections, but also due to internal error growth: even a
perfect model deviates from the truth if started from slightly
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Fig. 1. The cost function is based on short integrations of the super-
model starting from observed initial conditions of the truth at times
ti and measures the mean-squared difference between the short evo-
lutions of the super-model and the truth as indicated by the shaded
areas. The short integrations span a time interval ∆ and d denotes
the fixed time interval between the initial conditions ti.

model errors, the factor γt discounts the errors at later times
to decrease the contribution of internal error growth.

We base the choice of γ on the doubling time of errors.
From a large number of runs (107) from randomly perturbed
initial conditions we estimate the average doubling time τ
of the initial error. We choose γ such that γτ = 1

2 , so at
time τ the weight is reduced to 1

2 . For the Lorenz 63 sys-
tem τ = 0.75, which gives γ = 0.4. The length of the short
integrations is taken to be ∆ = 1, which is a little bit longer
than the doubling time. By comparison the average time for
one rotation in the Lorenz 63 system is 0.8. The separation d
between the initializations is 0.2 time units.

2.3 Minimisation

For a fixed choice of the number of initializations K the cost
function solely depends on the connection coefficients C in
equation (4). The super-model can be determined by finding
a minimum in the cost function in the 18 dimensional space
of C. For this we employ the Fletcher-Reeves-Polak-Ribiere
Conjugate Gradient method (Fletcher and Reeves, 1963). It
uses the gradient of the cost function to approach minima and
stops when the gradient is (close to) zero.

We found it advantageous to make use of the dependence
of the cost function on the number of initializations K to
avoid shallow local minima. We minimize the cost function
first for a small number of initializations. Subsequently we
take this solution as the initial guess of the minimum for an
increased number of initializations to find the minimum for
this set. This process is repeated until we found that the min-
imum did not change any longer by increasing the number of
initializations. This issue is discussed further in section 3.

To avoid negative solutions for the connection coefficients
we added an extra term in the cost function in case one of

σ ρ β

Truth 10 28 8
3

Model 1 13.25 (32%) 19 (32%) 3.5 (31%)
Model 2 7 (30%) 18 (36%) 3.7 (39%)
Model 3 6.5 (35%) 38 (36%) 1.7 (36%)

Table 1. Standard and perturbed parameters for the Lorenz 63 sys-
tem.

the coefficients becomes negative. This term is just the abso-
lute value of the negative connection coefficient, which easily
dominates the value of the cost function.

3 Results Lorenz 63

Three imperfect models are created by perturbing the stan-
dard parameter values as displayed in table 1. The perturbed
values differ from the standard values by 30% to 40% and in
each imperfect model parameter values have been increased
as well as decreased. With these perturbations the imper-
fect models behave quite differently from the truth as can be
seen in figure 2. Both model 1 and 2 are attracted to a point,
whereas model 3 has a chaotic solution that resembles the
truth, but the attractor is displaced and larger. All models
were initiated from the same state and the transient evolution
towards the attractor is plotted as well.

By using bifurcation methods, it can be analytically shown
that there exists a Hopf bifurcation for the Lorenz 63 system
at ρH = σ(3+σ+β)

σ−1−β . This bifurcation marks different kinds of
dynamical behaviour. Both model 1 and 2 have values for ρ
below the Hopf bifurcation, whereas model 3 has a value for
ρ that lies far above the Hopf bifurcation. For the truth the
value of ρ lies above the Hopf bifurcation as well, which is
why model 3 and the truth have similar behaviour.

The minimization procedure outlined above successfully
identified a minimum of the cost function with a value of
0.02. By comparison the value of the cost function for an ar-
bitrary choice of all connection coefficients equal to unity
is 0.5. With the connection coefficients of this minimum
we performed a long integration with the super-model and
plotted the trajectory in figure 3. The attractor of the super-
model is very close to the true attractor. While integrating
the super-model, the imperfect models fall into an approx-
imate synchronous behaviour due to the connections: the
temporal correlations between the x, y, and z variables of
the three models are in excess of 0.95 (not shown) and the
sum of the time-mean distances between the three model
states normalized by the sum of the standard deviations of
xs, ys and zs is 0.34. In particular the z-values of the third
model are systematically larger than those of the other two
models (see figure 4). The improvement in the behaviour of
the connected imperfect model solutions as depicted in fig-
ure 4 (to be compared with figure 2) is a clear indication of

Fig. 1. The cost function is based on short integrations of the super-
model starting from observed initial conditions of the truth at times
ti and measures the mean-squared difference between the short evo-
lutions of the super-model and the truth as indicated by the shaded
areas. The short integrations span a time interval1 andd denotes
the fixed time interval between the initial conditionsti .

different initial conditions and leads to a non-zero cost func-
tion due to chaos. This implies that the cost function mea-
sures a mixture of model errors and internal error growth.
Model errors dominate the inital divergence between model
and truth, but at later times in the short term integrations in-
ternal error growth dominates. Since we wish to measure the
model errors, the factorγ t discounts the errors at later times
to decrease the contribution of internal error growth.

We base the choice ofγ on the doubling time of errors.
From a large number of runs (107) from randomly perturbed
initial conditions we estimate the average doubling timeτ of
the initial error. We chooseγ such thatγ τ = 1

2, so at time
τ the weight is reduced to12. For the Lorenz 63 system
τ = 0.75, which givesγ = 0.4. The length of the short inte-
grations is taken to be1 = 1, which is a little bit longer than
the doubling time. By comparison the average time for one
rotation in the Lorenz 63 system is 0.8. The separationd

between the initializations is 0.2 time units.

2.3 Minimisation

For a fixed choice of the number of initializationsK the cost
function solely depends on the connection coefficientsC in
Eq. (4). The super-model can be determined by finding a
minimum in the cost function in the 18 dimensional space
of C. For this we employ the Fletcher-Reeves-Polak-Ribiere
Conjugate Gradient method (Fletcher and Reeves, 1963). It
uses the gradient of the cost function to approach minima and
stops when the gradient is (close to) zero.

We found it advantageous to make use of the dependence
of the cost function on the number of initializationsK to
avoid shallow local minima. We minimize the cost function

Table 1. Standard and perturbed parameters for the Lorenz 63
system.

σ ρ β

Truth 10 28 8
3

Model 1 13.25 (32 %) 19 (32 %) 3.5 (31 %)
Model 2 7 (30 %) 18 (36 %) 3.7 (39 %)
Model 3 6.5 (35 %) 38 (36 %) 1.7 (36 %)

first for a small number of initializations. Subsequently we
take this solution as the initial guess of the minimum for an
increased number of initializations to find the minimum for
this set. This process is repeated until we found that the min-
imum did not change any longer by increasing the number of
initializations. This issue is discussed further in Sect.3.

To avoid negative solutions for the connection coefficients
we added an extra term in the cost function in case one of
the coefficients becomes negative. This term is just the abso-
lute value of the negative connection coefficient, which easily
dominates the value of the cost function.

3 Results Lorenz 63

Three imperfect models are created by perturbing the stan-
dard parameter values as displayed in Table1. The perturbed
values differ from the standard values by 30 % to 40 % and in
each imperfect model parameter values have been increased
as well as decreased. With these perturbations the imperfect
models behave quite differently from the truth as can be seen
in Fig.2. Both model 1 and 2 are attracted to a point, whereas
model 3 has a chaotic solution that resembles the truth, but
the attractor is displaced and larger. All models were initi-
ated from the same state and the transient evolution towards
the attractor is plotted as well.

By using bifurcation methods, it can be analytically shown
that there exists a Hopf bifurcation for the Lorenz 63 system
at ρH = σ(3+σ+β)

σ−1−β
. This bifurcation marks different kinds of

dynamical behaviour. Both model 1 and 2 have values forρ

below the Hopf bifurcation, whereas model 3 has a value for
ρ that lies far above the Hopf bifurcation. For the truth the
value ofρ lies above the Hopf bifurcation as well, which is
why model 3 and the truth have similar behaviour.

The minimisation procedure outlined above successfully
identified a minimum of the cost function with a value
of 0.02. By comparison the value of the cost function for an
arbitrary choice of all connection coefficients equal to unity
is 0.5. With the connection coefficients of this minimum
we performed a long integration with the super-model and
plotted the trajectory in Fig.3. The attractor of the super-
model is very close to the true attractor. While integrating
the super-model, the imperfect models fall into an approx-
imate synchronous behaviour due to the connections: the
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Fig. 2. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 63 system (grey). The trajectory
for the imperfect models includes the transient evolution from the
initial condition towards the attractor.

the feasibility of super-modeling in the context of this low-
dimensional chaotic system.

In addition to this minimum, we found that by choosing
different initial values for the connection coefficients in the
minimization procedure different local minima in the cost
function are obtained with values of the cost function that are
of comparable magnitude. In the remainder of this section we
will test the robustness of the learning process, research the
issue of local minima and develop measures to determine the
quality of the different super-model solutions.

3.1 Robustness

The minimum of the cost function is determined on a limited
period of observations of length (K−1) ·d+∆ that we refer
to as the training set. We have chosen K = 200 to determine
the minimum and subsequently evaluate the cost function us-
ing the C values of this minimum for subsets of the training
set of length corresponding to K = 20,50,100,150. Cross
sections of the cost function around the minimum can be cre-
ated by changing one connection coefficient and keeping the
others fixed at the values of the minimum. The cross sections
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Fig. 3. Trajectories for the super-model (black) and the standard
Lorenz 63 system (grey) from two different points of view.

for the different subsets are plotted in figure 5 for connection
coefficients Cy

23 and Cz
21, since these are typical examples.

In figure 5(a) the cost function for K = 200 displays one
well defined minimum Cy

23 = 10.1. The position of the min-
imum does not change much when the cost function is cal-
culated using the different subsets. The minimum becomes
more pronounced as the training set is enlarged. The values
of the cost function monotonically converge and K = 200
seems a reasonable size of the training set. Figure 5(b) does
not show a well defined minimum for any K. Note that the
scale is smaller than in figure 5(a). The values of the cost
function do not change much in the different subsets and the
slopes are very flat. Changing connection coefficient Cz

21 ap-
parently does not change the quality of the solutions much.
A family of super-models of similar quality can be found by
changing connection coefficient Cz

21 between 8 and 14.
Ideally the super-model found by the learning process is

not dependent on the training set. To test whether K = 200
is large enough for this to be true the cost function is plotted
in figure 6 for different periods of observations: the training
set and independent sets of the same size that were obtained
from a longer consecutive integration of the truth. Again the
cross sections for connection coefficients Cy

23 and Cz
21 are

shown (figure 6). In figure 6(a) the position and value of the
minimum remain close to that of the training set. In figure
6(b) the cost function is flat for all sets of observations. We
conclude that with K = 200 the cost function verifies rather
well on independent data, so K = 200 seems a reasonable
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21 are

shown (figure 6). In figure 6(a) the position and value of the
minimum remain close to that of the training set. In figure
6(b) the cost function is flat for all sets of observations. We
conclude that with K = 200 the cost function verifies rather
well on independent data, so K = 200 seems a reasonable

Fig. 2. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 63 system (grey). The trajectory
for the imperfect models includes the transient evolution from the
initial condition towards the attractor.

temporal correlations between thex, y, andz variables of the
three models are in excess of 0.95 (not shown) and the sum
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andzs is 0.34. In particular thez-values of the third model
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(see Fig.4). The improvement in the behaviour of the con-
nected imperfect model solutions as depicted in Fig.4 (to be
compared with Fig.2) is a clear indication of the feasibil-
ity of super-modeling in the context of this low-dimensional
chaotic system.

In addition to this minimum, we found that by choosing
different initial values for the connection coefficients in the
minimisation procedure different local minima in the cost
function are obtained with values of the cost function that are
of comparable magnitude. In the remainder of this section we
will test the robustness of the learning process, research the
issue of local minima and develop measures to determine the
quality of the different super-model solutions.
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3.1 Robustness

The minimum of the cost function is determined on a limited
period of observations of length (K−1) ·d+∆ that we refer
to as the training set. We have chosen K = 200 to determine
the minimum and subsequently evaluate the cost function us-
ing the C values of this minimum for subsets of the training
set of length corresponding to K = 20,50,100,150. Cross
sections of the cost function around the minimum can be cre-
ated by changing one connection coefficient and keeping the
others fixed at the values of the minimum. The cross sections

-20-15-10-5 0 5 10 15 20

-30
-20

-10
 0

 10
 20

 30

 0
 10
 20
 30
 40
 50

z

Lorenz 63 (connected, after learning)

Truth
Super-model

x

y

z

(a) Point of view 1

x y

 0
 10
 20
 30
 40
 50

z

Lorenz 63 (connected, after learning)

Truth
Super-model

-20-15-10-5 0 5 10 15 20 -30-20-10 0 10 20 30

z

(b) Point of view 2

Fig. 3. Trajectories for the super-model (black) and the standard
Lorenz 63 system (grey) from two different points of view.
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In figure 5(a) the cost function for K = 200 displays one
well defined minimum Cy

23 = 10.1. The position of the min-
imum does not change much when the cost function is cal-
culated using the different subsets. The minimum becomes
more pronounced as the training set is enlarged. The values
of the cost function monotonically converge and K = 200
seems a reasonable size of the training set. Figure 5(b) does
not show a well defined minimum for any K. Note that the
scale is smaller than in figure 5(a). The values of the cost
function do not change much in the different subsets and the
slopes are very flat. Changing connection coefficient Cz

21 ap-
parently does not change the quality of the solutions much.
A family of super-models of similar quality can be found by
changing connection coefficient Cz

21 between 8 and 14.
Ideally the super-model found by the learning process is
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more pronounced as the training set is enlarged. The values
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scale is smaller than in figure 5(a). The values of the cost
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slopes are very flat. Changing connection coefficient Cz
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is large enough for this to be true the cost function is plotted
in figure 6 for different periods of observations: the training
set and independent sets of the same size that were obtained
from a longer consecutive integration of the truth. Again the
cross sections for connection coefficients Cy
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minimum remain close to that of the training set. In figure
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3.1 Robustness

The minimum of the cost function is determined on a limited
period of observations of length(K −1)·d +1 that we refer
to as the training set. We have chosenK = 200 to determine
the minimum and subsequently evaluate the cost function us-
ing theC values of this minimum for subsets of the training
set of length corresponding toK = 20, 50, 100, 150. Cross
sections of the cost function around the minimum can be cre-
ated by changing one connection coefficient and keeping the
others fixed at the values of the minimum. The cross sections
for the different subsets are plotted in Fig.5 for connection
coefficientsCy

23 andCz
21, since these are typical examples.

In Fig. 5a the cost function forK = 200 displays one well
defined minimumC

y

23 = 10.1. The position of the minimum
does not change much when the cost function is calculated
using the different subsets. The minimum becomes more
pronounced as the training set is enlarged. The values of the
cost function monotonically converge andK = 200 seems a
reasonable size of the training set. Figure5b does not show
a well defined minimum for anyK. Note that the scale is
smaller than in Fig.5a. The values of the cost function do
not change much in the different subsets and the slopes are
very flat. Changing connection coefficientCz

21 apparently
does not change the quality of the solutions much. A family
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Fig. 4. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the
standard Lorenz 63 system (grey).

size of the training set.

3.2 Local minima

In the previous section we noted that there is a large fam-
ily of super-model solutions with similar values of the cost
function connected to the minimum found by the minimiza-
tionncd c. The minimization was repeated starting from ran-
dom values for the connection coefficients between [0,10]
that were drawn from a uniform probability distribution. In
this way we found other minima that are distinct in many
more connection coefficients. For one of these minima, the
connection coefficients are shown in table 2, together with
the values for the first minimum. In the fourth column the
difference between the connection coefficients of minima 1
and 2 indicates that the minima are clearly distinct and do not
belong to the same family of solutions.

A plot of the attractor of the second super-model solution
in its phase space (not shown) looks almost exactly the same
as the plots of the first super-model solution in figures 3 and
4. The value of the cost function for the second solution is

 0

 0.05

 0.1

 0.15

 0.2

 7  8  9  10  11  12  13

V
al

ue
 o

f t
he

 c
os

tfu
nc

tio
n

Cy
23

Costfunction Lorenz 63

K=20
K=50

K=100
K=150
K=200

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 8  9  10  11  12  13  14

V
al

ue
 o

f t
he

 c
os

tfu
nc

tio
n

Cz
21

Costfunction Lorenz 63

K=20
K=50

K=100
K=150
K=200

(b)

Fig. 5. Cross section of the cost function for the super-model of
the Lorenz 63 system calculated for different subsets of the original
training set that was based on K = 200 initializations. The subsets
vary in the number of initializations, i.e. K = 20,50,100,150. A
cross sections is created by changing connection coefficients Cy

23 in
(a) and Cz

21 in (b) and keeping the other coefficients fixed at the val-
ues of the minimum found by the learning process using the training
set.
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Fig. 4. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the
standard Lorenz 63 system (grey).

of super-models of similar quality can be found by changing
connection coefficientCz

21 between 8 and 14.
Ideally the super-model found by the learning process is

not dependent on the training set. To test whetherK = 200
is large enough for this to be true the cost function is plotted
in Fig. 6 for different periods of observations: the training
set and independent sets of the same size that were obtained
from a longer consecutive integration of the truth. Again the
cross sections for connection coefficientsC

y

23 and Cz
21 are

shown (Fig.6). In Fig. 6a the position and value of the min-
imum remain close to that of the training set. In Fig.6b the
cost function is flat for all sets of observations. We conclude
that withK = 200 the cost function verifies rather well on in-
dependent data, soK = 200 seems a reasonable size of the
training set.

Table 2. The connection coefficients of two super-model solutions
of the Lorenz 63 system and their differences.

Super-model 1 Super-model 2 Difference

Cx
12 −0.01 1.52 1.53

Cx
13 4.81 0.03 −4.78

Cx
21 5.69 13.28 7.59

Cx
23 13.75 14.99 1.24

Cx
31 17.64 21.51 3.87

Cx
32 −0.01 1.09 1.10

C
y
12 7.67 3.53 −4.14

C
y
13 18.14 27.36 9.22

C
y
21 3.64 0.00 −3.64

C
y
23 10.06 6.50 −3.56

C
y
31 2.71 3.89 1.18

C
y
32 9.79 6.93 −2.86

Cz
12 5.47 3.95 −1.52

Cz
13 4.03 12.24 8.21

Cz
21 10.72 3.50 −7.22

Cz
23 13.54 2.20 −11.34

Cz
31 8.70 2.89 −5.81

Cz
32 1.50 3.85 2.35

3.2 Local minima

In the previous section we noted that there is a large fam-
ily of super-model solutions with similar values of the cost
function connected to the minimum found by the minimisa-
tion. The minimisation was repeated starting from random
values for the connection coefficients between [0, 10] that
were drawn from a uniform probability distribution. In this
way we found other minima that are distinct in many more
connection coefficients. For one of these minima, the con-
nection coefficients are shown in Table2, together with the
values for the first minimum. In the fourth column the differ-
ence between the connection coefficients of minima 1 and 2
indicates that the minima are clearly distinct and do not be-
long to the same family of solutions.

A plot of the attractor of the second super-model solu-
tion in its phase space (not shown) looks almost exactly the
same as the plots of the first super-model solution in Figs.3
and4. The value of the cost function for the second solution
is slightly lower (0.003 instead of 0.02) and is a first indi-
cation that the second solution might be better. In the next
section we will use various measures to evaluate the quality
of these two super-model solutions.

3.3 Quality measures

The cost function is a measure of the quality of the short term
behaviour of the super-model in which the initial conditions
play a role as is the case in weather predictions. To evaluate
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3.2 Local minima

In the previous section we noted that there is a large fam-
ily of super-model solutions with similar values of the cost
function connected to the minimum found by the minimiza-
tionncd c. The minimization was repeated starting from ran-
dom values for the connection coefficients between [0,10]
that were drawn from a uniform probability distribution. In
this way we found other minima that are distinct in many
more connection coefficients. For one of these minima, the
connection coefficients are shown in table 2, together with
the values for the first minimum. In the fourth column the
difference between the connection coefficients of minima 1
and 2 indicates that the minima are clearly distinct and do not
belong to the same family of solutions.

A plot of the attractor of the second super-model solution
in its phase space (not shown) looks almost exactly the same
as the plots of the first super-model solution in figures 3 and
4. The value of the cost function for the second solution is
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the Lorenz 63 system calculated for different subsets of the original
training set that was based on K = 200 initializations. The subsets
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ues of the minimum found by the learning process using the training
set.
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4. The value of the cost function for the second solution is
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Fig. 5. Cross section of the cost function for the super-model of
the Lorenz 63 system calculated for different subsets of the original
training set that was based on K = 200 initializations. The subsets
vary in the number of initializations, i.e. K = 20,50,100,150. A
cross sections is created by changing connection coefficients Cy

23 in
(a) and Cz

21 in (b) and keeping the other coefficients fixed at the val-
ues of the minimum found by the learning process using the training
set.

Fig. 5. Cross section of the cost function for the super-model of the Lorenz 63 system calculated for different subsets of the original training
set that was based onK = 200 initializations. The subsets vary in the number of initializations, i.e.K = 20, 50, 100, 150. A cross sections is
created by changing connection coefficientsC

y
23 in (a) andCz

21 in (b) and keeping the other coefficients fixed at the values of the minimum
found by the learning process using the training set.

Table 3. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Lorenz 63 system. The values
for the first two models are calculated analytically. Statistics for
model 3 are based on 500 runs of 5000 time units. Between brackets
the 95 % error estimation is given.

Model 1 Model 2 Model 3

Meanx ±7.94 ±7.93 0.003 (0.002)
Meany ±7.94 ±7.93 0.003 (0.010)
Meanz 18.00 17.00 34.23 (0.030)

SDx 0 0 7.628 (0.002)
SDy 0 0 9.416 (0.010)
SD z 0 0 8.765 (0.030)

Cov.xy 0 0 58.19 (0.036)
Cov.xz 0 0 0.007 (0.44)
Cov.yz 0 0 0.012 (0.68)

the quality of the super-model beyond the range that is in-
fluenced by the initial conditions, different measures can be
used as in climate simulations.

The most straightforward measures are the different mo-
ments of the probability density function of the states in
phase space, such as the mean, variance and covariance of
the state variables. Since these do not take into account the
temporal evolution through phase space, we will also evalu-
ate the ability of the super-model to reproduce the autocorre-
lation functions of the state variables. As a final measure we
will check the ability of the super-model to synchronize with
the truth at the end of this section.

Table 4. Mean, standard deviation (SD) and covariance for the truth
and for the two super-models of the Lorenz 63 system. Statistics are
based on 500 runs of 5000 time units. Between brackets the 95 %
error estimation is given.

Truth Super-model 1 Super-model 2

Meanx −0.006 (0.22) 0.007 (0.21) −0.000 (0.25)
Meany −0.006 (0.22) 0.007 (0.21) −0.000 (0.25)
Meanz 23.549 (0.02) 22.93 (0.02) 23.19 (0.03)

SDx 7.924 (0.005) 7.717 (0.003) 7.812 (0.005)
SDy 9.011 (0.008) 8.791 (0.009) 8.723 (0.009)
SD z 8.623 (0.025) 8.596 (0.016) 8.549 (0.032)

Cov.xy 62.786 (0.07) 58.952 (0.05) 60.6416 (0.08)
Cov.xz −0.020 (0.76) 0.023 (0.74) 0.000 (0.88)
Cov.yz −0.016 (0.61) 0.021 (0.65) −0.001 (0.69)

Mean, standard deviation and covariance

The calculation of these statistics is based on 500 runs of
5000 time units of the truth, the imperfect models and both
super-models. An error estimation of these quantities is
based on the spread of the 500 estimates of each quantity.
The results for the imperfect models are given in Table3 and
for the truth and both super-models in Table4.

For the parameter values of model 1 and 2 the attractor
reduces to two stable point attractors. Thex, y andz val-
ues of these fixed points can be calculated analytically from
Eqs. (1) by setting the time derivatives to zero. Since the sys-
tem settles in one of these point attractors depending on the
initial condition, the mean values are equal to these values.
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Fig. 6. As in figure 5, except that the cost function is calculated
for the training set with K = 200 initializations (thick line) and 9
additional independent sets of observations of the same length (thin
lines) that were taken from a consecutive longer integration of the
truth.

slightly lower (0.003 instead of 0.02) and is a first indication
that the second solution might be better. In the next section
we will use various measures to evaluate the quality of these
two super-model solutions.

3.3 Quality measures

The cost function is a measure of the quality of the short term
behaviour of the super-model in which the initial conditions
play a role as is the case in weather predictions. To evaluate
the quality of the super-model beyond the range that is in-
fluenced by the initial conditions, different measures can be
used as in climate simulations.

The most straightforward measures are the different mo-
ments of the probability density function of the states in
phase space, such as the mean, variance and covariance of

Super-model 1 Super-model 2 Difference
Cx

12 -0.01 1.52 1.53
Cx

13 4.81 0.03 -4.78
Cx

21 5.69 13.28 7.59
Cx

23 13.75 14.99 1.24
Cx

31 17.64 21.51 3.87
Cx

32 -0.01 1.09 1.10
Cy

12 7.67 3.53 -4.14
Cy

13 18.14 27.36 9.22
Cy

21 3.64 0.00 -3.64
Cy

23 10.06 6.50 -3.56
Cy

31 2.71 3.89 1.18
Cy

32 9.79 6.93 -2.86
Cz

12 5.47 3.95 -1.52
Cz

13 4.03 12.24 8.21
Cz

21 10.72 3.50 -7.22
Cz

23 13.54 2.20 -11.34
Cz

31 8.70 2.89 -5.81
Cz

32 1.50 3.85 2.35

Table 2. The connection coefficients of two super-model solutions
of the Lorenz 63 system and their differences.

the state variables. Since these do not take into account the
temporal evolution through phase space, we will also evalu-
ate the ability of the super-model to reproduce the autocorre-
lation functions of the state variables. As a final measure we
will check the ability of the super-model to synchronize with
the truth at the end of this section.

3.3.1 Mean, standard deviation and covariance

The calculation of these statistics is based on 500 runs of
5.000 time units of the truth, the imperfect models and both
super-models. An error estimation of these quantities is
based on the spread of the 500 estimates of each quantity.
The results for the imperfect models are given in table 3 and
for the truth and both super-models in table 4.

For the parameter values of model 1 and 2 the attractor
reduces to two stable point attractors. The x, y and z val-
ues of these fixed points can be calculated analytically from
equation (1) by setting the time derivatives to zero. Since
the system settles in one of these point attractors depending
on the initial condition, the mean values are equal to these
values. The statistics of the chaotic solution of model 3 (see
table 3) differ substantially from the truth (see table 4), espe-
cially the mean value of z is much larger.

Both super-models (see table 4) have statistics that are
close to that of the truth with the largest differences of order
5% in the covariance between x and y. The second super-
model is somewhat closer to the truth, especially in the co-
variance of x and y.

3.4 Autocorrelation

The autocorrelation is a statistical measure of the temporal
evolution. It gives an indication of the memory and time
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Fig. 6. As in figure 5, except that the cost function is calculated
for the training set with K = 200 initializations (thick line) and 9
additional independent sets of observations of the same length (thin
lines) that were taken from a consecutive longer integration of the
truth.

slightly lower (0.003 instead of 0.02) and is a first indication
that the second solution might be better. In the next section
we will use various measures to evaluate the quality of these
two super-model solutions.

3.3 Quality measures

The cost function is a measure of the quality of the short term
behaviour of the super-model in which the initial conditions
play a role as is the case in weather predictions. To evaluate
the quality of the super-model beyond the range that is in-
fluenced by the initial conditions, different measures can be
used as in climate simulations.

The most straightforward measures are the different mo-
ments of the probability density function of the states in
phase space, such as the mean, variance and covariance of

Super-model 1 Super-model 2 Difference
Cx

12 -0.01 1.52 1.53
Cx

13 4.81 0.03 -4.78
Cx

21 5.69 13.28 7.59
Cx

23 13.75 14.99 1.24
Cx

31 17.64 21.51 3.87
Cx

32 -0.01 1.09 1.10
Cy

12 7.67 3.53 -4.14
Cy

13 18.14 27.36 9.22
Cy

21 3.64 0.00 -3.64
Cy

23 10.06 6.50 -3.56
Cy

31 2.71 3.89 1.18
Cy

32 9.79 6.93 -2.86
Cz

12 5.47 3.95 -1.52
Cz

13 4.03 12.24 8.21
Cz

21 10.72 3.50 -7.22
Cz

23 13.54 2.20 -11.34
Cz

31 8.70 2.89 -5.81
Cz

32 1.50 3.85 2.35

Table 2. The connection coefficients of two super-model solutions
of the Lorenz 63 system and their differences.

the state variables. Since these do not take into account the
temporal evolution through phase space, we will also evalu-
ate the ability of the super-model to reproduce the autocorre-
lation functions of the state variables. As a final measure we
will check the ability of the super-model to synchronize with
the truth at the end of this section.

3.3.1 Mean, standard deviation and covariance

The calculation of these statistics is based on 500 runs of
5.000 time units of the truth, the imperfect models and both
super-models. An error estimation of these quantities is
based on the spread of the 500 estimates of each quantity.
The results for the imperfect models are given in table 3 and
for the truth and both super-models in table 4.

For the parameter values of model 1 and 2 the attractor
reduces to two stable point attractors. The x, y and z val-
ues of these fixed points can be calculated analytically from
equation (1) by setting the time derivatives to zero. Since
the system settles in one of these point attractors depending
on the initial condition, the mean values are equal to these
values. The statistics of the chaotic solution of model 3 (see
table 3) differ substantially from the truth (see table 4), espe-
cially the mean value of z is much larger.

Both super-models (see table 4) have statistics that are
close to that of the truth with the largest differences of order
5% in the covariance between x and y. The second super-
model is somewhat closer to the truth, especially in the co-
variance of x and y.

3.4 Autocorrelation

The autocorrelation is a statistical measure of the temporal
evolution. It gives an indication of the memory and time

Fig. 6. As in Fig. 5, except that the cost function is calculated for the training set withK = 200 initializations (thick line) and 9 additional
independent sets of observations of the same length (thin lines) that were taken from a consecutive longer integration of the truth.

The statistics of the chaotic solution of model 3 (see Table3)
differ substantially from the truth (see Table4), especially
the mean value ofz is much larger.

Both super-models (see Table4) have statistics that are
close to that of the truth with the largest differences of order
5 % in the covariance betweenx andy. The second super-
model is somewhat closer to the truth, especially in the co-
variance ofx andy.

3.4 Autocorrelation

The autocorrelation is a statistical measure of the temporal
evolution. It gives an indication of the memory and time
scales present in a system. The plots in Fig.7 are based on
100 runs of 3000 time units and the shading corresponds to
the 95 % error range of the autocorrelation of the truth.

Both super-models capture the fast decorrelation ofx and
y and the slow decorrelation ofz well, but the second super-
model is closer to the truth. It also better represents the domi-
nant time scale which is most apparent in the autocorrelation
of z. After 9 oscillations super-model 1 runs out of phase
with the truth somewhat, whereas super-model 2 is still in
phase.

3.5 Synchronization with the truth

Pecora and Carroll(1990) have shown that limited informa-
tion exchange between two identical Lorenz systems can lead
to synchronization of the model states even when the systems
are initialized from very different initial conditions and differ
slightly in parameter values. The ability to synchronize with
the truth is another measure of the quality of a model. In this
section we will compare how well the super-models compare
to a perfect model in this respect.

Yang et al. (2006) extended the study of synchro-
nized Lorenz systems, re-interpreted in the context of data

assimilation. FollowingYang et al.(2006) we add a so-called
simple nudging term to the equations of they variable for
each of the three connected imperfect models as in Eqs. (5).
This term “nudges” the actual values ofyk to the observed
valueyo and the value of parametern determines the strength
of the nudging.

ẋk = σk (yk − xk) +

∑
j 6=k

Cx
kj

(
xj − xk

)
ẏk = xk (ρk −zk) − yk +

∑
j 6=k

C
y
kj

(
yj −yk

)
+n(yo−yk) (5)

żk = xk yk − βk zk +

∑
j 6=k

Cz
kj

(
zj − zk

)
k = 1, 2, 3

We take the following definition of synchronization:

Definition 1 A model is synchronized with the truth if the
RMS difference between the model state and observed true
state att = t0 is smaller thanδ and remains smaller thanε
for t → ∞.

ε is chosen larger thanδ, since synchronized systems of-
ten deviate somewhat during short extreme excursions of the
trajectory, but remain synchronized. As a measure of syn-
chronization we use the minimum strength of the nudging
n for which synchronization is accomplished independent of
the initial condition, for integern. For practical purposes we
choose a time interval ofT = 1000 time units during which
the models must remain withinε distance of each other.

How quickly systems synchronize very much depends on
the initial conditions (Yang et al., 2006), therefore we check
synchronization for 100 restarts from different initializations.
By trial and error we found that two identical Lorenz systems
with standard parameter values (what we call the truth) syn-
chronize usingn = 3,δ = 2 andε = 4 for all 100 initializations.

To compare the two super-model solutions the same set
of 100 initializations are used. The first super-model needs

www.earth-syst-dynam.net/2/161/2011/ Earth Syst. Dynam., 2, 161–177, 2011
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Model 1 Model 2 Model 3
Mean x ±7.94 ±7.93 0.003 (0.002)
Mean y ±7.94 ±7.93 0.003 (0.010)
Mean z 18.00 17.00 34.23 (0.030)
SD x 0 0 7.628 (0.002)
SD y 0 0 9.416 (0.010)
SD z 0 0 8.765 (0.030)

Cov. xy 0 0 58.19 (0.036)
Cov. xz 0 0 0.007 (0.44)
Cov. yz 0 0 0.012 (0.68)

Table 3. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Lorenz 63 system. The val-
ues for the first two models are calculated analytically. Statistics
for model 3 are based on 500 runs of 5.000 time units. Between
brackets the 95% error estimation is given.

Truth Super-model 1 Super-model 2
Mean x -0.006 (0.22) 0.007 (0.21) -0.000 (0.25)
Mean y -0.006 (0.22) 0.007 (0.21) -0.000 (0.25)
Mean z 23.549 (0.02) 22.93 (0.02) 23.19 (0.03)
SD x 7.924 (0.005) 7.717 (0.003) 7.812 (0.005)
SD y 9.011 (0.008) 8.791 (0.009) 8.723 (0.009)
SD z 8.623 (0.025) 8.596 (0.016) 8.549 (0.032)

Cov. xy 62.786 (0.07) 58.952 (0.05) 60.6416 (0.08)
Cov. xz -0.020 (0.76) 0.023 (0.74) 0.000 (0.88)
Cov. yz -0.016 (0.61) 0.021 (0.65) -0.001 (0.69)

Table 4. Mean, standard deviation (SD) and covariance for the truth
and for the two super-models of the Lorenz 63 system. Statistics are
based on 500 runs of 5.000 time units. Between brackets the 95%
error estimation is given.

scales present in a system. The plots in figure 7 are based
on 100 runs of 3.000 time units and the shading corresponds
to the 95% error range of the autocorrelation of the truth.

Both super-models capture the fast decorrelation of x and
y and the slow decorrelation of z well, but the second super-
model is closer to the truth. It also better represents the dom-
inant time scale which is most apparent in the autocorrelation
of z. After 9 oscillations super-model 1 is lagging the truth
somewhat, whereas super-model 2 is still in phase.

3.5 Synchronization with the truth

Pecora and Carroll (1990) have shown that limited informa-
tion exchange between two identical Lorenz systems can lead
to synchronization of the model states even when the systems
are initialized from very different initial conditions and differ
slightly in parameter values. The ability to synchronize with
the truth is another measure of the quality of a model. In this
section we will compare how well the super-models compare
to a perfect model in this respect.

Yang and coauthors (2006) extended the study of synchro-
nized Lorenz systems, re-interpreted in the context of data
assimilation. Following Yang and coauthors (2006) we add a
so-called simple nudging term to the equations of the y vari-
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Fig. 7. Autocorrelation as a function of delay time for x, y and
z for the standard Lorenz 63 system and both super-models. The
shaded area indicates the 95% error band for the autocorrelation of
the truth, based on 100 runs of 3.000 time units.

Fig. 7. Autocorrelation as a function of delay time forx, y and
z for the standard Lorenz 63 system and both super-models. The
shaded area indicates the 95 % error band for the autocorrelation of
the truth, based on 100 runs of 3000 time units.
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a nudging strength ofn = 11 in order to synchronize with
the truth. The second super-model needs a somewhat larger
valuen = 13. Using the same experimental setup, we found
that the imperfect models individually are not able to syn-
chronize with the truth at all. Both super-models need a
stronger nudging than the perfect model. In this measure,
the first super-model is closer to the truth, despite the fact
that the mean temporal evolution, as measured by the auto-
correlation, is more faithfully captured by the second super-
model that also has a smaller cost function value. However,
if we calculate the probability density function of the dis-
tance between the truth and the super-model from a 105 time
units long integration of the super-model nudged to the truth
as in Eqs. (5) for n = 6, we find that more often the second
super-model remains closer to the truth than the first super-
model (see Fig.8). Nevertheless, the second super-model
needs a slightly larger nudging strength to synchronize with
the truth than the first because for nudging values larger than
n = 5, it has larger probability, albeit small, of exceeding the
thresholdε = 4. Forn = 6 the distance between the second
super-model and the truth is larger than 4 during 1.6 % of the
time whereas it is 1.3 % for the first. Forn = 10 it is 0.27 %
for the second and 0.075 % for the first. This probability be-
comes small enough to meet the synchronization criterium of
Definition 1 forn = 13 for the second super-model, whereas
for the first this happens forn = 11. We conclude that the
interpretation of the ability of a model to synchronize with
the truth as a measure of the quality of a solution is not so
straightforward. It serves more as a measure of the stability
of the model.

All measures indicate that the second super-model is
closer to the truth than the first. It turns out that the value
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Table 5. Standard and perturbed parameters for the Rössler system.

a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30 %) 0.14 (30 %) 7.5 (32 %)
Model 2 0.12 (40 %) 0.28 (40 %) 7.4 (30 %)
Model 3 0.27 (35 %) 0.12 (40 %) 4. (30 %)

of the cost function is indeed a good indication of the quality
of the solution and that the approach of minimizing the cost
function is a fruitful strategy.

3.6 Simulating climate change

In order to check whether the super-model is also able to sim-
ulate climate change, for instance the response of the truth to
a parameter perturbation, we doubled the parameterρ in the
true system and in the imperfect models in the super-model.
The response of the attractor is an increase in size, the shape
remains very similar (see Fig.9). Although the connection
coefficients are learned forρ = 28, the super-model quite ac-
curately simulates the attractor forρ = 56. The meanz-value
increases with a factor of 2.2 for both the truth as well as the
super-model. The response is practically the same for both
super-models.

4 Results R̈ossler and Lorenz 84

In this section the super-modeling approach is applied to the
Rössler and the Lorenz 84 systems. Both display chaotic
behaviour for standard parameter settings, but the attractors
are quite different.

4.1 Rössler

The Lorenz 63 attractor is also called abutterfly, because
of its shape. As a simplification of this example of chaos
to one where the attractor only has one “wing”, the Rössler
equations were proposed (Rössler, 1976). The time evolution
is less chaotic than in the Lorenz 63 system, since it lacks
the irregular transitions between two unstable points. The
equations are

ẋ = −(y + z)

ẏ = x + ay (6)

ż = b + z (x − c).

The parameter values for the truth are Rösslers values:
a = 0.2, b = 0.2 andc = 5.7. The values for the parameters
for the three imperfect models can be found in Table5. The
parameter perturbations applied are again of the order 30 %
to 40 % and in each of the imperfect models parameters have
been decreased as well as increased.
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super-models.

4 Results Rössler and Lorenz 84

In this section the super-modeling approach is applied to the
Rössler and the Lorenz 84 systems. Both display chaotic
behaviour for standard parameter settings, but the attractors
are quite different.

4.1 Rössler

The Lorenz 63 attractor is also called a butterfly, because
of its shape. As a simplification of this example of chaos
to one where the attractor only has one ‘wing’, the Rössler
equations were proposed (Rössler, 1976). The time evolution
is less chaotic than in the Lorenz 63 system, since it lacks
the irregular transitions between two unstable points. The
equations are

ẋ = −(y+z)
ẏ = x+ay (6)
ż = b+z(x−c).

The parameter values for the truth are Rösslers values:
a = 0.2, b = 0.2 and c = 5.7. The values for the parameters
for the three imperfect models can be found in table 5. The
parameter perturbations applied are again of the order 30%
to 40% and in each of the imperfect models parameters have
been decreased as well as increased.

With these parameter perturbations marked changes occur
in the attractor as can be seen in figure 10. The attractor of
imperfect model 1 is still chaotic and has a similar shape but
the amplitude of the irregular oscillations is larger. Imperfect
model 2 and 3 have a periodic attractor of different shapes.

a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30%) 0.14 (30%) 7.5 (32%)
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30%)
Model 3 0.27 (35%) 0.12 (40%) 4. (30%)

Table 5. Standard and perturbed parameters for the Rössler system.
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Fig. 10. Trajectories for the three unconnected imperfect models
(black) and the standard Rössler system (grey). Note the different
scales on the axes. The truth is the same in all three plots.

Fig. 9. Trajectories for the second super-model (black) and the stan-
dard Lorenz 63 system (grey). The larger attractor corresponds to
ρ = 56, the smaller to the standard valueρ = 28. The super-model
was trained on the standard parameter value.

With these parameter perturbations marked changes occur
in the attractor as can be seen in Fig.10. The attractor of
imperfect model 1 is still chaotic and has a similar shape but
the amplitude of the irregular oscillations is larger. Imperfect
model 2 and 3 have a periodic attractor of different shapes.

To determine the super-model we first need to choose val-
ues for the different parameters in the cost function. For the
Rössler system the time it takes for initial errors to double
is on average 6.7. Following the same procedure as for the
Lorenz 63 system we setγ = 0.9 and1 = 12 time units. The
number of initializations in this case isK = 300.

We minimized the cost function by varying the connection
coefficients of the super-model. This minimum is plotted in
Fig. 11 in a cross section alongCx

23. The value at the min-
imum is approximately 0.0001, which is much lower than
a typical value of the cost function (0.004 for all connec-
tion coefficients equal to 1). To check the robustness of this
minimum with respect to the limited size of training set, we
calculated the cost function for 9 additional sets of 300 ini-
tializations, that were taken from a longer simulation of the
truth. The figure shows that 300 initializations are enough
to reliably estimate the cost function. This minimum is not
unique. By changing the initial values of the connection co-
efficients in the minimisation procedure, we found different
minima with similar values of the cost function as was the
case for the Lorenz 63 system. Here we evaluate the quality
of this minimum only.

With the connection coefficients of this minimum, we inte-
grated the super-model and plotted the trajectory of the three
connected imperfect models in Fig.12. The three models
fall into an approximate synchronous behaviour, but espe-
cially the amplitudes of the excursion in thez direction are
different with model 3 making the largest excursions. The
temporal correlations between thex, y, andz variables of the
three models are in excess of 0.99 (not shown) and the sum of
the time-mean distances between the three model states nor-
malized by the sum of the standard deviations ofxs, ys andzs
is 0.18. The super-model solution, which is defined as the av-
erage of the three imperfect models, is plotted in Fig.13 for
two points of view. Visually the attractor of the super-model
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Fig. 9. Trajectories for the second super-model (black) and the stan-
dard Lorenz 63 system (grey). The larger attractor corresponds to
ρ = 56, the smaller to the standard value ρ = 28. The super-model
was trained on the standard parameter value.

super-models.

4 Results Rössler and Lorenz 84

In this section the super-modeling approach is applied to the
Rössler and the Lorenz 84 systems. Both display chaotic
behaviour for standard parameter settings, but the attractors
are quite different.

4.1 Rössler

The Lorenz 63 attractor is also called a butterfly, because
of its shape. As a simplification of this example of chaos
to one where the attractor only has one ‘wing’, the Rössler
equations were proposed (Rössler, 1976). The time evolution
is less chaotic than in the Lorenz 63 system, since it lacks
the irregular transitions between two unstable points. The
equations are

ẋ = −(y+z)
ẏ = x+ay (6)
ż = b+z(x−c).

The parameter values for the truth are Rösslers values:
a = 0.2, b = 0.2 and c = 5.7. The values for the parameters
for the three imperfect models can be found in table 5. The
parameter perturbations applied are again of the order 30%
to 40% and in each of the imperfect models parameters have
been decreased as well as increased.

With these parameter perturbations marked changes occur
in the attractor as can be seen in figure 10. The attractor of
imperfect model 1 is still chaotic and has a similar shape but
the amplitude of the irregular oscillations is larger. Imperfect
model 2 and 3 have a periodic attractor of different shapes.

a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30%) 0.14 (30%) 7.5 (32%)
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30%)
Model 3 0.27 (35%) 0.12 (40%) 4. (30%)

Table 5. Standard and perturbed parameters for the Rössler system.
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Fig. 10. Trajectories for the three unconnected imperfect models
(black) and the standard Rössler system (grey). Note the different
scales on the axes. The truth is the same in all three plots.

Fig. 10. Trajectories for the three unconnected imperfect models
(black) and the standard Rössler system (grey). Note the different
scales on the axes. The truth is the same in all three plots.

Table 6. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Rössler system. The 95 % er-
ror estimation based on 500 runs of 5000 time units is given between
brackets.

Model 1 Model 2 Model 3

Meanx 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Meany −1.603 (0.099) −0.710 (0.0009) −1.26 (0.0009)
Meanz 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)

SDx 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SDy 6.567 (0.099) 6.400 (0.0009) 4.080 (0.0009)
SD z 6.853 (0.229) 1.787 (0.0015) 3.896 (0.0022)

Covariancexy -11.21 (0.33) −4.492 (0.005) −4.49 (0.004)
Covariancexz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covarianceyz -0.35 (0.39) 2.784 (0.004) 2.06 (0.003)
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Fig. 11. Cross sections of the cost function for the super-model
of the Rössler system for the training set (thick line) with length
corresponding to K = 300 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficient Cx

23 and keeping the others fixed.

To determine the super-model we first need to choose val-
ues for the different parameters in the cost function. For the
Rössler system the time it takes for initial errors to double
is on average 6.7. Following the same procedure as for the
Lorenz 63 system we set γ =0.9 and ∆=12 time units. The
number of initializations in this case is K = 300.

We minimized the cost function by varying the connection
coefficients of the super-model. This minimum is plotted in
figure 11 in a cross section along Cx

23. The value at the min-
imum is approximately 0.0001, which is much lower than
a typical value of the cost function (0.004 for all connec-
tion coefficients equal to 1). To check the robustness of this
minimum with respect to the limited size of training set, we
calculated the cost function for 9 additional sets of 300 ini-
tializations, that were taken from a longer simulation of the
truth. The figure shows that 300 initializations are enough
to reliably estimate the cost function. This minimum is not
unique. By changing the initial values of the connection co-
efficients in the minimization procedure, we found different
minima with similar values of the cost function as was the
case for the Lorenz 63 system. Here we evaluate the quality
of this minimum only.

With the connection coefficients of this minimum, we inte-
grated the super-model and plotted the trajectory of the three
connected imperfect models in figure 12. The three models
fall into an approximate synchronous behaviour, but espe-
cially the amplitudes of the excursion in the z direction are
different with model 3 making the largest excursions. The
temporal correlations between the x, y, and z variables of the
three models are in excess of 0.99 (not shown) and the sum
of the time-mean distances between the three model states
normalized by the sum of the standard deviations of xs, ys

and zs is 0.18. The super-model solution, which is defined as
the average of the three imperfect models, is plotted in fig-
ure 13 for two points of view. Visually the attractor of the
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Fig. 12. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the
standard Rössler system (grey).

super-model is very similar to the true attractor. We will ap-
ply the same measures as for the Lorenz 63 system to check
the quality of the super-model.

First we compare the means, standard deviations and co-
variances for the unconnected imperfect models in table 6
and for the super-model and the truth in table 7. The super-
model turns out to be closer to the truth than the best imper-
fect model (model 3). Its statistics almost fall within the 95%
error bounds of the true values.

To compare the temporal behaviour we calculated the au-

Fig. 11. Cross sections of the cost function for the super-model
of the R̈ossler system for the training set (thick line) with length
corresponding toK = 300 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficientCx

23 and keeping the others fixed.

is very similar to the true attractor. We will apply the same
measures as for the Lorenz 63 system to check the quality of
the super-model.

First we compare the means, standard deviations and co-
variances for the unconnected imperfect models in Table6
and for the super-model and the truth in Table7. The super-
model turns out to be closer to the truth than the best im-
perfect model (model 3). Its statistics almost fall within the
95 % error bounds of the true values.

To compare the temporal behaviour we calculated the au-
tocorrelation functions as plotted in Fig.14 for the truth and
the super-model. They indicate a strongly periodic behaviour
with a long decorrelation time scale. For all three variables
the autocorrelation function is close to and sometimes within
the 95 % error band, again indicating that the super-model is
a very good approximation of the truth.
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To determine the super-model we first need to choose val-
ues for the different parameters in the cost function. For the
Rössler system the time it takes for initial errors to double
is on average 6.7. Following the same procedure as for the
Lorenz 63 system we set γ =0.9 and ∆=12 time units. The
number of initializations in this case is K = 300.

We minimized the cost function by varying the connection
coefficients of the super-model. This minimum is plotted in
figure 11 in a cross section along Cx

23. The value at the min-
imum is approximately 0.0001, which is much lower than
a typical value of the cost function (0.004 for all connec-
tion coefficients equal to 1). To check the robustness of this
minimum with respect to the limited size of training set, we
calculated the cost function for 9 additional sets of 300 ini-
tializations, that were taken from a longer simulation of the
truth. The figure shows that 300 initializations are enough
to reliably estimate the cost function. This minimum is not
unique. By changing the initial values of the connection co-
efficients in the minimization procedure, we found different
minima with similar values of the cost function as was the
case for the Lorenz 63 system. Here we evaluate the quality
of this minimum only.

With the connection coefficients of this minimum, we inte-
grated the super-model and plotted the trajectory of the three
connected imperfect models in figure 12. The three models
fall into an approximate synchronous behaviour, but espe-
cially the amplitudes of the excursion in the z direction are
different with model 3 making the largest excursions. The
temporal correlations between the x, y, and z variables of the
three models are in excess of 0.99 (not shown) and the sum
of the time-mean distances between the three model states
normalized by the sum of the standard deviations of xs, ys

and zs is 0.18. The super-model solution, which is defined as
the average of the three imperfect models, is plotted in fig-
ure 13 for two points of view. Visually the attractor of the
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connections determined by the learning process (black) and the
standard Rössler system (grey).

super-model is very similar to the true attractor. We will ap-
ply the same measures as for the Lorenz 63 system to check
the quality of the super-model.

First we compare the means, standard deviations and co-
variances for the unconnected imperfect models in table 6
and for the super-model and the truth in table 7. The super-
model turns out to be closer to the truth than the best imper-
fect model (model 3). Its statistics almost fall within the 95%
error bounds of the true values.

To compare the temporal behaviour we calculated the au-
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connections determined by the learning process (black) and the
standard R̈ossler system (grey).
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Fig. 13. Trajectories for the super-model (black) and the standard
Rössler system (grey) for two different points of view.

Model 1 Model 2 Model 3
Mean x 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Mean y -1.603 (0.099) -0.710 (0.0009) -1.26 (0.0009)
Mean z 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)
SD x 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SD y 6.567 (0.099) 6.400 (0.0009) 4.080 (0.0009)
SD z 6.853 (0.229) 1.787 (0.0015) 3.896 (0.0022)

Covariance xy -11.21 (0.33) -4.492 (0.005) -4.49 (0.004)
Covariance xz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covariance yz -0.35 (0.39) 2.784 (0.004) 2.06 (0.003)

Table 6. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Rössler system. The 95% er-
ror estimation based on 500 runs of 5.000 time units is given be-
tween brackets.

Truth Super-model
Mean x 0.177 (0.003) 0.175 (0.003)
Mean y -0.886 (0.009) -0.878 (0.009)
Mean z 0.886 (0.009) 0.874 (0.009)
SD x 5.16 (0.04) 5.10 (0.03)
SD y 4.84 (0.03) 4.82 (0.02)
SD z 2.84 (0.04) 2.95 (0.03)

Covariance xy -4.693 (0.05) -4.702 (0.04)
Covariance xz 4.693 (0.05) 4.644 (0.04)
Covariance yz 2.183 (0.12) 2.025 (0.19)

Table 7. Mean, standard deviation (SD) and covariance for the truth
and super-model of the Rössler system. The 95% error estimation
based on 500 runs of 5.000 time units is given between brackets.
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Fig. 14. Autocorrelation for the super-model (black) and the stan-
dard Rössler system (grey). The thickness of the grey line corre-
sponds to the 95% error band for the truth, based on 100 runs of
3.000 time units.
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Table 6. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Rössler system. The 95% er-
ror estimation based on 500 runs of 5.000 time units is given be-
tween brackets.

Truth Super-model
Mean x 0.177 (0.003) 0.175 (0.003)
Mean y -0.886 (0.009) -0.878 (0.009)
Mean z 0.886 (0.009) 0.874 (0.009)
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based on 500 runs of 5.000 time units is given between brackets.

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (x)

Truth
Super model

(a) x

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (y)

Truth
Super model

(b) y

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (z)

Truth
Super model

(c) z

Fig. 14. Autocorrelation for the super-model (black) and the stan-
dard Rössler system (grey). The thickness of the grey line corre-
sponds to the 95% error band for the truth, based on 100 runs of
3.000 time units.

Fig. 13. Trajectories for the super-model (black) and the standard
Rössler system (grey) for two different points of view.

Finally we look at the minimum nudging strength needed
to enable synchronization with the truth. We use the same
definition of synchronization as for the Lorenz 63 model with
the following values for the parametersδ = 0.05,ε = 0.4 and
T = 1000 time units. When the nudging term is applied to the
y variable only, we find that the standard Rössler system syn-
chronizes with a copy of itself for a nudging strength equal
to n = 1. The super-model also synchronizes when nudging
only they variable, but it needs a stronger nudging ofn = 2.
It outperforms model 3 in this measure; even by replacing the
y variable with the true value (which corresponds effectively
to an infinitely large nudging strength), synchronization does
not occur.

To conclude, also in the case of the Rössler system, super-
model solutions can be found by combining imperfect mod-
els that give a very good approximation to the truth. This may
not be surprising since the Rössler system is less chaotic than
the Lorenz 63 system (note the long autocorrelation time-
scale in Fig.14) and more regular behaviour is presumeable
easier to reproduce. On the other hand, a more chaotic sys-
tem has richer dynamics (more time-scales, instabilities etc.)
thus the connected models have more degrees of freedom to
mimick the truth. Beforehand it is hard to predict whether
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SD z 2.84 (0.04) 2.95 (0.03)

Covariance xy -4.693 (0.05) -4.702 (0.04)
Covariance xz 4.693 (0.05) 4.644 (0.04)
Covariance yz 2.183 (0.12) 2.025 (0.19)

Table 7. Mean, standard deviation (SD) and covariance for the truth
and super-model of the Rössler system. The 95% error estimation
based on 500 runs of 5.000 time units is given between brackets.
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Fig. 14. Autocorrelation for the super-model (black) and the stan-
dard Rössler system (grey). The thickness of the grey line corre-
sponds to the 95% error band for the truth, based on 100 runs of
3.000 time units.

Fig. 14. Autocorrelation for the super-model (black) and the stan-
dard R̈ossler system (grey). The thickness of the grey line corre-
sponds to the 95 % error band for the truth, based on 100 runs of
3000 time units.

Table 7. Mean, standard deviation (SD) and covariance for the truth
and super-model of the R̈ossler system. The 95 % error estimation
based on 500 runs of 5000 time units is given between brackets.

Truth Super-model

Meanx 0.177 (0.003) 0.175 (0.003)
Meany −0.886 (0.009) −0.878 (0.009)
Meanz 0.886 (0.009) 0.874 (0.009)

SDx 5.16 (0.04) 5.10 (0.03)
SDy 4.84 (0.03) 4.82 (0.02)
SD z 2.84 (0.04) 2.95 (0.03)

Covariancexy −4.693 (0.05) −4.702 (0.04)
Covariancexz 4.693 (0.05) 4.644 (0.04)
Covarianceyz 2.183 (0.12) 2.025 (0.19)

more chaos helps or hurts, so we test the super-modeling ap-
proach also on the more chaotic Lorenz 84 system.

4.2 Lorenz 84

The Lorenz 84 system was proposed by Lorenz as a toy
model for the general atmospheric circulation at midlatitudes
(Lorenz, 1984). The model equations are

ẋ = −y2
− z2

− ax + aF

ẏ = xy − bxz− y + G (7)

ż = bxy + xz − z.

The x variable represents the intensity of the globe-
encircling westerly winds andy andz represent a travelling
large-scale wave that interacts with the westerly wind. Pa-
rametersF andG are forcing terms representing the average
north-south temperature contrast and the east-west asymme-
tries due to the land-sea distribution respectively.

The standard parameter values for the truth area = 1
4, b = 4,

F = 8 andG = 1, for which the model displays chaotic be-
haviour (van Veen, 2001). In Table8 the perturbed parameter
values of the imperfect models are given. The perturbations
are again about 30 % and in each imperfect model parameters
have been decreased as well as increased.

With these parameter perturbations the attractor of the
imperfect models differs substantially from the truth (see
Fig. 15). Both model 1 and 3 have periodic attractors,
whereas model 2 has a point attractor (the transient evolu-
tion towards the point attractor is shown for model 2). The
periodic behaviour corresponds to the wave traveling period-
ically around the hemisphere.

Following the same procedure as before to find the param-
eters used in the cost function we foundγ = 0.5 and1 = 2.2
time units, based on the average time it takes for initial errors
to double (on average 1.1 time units). However with these
values the minimisation algorithm did not produce a well de-
fined minimum of the cost function. The high value of the
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Fig. 15. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 84 system (grey).
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Fig. 16. Cross section of the cost function for the super-model of
the Lorenz 84 system for the training set (thick line) with length
corresponding to K = 200 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficient Cy

32 and keeping the others fixed.
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Lorenz 84 system(grey) for two points of view.

stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instance Cx

32 = 115, Cy
23 = 147 and Cz

31 = 169). Such
high values make synchronization easier since these connec-
tion terms in the equations bring the model solutions closer
together. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and

Fig. 15. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 84 system (grey).

Table 8. Standard and perturbed parameters for the Lorenz 84 sys-
tem.

a b F G

Truth 0.25 4 8 1
Model 1 0.33 (32 %) 5.2 (30 %) 10.4 (30 %) 0.7 (30 %)
Model 2 0.18 (28 %) 5.2 (30 %) 5.6 (30 %) 1.3 (30 %)
Model 3 0.18 (28 %) 2.7 (33 %) 10.4 (30 %) 1.3 (30 %)
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stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instance Cx

32 = 115, Cy
23 = 147 and Cz

31 = 169). Such
high values make synchronization easier since these connec-
tion terms in the equations bring the model solutions closer
together. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and

Fig. 16. Cross section of the cost function for the super-model of
the Lorenz 84 system for the training set (thick line) with length
corresponding toK = 200 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficientCy

32 and keeping the others fixed.

autocorrelation function ofx (0.6 at 8 time units, see Fig.18)
indicates that the initial conditions still have an impact on
the evolution after 8 time units. Therefore we decided to in-
crease1 to 8 andγ to 0.8. In addition it turned out that it
was easier to find good minima using the amoeba minimisa-
tion algorithm (Nelder and Mead, 1965) instead of the con-
jugate gradients minimisation. The amoeba method does not
need gradient information and is less susceptible to getting
stuck in local minima. The training set is based onK = 200
initializations, each 0.2 time units apart selected from a long
simulation of the truth.

Starting from different initial values for the connection co-
efficients we found different minima of the cost function. A
cross section through the best minimum that we found is
shown in Fig.16. The value at this minimum is approxi-
mately 0.0003, which is again much lower than the value
of the costfunction for all connection coefficients equal to 1
(0.08). To check the robustness the cost function is evaluated
on 9 additional independent sets of 200 initializations. In all
9 sets the minimum is reproduced around the same value of
the connection coefficient. The same is true for cross sections
of the other connection coefficients (not shown).
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stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instance Cx

32 = 115, Cy
23 = 147 and Cz

31 = 169). Such
high values make synchronization easier since these connec-
tion terms in the equations bring the model solutions closer
together. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and
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stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instance Cx

32 = 115, Cy
23 = 147 and Cz

31 = 169). Such
high values make synchronization easier since these connec-
tion terms in the equations bring the model solutions closer
together. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and

Fig. 17. Trajectories for the super-model (black) and the standard
Lorenz 84 system(grey) for two points of view.

With the connection coefficients for this minimum, we in-
tegrated the super-model and plotted the trajectory in Fig.17.
A visual comparison with the truth indicates a very good
agreement. In this case the three imperfect models are almost
perfectly synchronized (not shown). The synchronization is
stronger in this case as compared to the other two systems.
The temporal correlations between thex, y andz variables of
the three imperfect models in the super-model are in excess
of 0.99 and the sum of the time-mean distances between the
three model states normalized by the sum of the standard de-
viations ofxs, ys andzs is only 0.03. The model trajectories
stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instanceCx

32 = 115,Cy

23 = 147 andCz
31 = 169). Such high

values make synchronization easier since these connection
terms in the equations bring the model solutions closer to-
gether. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and
covariance for the truth and the super-model are presented in
Table9. These statistics are in excellent agreement.

In order to evaluate the temporal behaviour we compare
the autocorrelation functions in Fig.18. Up to a delay time
of 14 time units the autocorrelation functions of the truth are

Table 9. Mean, standard deviation (SD) and covariance for the
super-model and the standard Lorenz 84 system. The 95 % error
estimation based on 500 runs of 5000 time units is given between
brackets.

Truth Super-model

Meanx 1.015 (0.008) 1.013 (0.008)
Meany 0.060 (0.018) 0.058 (0.017)
Meanz 0.271 (0.005) 0.272 (0.004)

SDx 0.589 (0.014) 0.596 (0.014)
SDy 0.919 (0.002) 0.920 (0.002)
SD z 0.908 (0.002) 0.906 (0.002)

Covariancexy −0.053 (0.018) −0.050 (0.022)
Covariancexz −0.038 (0.004) −0.039 (0.003)
Covarianceyz −0.075 (0.006) −0.063 (0.005)

well reproduced by the super-model both in shape as well as
in periodicity.

The Lorenz 84 system with standard parameter values
synchronizes with the truth for a strength of the nudging
term n = 1 in they variable only, usingδ = 0.1, ε = 0.5 and
T = 1000 in Definition1. The super-model also synchronizes
with the truth, but it needs a larger nudging ofn = 4. None
of the imperfect models is able to synchronize with the truth,
when the nudging is in they variable only.

Concluding this section, super-model solutions can be
found that reproduce the true system very well and outper-
form the individual imperfect models for the Lorenz 84 sys-
tem as well. For this system, the minimisation process was
found to be more sensitive to the length of the short integra-
tions 1 and the discount parameterγ , requiring the use of
the more robust amoeba minimisation procedure.

5 Conclusion and discussion

In this study we developed and tested a novel multi-model
ensemble approach in which imperfect models of an ob-
servable system are combined into a single super-model by
letting the models exchange information during the simula-
tion. The information exchange takes the form of linear con-
nections with weights that are learned from historical data
such that the super-model minimizes the mean squared er-
rors in short simulations initialized from past observed states.
The main result of this study is that it is possible to con-
struct super-models in the context of simple low-dimensional
chaotic systems that outperform the constituent imperfect
models.

This result motivates an alternative strategy to the weather
and climate prediction problem. Current practice is that ex-
isting imperfect models of the climate system are integrated
independently of one another, starting from observed ini-
tial conditions to provide forecasts for the future. To gauge

Earth Syst. Dynam., 2, 161–177, 2011 www.earth-syst-dynam.net/2/161/2011/
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Truth Super-model
Mean x 1.015 (0.008) 1.013 (0.008)
Mean y 0.060 (0.018) 0.058 (0.017)
Mean z 0.271 (0.005) 0.272 (0.004)
SD x 0.589 (0.014) 0.596 (0.014)
SD y 0.919 (0.002) 0.920 (0.002)
SD z 0.908 (0.002) 0.906 (0.002)

Covariance xy -0.053 (0.018) -0.050 (0.022)
Covariance xz -0.038 (0.004) -0.039 (0.003)
Covariance yz -0.075 (0.006) -0.063 (0.005)

Table 9. Mean, standard deviation (SD) and covariance for the
super-model and the standard Lorenz 84 system. The 95% error
estimation based on 500 runs of 5.000 time units is given between
brackets.

covariance for the truth and the super-model are presented in
table 9. These statistics are in excellent agreement.

In order to evaluate the temporal behaviour we compare
the autocorrelation functions in figure 18. Up to a delay time
of 14 time units the autocorrelation functions of the truth are
well reproduced by the super-model both in shape as well as
in periodicity.

The Lorenz 84 system with standard parameter values syn-
chronizes with the truth for a strength of the nudging term
n = 1 in the y variable only, using δ = 0.1, ε = 0.5 and
T = 1000 in definition 1. The super-model also synchronizes
with the truth, but it needs a larger nudging of n = 4. None
of the imperfect models is able to synchronize with the truth,
when the nudging is in the y variable only.

Concluding this section, super-model solutions can be
found that reproduce the true system very well and outper-
form the individual imperfect models for the Lorenz 84 sys-
tem as well. For this system, the minimization process was
found to be more sensitive to the length of the short integra-
tions ∆ and the discount parameter γ, requiring the use of
the more robust amoeba minimization procedure.

5 Conclusion and Discussion

In this study we developed and tested a novel multi-model
ensemble approach in which imperfect models of an ob-
servable system are combined into a single super-model
by letting the models exchange information during the
simulation. The information exchange takes the form
of linear connections with weights that are learned from
historical data such that the super-model minimizes the
mean squared errors in short simulations initialized from
past observed states. The main result of this study is that
it is possible to construct super-models in the context of
simple low-dimensional chaotic systems that outperform the
constituent imperfect models.

This result motivates an alternative strategy to the weather
and climate prediction problem. Current practice is that ex-
isting imperfect models of the climate system are integrated
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Fig. 18. Autocorrelation for the super-model (black) and the stan-
dard Lorenz 84 system (white) The shaded area corresponds to the
95% error band for the truth based on 100 runs of 3.000 time units.

Fig. 18. Autocorrelation for the super-model (black) and the stan-
dard Lorenz 84 system (white) The shaded area corresponds to the
95 % error band for the truth based on 100 runs of 3000 time units.

model uncertainty, the outcomes of the different models are
combined into a single estimate of the probability density
function of climate variables. This study indicates that better
estimates of the true probability function can be obtained if
the models are taught, using past observations, to combine
the strengths of each into a single forecast of the probability
density function.

In case the models synchronize perfectly, all models fol-
low the same trajectory and no information is lost by en-
semble averaging. A sudden loss of synchronization and in-
crease of spread between the individual model solutions in
the super-model might indicate a loss of predictability dur-
ing that period. Also, the distance from the ensemble mean
might be an indication of model error, the larger the distance,
the larger the model error. We note that, since the models are
coupled (rather than independent), the super-model is not an
ensemble in the classical sense of probability theory. But in
addition to evaluating the ensemble mean, valuable informa-
tion might be obtained from the spread between the individ-
ual model realizations.

A large gap exists between the simple, chaotic systems of
this study and the complex, state-of-the-art climate models.
Many questions need to be addressed in order to apply the
same approach to these models. There is the practical limita-
tion of computer capacity to enable the parallel execution of
an ensemble of state-of-the-art models that need to exchange
information at every time step. In the study ofKirtman et al.
(2003) two atmospheric models were coupled to one ocean
model so in principle it should be feasible to couple sev-
eral atmospheric models to several ocean models. Compu-
tational grids in the various climate models differ, so regrid-
ding should be part of the information exchange. Regridding
is standard practice in the information exchange between the
atmosphere and ocean components of climate models.

An important issue is the choice of state variables for the
connections and the number of connections. In this study
all state variables were connected and had similar dynamics.
In the climate models the different state variables are driven
by different physical processes and display distinct dynami-
cal behaviour at various time scales. It is not clear a priori
which state variables should be connected. In addition the
number of connections that can be learned on the basis of
historical data is limited and therefore careful choices for the
connections need to be made. Optimizing many parameters
leads to the risk of overfitting and failure to simulate the be-
havior outside the training set. In the implementation of the
super-modeling approach with complex weather or climate
models one must strive to keep the number of connections
as few as possible in order to limit the number of parame-
ters that need to be optimized. One possible approach would
be to not connect the state variables, but the various parame-
terized physical processes that contribute to the tendency of
the state variables. Most of the model uncertainty resides in
these parameterized processes, so it makes sense to direct the
learning to these processes.
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The introduction of connections between models intro-
duces non-physical terms in the equations and might dis-
rupt physical balances present in the original equations. On
the true climate attractor, the physical balances are natu-
rally obeyed. In case the models synchronize with the ob-
servations and each other, the physical balances are obeyed
also, and the precise implementation of the connections does
not matter. With regard to the approximate balances that
are observed in the atmosphere, like the hydrostatic or the
geostrophic balance, we note that if the connections be-
tween the state variables remain sufficiently weak, these bal-
ances will be restored continuously by dynamical adjust-
ments within each individual model.

An additional complicating factor for the learning phase is
the difference in time-scale between atmosphere and ocean.
Adjustments in the atmosphere have a short time-scale, but
the ocean adapts to these changes on a much longer time-
scale. Through its influence on the atmosphere, the ocean
introduces longer time-scales in the atmosphere as well. So
short integrations during the learning phase do not probe
these effects. This might hamper the learning. On the other
hand, there are well documented examples that certain model
errors develop very quickly.Rodwell and Jung(2008) is an
example of how a particular model error, namely the amount
of aerosols over the Sahara, leads to remote biases in winds
and precipitation through a sequence of fast atmospheric pro-
cesses. It is a nice example of how difficult it can be to di-
agnose the origin of a particular model bias. But at the same
time it illustrates that model biases develop quickly and it im-
plies that improving climate models on the short time-scales
(as in the super-model approach) could be a fruitful approach
to reduce model biases.Jung(2005) shows that most of the
climatogical errors in the circulation are already developed
after ten days of integration when starting from observed
states. In addition inJung et al.(2009) it is reported that
a change in the deep convection scheme, which describes
fast turbulent processes on the time-scales of hours, led to
a marked reduction of the climatological model bias. See
furtherPalmer and Weisheimer(2010) for a more theoretical
view on the origin of systematic model errors.

A main result of this study is that super-model solutions
are not unique. However, the different super-models have
similar quality and therefore this does not pose a severe prob-
lem and makes finding a suitable super-model solution easier.
The existence of quite distinct super-model solutions of good
quality remains a bit of a mystery.

A hierarchy of earth system models of intermediate com-
plexity (EMIC’s) could be used to address these various is-
sues. The EMIC’s resemble the state-of-the-art climate mod-
els in their structure, but differ in that the parameterization
schemes for the physical processes are much less elaborate,
fewer processes are explicitly modeled and the spatial res-
olution is much coarser. It has already been demonstrated
that two different quasi-geostrophic channel models will syn-
chronize with only limited connections (Duane and Tribbia,

2001, 2004). A fruitful strategy might be to start from a rel-
atively simple climate model and add to the complexity in
small steps and address a specific issue at each step. In a sim-
ilar fashion as in this study a ground truth model is assumed
at each step and an ensemble of imperfect models is created
by perturbing parameters and/or using different formulations
for unresolved processes.

An alternative learning strategy that is explicitly based
on synchronization is outlined in the study byDuane et al.
(2007). In this strategy the super-model equations contain
nudging terms to the truth as in our Eqs. (5) and additional
evolution equations are formulated for the parameters. The
moment the super-model synchronizes with the truth the pa-
rameters stop updating. This alternative learning strategy
leads to a particularly simple learning law that could be use-
ful in the implementation of the super-model approach us-
ing more complex models. The strategy has been demon-
strated with Lorenz systems (Duane et al., 2009). Quinn et
al. (2009) present a learning strategy based on the minimisa-
tion of a similar cost function by varying parameters and the
initial state of a single model simulation with an additional
nudging term to the truth that allows the model to synchro-
nize with the truth during the learning. In this sense it re-
sembles the approach byDuane et al.(2007). Our approach
is different in that we consider an ensemble of short model
simulations from different initial states, do not nudge to the
truth and only vary the parameters and not the initial state to
minimize the cost function.

The main caveat is that the super-model is trained on his-
torical data and in a climate prediction problem is subse-
quently applied to simulate the response of the system to an
external forcing. It is not guaranteed that the super-model
will also simulate this response more realistically, since the
response was not part of the training. Therefore the super-
model approach is more likely to be successful in weather-
and seasonal predictions since the cases to be predicted re-
main closer to the cases present in the training set.

The problem is not peculiar to the super-modeling ap-
proach, but arises with climate models generally. Climate
models contain numerous empirical parameters with values
that are optimized to reproduce observed historical behav-
ior as close as possible. Parameter values are adjusted such
as to reduce the errors in the climatological mean fields using
historical observations (Severijns and Hazeleger, 2005; Med-
vigy et al., 2010). It is not guaranteed that this automatically
implies that the response to a future greenhouse gas forcing
will be simulated more realistically. Other processes might
play a role there (Klocke et al., 2011).

On the other hand, there are also more optimistic argu-
ments indicating that super-modeling might work as a strat-
egy for improving climate change predictions. In this study
we obtained the encouraging result that for the Lorenz 1963
system the super-model was able to accurately predict the
change of the attractor after doubling parameterρ. This re-
sult gives hope that the super-modeling strategy applied to
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climate models will help in improving predictions of the cli-
mate response to future greenhouse gas forcing.

To conclude, as argued above, the super-modeling ap-
proach might work or might fail in the context of complex
climate models. This remains to be seen. We propose to fur-
ther study the merits of the super-modeling approach using
a similar hypothetical model setting as in this paper with a
hypothetical perfect model simulating the truth and a set of
imperfect models simulating state-of-the-art approximations
of this hypothetical truth. For this super-modeling research,
model classes of increased complexity – both for the hypo-
thetical truth as for the imperfect model approximations – are
then to be explored.

Finally, we wish to stress that we believe that long-term
improvements in climate predictions must come from im-
proving the description of the physical processes on the ba-
sis of dedicated process studies and observational databases.
This is a slow, but necessary process. In the meanwhile,
given a set of imperfect models, we could try to improve pre-
dictions by combining the strengths of the individual models
either through multi-model or super-model approaches.
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