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Abstract. Stakeholders across climate-sensitive sectors often require climate information that spans multiple
timescales, e.g. from months to several years, to inform planning and decision-making. To satisfy this infor-
mation request, climate services are typically developed by separately using seasonal predictions for the first
few months, and decadal predictions for subsequent years. This shift in information source can introduce in-
consistencies. To ensure the information is consistent across forecast timescales, some centres have produced
initialised multi-annual predictions, run twice a year and covering 2–3 years ahead, with increased ensemble
sizes. An alternative methodology to provide coherent climate information across timescales involves constrain-
ing, where seamless predictions are created by postprocessing seasonal and decadal forecasts in combination.
One approach selects members from large ensembles of decadal predictions or climate projections that closely
align with seasonal predictions or past observations, transferring short-term predictability into longer timescales.

This study evaluates the skill of seamless forecasts using different constraints (e.g. variables, regions, temporal
aggregations), and compares them with initialised multi-annual predictions. The analysis focuses on predictions
of the Niño3.4 index and spatial fields of surface temperature, precipitation, and sea level pressure for the first
three forecast years. Results show that while initialised multi-annual predictions achieve the highest overall skill,
constrained forecasts offer a computationally efficient alternative that still performs well and can be produced
regularly as monthly updates of observations or seasonal predictions become available. Besides, both sets of
predictions outperform the unconstrained ensembles of decadal predictions and climate projections over large
regions. During the period where the seasonal predictions and seamless predictions overlap, their skill is com-
parable. These findings illustrate the potential of constraining as a cost-effective strategy for extending climate
information across timescales and enhancing coherence for operational climate services provision.

1 Introduction

Climate predictions on seasonal to decadal timescales
are increasingly important for decision-making in climate-
sensitive sectors such as agriculture, water management, en-
ergy and disaster risk reduction (e.g. Torralba et al., 2017;
Soares et al., 2018; Paxian et al., 2019; Soret et al., 2019;

Turco et al., 2019; Solaraju-Murali et al., 2021; Pérez-Zanón
et al., 2024; Delgado-Torres et al., 2025). These predictions
help stakeholders anticipate climate variability and change,
enhancing preparation for its impacts. However, user needs
often span multiple time horizons (e.g. ranging from months
to several years; Merryfield et al., 2020), which requires cli-
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mate information that is not only skillful but also mutually
consistent across these timescales (Kushnir et al., 2019).

Traditionally, seasonal and decadal predictions have been
developed and issued separately, often using different fore-
cast systems, ensemble sizes, and initialisation strategies
(Goddard et al., 2012; Merryfield et al., 2020). Seasonal fore-
casts typically focus on the first few months and seasons, and
are updated monthly (Weisheimer and Palmer, 2014; John-
son et al., 2019). In contrast, decadal predictions aim to cap-
ture longer-term variability and trends over several years, and
are produced once per year (Doblas-Reyes et al., 2013; Smith
et al., 2019; Delgado-Torres et al., 2022; Hermanson et al.,
2022). The discontinuity in the source and structure of the
predictions can result in inconsistencies when they are com-
bined to inform medium- to long-term planning.

To address this gap, some forecast centres have produced
initialised multi-annual predictions (also referred to as ex-
tended seasonal predictions) as part of the EU-funded Hori-
zon Europe ASPECT project (https://www.aspect-project.
eu/, last access: 2 January 2026). This exercise aims to pro-
vide seamless information for 2–3 years ahead. These fore-
casts benefit from larger ensembles and more frequent up-
dates (twice a year) compared to decadal predictions, but are
computationally expensive to produce and store.

An alternative and more cost-effective approach is con-
straining, which attempts to build seamless multi-year fore-
casts by post-processing predictions for different timescales
(e.g. seasonal and decadal forecasts) in combination. This
strategy selects members from large ensembles of decadal
predictions or climate projections that closely align with ei-
ther recent observations or seasonal forecasts for the next
months (Befort et al., 2020; Mahmood et al., 2021, 2022).
This method transfers short-term predictability to longer
timescales without requiring new multi-annual or decadal
predictions, and can be updated whenever new observations
or seasonal forecasts are available, offering a computation-
ally cheaper solution.

Previous studies have shown the potential of combin-
ing climate predictions at different timescales. For instance,
Dirmeyer and Ford (2020) developed a weighting func-
tion approach to construct seamless weather-to-subseasonal
predictions, and Wetterhall and Giuseppe (2018) generated
seamless subseasonal-to-seasonal predictions for hydrolog-
ical variables. At longer timescales, Befort et al. (2020)
showed that constraining projections based on their agree-
ment with decadal predictions improves the surface tempera-
ture skill over the North Atlantic Subpolar Gyre region. Mah-
mood et al. (2021) applied a similar methodology but consid-
ered the similarity of SST anomaly patterns for the member
selection, finding that regional information can be improved
over several parts of the world. Befort et al. (2022) presented
evidence that calibrating both decadal prediction and climate
projection ensembles together can reduce the inconsistencies
when they are concatenated. Similarly, other studies have
also shown the benefit of including recent observations to im-

prove the skill of projections already available (Hegerl et al.,
2021). For instance, for seasonal predictions of sea surface
temperature, Brajard et al. (2023) showed a skill increase
through ensemble weighting. At the multi-decadal timescale,
Mahmood et al. (2022) found a skill improvement for surface
temperature and sea level pressure by selecting those climate
projection members based on their agreement with previous
observations, and Luca et al. (2023) found an increase in skill
for hot, cold and dry extremes using the same approach. In
addition, given the multiple options to decide which mem-
bers to select, other works have focused on understanding
how to best apply the constraints to climate projections (Cos
et al., 2024; Donat et al., 2024).

Current research efforts are also devoted to creating seam-
less information at seasonal and multi-annual timescales.
For instance, Abid et al. (2025) combined seasonal and
multi-annual predictions by pooling together all the ensem-
ble members that are progressively available, thus increasing
the ensemble size as the target period of the forecast is ap-
proaching. AcostaNavarro et al. (2025) developed seamless
seasonal to multi-annual predictions by selecting analogues
from transient climate simulations. These produced similar
skill patterns to state-of-the-art seasonal and decadal predic-
tion systems, and comparable skill to these initialised pre-
dictions, in particular for multi-annual forecast of tempera-
ture and standardised precipitation index. Solaraju-Murali et
al. (2025) showed the benefit of constraining decadal predic-
tions based on their agreement with the global sea surface
temperature pattern predicted by seasonal forecasts.

While both initialised multi-annual predictions and con-
straining techniques aim to provide seamless climate infor-
mation across timescales, many research questions remain
open. For instance, it is unclear how these new sources of
seamless climate information perform in different regions
and for different climate variables, how they compare to un-
constrained decadal predictions and long-term climate pro-
jections, and which is the optimal methodology to select the
best performing ensemble members. Additionally, the degree
to which constraining can reach the skill of seasonal predic-
tions in the overlapping period is not known.

This study aims to evaluate the skill of constrained
seasonal-to-decadal predictions, and compare them with ini-
tialised multi-annual predictions. The analysis focuses on
predictions of El Niño-Southern Oscillation (ENSO; a cou-
pled ocean-atmosphere phenomenon in the tropical Pacific
that influences weather and climate patterns worldwide, thus
impacting sectors such as agriculture, water management,
health and renewable energy; McPhaden et al., 2006; Mer-
ryfield et al., 2020), and spatial fields of surface temperature,
precipitation and sea level pressure over the first three fore-
cast years. We assess skill using different constraints (e.g.,
variables, regions, temporal aggregation used to select the
best ensemble members) and benchmark such skill against
the unconstrained decadal predictions and long-term pro-
jections. Finally, we also show examples of seamless fore-
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casts to highlight their added value not only in terms of
skill improvements, but also in terms of consistency across
timescales.

2 Data

Climate predictions and projections from forecast systems
operating on different timescales are used in this study. For
seasonal predictions (SP), we use forecast months 1–6 of
the May and November initialisations issued from 1981 to
2014 with the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth generation seasonal forecast sys-
tem (SEAS5; Johnson et al., 2019), consisting of 25 ensem-
ble members.

For multi-annual predictions (MP), we use forecast
months 1–24 from the May and November initialisations pro-
duced from 1981 to 2014 with 4 forecast systems (yielding a
total of 70 ensemble members; Table S1 in the Supplement).

The decadal predictions (DP) are part of the Decadal Cli-
mate Prediction Project Component A (DCPP-A; Boer et al.,
2016) of the Coupled Model Intercomparison Project Phase 6
(CMIP6; Eyring et al., 2016). Although more recent decadal
predictions are available for some systems (Hermanson et al.,
2022; Delgado-Torres et al., 2025), we limit the analysis to
initialisations up to 2013, as this is the last initialisation avail-
able for all the decadal forecast systems in CMIP6/DCPP.
Decadal forecast systems are initialised towards the end of
each year in slightly different months. Thus, the first forecast
months are discarded for some systems to align all predic-
tions to start in January (i.e. the first two and three months
have been discarded for those systems initialised in Novem-
ber and October, respectively). Therefore, we use 60 forecast
months of DP initialised at the end of each year from 1980
to 2013 produced with 17 forecast systems (a total of 197
ensemble members; Table S1).

For historical simulations and climate projections (referred
to as HIST for simplicity), we use the CMIP6 historical ex-
periment extended with the SSP2-4.5 scenario (O’Neill et al.,
2016), produced with 32 different climate models (resulting
in a total of 264 ensemble members; Table S2 in the Supple-
ment). The historical experiment provides data until 2014, af-
ter which it is combined with SSP2-4.5 for the period 2015–
2018.

For climate projections (HIST), we use the CMIP6 histori-
cal forcing simulations and scenario SSP2-4.5 (O’Neill et al.,
2016) produced with 32 different climate models (resulting
in a total of 264 ensemble members, Table S2). The CMIP6
historical experiment provides data until 2014, and then is
concatenated with the scenario SSP2-45 for the rest of the
period (2015–2018).

The ERA5 reanalysis (Hersbach et al., 2020) is used as
the observation-based reference dataset (OBS) to calibrate
the predictions, rank the members (described in Methods),
and evaluate the forecast quality.

We use monthly means of near-surface air temperature
(TAS), sea surface temperature (TOS), precipitation (PR)
and sea level pressure (PSL). The North Atlantic Oscilla-
tion (NAO) index is computed as the difference between
the area-weighted average PSL anomalies of the subtropi-
cal Mid-Atlantic and Southern Europe region (90° W–60° E,
20–55° N) and the North Atlantic–Northern Europe re-
gion (90° W–60° E, 55–90° N), following (Stephenson et al.,
2006). The Niño3.4 index is calculated as the area-weighted
average TOS anomalies over the east-central tropical Pacific
region (170–120° W, 5° S–5° N), following (Barnston et al.,
2019), representative of the ENSO state.

3 Methods

Prior to the analysis, all the data have been conservatively
interpolated to a 1°× 1° horizontal resolution (Schulzweida,
2023). This horizontal resolution has been chosen as a com-
promise between the different resolutions of the different
datasets used in the analysis. Several post-processing steps
are then applied, including anomalies computation, bias-
adjustment (correcting both the mean and variance), indices
calculation and members selection. In the case of SP, the
ensemble mean is post-processed because no member se-
lection is applied to this data type. For the rest of the pre-
dictions, the ensemble members are post-processed indepen-
dently. The post-processing steps have been applied in leave-
one-out cross-validation, i.e. using the full period but exclud-
ing the observations of the year being post-processed in order
to emulate real-time conditions and avoid overestimating the
actual skill (Barnston and Dool, 1993; Risbey et al., 2021).

The mean and variance bias-adjustment has been applied
independently to each grid cell and forecast month to ensure
that the mean and the variance of the simulations is the same
as in the reference dataset, as in Torralba et al. (2017), fol-
lowing Eq. (1). Please note that, because the post-processing
is applied in a cross-validation mode, the mean and variance
of the bias-corrected simulations will not be exactly identical
to those of the reference dataset.

Xcorrected = (X−Xmean) ·
Osd

Xsd
+Omean (1)

Where Xcorrected refers to the corrected simulation value,
X to the original simulation value, Xmean and Xsd to the
climatology and standard deviation of the simulation, and
Omean and Osd to the corresponding values in the reference
dataset.

The constraining methods applied in this study are based
on those introduced by Mahmood et al. (2021, 2022). For
each start year, the members of the DP and HIST ensembles
are ranked based on their agreement with either the OBS
from previous months or SP for the next months. For the
OBS-based ranking, the agreement is estimated with the av-
erage of the observations of the previous 1, 1–2, 1–3 and 1–
4 months. For example, in the case of ranking in May, the DP
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members initialised in January are compared to the observa-
tions of April, March–April, February–April and January–
April. For the SP-based ranking, the agreement is estimated
using the forecast months 1, 1–2, 1–3, 1–4, 1–5 and 1–6 of
the SP ensemble mean. For instance, the ranking in May of
a DP member is produced by comparing such a member
and the SP ensemble mean for predictions of May, May–
June, May–July, May–August, May–September and May–
October. Figure S1 in the Supplement shows an illustration
of the different methods.

The agreement for the ranking has been computed based
on spatial fields of TOS and PSL, and on the Niño3.4 and
NAO indices. In case of spatial fields of TOS and PSL, the
spatial correlation, centered-RMSE and uncentered-RMSE
(Wilks, 2011) are estimated over the Global, Global without
the poles (NoPolar), Atlantic and Pacific Oceans (Alt+Pac),
Pacific Ocean (Pac) and North Atlantic Ocean (NAtl) re-
gions, as in Mahmood et al. (2021). These regions and their
coordinates can be found in Fig. S2 in the Supplement. In
the case of Niño3.4 and NAO, the ranking of the members
is based on the mean absolute error, inspired by the NAO-
matching methodology proposed by Smith et al. (2020). With
all the combinations, there are a total of 128 OBS-based con-
straints (2 indices × 4 months + 2 variables × 4 months ×
3 metrics × 5 regions) and 192 SP-based constraints (2 in-
dices× 6 forecast months× 1 metric+ 2 variables× 6 fore-
cast months × 3 metrics × 5 regions). This gives a total of
320 constraint-based methods considered. Once the ranking
is performed, the best 30 members according to each con-
straining method are used to build the constrained ensembles
(Best). Mahmood et al. (2021, 2022) found robustness of the
results to the choice of the number of selected members. A
summary of the constraining options can be found in Table 1.

The anomaly correlation coefficient (ACC; Wilks, 2011)
is used to evaluate the forecast quality of the predictions.
The ACC ranges from −1 to 1. Negative or near-zero val-
ues mean no forecast quality, while ACC equal to 1 indi-
cates a perfect forecast. The residual correlation (Smith et
al., 2019) is applied to estimate the impact of the constrain-
ing methods. The residual correlation measures whether a
forecast captures any of the observed variability that is not
already captured by a reference forecast, and it is computed
as the ACC between the residuals of a forecast and the ob-
servations once the reference forecast’s ensemble mean has
been linearly regressed out from both the forecast’s ensemble
mean and observations. For instance, if the residual correla-
tion is positive when computed using the Best ensemble as
the forecast and the DP ensemble as the reference forecast, it
indicates an added value of the constraining methodology on
the forecast quality. The statistical significance of the ACC
and residual correlation is assessed using a one-sided and
two-sided t test, respectively, at the 95 % confidence level.
The timeseries autocorrelation has been taken into account
by using the effective number of degrees of freedom follow-
ing von Storch and Zwiers (1999).

4 Results and Discussion

This section is divided into three subsections: first, we show
the skill obtained with the different ensembles (i.e. SP, MP,
DP and HIST, as well as the Best ensemble built with the 320
constraining methods) as a function of the forecast month
for predictions of the Niño3.4 index. Then, we focus on the
skill for spatial fields of TAS, PR and PSL. Finally, we show
examples of seamless forecasts, selecting one Niño and one
Niña event. The focus is set on assessing the benefits of ap-
plying constraints to produce seamless forecasts, as well as
on identifying which constraining method provides the high-
est skill (e.g. which variable and which region are best to
select the best members).

4.1 Assessment of the Niño3.4 forecast

The skill as a function of the forecast month for predictions
of the Niño3.4 index issued in May and November is shown
in Fig. 1. The SP forecast quality is high and statistically sig-
nificant during the six forecast months for both initialisation
months, with ACC values close to 1 during the first forecast
months, and progressively decreasing to values close to 0.8
for the forecast month 6. The skill of the MP is also high
and significant during the first forecast months, and is very
similar to that of SP during the overlapping period (first six
months). However, a strong skill decrease can be seen when
the forecasts approach April–May (approximately forecast
month 12 and 6, respectively, for the May and November ini-
tialisations), consistent with the spring predictability barrier
(Duan and Wei, 2013; Ehsan et al., 2024). Still, the MP skill
is significant up to forecast month 22 for the May initialisa-
tion, and forecast month 24 for the November initialisation.
In particular, the MP skill is still 0.5 for the forecast month
18 (Fig. 1b), which indicates that the ENSO state can be pre-
dicted with reasonable skill for the first two winters after the
November initialisation.

The DP multi-model also shows statistically significant
skill during the initial forecast months up to boreal spring.
However, the skill is lower than for both SP and MP. For
instance, the skill for forecast month 1 is close to 0.7 and
0.6, respectively, for predictions issued in May (Fig. 1a) and
November (Fig. 1b). This reduced performance is primarily
due to the inherent delay in the availability of DP: forecast
month 1 in DP does not actually correspond to the first calen-
dar month after initialisation. Instead, DP issued in May are
based on predictions initialised 5 to 7 months earlier (in Oc-
tober, November or January depending on the forecast sys-
tem; see Table S1). Likewise, those DP issued in November
are based on forecasts initialised 10 to 12 months prior. This
lag reflects the operational realities of producing decadal pre-
dictions, which involve generating initial conditions, running
complex forecast systems, post-processing outputs, and as-
sembling multi-model data products. As a result, the multi-
model DP initialised around the end of the previous year are
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Table 1. Summary of constraints applied in this study.

Parameter Options

Constraining variables TAS, PR
Constraining indices Niño3.4, NAO
Constraining regions Global, NoPolar, Alt+Pac, Pac, NAtl
Constraining metrics (variable-based) Spatial correlation, center-RMSE, uncenter-RMSE
Constraining metric (index-based) Mean absolute error
Constraining periods (OBS-based) Previous 1, 1–2, 1–3, 1–4 months
Constraining periods (SP-based) Forecast month 1, 1–2, 1–3, 1–4, 1–5, 1–6
Selection types OBS-based, SP-based
Selectable ensembles DCPP, HIST, DCPP+HIST

Figure 1. Forecast quality for the Niño3.4 index. ACC as a function of the forecast month for predictions issued in May (left) and November
(right). The forecast quality is shown for SP (red), MP (black), DP (green), Best_OBS (blue), Best_SP (purple), and HIST (brown). The
ERA5 reanalysis has been used as the reference dataset. Filled dots indicate statistically significant ACC using a one-sided t test at the 95 %
confidence level accounting for timeseries autocorrelation. The constraining methods has been applied during the 1981–2014 period.

typically only becoming available around May, which corre-
sponds to lead month 7 for a forecast initialised in the pre-
vious November (green line in Fig. 1a). Similarly, the DP
issued in November would rely on forecasts initialised the
prior year (green line in Fig. 1b). This explains the skill dif-
ference between, for example, the DP and MP ensembles
during the first forecast months. It should be noted that the
MP would also have a delay between their production and
availability. However, we prefer to use MP from their first
forecast month because (1) all MP systems are initialised in
November and (2) we use them in this study for comparison
to the constrained predictions. Thus, we show the potential
skill that the MP would have if they were available immedi-
ately after initialisation.

For reference and for a fair comparison with MP, the skill
of the first forecast months (from the first January, as some
of the models are initialised in the month) of DP without tak-
ing into account the delay until they become available can be
found in Fig. S3 in the Supplement (i.e. MP being initialised
in November, and DP towards). The skill of HIST, which is
not initialised and thus not in phase with the observed in-
ternal climate variability, is low and not significant (ranging
between −0.2 and 0.2), with some seasonality likely linked
to the annual cycle of ENSO activity (Ehsan et al., 2024).

The skill of the constrained ensembles varies consider-
ably across the 320 different OBS-based and SP-based meth-
ods. For instance, the constrained ensemble with the lowest
skill for the forecast month 1 shows a correlation close to

https://doi.org/10.5194/esd-17-41-2026 Earth Syst. Dynam., 17, 41–56, 2026



46 C. Delgado-Torres et al.: Seamless climate information from months to multiple years

0.4 for the May initialisation (0.2 for the November initial-
isation). In contrast, the highest-performing constrained en-
sembles exhibit skill levels comparable to those of the MP
ensemble. To our knowledge, this is the first time it is re-
ported that the skill of state-of-the-art initialised multi-annual
predictions represents an upper bound that cannot be sur-
passed by any of the tested seasonal-to-decadal constraining
approaches for the Niño3.4 index out to two years. This sug-
gests that, although constraining methods can enhance the
skill of the forecasts, they cannot outperform forecasts from
a state-of-the-art initialised system. A possible explanation
lies in the limited number of climate states available for se-
lection within the DP and HIST ensembles when applying
the constraining methodology. For longer forecast time aver-
ages (forecast years 1–5 and 1–10), Mahmood et al. (2022)
and Donat et al. (2024) showed that the constrained HIST
ensembles can provide regionally higher skill than the ini-
tialised DP against which they were constrained.

However, even if the MP skill is higher than that of the
constraining method, such skill is comparable and, given the
difference in computational resources to create these two
sources of seamless climate information (MP being much
more computationally expensive than applying constraints
to existing simulations), the constraining approach seems a
cost-effective alternative. In addition, the MP would not be
immediately available right after the initialisation, so some
delay and its associated skill decrease would be expected in
real-time production. Furthermore, the constrained ensemble
could be produced at any time of the year, once new obser-
vations or seasonal predictions become available, without the
need of running the longer-term (MP or DP) forecast systems
more than once per year.

In order to identify which is the best constraining method
to create a seamless forecast for the Niño3.4 index, we have
given a score to each method. The score is defined as the
number of consecutive forecast months that show significant
skill until the first forecast month for which the skill is not
significant (i.e. the last filled dot before the first empty dot in
Fig. 1). For comparison, the same score is calculated for the
SP, MP, DP and HIST ensembles. The top-ranked method for
seamless predictions of the Niño3.4 index issued in May is
the one based on the SP of the Niño3.4 index for the fore-
cast months 1–6, providing significant skill for the first 21
forecast months (Fig. 2a). This method is followed by similar
constraints, but using the SP for the forecast months 1–2, 1–4
and 1–5 (20 significant forecast months). After these meth-
ods, the scores decrease to ∼ 15 significant forecast months
for constraints based on the agreement of spatial patterns of
TOS and PSL, being all of them SP-based methods. All the
top-ranked methods outperform the score obtained with the
unconstrained DP (score of 13 forecast months) and HIST
(which shows no significant skill for any forecast months).
However, no method reaches the 22 forecast months of the
MP.

Smaller differences among the top-ranked methods are
found for the November initialisation (Fig. 2b). In this case,
the best method shows significant skill until forecast month
21 (corresponding to constraining based on SP of the Niño3.4
index for the forecast months 1–2). The following methods
are mostly based on spatial fields of TOS, and show a score
of 20 forecast months. In this case, DP are statistically sig-
nificant until forecast month 7, and HIST gets a score of 0.
Please note that, in case of the DP, most of the forecast sys-
tems are initialised one year before, which explains why the
quality is relatively low when the actual forecast is used one
year after initialisation. It is interesting to see that, for both
initialisation months, at least the top twenty-ranked methods
are based on SP, while no method based on OBS appears in
Fig. 2.

The results of the constrained ensembles shown in Figs. 1
and 2 correspond to the best 30 members selected from both
the DP and HIST ensembles. We have also tested the sensi-
tivity of the results when the members are selected only from
either the DP ensemble or HIST ensemble (Figs. S4 and S5
in the Supplement). In the case of selecting members only
from the DP ensemble the skill of the constrained ensem-
bles is higher than DP for most of the constraining methods.
On the other hand, when the best members are selected only
from the HIST ensemble, the skill of the constrained ensem-
bles varies more and tends to be lower, with a large number
of constraining methods providing lower skill than the un-
constrained DP ensemble (and in some case, even lower than
the unconstrained HIST ensemble).

These differences indicate that the variation in skill among
HIST-based constrained ensembles largely depends on the
predictive information contained in the chosen constraint.
Since HIST simulations do not include information on the
ENSO phase from initialisation, constraining methods that
rely on ENSO-related predictors perform better. In particular,
most of the best methods are based on seasonal predictions
of the Niño3.4 index or TOS spatial fields, with only a few
PSL-based methods ranked among the best methods.

The identification of the best constraining method has been
carried out for predictions of the Niño3.4 index. However,
such a best method may be different if other indices (e.g. the
NAO index) or variables over specific locations (e.g. precip-
itation over Europe) are considered. Thus, a specific evalu-
ation of this methodology should be applied to identify the
optimal selection approach for issuing seamless forecasts for
particular regions and variables.

4.2 Forecast assessment for spatial fields of TAS, PR
and PSL

In the previous section, the ensemble selection is conditioned
on the quality of Niño3.4 index predictions. Therefore, those
methods are expected to perform well over the Niño3.4 re-
gion and other regions teleconnected with ENSO. However,
the performance of those methods may be suboptimal else-
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Figure 2. Top methods to constrain predictions for the Niño3.4 index. The ranking of the different methods is based on the number of forecast
months showing statistically significant ACC consecutively until the first forecast month that is not significant for predictions issued in May
(left) and November (right). Only the best 20 methods are shown (see Methods for the definition of the different methods). The same score
is shown for SP (red), MP (black), DP (green) and HIST (brown). The ERA5 reanalysis has been used as the reference dataset. The ACC
statistical significance has been computed using a one-sided t test at the 95 % confidence level accounting for timeseries autocorrelation. The
constraining methods has been applied during the 1981–2014 period.

where. Therefore, we also identify the methods that provide
the highest overall skill for global predictions of TAS, PR
and PSL.

First, we consider the constraining method based on SP of
the Niño3.4 index for the forecast months 1–6 (identified as
the best method in Fig. 2a, i.e. the Best ensemble contain-
ing the top-ranked 30 members), selecting from both the DP
and HIST ensembles. The number and percentage of mem-
bers per model and start date are shown in Figs. S6–S9 in the
Supplement for May and November initialisations. For the
May initialisation, the constrained Best ensemble shows sig-
nificantly positive skill for TAS over large parts of the globe
for all the forecast periods analysed (Fig. 3a, e, i, and m).
Specifically, this Best ensemble exhibits significant skill over
75.3 % of the globe for the forecast months 1–6, and 76.1 %,
64.5 % and 60.8 % of the global regions for the forecast years
1, 2 and 3, respectively.

During their overlapping period, the Best and SP ensem-
bles show broadly similar skill for TAS during the forecast
months 1–6 (Fig. 3b). Notably, Best is significantly better
than SP over 8 % of the region, while SP is better than Best
over 2.1 %, as shown with the positive and negative residual
correlations, respectively. This relatively small difference in-
dicates that the Best ensemble can be used to issue a seam-
less forecast directly from its production date (in this case,
May), without the need to initially use SP and then switch

to Best. However, it is important to note that SP is still re-
quired to constrain the DP and/or HIST ensembles to gener-
ate the Best ensemble. Similar results are found when com-
paring Best against MP for the forecast years 1 and 2 (Fig. 3f
and j, respectively).

The comparison of the Best ensemble against the uncon-
strained DP and HIST ensemble reveals a significant added
value of the constraining approach, particularly in tropical
regions (Fig. 3c, d, g, h, k, l, n, and o). For example, the con-
strained ensemble is significantly better (i.e. significant pos-
itive residual correlation) than DP over 29.8 % and 12.2 %
of the region for the forecast years 1 and 2, respectively,
while it has significant negative residual correlations only
over 1.1 % and 1.3 % (Fig. 3g and k). Regarding the com-
parison of Best and HIST, the constrained ensemble has sig-
nificant positive residual skill than HIST over the 45.1 % and
22.6 % of the region for the forecast years 1 and 2, respec-
tively (Fig. 3h and l). These results are based on a single
constraining method; other methods may yield higher skill in
specific regions, pointing to the need to tailor the constrain-
ing strategy to the region of interest.

The skill for PR is lower than for TAS, in line with pre-
vious studies (e.g. Smith et al., 2019; Delgado-Torres et al.,
2022, 2023). Nevertheless, the constrained ensemble shows
significant skill over 26.6 % of the region for the forecast
months 1–6, and 31.4 %, 15 % and 10.1 % for the forecast
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Figure 3. Forecast quality for the near-surface air temperature issued in May. ACC obtained with the constrained Best ensemble (first
column). Residual ACC obtained with the constrained Best ensemble using SP or MP as the reference forecast (second column), the un-
constrained DP as the reference forecast (third column), and unconstrained HIST as the reference forecast (fourth column). The different
columns correspond to different forecast periods. The Best ensemble has been built with the constraining method based on SP of Niño3.4
for the forecast months 1–6 selecting from both the DP and HIST ensembles. Dots indicate statistically significant ACC and Residual ACC
values at the 95 % confidence level using a one-sided (two-sided) t test for ACC (Residual ACC) accounting for timeseries autocorrelation.
The constraining method has been applied during the 1981–2014 period.

year 1, 2 and 3, respectively (Fig. 4a, e, i, and m). The added
value of the constraining approach for predictions of PR is
also lower than for TAS. Still, the fraction of the global re-
gion showing significantly positive residual correlations is
also higher than the fraction of negative residual correlation.
For example, Best outperforms SP over 5.5 % of the area,
while Best is worse than SP over 2 % (Fig. 4b). Similarly,
Best is better than MP over the 6 % and 4.8 % for the fore-
cast years 1 and 2, while it is worse over 1.8 % and 1.5 %
(Fig. 4f and j). Regarding the comparison of Best against DP
and HIST, the fraction of significant area is also higher for
all the forecast periods analysed, particularly for the shorter
timescales. For example, Best is better than DP and HIST
over 14.5 % and 23.8 % of the region for the forecast year
1, whereas it is worse over 0.9 % and 0.6 % of the region
(Fig. 4g and h).

For PSL, the Best ensemble shows significant skill over
53.8 %, 56.7 %, 25.2 % and 22.9 % of the globe for the fore-
cast months 1–6, year 1, 2 and 3, respectively (Fig. 5a,
e, i, and m). The comparison of Best against the different
reference forecasts shows a significant added value of the
constraining approach for all the forecast periods evaluated:
10 %, 4.1 % and 7.7 % of the region shows significant im-
provements for the forecast months 1–6 against SP (Fig. 5b),
and forecast years 1 and 2 against MP (Fig. 5f and j), while
Best is worse than SP and MP over 0.7 %, 1.2 % and 0.7 %,
respectively. The constrained ensemble is also significantly
better than the unconstrained DP and HIST over large re-
gions. For instance, 33.4 % and 14.8 % of the globe shows
significantly positive residual correlation when comparing
Best against DP for the forecast years 1 and 2, while only
showing 0.8 % and 0.4 % of significantly negative residual
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Figure 4. Forecast quality for precipitation issued in May. Same as Fig. 3, but for precipitation.

correlation (Fig. 5g and k). Similarly, the constraining ap-
proach shows a significant added value when compared to
HIST. For instance, 50.6 % and 16.1 % of the globe show sig-
nificantly positive residual correlation for the forecast years 1
and 2, respectively, while only 0.5 % and 0.4 % of the region
show significantly negative residual correlation.

Figures 3–5 show the ACC of Best, and its comparison
with different reference forecasts (SP, MP, DP and HIST)
through the residual ACC, but the actual ACC values of such
reference forecasts are presented in Figs. S10–S12 in the
Supplement. In addition, the results for the November initial-
isation are also provided in the Supplement (Figs. S13–S18).

As for the Niño3.4 index, we investigate the sensitivity of
the constrained forecast quality to the different constraining
choices (e.g. variable, region, metric), and identify the meth-
ods providing the highest global skill for TAS, PR and PSL.
For each of the 320 constraining methods (see Methods), we
calculate the fraction of the global region with significant
ACC, and compare subsets of these combinations to assess
sensitivity (Fig. 6). For reference, we also include the perfor-
mance of the unconstrained ensembles (i.e. SP, MP, DP and
HIST).

We begin by assessing the sensitivity to the choice
of ensemble. Overall, selecting members from either DP
or DP+HIST results in similarly high skill. However, the
DP+HIST ensemble displays a broader range of outcomes.
Therefore, selecting only from DP appears to be the prefer-
able approach, as it tends to produce distributions of signif-
icant areas that are more tightly constrained toward higher
values. However, given the lower availability of DP in real-
time than for the historical period (Delgado-Torres et al.,
2025), selecting from both DP+HIST seems a reasonable
trade-off between skill and operational feasibility. On the
other hand, selecting only from HIST results in the over-
all lowest skill, particularly for the forecast months 1–6 and
forecast year 1 (Fig. 6a–c). SP and MP outperform the con-
straining approaches, particularly at shorter timescales.

The sensitivity of the skill when constraining based on past
OBS or future SP shows that, in general, the larger fraction
of significant skill is achieved for the SP-based constraints
(Fig. 6d–f). Again, the sensitivity is higher during the shorter
forecast periods. Comparing constraints based on spatial pat-
terns of TOS and PSL, results are very similar (Fig. 6g–i),
though slightly higher significance can be obtained when us-
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Figure 5. Forecast quality for precipitation issued in May. Same as Fig. 3, but for sea level pressure.

ing TOS for predictions of TAS for the forecast months 1–6
(Fig. 6g), and when using PSL for predictions of PR and PSL
for the forecast year 1 (Fig. 6h and i).

There are no clear differences in skill significance across
different constraining regions (Fig. 6j–l), likely because dif-
ferent regions provide predictability over different parts of
the globe (e.g. North Atlantic constraints may benefit tele-
connected regions). Similarly, the choice of metric for select-
ing members does not substantially affect the fraction of sig-
nificant area (Fig. 6m–o), though selecting members based
on absolute error with respect to indices such as the NAO or
Niño3.4 yields noticeably lower skill.

Consistent results are found for the November initialisa-
tion (Fig. S19 in the Supplement). The low sensitivity found
for the different constraining choices may be due to the
global spatial averaging. Therefore, to identify the optimal
constraining method for applications at a specific location,
the analysis should be repeated, as the results might vary de-
pending on regional characteristics.

4.3 Examples of seamless forecasts for the 1997–1998
el Niño and 2010–2011 la Niña events

Finally, we present some examples of seamless forecasts to
illustrate not only the benefit of the constraining approaches
in terms of improved skill, but also their added value in en-
hancing forecast consistency across timescales. We focus on
the forecasts produced in May 1997 and May 2010, which
successfully captured the following El Niño and La Niña
events, respectively. These two events were selected because
they are among the strongest and most impactful ENSO
events on record, making them ideal test cases to assess the
ability of the methodology to capture key climate signals.
Figure 7 shows the observed Niño3.4 index and the different
forecasts (i.e. SP, MP, DP, HIST and Best).

The case of May 1997 (Fig. 7a) is particularly rele-
vant as the 1997–1998 Niño event was exceptionally strong
(Trenbeth et al., 2002), with widespread global impacts
(McPhaden, 1999; Rojas et al., 2014). The SP correctly cap-
tured the evolution of OBS during the forecast months 1–
6. Similarly, the MP accurately predicted the development
and peak of the El Niño event, with the maximum occurring
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Figure 6. Sensitivity to constraining methods and parameters for predictions issued in May. The results are shown for TAS (first column),
PR (second column) and PSL (third column). Fraction of global area showing statistically significant ACC at the 95 % confidence level using
a one-sided t test accounting for timeseries autocorrelation. The sensitivity analysis has been carried out for the selectable ensemble (DP,
HIST or DP+HIST; first row), the selection type (OBS-based or SP-based; second row), the constraining variable (TOS or PSL; third row),
the constraining region (Niño3.4, NAO, Global, NoPolar, Atl+Pac, Pac, NAtl; fourth row), and the constraining metric (mean absolute error
with respect to the NAO or Niño3.4, and spatial ACC, spatial centered-RMSE or spatial uncentered-RMSE with respect to TOS or PSL; fifth
row). Each row isolates the sensitivity to one factor (ensemble composition, observational vs. seasonal predictor, variable choice, etc.). Each
boxplot within a row represents that specific factor, while encompassing all combinations of the other constraining choices. See Methods for
a full description of all the constraining approaches tested. The constraining methods has been applied during the 1981–2014 period.
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Figure 7. Seamless forecast of the Niño3.4 index produced in May 1997 (a) and May 2010 (b). Time series Niño3.4 index of observations
(black), SP produced in May (red), MP produced in May (blue), DP produced at the end of the previous year (green), Best constrained in May
(purple) and HIST (brown). The Best ensemble has been built with the constraining method based on SP of Niño3.4 for the forecast months
1–6 selecting from both the DP and HIST ensembles. The thin lines correspond to the ensemble members, while the thick lines correspond
to the ensemble means.

around December 1997, when the observed Niño3.4 index
reached around +3 °C. In contrast, the DP initialised in late
1996 indicated a positive ENSO phase but with a much lower
amplitude (around +1.2 °C). As expected, the uninitialised
HIST ensemble showed no clear ENSO signal and failed to
capture the event.

The constrained Best ensemble based on the Niño3.4 for
the forecast months 1–6, however, successfully predicted the
strong El Niño event, showing performance comparable to
that of MP. This example highlights that both MP and the
constrained Best ensemble can be used to generate seamless
forecasts that provide consistent and skilful climate informa-
tion. Conversely, using SP for the first six months and then
switching to DP from month seven introduces a large incon-
sistency: a sudden difference of 1.7 °C in the forecasted index
(+2.9 °C from SP and +1.2 °C from DP). This discontinuity
is avoided by the seamless approaches that not only increase
the skill but also improve the temporal coherence of climate
predictions across lead times.

A similar behaviour is observed for the May 2010 fore-
casts (Fig. 7b), which preceded two consecutive La Niña
events during 2010–2012, also being one of the most impor-
tant Niña events on record (Boening et al., 2012; Feng et al.,
2013), with severe and unprecedented impacts (Hoyos et al.,
2013; Vargas et al., 2018). In this case, SP also captured the
ENSO phase, although with lower accuracy than seen for the
1997–1998 case. By contrast, both DP and HIST failed to
predict the correct ENSO phase: HIST showed no signal, and
DP indicated a weak warm anomaly that gradually returned
to neutral conditions. However, both the initialised MP and
the constrained Best ensembles captured the ENSO phase.
The MP also predicted the second Niña event (2011–2012),
although its intensity was underestimated.

5 Summary and conclusions

This study presents and evaluates a methodology for produc-
ing seamless climate forecasts from 1 month to 2–3 years
ahead by combining predictions across different timescales.
The proposed approach, which constrains large ensembles of
decadal predictions or climate projections based on observa-
tions of the previous months or seasonal forecasts, aims to
reduce inconsistencies in the forecasts when switching from
seasonal to decadal sources of climate information, and to en-
able the generation of temporally coherent climate informa-
tion that can be applied in real-time conditions and tailored
to specific user needs.

Constraining forecasts based on their agreement with sea-
sonal predictions leads to higher overall skill than con-
straining based on previous observations, particularly for the
Niño3.4 index. We find that the skill of initialised multi-
annual predictions sets an upper bound that is reached by
some constraining approaches, though not outperformed by
any. However, these multi-annual predictions are typically
not produced in real time and, due to their high computa-
tional cost, are usually only issued a few times per year by
most forecasting centres. In contrast, the constraining ap-
proach provides a cost-effective alternative to emulate their
performance using operationally available data. It enables the
transfer of short-term predictability to longer-term forecasts
and can be updated much more frequently (potentially every
month) when new seasonal forecasts or observations become
available.

We demonstrate that selecting members only from the
(also initialised) decadal prediction ensemble generally pro-
vides higher skill than selecting from a combination of
decadal predictions and (uninitialised) climate projections, or
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from climate projections alone. However, in real-time fore-
casting, the availability of decadal predictions is lower, re-
quiring the inclusion of HIST members to ensure a large
ensemble size. This introduces a trade-off between forecast
skill and operational feasibility.

The Niño3.4 index benefits from the constraining method-
ology, showing significant skill up to approximately
20 months ahead. This highlights the value of seamless fore-
casting systems in capturing the ENSO variability, which
have widespread societal impacts. By examining specific
case studies (1997–1998 El Niño and 2010–2012 La Niña),
we show that the constrained ensemble not only reproduces
these events with accuracy, but also that the methodology
avoids discontinuities between seasonal and decadal fore-
casts. In contrast, using SP followed by DP forecasts re-
sults in inconsistencies, such as jumps in predicted values
during the transition between timescales. Moreover, during
their overlapping forecast period, constrained seamless pre-
dictions are as skillful as seasonal forecasts, which suggests
that the constrained ensemble can be used from the beginning
of the forecast period without losing skill.

Furthermore, we find that, in terms of fraction of the global
area showing statistically significant skill, the different seam-
less forecast methodologies used in this study are robust
across a wide range of tested configurations, including dif-
ferent constraints, variables, regions, and metrics. While sen-
sitivity to these factors exists, especially for short lead times,
the general result is that forecast quality is preserved or im-
proved when using constrained ensembles. The constrain-
ing approach can be extended to user-specific indicators or
climate extremes, offering a pathway to operational, consis-
tent, and application-relevant climate services at seasonal-to-
decadal timescales.

This study used seasonal predictions from the SEAS5 sys-
tem due to its relatively long hindcast period (with retro-
spective predictions from 1981 onwards) and its strong per-
formance in ENSO forecasts (Johnson et al., 2019). Never-
theless, similar results would be expected when using other
skilful seasonal systems or multi-model ensembles to per-
form the member selection. Therefore, future work could ex-
plore constraining methods that incorporate additional sea-
sonal systems, as well as consider multiple variables simul-
taneously, potentially further improving the quality of seam-
less predictions.

In summary, our results demonstrate that seamless fore-
casts based on ensemble selection offer a computationally
efficient and skillful solution for delivering climate infor-
mation from seasonal to decadal timescales. By selecting
members from large ensembles according to their agree-
ment with recent observations or updated seasonal forecasts,
this methodology enhances temporal consistency and predic-
tion skill over large areas of the world. The methodology
is particularly valuable in real-time contexts where multi-
annual forecasts are not routinely available, and it can be
adapted to deliver tailored information for specific sectors,

indicators, or extreme indices. Therefore, the approach pro-
vides a robust and practical tool to support climate-informed
decision-making with coherent, accurate and operationally
viable forecasts.
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