
Earth Syst. Dynam., 17, 23–39, 2026
https://doi.org/10.5194/esd-17-23-2026
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Enhanced climate reproducibility testing with false
discovery rate correction

Michael E. Kelleher and Salil Mahajan
Computational Hydrology and Atmospheric Sciences Group, Oak Ridge National Laboratory,

1 Bethel Valley Rd, Oak Ridge TN, USA

Correspondence: Michael E. Kelleher (kelleherme@ornl.gov)

Received: 16 May 2025 – Discussion started: 28 May 2025
Revised: 24 October 2025 – Accepted: 21 November 2025 – Published: 6 January 2026

Abstract. Simulating the Earth’s climate is an important and complex problem, thus climate models are simi-
larly complex, comprised of millions of lines of code. In order to appropriately utilize the latest computational
and software infrastructure advancements in Earth system models running on modern hybrid computing archi-
tectures to improve their performance, precision, accuracy, or all three; it is important to ensure that model
simulations are repeatable and robust. This introduces the need for establishing statistical or non-bit-for-bit re-
producibility, since bit-for-bit reproducibility may not always be achievable. Here, we propose a short-simulation
ensemble-based test for an atmosphere model to evaluate the null hypothesis that modified model results are sta-
tistically equivalent to that of the original model. We implement this test in version 2 of the US Department of
Energy’s Energy Exascale Earth System Model (E3SM). The test evaluates a standard set of output variables
across the two simulation ensembles and uses a false discovery rate correction to account for multiple testing.
The false positive rates of the test are examined using re-sampling techniques on large simulation ensembles and
are found to be lower than the currently implemented bootstrapping-based testing approach in E3SM. We also
evaluate the statistical power of the test using perturbed simulation ensemble suites, each with a progressively
larger magnitude of change to a tuning parameter. The new test is generally found to exhibit more statistical
power than the current approach, being able to detect smaller changes in parameter values with higher confi-
dence.
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1 Introduction

Thousands of scientists and engineers work tirelessly in ef-
forts to better understand and model the Earth’s changing cli-
mate. A large portion of this effort has come from the devel-
opment of Earth system models at modeling centers around
the globe, which seek to simulate the atmosphere, ocean,
cryosphere, land surface, and chemistry, among other com-
ponents of the Earth system. These models are comprised of
many millions of lines of code and are enormously complex
projects worked on by many individuals, so the need arises
to verify that contributions to the model code do not have
unintended effects on answers produced. Thorough testing
of the output from these models is routinely conducted, as-
sessing if the results are identical (bit-for-bit) or not. If the
results are not bit-for-bit identical, statistical checks are also
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conducted to ensure the simulated climate of the model or
component has not significantly changed, unless that is the
intended effect. A variety of methods are available (Milroy
et al., 2018; Wan et al., 2017; Baker et al., 2015; Mahajan
et al., 2017, 2019b), each of which performs a statistical com-
parison between a reference ensemble and test simulation or
ensembles. Here, an ensemble indicates a set of model runs
each initialized with similar but slightly perturbed initial con-
ditions, generally only at machine-precision levels.

The Energy Exascale Earth System Model (E3SM, Go-
laz et al., 2022; E3SM Project, 2023) uses a suite of tests
which run the model under a variety of configurations and
methods using the Common Infrastructure for Modeling the
Earth (CIME) software to setup, build, run, and analyze the
model. The tests are run at varying frequencies from nightly
to weekly, testing both the latest science and performance
updates and maintenance branches, which only receive com-
patibility updates and should be bit-for-bit identical. A sub-
set of these tests are statistical reproducibility tests (non-
bit-for-bit tests), which determine through a comparison of
control and perturbed ensembles, whether or not the sim-
ulated climate has changed as a result of modifications to
the model code or infrastructure. These are the Time Step
Convergence test (TSC, Wan et al., 2017), the Perturbation
Growth New test (PGN, related to the work in Rosinski and
Williamson, 1997), the multi-testing Kolmogorov-Smirnov
test (MVK, Mahajan et al., 2019b), and the MVK-Ocean
test (MVK-O, Mahajan, 2021). The first three test the re-
producibility of the E3SM Atmosphere Model, (EAM), and
the last tests the Model for Prediction Across Scales-Ocean
(MPAS-O), the ocean component in E3SM.

The TSC test evaluates numerical convergence by compar-
ing ensemble differences at two small time step sizes (i.e., 1
and 2 s) using a Student’s t test on root mean squared differ-
ence (RMSD) values, under the assumption that numerical
solutions should converge as the time step decreases (Wan
et al., 2017). The PGN test, in contrast, assesses stability by
comparing the state of the atmosphere after one time step
across perturbed ensemble members, identifying whether
small initial differences grow inconsistently through individ-
ual physics parameterizations. Unlike the shorter duration
TSC and PGN tests, the MVK and MVK-O tests use year-
long and two-year long simulation ensembles respectively,
allowing them to assess the cumulative impact of code or
configuration changes on the model’s climatology after in-
ternal variability has saturated, providing a more robust eval-
uation of long-term climate statistics.

MVK evaluates the null hypothesis that a modified model
simulation ensemble is statistically equivalent to a baseline
ensemble. It applies a two-sample Kolmogorov-Smirnov test
to over 100 output variables and counts how many show sta-
tistically significant differences between the two ensembles.
If this count exceeds a critical value threshold as expected
from internal variability and derived via bootstrapping, the
two simulations are considered to have different simulated

climates (Mahajan et al., 2017). Further details on the MVK
are provided in Sect. 2.1.

Here, we propose a new testing approach that improves
on the MVK and provides a two-fold benefit over it. Firstly,
from a human usability perspective, it is desirable for the
test to reduce the number of false positives (Type I error
rates; where two simulations are erroneously labeled as sta-
tistically different), without affecting the false negative rates
(Type II error rates; where two simulation ensembles are
erroneously labeled as statistically similar). Operationally,
MVK has been exhibiting a false positive rate of about 7.5 %,
despite the prescribed significance level of 5 %, since its in-
duction into the test suite (as discussed in Sect. 4.7). Other
previous works suggest that implementing a false discovery
rate (FDR) correction (by adjusting significance thresholds
based on the number and rank of p values, discussed in more
detail in Sect. 2.3), reduces the false positive rate when multi-
testing as compared to using bootstrapping-derived critical
value threshold for hypothesis testing (Ventura et al., 2004;
Wilks, 2006, 2016; Mahajan, 2021). This is the methodology
used by MVK. Some frameworks, including those presented
in Mahajan (2021), Zeman and Schär (2022), seek to reduce
false positive rates, and do so successfully, but at a greater
computational cost, as they work with grid-box level data.
The work in Zeman and Schär (2022) compares larger sub-
ensemble sizes which reduces the false positive rate lower
than an FDR correction, but adds to the computational cost,
while Mahajan (2021) uses the same ensemble sizes, but ap-
plies an FDR correction at each grid box in the ocean model.
The new testing approach for the atmosphere model thus im-
plements an FDR correction when evaluating multiple vari-
ables in the atmosphere model output. Secondly, it will be
useful to reduce the computational cost and time of deriving
the critical value thresholds for the MVK. The bootstrapping
procedure is time-consuming and computationally expensive
because of its need for large control ensembles. And, it would
need to be conducted again after a significant enough depar-
ture from the original model code to establish a new critical
value threshold. Substantial model code changes to numerics
and physics can alter internal variability and shift the distri-
butional properties of output fields. FDR correction theoret-
ically asserts the critical value threshold for global null hy-
pothesis evaluation (as discussed in Sect. 2.3) is 1 or more re-
jected field, thus eliminating the need for conducting a large
control ensemble simulation to determine this threshold. A
large control ensemble is required, though, to demonstrate
that the theoretical critical value is equivalent or better than
the one arrived at by bootstrap sampling of the large ensem-
ble.

This paper thus seeks to answer two questions: can a test-
ing framework using FDR correction reduce the number of
false positives in an operational setting as compared to the
MVK without impacting its statistical power (false negative
rates) and can it eliminate the need for extensive and ex-
pensive analysis of large ensembles each time the model is
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updated significantly? We also explore the impact of apply-
ing the BH-FDR correction to different underlying statistical
test used to evaluate the differences in distribution, using the
Mann-Whitney U and Cramér-von Mises tests in addition to
the K-S test.

The following section discusses the MVK test and its pit-
falls in more detail and describes the FDR approach as im-
plemented here. Section 3 lists the simulation ensembles con-
ducted to evaluate both the MVK and the new testing frame-
work. Section 4 discusses our results on the evaluation of the
false positive and negative rates of these testing frameworks.
Finally, our results are summarized in Sect. 5 with a brief
discussion of caveats of the study and future direction.

2 Methods

2.1 Multi-testing Kolmogorov-Smirnov Test

The multi-testing Kolmogorov-Smirnov (MVK) test, as im-
plemented in the CIME for the atmosphere model of E3SM,
compares two independent N = 30 member ensembles. It is
used in nightly testing, comparing a baseline ensemble, gen-
erated after each approved “climate changing” code modifi-
cation, and a test ensemble, newly generated each day. The
baseline ensemble is generated following approvals from do-
main scientists who have expertise related to the newly intro-
duced code. The E3SM model is run at “ultra-low” resolu-
tion, (called ne4pg2,≈ 7.5° atmosphere), for 14 months. The
first two months are discarded as the system reaches quasi-
equilibrium. Annual global means of each of the 120 stan-
dard output fields of the E3SM Atmosphere Model (EAM)
are then computed for each ensemble member. Then, for each
field, the null hypothesis (H1, also referred to as the local
null hypothesis here) is evaluated. The local null hypothe-
sis asserts that the sample distribution function of the annual
global mean of that field estimated from the baseline ensem-
ble (from N data points) is statistically similar to that of the
new ensemble is evaluated. The two sample Kolmogorov-
Smirnov (K-S) test at a significance level of α = 0.05 is
used for testing H1. The K-S test is a non-parametric sta-
tistical test to compare cumulative or empirical distribution
functions. The larger null hypothesis (H0, also referred to as
the global null hypothesis here) that the two ensembles have
identical simulated climates is then evaluated for a signifi-
cance level of α. The test statistic, t , for testing this larger
null hypothesis is defined as the number of fields that re-
ject H1. H0 is rejected if the number of fields rejecting H1
is greater than a critical value threshold (found to be 13, Ma-
hajan et al., 2017), and the test issues a “fail”. The null distri-
bution of t , and hence the critical value threshold at a signif-
icance level of α, was empirically derived by randomly sam-
pling two N -member ensembles from a 150-member control
ensemble of an earlier version of E3SM, and computing t ,
500 times (Mahajan et al., 2017). While regional means, lo-
cal diagnostics, and extremes can provide valuable perspec-

tives on ensemble behavior, here we focus on annual global
means, following previous work (Baker et al., 2015; Maha-
jan et al., 2017). Atmospheric variability is highly heteroge-
neous in both space and time, with sharp gradients and tran-
sient fluctuations that introduce substantial sampling noise
into regional ensemble diagnostics. Global averaging sup-
presses stochastic, weather-driven variability and reduces di-
mensionality, enabling systematic differences between two
ensembles to be more clearly identified. Further, extremes re-
quire much larger ensembles to be reliably assessed, as Ma-
hajan et al. (2017) demonstrated. With ensembles of about
sixty members, extremes of temperature and precipitation
were often statistically indistinguishable even when mean
distributions diverged, underscoring their limited sensitivity
in this context.

Potential pitfalls of multi-testing K-S Test

MVK requires a large control ensemble in order to capture
the variability of the model and establish proper critical value
thresholds for the number of rejected local null hypothe-
ses before rejection of the global null hypothesis is consid-
ered (Wilks, 2006). It also, as discussed in Wilks (2006),
does not put weight onto fields rejected very strongly. That
is, those fields with extremely small p values. If a few fields
are rejected with near certainty, this likely indicates global
significance. But, if the total number of these fields does
not exceed the predetermined threshold, the overall result is
global null hypothesis acceptance, which results in a lower
power to detect differences. Finally, in practice this approach
has a larger Type I (false positive) error (see Sect. 4.2, 4.7;
Table 2) than desired. While possible to decrease the sig-
nificance level α to reduce the false positive rates, this in
turn decreases the statistical power of the test to detect small
changes which is not desirable.

2.2 Additional statistical tests

The Kolmogorov-Smirnov test used in the MVK framework
is just one non-parametric test available to ascertain differ-
ences between distributions of random variables. To add ro-
bustness to the assessment of distributional differences, the
Mann-Whitney U (also called the Wilcoxon rank sum) and
Cramér-von Mises tests were also performed to compare
each set of ensembles. The Mann-Whitney U test (M-W
hereafter), ranks all samples from the two groups, and com-
pares the sum of those ranks between the two groups (Mann
and Whitney, 1947). The Cramér-von Mises test (C-VM
hereafter) used here compares two empirical distributions us-
ing the quadratic distance between them (Anderson, 1962).
These tests present an advantage in statistical power over
the K-S test, as more weight is given to the distribution
tails (Gentle, 2003), resulting in higher sensitivity to extreme
values, though at the cost of being more sensitive to outliers.
Both additional tests are also non-parametric tests, meaning
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that limited assumptions are asserted about the shape of the
data.

2.3 False Discovery Rate Correction

When conducting simultaneous multiple null hypothesis
tests as in the MVK above, Type I error rate inflation occurs,
leading to a higher overall probability of false positives, since
the number of expected null hypothesis rejections increases
with each additional test (Benjamini and Hochberg, 1995).
This means that increased false positives can occur when
testing many p values at once. While a significance level
(e.g., α = 0.05) controls the probability of a false positive for
a single test, conducting many tests increases the chance that
at least one result will appear significant purely by chance
even if all the null hypotheses are true. This implies that
the overall proportion of false discoveries can become un-
acceptably high, undermining the reliability of the findings.
MVK accounts for multi-testing by using a re-sampling strat-
egy, which was found to give similar results as compared
to permutation testing (Mahajan et al., 2019b). In addition
to permutation testing and bootstrapping approaches, other
approaches for correcting Type I error rate inflation associ-
ated with multi-testing include family wise error rate correc-
tion (e.g. Bonferroni correction), and the false discovery rate
(FDR) (Wilks, 2006; Ventura et al., 2004), the latter of which
is used here. The Bonferroni correction adjusts the signifi-
cance level by dividing the desired significance level, α, by
the number of tests conducted, but is known to have reduced
statistical power (Wilks, 2006; Ventura et al., 2004). Here,
we use the Benjamini-Hochberg (BH) FDR correction ap-
proach (Benjamini and Hochberg, 1995). The BH-FDR ap-
proach has been shown to effectively control for Type I error
rate inflation while also exhibiting more power than other ap-
proaches (Ventura et al., 2004; Wilks, 2006). It is widely used
in Earth system studies for spatial analysis (Wilks, 2006; Re-
nard et al., 2008; Whan and Zwiers, 2017) and has also been
applied to solution reproducibility testing of ocean mod-
els (Mahajan, 2021). Other methods of false discovery rate
correction (Benjamini and Yekutieli, 2001, Bonferroni ad-
justment) were also examined and found to have lower power
than the BH-FDR method used here. These corrections re-
move more rejections than the BH-FDR correction and re-
sult in fewer global null hypothesis rejections, so they are
less sensitive to small parameter changes. While the orig-
inal BH-FDR (Benjamini and Hochberg, 1995) description
asserted independence, it has been found in more recent work
(e.g. Benjamini and Yekutieli, 2001; Ventura et al., 2004) that
the independence of the p values is not a strict requirement.

Similar to MVK, we use the two sample K-S, the two sam-
ple C-VM, and the two sample M-W tests to evaluate the lo-
cal null hypothesis (H1) for each field that their sample dis-
tribution functions are statistically identical across the two
ensembles. Also, similar to the MVK, the global null hypoth-
esis (H0) being tested is that the two ensembles are statisti-

cally similar. We use the statsmodels (Seabold and Perk-
told, 2010) Python package for applying BH to reproducibil-
ity testing. This corrects the critical threshold, α, for evalu-
ating local null hypothesis (H1) rejection with the kth sorted
p value, where k is defined in Eq. (1) (see Eq. 2 of Ventura
et al., 2004, and Eq. 3 of Wilks, 2016).

k = max
i=1...m

[
i : p(i) ≤ q

∗
i

m

]
(1)

Where p(i) is the ith smallest p value, m is the total number
of p values (equivalent to the number of hypothesis tests),
and q∗ is the chosen limit on the false discovery rate, typ-
ically chosen to be q∗ = α. This q∗ is defined as the upper
limit of the false positive rate using the FDR-BH methods,
and is chosen at the 5 % level as it balances false negative
and false positive rates. A decrease in q∗ would decrease
false positives, but it would be offset by an increase in false
negative errors. The result of Eq. (1), k, is thus the index of
the largest p value which is less than q∗i/m, and all p val-
ues with an index less than k (e.g. p(1). . .p(k)) are rejected.
Now, the global null hypothesis, H0, that can be framed as
all H1 are true, is rejected at the global significance level of
α if any H (i)

1 is rejected (Renard et al., 2008; Wilks, 2006;
Ventura et al., 2004). Thus, the global null hypothesis is re-
jected if any p value is rejected, said another way, if k ≥ 1.
In other words, the critical value threshold for the test statis-
tic, t , which is the number of fields rejecting H1, is equal
to one for H0 for BH-FDR. This theoretical critical value
threshold of one, when multi-testing with FDR corrections,
has been used widely for field significance testing to address
the multiple comparisons problem inherent in spatial analy-
ses in the climate and meteorological studies (Wilks, 2006;
Renard et al., 2008; Burrell et al., 2020). More details about
the BH-FDR as applied to earth system science can also be
found in these studies.

This BH-FDR as applied to reproducibility testing will
be deemed useful here if it performs at least as well at de-
tecting altered simulated climates (statistical power) as the
MVK while also reducing the number of false positives.
We investigate these characteristics for each approach using
suites of simulation ensembles with controlled modifications
in Sect. 4.

2.4 Illustration of FDR approach with test cases

Figure 1 illustrates the FDR approach using two example
simulation ensemble comparisons, described later in Sect. 3.
At left, a control comparison is shown where each ensem-
ble member differs by a machine precision perturbation only
(expected to globally pass, but have local rejections), and at
right a perturbed ensemble experiment is compared to the
control with known solution changes (expected to be glob-
ally rejected). Note that several p values in the control self
comparison are below the threshold α, but none fall below
αFDR, leading to an acceptance of the global null hypothesis
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for this experiment. In the comparison between control and
perturbed ensembles there are fewer p values which fall be-
low the corrected αFDR than fall below the nominal α, despite
this, the global null hypothesis is still rejected, as at least one
field is rejected. This is similar to Fig. 2 from Ventura et al.
(2004), which also illustrates the impact of a variable α.

3 Simulation Ensembles

We conduct a suite of multi-member ensembles to evaluate
the false positive and false negative rates of BH-FDR ap-
proach. Additionally, having undergone significant updates
to software (Golaz et al., 2022), we reassess the critical value
threshold of MVK at which two ensembles of E3SMv2.1 are
statistically distinguishable (the critical value threshold hav-
ing been previously computed from a control ensemble of
an earlier model version) using this ensemble suite. Each en-
semble is generated by varying the initial conditions by near-
machine precision perturbations (O(10−10)) to the tempera-
ture field at each grid point for each ensemble member. One
of these ensembles is the control ensemble which refers to
the unmodified default E3SMv2.1 model with default values
of all tuning parameters. Other generated ensembles are dif-
ferentiated from the control ensemble by varying the value of
a tuning parameter from its default value by different mag-
nitudes (see Table 1 for details). Here, we vary three tuning
parameters separately. Version 1 of E3SM was found to be
highly sensitive to a parameter termed clubb_c1, some-
what sensitive to zmconv_c0_ocn, and weakly sensitive
to the effgw_oro (Qian et al., 2018), similar parametric
sensitivity was found in the Community Atmosphere Model
version 6 (CAMv6) (Eidhammer et al., 2024). clubb_c1
is the constant associated with dissipation of variance of
w′2 (where w is vertical wind speed), zmconv_c0_ocn is
the deep convection precipitation efficiency over ocean grid-
points, and effgw_oro is the gravity wave drag intensity
(see Table 1 of Qian et al., 2018). We choose these three pa-
rameters to generate ensembles to capture a range of sen-
sitivities in version 2 of E3SM. As in the operational case
described in Sect. 2.1, the simulation ensembles are run at
“ultra-low” resolution with a 14-month simulation duration.
A 120-member ensemble is generated for each tuning param-
eter change, along with the control ensemble.

The effgw_oro and clubb_c1 ensembles were
run on Argonne National Laboratory’s Chrysalis machine
and built using the Intel compiler v20.0.4, while the
zmconv_c0_ocn ensembles were run on US Air Force
HPC11 at Oak Ridge National Laboratory’s Oak Ridge Lead-
ership Computing Facility (OLCF), compiled using the GNU
compilers v13.2. An additional control ensemble was also
performed on HPC11.

To further evaluate the BH-FDR approach, we conduct two
additional ensemble simulations on Chrysalis to test model
sensitivity to compiler optimization choices. The default op-

Table 1. List of simulations for each tuning parameter. Bold font
indicates value in control simulation.

Parameter % Change Parameter value

effgw_oro 0.0 0.375
1.0 0.3788

10.0 0.4125
20.0 0.4500
30.0 0.4875
40.0 0.5250
50.0 0.5625

clubb_c1 0.0 2.400
1.0 2.424
3.0 2.472
5.0 2.520

10.0 2.640

zmconv_c0 0.0 0.0020
0.5 0.00201
1.0 0.00202
3.0 0.00206
5.0 0.00210

timization flag for E3SM is “-O3”, and is used to gener-
ate the control and other ensembles with tuning parameter
changes. The two different optimization test ensembles are
titled opt-O1 and fastmath, and are compiled with opti-
mization flags “-O1” and “-O3 -fp-model=fast” respectively.
Previous work suggests that using optimization “-O1” is ex-
pected to not produce a significantly different simulated cli-
mate than the default (Baker et al., 2015; Mahajan et al.,
2017). Mahajan et al. (2017) found that using optimization
flag “fast” with “Mvect” resulted in a statistically different
climate compared to the default, which used an optimization
of “-O2” using the PGI compiler.

The “-O1” optimization turns off most of the aggressive
optimizations used for the “-O3” level, including loop vector-
ization, loop unrolling, and global register allocation, while
enabling the “-fp-model=fast” fast floating point model al-
lows the compiler to be less strict in its handling of floating
point arithmetic (Intel Corporation, 2023). This means using
“-O1” in place of “-O3” ought to result in slower operation
but similar results, while using “-fp-model=fast” could result
in different answers under specific conditions, including if
there are “NaN” or not-a-number values present. Though in
the case of E3SM, “-fp-model=fast” is already used in the
compilation of several source files, thus adding it as a global
option only changes those where it is not in use already.

4 Results

4.1 Estimating Critical Value Threshold for MVK

E3SMv2.1 has undergone several scientific feature changes
as well as software infrastructure changes since the release of
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Figure 1. Sorted p values for two selected experiments, shown in blue, orange, and green for the Kolmogorov-Smirnov, Cramér-von Mises,
and Mann-Whitney U tests respectively. These lines are thicker where p values are rejected based on BH-FDR correction. The dashed grey
line shows the nominal α = 0.05, and the dashed red line shows the FDR corrected αFDR

= q∗ i/m.

E3SMv0 which was used to estimate the critical value thresh-
old for null hypothesis testing using MVK (Golaz et al.,
2022). Here, we estimate the null distribution of the test
statistic of MVK which is more representative of E3SMv2.1.
We use a bootstrapping (re-sampling) strategy to derive the
null distribution and the empirical critical value threshold of
the test statistic, t , which is the number of variables falsely
rejecting the true null hypothesis H1 at α = 0.05, for the
global null hypothesis using for the MVK test for E3SMv2.1.
For this analysis, two 30 member ensembles were drawn,
without replacement, from the 120 member control ensem-
ble (with > 1018 possible ways of drawing a 30 member en-
semble). By drawing two ensembles from the same popula-
tion, this establishes an expected value for how many fields
would be rejected by random chance when using two ensem-
bles which have the same simulated climate. t is computed
for each such draws of 30-member ensemble pairs and then
this procedure is repeated 1000 times. This procedure was
then applied to each parameter adjustment ensemble sepa-
rately, comparing two random draws from each large ensem-
ble, in an effort to expand the sample size to estimate the null
distribution. It is also applied to the ensembles with changes
to compiler optimizations, thus the empirical threshold for
rejecting the global null hypothesis is computed from 2040
ensemble members. The null distribution of t is representa-
tive of the internal variability of the model as the drawn en-
semble pairs are part of the same population with ensemble
members differing only in the initial conditions at machine
precision level perturbations. Figure 2 illustrates the null dis-
tribution of t with a box and whiskers plot derived from each
120-member ensemble using the K-S test. The critical value
threshold is also estimated as the 95th percentile of t , which
ranges from 10 to 13 for different ensembles.

We thus set the critical value threshold for MVK (K-S) at
α = 0.05 as the median of those values, found to be 11. This
procedure was repeated using the other two statistical tests
with similar results, though the thresholds for C-VM and M-
W were both found to be larger, at 16.

4.2 False positive rates: Uncorrected and BH-FDR
approach

The bootstrapping method described above in Sect. 4.1 to
determine the critical value threshold for global null hypoth-
esis testing for MVK can also be used to estimate the false
positive rates. Since ensemble pairs are drawn from the same
population, each drawn pair that rejects the null hypothesis is
a false positive. The thresholds for global rejection are set at
K-S: 11, C-VM: 16, and M-W: 16 for null hypothesis testing
at α = 0.05. For the BH-FDR approach applied to each sta-
tistical test, any field rejecting the null hypothesis after false
discovery rate correction implies a rejection of the larger null
hypothesis.

For each of the thirteen 120-member ensembles conducted
(control, tuning parameter changes and optimization change
ensembles), a 1000 iteration bootstrapping analysis is per-
formed separately, and the false positive rates are computed
for each under each statistical test and the BH-FDR testing
approach. Table 2 details the false positive rates derived from
each analysis. The mean of these 17 values for the MVK
is 0.046, which can be expected to be near the prescribed
α since the critical value threshold was estimated from the
same population (set of ensembles), although with different
bootstrap samples, similarly for M-W and C-VM tests, the
mean false positive rate are 0.048 and 0.049 respectively.
The mean false positive rate under the BH-FDR approach
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Figure 2. Box plot of number of rejected output fields using the K-S test for each ensemble self-comparison. The solid center line of each box
represents the median, the box represents the inter-quartile range (25th–75th percentiles), the whiskers are plotted at the 5th–95th percentiles,
and outliers marked beyond that range. The dashed vertical line is the median of all 95th percentiles which is 11 fields.

is lower for all tests at 0.032, 0.035, and 0.040 for MVK, M-
W, and C-VM respectively. Also, the 95th percentile of false
positive rates for the 17 ensemble comparisons are also re-
duced BH-FDR approach for all statistical tests. The above
indicate that the application of the FDR correction works as
intended and based on the Lemma of Theorem 1 in Ben-
jamini and Hochberg (1995), the FDR puts an upper limit
to the level of false discovery at q∗ (which here is chosen
as q∗ = α = 0.05), thus false positive rates lower than α are
expected.

4.3 False Negative Rates and Statistical Power: MVK
and BH-FDR

To evaluate the magnitude of change that the tests can de-
tect confidently, we again rely on bootstrapping following
previous work (Mahajan et al., 2019b, a; Mahajan, 2021).
For each tuning parameter change, 30 ensemble members
each are drawn from the control and that tuning parameter
change ensemble. The test statistic, t , is then computed for
each uncorrected statistical test (K-S, M-W, and C-VM) and
the BH-FDR corrected version of each, then the six (three
uncorrected, three BH-FDR corrected) tests are conducted
on the ensemble pair. This procedure is then repeated 1000
times. To illustrate the impact of progressively increasing
the tuning parameter on the model climate, Fig. 3 shows the
95th percentile of t from the 1000 hypothesis tests for each
tuning parameter change for effgw_oro, clubb_c1, and
zmconv_c0_ocn. As the magnitude of the tuning parame-
ter change to the model increases, t increases for both uncor-
rected and BH-FDR corrected approaches. To reiterate, an
increase in t indicates an increase in the number of fields
rejecting the local null hypothesis, H1. Figure 3 also re-

iterates the lower sensitivity of E3SM to the orographic grav-
ity wave drag parameter than both the C1 parameter from the
CLUBB cloud parameterization scheme, and C0 over ocean
in the ZM convection scheme. Smaller percentage changes in
clubb_c1 and zmconv_c0_ocn result in large changes
to t as compared to effgw_oro, where larger percentage
changes are needed for similar changes in t . The K-S test,
as expected from the control threshold estimation, rejects the
fewest number of fields at each level, while the C-VM and M-
W tests reject nearly the same number. However, the number
of rejected fields above each test’s respective control thresh-
old appears similar.

Figure 3 also points towards the detectability of modifi-
cations to the model by the tests. For the effgw_oro and
clubb_c1 parameters, a 1 % change in their value does not
result in a change in the simulated climate that is easily de-
tectable by the tests since> 95 % of the bootstrapped ensem-
ble pairs, t is less than the critical value threshold of the tests
(11 for K-S, 16 for M-W and C-VM, and one for BH-FDR).
This indicates that 95 % of the 1000 bootstrap comparisons
between the control and, for example, the 10 % change to
effgw_oro, have 13 or fewer of the 117 output fields re-
jected for the K-S test, 19 or fewer fields for the C-VM test,
and 20 or fewer for the M-W test, and 1, 2, and 2 of 117 out-
put fields rejected for BH-FDR corrected versions for each.
The 95 % level is chosen here as it is the inverse of our sig-
nificance level α = 0.05, and as such one could expect to see
5 % of bootstrap iterations failing the test on random chance,
thus if fewer than 5 % have passed, this is a strong indicator
that the two ensembles are significantly different.

Increasing effgw_oro to 10 %, clubb_c1 to 3 %, and
zmconv_c0_ocn to 1 % results in some of the bootstrap
iterations having exceeded or met the critical value threshold
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Table 2. False positive rates for self-comparison bootstraps (per 1000 iterations for each ensemble) at α = 0.05, and the mean and 95th
percentile false-positive rate over all self-comparison bootstraps.

Statistical Test Kolmogorov-Smirnov (K-S) Mann-Whitney (M-W) Cramér-von Mises (C-VM)

Method Uncorrected BH-FDR Corrected Uncorrected BH-FDR Corrected Uncorrected BH-FDR Corrected

Simulation Ensemble

Control 0.049 0.028 0.049 0.029 0.046 0.035
GW orog 1.0 % 0.054 0.032 0.036 0.025 0.034 0.026
GW orog 10.0 % 0.044 0.022 0.048 0.033 0.051 0.040
GW orog 20.0 % 0.061 0.039 0.051 0.033 0.055 0.041
GW orog 30.0 % 0.048 0.032 0.046 0.031 0.054 0.036
GW orog 40.0 % 0.035 0.031 0.050 0.044 0.051 0.044
GW orog 50.0 % 0.053 0.028 0.049 0.040 0.046 0.043
clubb c1 1.0 % 0.041 0.049 0.040 0.029 0.043 0.029
clubb c1 3.0 % 0.053 0.034 0.058 0.045 0.056 0.050
clubb c1 5.0 % 0.049 0.031 0.050 0.036 0.054 0.037
clubb c1 10.0 % 0.044 0.029 0.046 0.032 0.048 0.036
zmconv c0 ocn 0.5 % 0.041 0.029 0.049 0.042 0.050 0.047
zmconv c0 ocn 1.0 % 0.045 0.046 0.063 0.038 0.051 0.050
zmconv c0 ocn 3.0 % 0.032 0.028 0.045 0.030 0.047 0.040
zmconv c0 ocn 5.0 % 0.040 0.040 0.041 0.034 0.046 0.039
opt-O1 0.060 0.032 0.053 0.036 0.058 0.040
fastmath 0.059 0.034 0.043 0.030 0.043 0.040

Mean 0.048 0.033 0.048 0.035 0.049 0.040
95th %tile 0.060 0.047 0.059 0.044 0.056 0.050

for both MVK and BH-FDR. As the magnitude of tuning pa-
rameter change increases, the number of bootstrap iterations
crossing the critical value threshold also increases.

A formal estimate of the statistical power (P , rate of cor-
rectly rejecting a false null hypothesis), also representative of
the false negative rates (1−P , incorrectly accepting a false
null hypothesis), of these tests is illustrated in Fig. 4. It shows
the number of bootstrap iterations where the tests correctly
reject H0 at a significance level of α = 0.05 and is indica-
tive of the likelihood of the tests detecting a modification
to the model. P can be computed by dividing the ordinate
(y axis) values by the total number of bootstrap iterations
(1000). Similar to Fig. 3, Fig. 4 shows that as the magnitude
of a tuning parameter is increased, the number of bootstrap
iterations rejecting H0 also increases. For a 1 % change to
effgw_oro or clubb_c1 only about 30–40 bootstrap it-
erations reject H0, which implies that there is only a 30–40
out of a 1000 (3 %–4 %) chance that a change of this mag-
nitude could be detected by the tests. At a 0.5 % change to
zmconv_c0_ocn, about 60–70 bootstrap iterations reject
H0, implying a 6 %–7 % chance of detecting a change of
this magnitude using these tests. At the α = 0.05 significance
level it is expected that ≈ 5% of the tests will be rejected by
random chance. Increasing effgw_oro to 10 % results in
more than 50 bootstrap iterations (5 %) rejectingH0, indicat-
ing that it unlikely to be caused by random chance at the 0.05
significance level, it still exhibits a low likelihood of being
detected by the tests (about 60 and 80 out of a 1000 chance

for MVK and BH-FDR tests respectively). As the magnitude
of change to effgw_oro is increased, the likelihood of de-
tecting a change by the tests increases. For a change of 40 %
to effgw_oro there is a > 90 % chance of being detected
by both the tests and it reaches nearly a 100 % for a larger
change. Similarly, for clubb_c1, a change of 5 % results
in greater than 80 % (90 %) chance of being detected by the
MVK (BH-FDR) test, and nearly a 100 % chance of detec-
tion for a change of about 10 % change to its magnitude.

Overall, BH-FDR approach exhibits greater statistical
power than MVK for almost all tuning parameter changes, al-
lowing increased confidence in detecting changes, adding to
its advantages. This is consistent with previous works (Ben-
jamini and Hochberg, 1995; Wilks, 2006), that suggest that
BH-FDR approach generally exhibits greater power than
bootstrapping methods. Figure 5 shows the power difference
between uncorrected and BH-FDR corrected approaches. For
the clubb_c1 and zmconv_c0_ocn parameters, there is
an increase in power for all tests at all parameter changes,
apart from the very smallest and largest percent changes (at
the largest no power increase is possible as the uncorrected
approach already rejects all iterations). Both the C-VM and
M-W tests have power increases for the effwg_oro pa-
rameter changes, but the K-S test has near 0 or power losses
except at largest parameter changes.

For the smallest parameter change to effgw_oro, where
MVK test exhibits greater power than the BH-FDR approach,
it is possible that at the 1 % change to effgw_oro, the
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Figure 3. 95th percentile of the number of fields with statistically
significant differences from the control ensemble (reject the local
null hypothesis, H1 at the α = 0.05 significance level) on the y axis
by percentage change in tuning parameter along the x axis. Solid
green, blue, and orange lines represent K-S, C-VM, and M-W tests
respectively, dashed represents BH-FDR versions of each in the
same color. The dashed horizontal lines represent global null hy-
pothesis critical value thresholds for K-S, C-VM, and M-W tests
(green, orange respectively) and BH-FDR (black).

Figure 4. Number of bootstrap iterations that reject the global
null hypothesis (H0) out of 1000 bootstrap iterations for changes
in tuning parameter effgw_oro (top), clubb_c1 (middle), and
zmconv_c0_ocn (bottom). Dashed black lines represent 5 %–
95 % of all bootstraps.

simulated climate is not different in a meaningful way. This
means that the spread of simulated climates (measured by
global averages of the output fields) generated by adding a
random perturbation to the temperature field does not differ
significantly from the spread of the simulated climates with

https://doi.org/10.5194/esd-17-23-2026 Earth Syst. Dynam., 17, 23–39, 2026



32 M. E. Kelleher and S. Mahajan: Reproducibility testing with FDR

a 1 % change to effgw_oro. Sampling errors may also be
playing a role, given the small magnitude of change. Increas-
ing the ensemble sizes can significantly increase the power
of the tests as shown for MVK (Mahajan et al., 2019b), but
operationally add to the computational cost. This trade-off
between false negative rates and ensemble sizes is a deci-
sion left to model developers and code integrators. The power
analysis here provides them with some reference to inter-
pret the test results. For instance, if a non-bit-for-bit change
passes the test (with the ensemble size of say, 30), devel-
opers can infer that its impact is likely smaller than a 5 %
change in C1 parameter of CLUBB, which can be detected
at a high confidence by the tests. This contextual comparison
helps determine whether to accept or investigate a change
further and guides the selection of ensemble size needed to
detect changes of interest. In the future, we will expand our
power analysis to include other tuning parameter changes to
better inform developers, integrators and domain scientists
using the tests.

4.4 Optimization changes

Two simulation ensembles (“opt-O1” and “fastmath”) were
performed to apply the uncorrected and BH-FDR approaches
to evaluate sensitivity of model results to compiler optimiza-
tion flags, which are involved in the optimization of the un-
derlying mathematics rather than model tuning parameters
designed to account for varying physical processes. Boot-
strapping procedures, similar to those described in the last
section indicate that these optimizations do not have a sig-
nificant impact on solution reproducibility (Fig. 6). Between
10–31 out of the 1000 bootstrap iterations rejectH0 using the
uncorrected statistical tests for both “opt-O1” and “fastmath”
at the significance level of 0.05. After application of the BH-
FDR approach, even fewer bootstrap iterations rejectH0, ex-
hibiting a 0.5 %–0.7 % chance to detect a change to “O1” and
a 2.3 %–2.9 % chance to detect a change in the “fastmath”
flag. Reducing optimizations has been shown to yield cli-
mate reproducibility in previous studies as well (Baker et al.,
2015; Mahajan et al., 2017), similar to our result that the sim-
ulated climate of “opt-O1” is statistically indistinguishable
from that of the control ensemble that uses “-O3” optimiza-
tions.

The aggressive optimizations enabled by “-fp-model=fast”
are expected to decrease solution accuracy (Mielikainen
et al., 2016; Büttner et al., 2024), however, in this set of en-
sembles they do not significantly alter the simulated climate.
As previously mentioned, the “-fp-model=fast” option is al-
ready a default for several source files, thus this simulation
ensemble tests its use only for those additional source files
in EAM. This is different from testing the impact of using
it across the model as a whole as in Mahajan et al. (2017).
Acceptance of H0 by the tests indicate that including the op-
tion for all of EAM, instead of selectively as is the default,
does not result in statistically distinguishable solutions. This

Figure 5. Additional number of bootstrap iterations that reject the
global null hypothesis (H0) out of 1000 bootstrap iterations for
changes in tuning parameter effgw_oro (top), clubb_c1 (mid-
dle), and zmconv_c0_ocn (bottom) when BH-FDR is applied for
each statistical test, colors as in Fig. 4.

indicates that the “-fp-model=fast” optimization could be ap-
plied more generally throughout EAM code base. However,
for higher resolutions or fully-coupled ensembles, this result
may not apply as these configurations may respond to per-
turbations differently than ultra-low resolution model used
here. Thus, further examination of its applicability may be
required.

Earth Syst. Dynam., 17, 23–39, 2026 https://doi.org/10.5194/esd-17-23-2026



M. E. Kelleher and S. Mahajan: Reproducibility testing with FDR 33

Figure 6. Number of bootstrap iterations that reject the global null hypothesis (H0) for opt-O1 (left), and fastmath (right) ensembles, when
compared to the control ensemble, out of 1000 bootstrap iterations for each statistical test, uncorrected in blue and B-H FDR (orange).

4.5 Standard resolution test

A test was also conducted using the USAF HPC11 using
the same model version (E3SM v2.1), but at a higher reso-
lution, called “standard-resolution” (called ne30pg2, ≈ 1.0°
atmosphere) Two ensembles of 30 members each were con-
structed, a control ensemble with no parameter modifica-
tion from default, and an ensemble where the clubb_c1
parameter had been increased by 5 % from 2.4 to 2.52. Ta-
ble 3 details the number of output fields which are rejected at
α = 0.05 level for both uncorrected and BH-FDR corrected
methods for each statistical test. Though a large ensemble
was not conducted to determine an empirical global rejec-
tion threshold for the uncorrected tests, it is reasonable to
assume that following the BH-FDR correction, that any field
rejection results in a global null hypothesis rejection as in
the “ultra-low” resolution ensembles. This means that for all
tests, the two simulated climates are determined to be signifi-
cantly different. Figure 7 shows that the map of grid box aver-
aged cloud liquid amount is visually different on the order of
±1×10−6 kgkg−1, only one order of magnitude smaller than
the field itself in the ensemble mean depending on the loca-
tion. The largest differences appear mainly over the North-
ern Hemisphere, though smaller differences are noticeable in
the Southern Ocean. Grid box-wise statistical tests are not
conducted for this framework, but the field appears visually
different in the mean sense, and is statistically distinct as con-
firmed by the statistical tests used.

The annual global means for each ensemble member are
plotted against one another in Fig. 8. This visualizes differ-
ences in the distributions of the cloud liquid amount field
which are used by the statistical tests to generate p values.
For a field which has no statistically significant differences in

Table 3. Number of rejected fields in the “standard resolution” en-
semble comparison for each statistical test, for uncorrected and BH-
FDR corrected methods.

Statistical Uncorrected BH-FDR corrected
test rejections rejections

K-S 29 22
M-W 32 27
C-VM 35 25

distributions between experiment (clubb_c1 + 5.0 %) and
Control, the quantiles would fall along the 1 : 1 line in theQ-
Q plot, as would the probabilities along the same line in the
P -P plot, the histogram bars would be of similar heights,
and the cumulative distribution functions would have little
distance between them. This is not the case for the cloud liq-
uid amount, and its local null hypothesis is rejected based on
all tests and methods.

4.6 Ensemble size

The size of the sub-ensemble selected of 30 was chosen
based on the previous results of Mahajan et al. (2022, 2019b)
as a balance between statistical power and computational ef-
ficiency. Figure 9 shows an increasing power for larger sub-
ensemble size selections, with the BH-FDR corrected ap-
proaches exhibiting larger power than the uncorrected coun-
terparts. Here, the choice of 30 ensemble member com-
parisons appears an appropriate balance between statistical
power and computational time.

In the other figures of this study, the results are presented
with an ensemble size of 30, to match the operational con-
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Figure 7. Map of ensemble mean cloud liquid amount for the ne30
resolution control ensemble (top) and the difference to the perturbed
ensemble mean (bottom) in kg kg−1.

Figure 8. Cumulative distribution function for the cloud liquid
amount field, as in Fig. 7. Both control and test ensemble annual
global means are normalized together.

straints so results are directly applicable on the nightly test-
ing.

4.7 Operational results

Figure 10 shows the time series of t , or the number of vari-
ables rejecting H1, for MVK and BH-FDR, for a period of
a few weeks after BH-FDR was implemented and included
in nightly testing in late September last year. The additional
statistical tests were not performed on these ensembles, and

Figure 9. Power of statistical tests as in Fig. 4 on the clubb_c1
5 % change to control ensemble comparison, but for varying sub-
ensemble size selection (x axis). Solid curves indicate uncorrected
methods, dashed lines of the same color indicate BH-FDR corrected
approach for each test.

are thus not able to be included here, as the nightly testing
output is not archived. The model maintained bit-for-bit re-
producibility during these weeks. Bit-for-bit reproducibility
is ascertained by a suite of bit-for-bit tests that are run each
night, testing the model under a variety of conditions. When
these pass, the model is bit-for-bit with previous results, and
a test fail by MVK and BH-FDR on these days is thus known
to be a false positive. Figure 10 shows that operationally BH-
FDR has a reduced false positive rate of 1.9 % (1 of 53 tests)
as compared to 7.5 % (4 of 53 tests) for MVK. t varies be-
tween 0 to a maximum of 15 (on two individual days) for
MVK, while t is either 0 or 1 (on one occasion) for BH-FDR.
This solitary global null hypothesis rejection using BH-FDR
does not occur at the same time as a global rejection using
uncorrected p values, indicating that a systematic change in
its statistics may not have occurred. In which case both tests
may be expected to fail. The BH-FDR approach yields a fail-
ing overall result when one particular p value is very small.
In this case the soa_a1_SRF, a secondary organic aerosol
field, was rejected very strongly, which meant the BH-FDR
method rejected the global null hypothesis. The rate of global
rejections using MVK (7.5 %) is higher than the targeted
5 %, which is reduced to under 2 % using the FDR corrected
p value threshold, as is expected as the correction controls
for the false discovery rate when using BH-FDR. The higher
false positive rate of MVK can be associated with the small
sample size (53 d of testing). In the future, we plan to expand
the ensemble size of the control ensembles to derive the null
distribution and evaluate its impact on operational false pos-
itive rates of MVK.

Operationally, the MVK test has recently been success-
ful in identifying two bugs committed to the model’s code,
which were thought by developers to be non bit-for-bit, but
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Figure 10. Number of rejected variables (of 120) for nightly tests
of E3SM. The teal line shows rejection based on MVK p values, or-
ange shows number of rejections based on B-H FDR p value thresh-
olds.

not climate changing. The test returned a “fail” result fol-
lowing both changes, and the changes were reverted and
eventually re-worked into non climate changing code alter-
ations. This unintentional climate changing update was also
captured by the BH-FDR approach and indicates its ability
to capture erroneous alterations in addition to its ability to
capture tuning parameter changes. In the first case, develop-
ers introduced changes related to aqueous-phase chemistry,
specifically involving reactions tied to cloud water and trace
gases. These updates were considered minor adjustments to
internal model behavior and were not expected to alter the
simulated climate. However, the tests flagged the update as
a baseline failure, revealing statistically significant differ-
ences across many atmospheric variables. Further investi-
gation showed that the change affected cloud-aerosol inter-
actions and subsequently altered radiative balance, demon-
strating how a seemingly minor, but non-bit-for-bit change in
chemical processes led to broader simulated climate impacts.
In the second case, ozone chemistry configuration changes
were merged, aiming to improve numerical consistency in
offline and online chemistry calculations and were also ex-
pected to be non-climate changing. However, MVK and BH-
FDR detected a statistically significant difference, which was
traced to elevated tropospheric ozone concentrations result-
ing from the changes. The alteration impacted radiative forc-
ing enough to shift the ensemble mean state, and was also
subsequently corrected. These examples illustrate that the
BH-FDR method has statistical power in the event of erro-
neous code changes in addition to its power in detecting per-
turbed parameters as does the MVK, thus its usefulness is not
degraded.

5 Summary and discussion

This study presents a new approach, BH-FDR, to evaluate
statistical solution reproducibility of EAM after unintended
non-bit-for-bit changes are introduced. BH-FDR improves
on the existing MVK test and applies a false discovery rate
correction to control Type I error inflation in multi-testing
scenarios. While the original MVK approach relies on com-
putationally expensive bootstrapping to determine critical
value thresholds, BH-FDR offers a theoretically grounded
and operationally simpler alternative. This computationally
expensive threshold finding, where the ensembles represent
≈ 3700 node hours of computation time for ensemble gen-
eration, is demonstrated to be effectively eliminated, as the
BH-FDR approach for all statistical tests can use a threshold
of 1, while maintaining nearly the same, or improving statis-
tical power.

Our evaluation using a comprehensive suite of ensem-
bles, including both parameter perturbations and compiler
optimization changes, demonstrates that BH-FDR approach
maintains or improves the statistical power of the MVK test,
while significantly reducing false positive rates. Notably, the
BH-FDR approach eliminates the need for re-calibrating crit-
ical value thresholds after major model revisions. Opera-
tional implementation of this method in nightly E3SM test-
ing has further validated its utility, showing a reduction in
false positives from 7.5 % to 1.9 %. Overall, the BH-FDR
approach enhances the robustness, accuracy, and efficiency
of statistical testing for climate model reproducibility.

Additional tests were performed with the Cramér-von
Mises and Mann-Whitney U tests to add a broader perspec-
tive on the applicability of the BH-FDR method. For un-
corrected methods, the K-S test had the highest power and
equivalent false positive rates to the C-VM and M-W tests,
but in using the BH-FDR method, the power of those tests
increased beyond that of the K-S test. Primarily, this indi-
cates that the BH-FDR method works well for multiple dif-
ferent statistical tests and is valid so long as the underlying
statistical test is valid for the data being examined. We plan
to add these additional statistical tests to the nightly suite and
continue to examine ways to usefully combine the results of
these different tests to evaluate if two simulation ensembles
are statistically similar.

We also examined the sensitivity of the results to ensem-
ble size selection. Part of the procedure applied here to find
the power of the various tests involves comparing two sub-
ensembles each drawn from two larger ensembles at random.
The power of all three statistical tests both for uncorrected
and BH-FDR corrected methods scales with sub-ensemble
size. There is, however, a trade-off between computational
efficiency and statistical power. As an example, in this con-
figuration with “ultra-low” resolution on the Chrysalis ma-
chine, one ensemble member runs on a single node in ap-
proximately 15 wall-seconds per model day or about 1 h
45 min per 14-month simulation. Each additional ensemble
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member then adds a node to the computational requirements,
so a 30 member ensemble uses 30 nodes for 1 h 45 min, or
approximately 53 node-hours. We believe that an ensemble
size of 30 strikes the right balance between statistical power
and computational costs for routine nightly testing, but a de-
veloper is able to choose to increase this size to enhance the
statistical power as needed.

A caveat of our study here is that BH-FDR (and MVK as
well) has been rigorously applied to and evaluated for the
ultra-low resolution version of the model, which is not used
in practical applications, and only a single test was performed
at a higher resolution. The consistency of test results across
two different model resolutions provides evidence that the
test results with the ultra-low resolution model hold for stan-
dard and high resolution model configurations used for pro-
duction runs. Higher resolution models resolve finer scale
processes, which can effect numerical sensitivity, internal
variability and process feedbacks of the model. In the fu-
ture, we plan to identify the underlying reasons and scenar-
ios in which test results may or may not remain consistent
across resolutions. Nonetheless, an earlier unpublished work
found that the results of MVK applied to ultra-low resolution
ensembles and MVK applied to standard resolution ensem-
bles were consistent when evaluating a port of an earlier ver-
sion of E3SM to a new machine at the National Energy Re-
search Scientific Computing Center (NERSC). Further, we
will explore enhancing computational feasibility of the tests
by using shorter run times of simulation ensembles (Milroy
et al., 2018), allowing for routine testing with higher resolu-
tion models.

In addition to its application in traditional Earth sys-
tem models, the BH-FDR-based statistical testing frame-
work has potential for assessing the reproducibility of AI-
based climate models, which are rapidly gaining promi-
nence in climate science. Recent developments such as
ClimateBench (Watson-Parris et al., 2022), FourCast-
Net (Pathak et al., 2022), and Pangu-Weather (Bi et al.,
2022) demonstrate the capabilities of deep learning models
to emulate or replace components of physics-based models
with significant computational advantages allowing the gen-
eration of very large ensembles at very low computational
costs. However, verifying the reliability and reproducibil-
ity of these models presents unique challenges. AI models
often involve stochastic elements in training, sensitivity to
floating-point precision, and reliance on hardware-specific
optimizations, all of which can lead to variability in out-
put across runs. Standard bit-for-bit reproducibility tests are
inadequate in this context, and statistical frameworks like
MVK or BH-FDR could serve as robust alternatives to as-
sess whether differences in AI model outputs are statistically
meaningful or within expected variability. Prior work has
highlighted the need for principled evaluation methods tai-
lored to the probabilistic nature of machine learning in sci-
entific applications (Rasp et al., 2020; Dueben and Bauer,
2018), and integrating ensemble-based hypothesis testing

into AI model workflows could be a step toward more rigor-
ous, interpretable, and trustworthy deployment of AI systems
in operational climate modeling. Ultra-low resolution mod-
els, like the one used here, can also be used to create very
large ensembles at low computational cost allowing compar-
isons with their AI surrogate large ensembles. We plan to
conduct such evaluations in the near future.

Code availability. The code for this work can be found at https:
//github.com/mkstratos/detectable_climate (last access: 24 October
2025) (https://doi.org/10.5281/zenodo.17438094, Kelleher and Ma-
hajan, 2025a)

Data availability. The bootstrap data from each comparison is
available at https://doi.org/10.5281/zenodo.17438071 (Kelleher and
Mahajan, 2025b)

Author contributions. MK and SM developed the methodology.
MK wrote the code, conducted the simulations, and wrote the first
draft of the manuscript. SM supervised the project and contributed
writing to the final manuscript.

Competing interests. The contact author has declared that nei-
ther of the authors has any competing interests.

Disclaimer. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Special issue statement. This article is part of the special issue
“Theoretical and computational aspects of ensemble design, imple-
mentation, and interpretation in climate science (ESD/GMD/NPG
inter-journal SI)”. It is not associated with a conference.

Acknowledgements. This research was supported as part of the
Energy Exascale Earth System Model (E3SM) project, funded by
the U.S. Department of Energy, Office of Science, Office of Bi-
ological and Environmental Research. The authors also gratefully
acknowledge the computing resources provided on Blues, a high-
performance computing cluster operated by the Laboratory Com-
puting Resource Center at Argonne National Laboratory. This re-
search used resources of the Oak Ridge Leadership Computing Fa-
cility, which is a DOE Office of Science User Facility supported

Earth Syst. Dynam., 17, 23–39, 2026 https://doi.org/10.5194/esd-17-23-2026

https://github.com/mkstratos/detectable_climate
https://github.com/mkstratos/detectable_climate
https://doi.org/10.5281/zenodo.17438094
https://doi.org/10.5281/zenodo.17438071


M. E. Kelleher and S. Mahajan: Reproducibility testing with FDR 37

under Contract DE-AC05-00OR22725. The authors also acknowl-
edge the numerous open-source libraries on which this work de-
pends, Harris et al. (2020), Virtanen et al. (2020), Hoyer and Ham-
man (2017), Dask Development Team (2016), McKinney (2010),
Hunter (2007), Waskom (2021), Seabold and Perktold (2010). The
authors also acknowledge the seven anonymous reviewers, their
comments have made this a more robust investigation.

Financial support. This research was supported as part of the En-
ergy Exascale Earth System Model (E3SM) project, funded by the
U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research.

Review statement. This paper was edited by Irina Tezaur and re-
viewed by Teo Price-Broncucia and six anonymous referees.

References

Anderson, T. W.: On the Distribution of the Two-Sample Cramer-
von Mises Criterion, Ann. Math. Statist., 33, 1148–1159,
https://doi.org/10.1214/aoms/1177704477, 1962.

Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Den-
nis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mick-
elson, S. A., Neale, R. B., Nychka, D., Shollenberger, J.,
Tribbia, J., Vertenstein, M., and Williamson, D.: A new
ensemble-based consistency test for the Community Earth Sys-
tem Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840,
https://doi.org/10.5194/gmd-8-2829-2015, 2015.

Benjamini, Y. and Hochberg, Y.: Controlling the False Discov-
ery Rate: A Practical and Powerful Approach to Multiple
Testing, Journal of the Royal Statistical Society: Series B
(Methodological), 57, 289–300, https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x, 1995.

Benjamini, Y. and Yekutieli, D.: The control of the false discovery
rate in multiple testing under dependency, The Annals of Statis-
tics, 29, 1165–1188, https://doi.org/10.1214/aos/1013699998,
2001.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Ac-
curate medium-range global weather forecasting with 3D neural
networks, Nature, 610, 87–93, 2022.

Burrell, A. L., Evans, J. P., and De Kauwe, M. G.: Anthro-
pogenic climate change has driven over 5 million km2 of dry-
lands towards desertification, Nature Communications, 11, 3853,
https://doi.org/10.1038/s41467-020-17710-7, 2020.

Büttner, M., Alt, C., Kenter, T., Köstler, H., Plessl, C., and
Aizinger, V.: Enabling Performance Portability for Shallow Wa-
ter Equations on CPUs, GPUs, and FPGAs with SYCL, in:
Proceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC ’24, Association for Computing
Machinery, New York, NY, USA, ISBN 9798400706394,
https://doi.org/10.1145/3659914.3659925, 2024.

Dask Development Team: Dask: Library for dynamic task schedul-
ing, http://dask.pydata.org (last access: 24 October 2025), 2016.

Dueben, P. D. and Bauer, P.: Challenges and design choices
for global weather and climate models based on ma-

chine learning, Geosci. Model Dev., 11, 3999–4009,
https://doi.org/10.5194/gmd-11-3999-2018, 2018.

E3SM Project, D.: Energy Exascale Earth Sys-
tem Model v2.1.0, DOE Code [software],
https://doi.org/10.11578/E3SM/dc.20230110.5, 2023.

Eidhammer, T., Gettelman, A., Thayer-Calder, K., Watson-Parris,
D., Elsaesser, G., Morrison, H., van Lier-Walqui, M., Song,
C., and McCoy, D.: An extensible perturbed parameter ensem-
ble for the Community Atmosphere Model version 6, Geosci.
Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-
7835-2024, 2024.

Gentle, J. E.: Random Number Generation and Monte
Carlo Methods, Springer-Verlag, ISBN 0387001786,
https://doi.org/10.1007/b97336, 2003.

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe,
J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., Forsyth,
R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M.,
Wang, H., Turner, A. K., Singh, B., Richter, J. H., Qin, Y., Pe-
tersen, M. R., Mametjanov, A., Ma, P.-L., Larson, V. E., Kr-
ishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. M.,
Guba, O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vittorio,
A. V., Dang, C., Conlon, L. M., Chen, C.-C.-J., Brunke, M. A.,
Bisht, G., Benedict, J. J., Asay-Davis, X. S., Zhang, Y., Zhang,
M., Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani, M.,
Tesfa, T. K., Sreepathi, S., Salinger, A. G., Reeves Eyre, J. E. J.,
Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, R. L.,
Huebler, G. W., Huang, X., Hillman, B. R., Harrop, B. E., Fou-
car, J. G., Fang, Y., Comeau, D. S., Caldwell, P. M., Bartoletti,
T., Balaguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R.,
and Bader, D. C.: The DOE E3SM Model Version 2: Overview
of the Physical Model and Initial Model Evaluation, Journal
of Advances in Modeling Earth Systems, 14, e2022MS003156,
https://doi.org/10.1029/2022MS003156, 2022.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and
datasets in Python, Journal of Open Research Software, 5,
https://doi.org/10.5334/jors.148, 2017.

Hunter, J. D.: Matplotlib: A 2D graphics environment,
Computing in Science & Engineering, 9, 90–95,
https://doi.org/10.1109/MCSE.2007.55, 2007.

Intel Corporation: Intel Fortran Compiler Developer Guide
and Reference, https://www.intel.com/content/www/us/en/
docs/fortran-compiler/developer-guide-reference/2023-0/
compiler-options-001.html (last access: 1 May 2025), 2023.

Kelleher, M. and Mahajan, S.: Detectable Climate (v1.1.0), Zenodo
[code], https://doi.org/10.5281/zenodo.17438094, 2025a.

Kelleher, M. and Mahajan, S.: Detectable Climate
Bootstrap Data (Version v2), Zenodo [data set],
https://doi.org/10.5281/zenodo.17438071, 2025b.

Mahajan, S.: Ensuring statistical reproducibility of ocean model
simulations in the age of hybrid computing, in: Pro-
ceedings of the Platform for Advanced Scientific Com-

https://doi.org/10.5194/esd-17-23-2026 Earth Syst. Dynam., 17, 23–39, 2026

https://doi.org/10.1214/aoms/1177704477
https://doi.org/10.5194/gmd-8-2829-2015
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1038/s41467-020-17710-7
https://doi.org/10.1145/3659914.3659925
http://dask.pydata.org
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.11578/E3SM/dc.20230110.5
https://doi.org/10.5194/gmd-17-7835-2024
https://doi.org/10.5194/gmd-17-7835-2024
https://doi.org/10.1007/b97336
https://doi.org/10.1029/2022MS003156
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/compiler-options-001.html
https://doi.org/10.5281/zenodo.17438094
https://doi.org/10.5281/zenodo.17438071


38 M. E. Kelleher and S. Mahajan: Reproducibility testing with FDR

puting Conference, PASC ’21, Association for Computing
Machinery, New York, NY, USA, ISBN 9781450385633,
https://doi.org/10.1145/3468267.3470572, 2021.

Mahajan, S., Gaddis, A. L., Evans, K. J., and Norman, M. R.:
Exploring an Ensemble-Based Approach to Atmospheric Cli-
mate Modeling and Testing at Scale, international Confer-
ence on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland, Procedia Computer Science, 108, 735–744,
https://doi.org/10.1016/j.procs.2017.05.259, 2017.

Mahajan, S., Evans, K. J., Kennedy, J. H., Xu, M., and Norman,
M. R.: A multivariate approach to ensure statistical reproducibil-
ity of climate model simulations, in: Proceedings of the Platform
for Advanced Scientific Computing Conference, 1–10, 2019a.

Mahajan, S., Evans, K. J., Kennedy, J. H., Xu, M., Norman, M. R.,
and Branstetter, M. L.: Ongoing solution reproducibility of earth
system models as they progress toward exascale computing, The
International Journal of High Performance Computing Applica-
tions, 33, 784–790, https://doi.org/10.1177/1094342019837341,
2019b.

Mahajan, S., Tang, Q., Keen, N. D., Golaz, J.-C., and van Roekel,
L. P.: Simulation of ENSO teleconnections to precipitation ex-
tremes over the United States in the high-resolution version of
E3SM, Journal of Climate, 35, 3371–3393, 2022.

Mann, H. and Whitney, D. R.: On a Test of Whether
one of Two Random Variables is Stochastically Larger
than the Other., Ann. Math. Statist., 18, 50–60,
https://doi.org/10.1214/aoms/1177730491, 1947.

McKinney, W.: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Con-
ference, edited by: van der Walt, S. and Millman, J., 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010.

Mielikainen, J., Price, E., Huang, B., Huang, H.-L. A., and
Lee, T.: GPU Compute Unified Device Architecture (CUDA)-
based Parallelization of the RRTMG Shortwave Rapid Radia-
tive Transfer Model, IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, 9, 921–931,
https://doi.org/10.1109/JSTARS.2015.2427652, 2016.

Milroy, D. J., Baker, A. H., Hammerling, D. M., and Jessup, E.
R.: Nine time steps: ultra-fast statistical consistency testing of
the Community Earth System Model (pyCECT v3.0), Geosci.
Model Dev., 11, 697–711, https://doi.org/10.5194/gmd-11-697-
2018, 2018.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopad-
hyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzade-
nesheli, K., Hassanzadeh, P., Kashinath, K., and Anandku-
mar, A.: FourCastNet: A Global Data-driven High-resolution
Weather Model using Adaptive Fourier Neural Operators, arXiv
[preprint], https://doi.org/10.48550/arXiv.2202.11214, 2022.

Qian, Y., Wan, H., Yang, B., Golaz, J.-C., Harrop, B., Hou,
Z., Larson, V. E., Leung, L. R., Lin, G., Lin, W., Ma, P.-
L., Ma, H.-Y., Rasch, P., Singh, B., Wang, H., Xie, S., and
Zhang, K.: Parametric Sensitivity and Uncertainty Quantifi-
cation in the Version 1 of E3SM Atmosphere Model Based
on Short Perturbed Parameter Ensemble Simulations, Journal
of Geophysical Research: Atmospheres, 123, 13046–13073,
https://doi.org/10.1029/2018JD028927, 2018.

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouata-
did, S., and Thuerey, N.: WeatherBench: A benchmark
dataset for data-driven weather forecasting, Journal of Ad-

vances in Modeling Earth Systems, 12, e2020MS002203,
https://doi.org/10.1029/2020MS002203, 2020.

Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H.,
Sauquet, E., Prudhomme, C., Parey, S., Paquet, E., Neppel, L.,
and Gailhard, J.: Regional methods for trend detection: Assess-
ing field significance and regional consistency, Water Resources
Research, 44, https://doi.org/10.1029/2007WR006268, 2008.

Rosinski, J. M. and Williamson, D. L.: The Accumulation of
Rounding Errors and Port Validation for Global Atmospheric
Models, SIAM Journal on Scientific Computing, 18, 552–564,
https://doi.org/10.1137/S1064827594275534, 1997.

Seabold, S. and Perktold, J.: statsmodels: Econometric and
statistical modeling with Python, in: 9th Python in Sci-
ence Conference, 28 June–3 July 2010, Austin, TX, USA,
https://doi.org/10.25080/Majora-92bf1922-012, 2010.

Ventura, V., Paciorek, C. J., and Risbey, J. S.: Controlling the Pro-
portion of Falsely Rejected Hypotheses when Conducting Mul-
tiple Tests with Climatological Data, Journal of Climate, 17,
4343–4356, https://doi.org/10.1175/3199.1, 2004.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
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