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Abstract. Potential self-perpetuating dieback of the Amazon rain forest has been a topic of concern. The con-
cern is that initial deforestation could critically impair the forest’s water recycling capacities, further harming the
remaining forest through reduced annual precipitation. Many studies have focused on annual mean precipitation
changes, due to its widespread perception as a central control on the Amazon rain forest’s stability. However, the
impact of deforestation goes beyond changes in the annual mean precipitation. Yet, global coarse-resolution cli-
mate models are not well suited to investigate changes in short-duration and localized events due to their coarse
resolution. Here, we circumvent these issues by analyzing a full-deforestation scenario simulated by a global
storm-resolving model. We focus on changes in the tail of the hourly distribution of precipitation, temperature,
and wind. Hourly precipitation becomes more extreme in the absence of the forest than in an intact forest, with
an increased occurrence of both no rain and intense rainfall. These changes are driven by enhanced moisture
convergence that strengthens vertical velocity. On average, the near-surface temperature rises significantly by
about 3.84 °C, and the daily minimum temperature after deforestation becomes similar to the daily maximum
temperature before deforestation. Except for wet-bulb temperature, human heat stress indicators shift to more
severe levels, with implications for health and a significant reduction in work productivity. Finally, the mean
10 m wind speed intensifies by a factor of four, with the 99th percentile wind speed doubling. To summarize, our
findings, while based on an idealized case, provide a stark warning of the effects of continuing deforestation of
the Amazon.

1 Introduction

The Amazon is home to unparalleled biodiversity and a
major carbon sink, making its preservation vital. However,
more than 20% of the Amazon forest has already been
cleared, and 6 % has degraded, with further deforestation ex-
pected (RAISG, 2022). As forests shape the local energy bal-
ance, the water cycle, and the atmospheric dynamics (Bo-
nan, 2008), their removal will change environmental condi-
tions, potentially in a way that is unfavorable for forest re-
growth. Among environmental conditions, precipitation has
been a primary focus. Annual mean precipitation, the most
broadly used indicator, is indeed a useful metric for assess-

ing ecosystem structure. For instance, Malhi et al. (2009)
used annual precipitation and dry season intensity to classify
vegetation types and identify climatic thresholds for vege-
tation transitions. However, annual mean precipitation can
obscure important details about short-duration precipitation
events. In fact, extreme precipitation is often more influential
on ecosystem processes than mean conditions (Heisler-White
et al., 2009; Smith, 2011; Thompson et al., 2013). Beyond
ecological impacts, intense precipitation also poses signifi-
cant challenges to infrastructure and agriculture (Wang et al.,
2013; Gao et al., 2018; Guerreiro et al., 2024; Brown et al.,
2020; Fowler et al., 2021). Moreover, forest loss often entails
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elevated heat stress, and intense winds can damage the forest
and alter forest regrowth (Quine and Gardiner, 2007; Zhan
et al., 2017; Kotz et al., 2021). In our previous study, we
investigated the mean annual precipitation response to full
Amazon deforestation in a storm-resolving global climate
model (Yoon and Hohenegger, 2025). Unlike previous stud-
ies, we found that annual mean precipitation remains almost
unchanged under the deforestation scenario. These findings
contradict the classification of the Amazon rainforest as a
climate tipping element. However, the impacts of deforesta-
tion go well beyond changes in the annual mean. Thus, the
goal of this study is to investigate changes in extreme pre-
cipitation, temperature extremes, and gust winds following
complete Amazon deforestation using the same simulations
of Yoon and Hohenegger (2025).

Past studies using coarse-resolution global and regional
models, with parameterized convection, have found a re-
duction in mean precipitation following deforestation (No-
bre et al., 1991; Lejeune et al., 2015; Spracklen and Garcia-
Carreras, 2015; Llopart et al., 2018). To the best of our
knowledge, no study has so far investigated the impact of
full Amazon deforestation on precipitation extremes. Ex-
treme precipitation is generated by two essential factors
(Johns and Doswell, 1992; O’Gorman and Schneider, 2009;
Muller et al., 2011; Schumacher and Rasmussen, 2020): the
availability of atmospheric moisture (Trenberth et al., 2003;
Lenderink and Attema, 2015), supplied by evapotranspira-
tion and moisture convergence, and the strength of updrafts
(Trenberth et al., 2003; Emori and Brown, 2005; Brown et al.,
2020; Loriaux et al., 2017). Regarding the first factor, there
is strong agreement among previous studies that evapotran-
spiration uniformly decreases after complete deforestation,
leading to a reduction in mean precipitable water (Gedney
and Valdes, 2000; Medvigy et al., 2011; Hirota et al., 2011;
Pires and Costa, 2013). However, past studies inconsistently
reported both increases and decreases in mean moisture con-
vergence.

Concerning the second factor, strong updrafts, the amount
of convective available potential energy (CAPE) is often used
as a proxy for it. Some studies have shown that CAPE de-
creases after deforestation (Wang et al., 2009; Swann et al.,
2015; Lemes et al., 2023), although none of the studies fo-
cused on hourly precipitation. In addition to CAPE, the ver-
tical uplifts over the Amazon basin are predominantly ob-
served in conjunction with moisture convergence, as indi-
cated by observational data (Viscardi et al., 2024). Therefore,
moisture convergence constitutes a second proxy candidate
for the identification of enhanced updrafts and convection
(Crook and Moncrieff, 1988; Tiedtke, 1989; Schaefer and
Doswell 111, 1980; Davies et al., 2013; King et al., 2022).

Besides precipitation, forests interact with multiple envi-
ronmental variables in complex ways. Temperature is one
of them, particularly in tropical forests. Tropical species are
adapted to stable climate conditions within a narrow temper-
ature range (Janzen, 1967; Wright et al., 2009; Perez et al.,
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2016), making them particularly vulnerable not only to an
increase in mean temperature but also to greater variability.
There is a strong consensus that deforestation increases the
mean temperature due to biophysical changes. Although pas-
ture has a higher albedo than forest, which reduces net sur-
face radiation, deforestation shifts the energy partitioning to-
ward sensible heat at the cost of evapotranspiration (Perugini
et al., 2017; Duveiller et al., 2018; Butt et al., 2023). The
shift in Bowen ratio outweighs the reduction from increased
albedo, leading to higher sensible heat flux and higher near-
surface temperature. The reduced roughness length of the
pasture weakens turbulence heat transport, further contribut-
ing to near-surface heat accumulation (Baldocchi and Ma,
2013; Winckler et al., 2019). Some studies reported that
deforestation shifts the daily maximum distribution toward
higher values (Bottino et al., 2024) and the daily minimum
toward lower values, increasing overall variability (Voldoire
and Royer, 2004). To further quantify the effect of tempera-
ture changes, especially on humans, heat stress indicators can
be used, derived from meteorological variables (e.g., Mora-
bito et al., 2014; Spangler et al., 2022; Wang et al., 2009).
For instance, Alves de Oliveira et al. (2021) have reported
that complete deforestation can cause the same level of heat
stress as several degrees of global warming. Their investi-
gation was based on the wet-bulb globe temperature index,
which is used in military training, work safety, and outdoor
activities.

The wind is another representative cause of disturbance
after deforestation. Frequent damaging winds can prevent
a full regrowth of the forest, as young trees with shal-
low roots and fragile stems that regrow after deforestation
may be more vulnerable to stronger winds. Deforestation
is expected to increase surface winds by lowering rough-
ness length (Lawrence and Vandecar, 2015; Sampaio et al.,
2007; Spracklen and Garcia-Carreras, 2015; Lejeune et al.,
2015) and increasing near-surface wind due to enhanced land
and ocean temperature gradient (Good et al., 2008; Llopart
et al., 2018; Mu et al., 2023). Moreover, potentially stronger
downdrafts from convective storms may pose a further threat.
However, studies have focused on averaged features, not on
the distribution of changes in hourly wind speed, including
changes in downdraft, after deforestation.

Beyond the fact that only a handful of studies have inves-
tigated changes in short-duration precipitation, temperature,
and wind events after deforestation over the Amazon, the
models used were coarse resolution. Their coarse resolution
and their use of convective parameterizations make them un-
suitable to represent fast processes and small scales. There-
fore, we use the same simulations as Yoon and Hohenegger
(2025), who used a global storm-resolving model with a 5 km
horizontal resolution, and investigate changes in hourly rain-
fall, diurnal and seasonal temperature, hourly surface wind
speed, and heat stress after deforestation.
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2 Methods

We used the ICON-Sapphire simulation presented in Yoon
and Hohenegger (2025). The horizontal resolution is 5km
with a convective parameterization switched off, and a 75 km
model top with 90 height levels. The domain is global, and
simulations are run for 3 years. The consistent responses
across years demonstrate that the simulation period is suf-
ficient for our analysis. Moreover, the initial 11d spin-up
allows soil moisture to equilibrate over the Amazon region
in both CTL and DEF (see Fig. S1 in Yoon and Hohenegger
(2025)). Two simulations are conducted with and without the
Amazon forest, prescribing different biophysical parameters
in the land surface model (Table 1). The two simulations are
named CTL (without deforestation) and DEF (with complete
deforestation). The CTL simulation reproduces the observed
precipitation patterns and the seasonal migration of the rain-
belt extremely well (see Figs. S2 and S3 in Yoon and Ho-
henegger (2025)). Regarding hourly precipitation and com-
pared with the satellite-based IMERG dataset, ICON overes-
timates the frequency of hourly precipitation rates between
10 and 120 mm h~! with a frequency of occurrence of 0.76 %
versus 0.46 % in IMERG. Yet, ICON can capture the tail of
the precipitation distribution and reproduce observed precip-
itation rates up to 156mmh~!, and only misses very sel-
domly observed precipitation rates up to 182mmh~!. As a
comparison, it is well known that models with convective pa-
rameterizations strongly underestimate extreme precipitation
(Kendon et al., 2017; Prein et al., 2015). For the Amazon re-
gion, Paccini and Stevens (2023) found a clear underestima-
tion of daily precipitation rates larger than 20mmh~! in a
low-resolution version of ICON with parameterized convec-
tion (see their Fig. 2), which are much better represented in
the high-resolution ICON simulation. In terms of tempera-
ture, ICON exhibits a spatially consistent and uniform cold
bias over the Amazon compared to ERAS and two FluxNet
tower observations located in the region. This cold bias of
about 2K has been found in other configurations of the
ICON-Sapphire model (Hohenegger et al., 2023). As the bias
is spatially uniform and we are interested in the response to
deforestation, we do not expect a strong effect of this bias
on this response. However, it could mean that the absolute
values of the computed heat stress indices could be even
higher. Finally, near-surface wind speeds are slightly stronger
in CTL than in ERAS, with a mean root mean square dif-
ference of 1.68 ms~!. However, ERA5 has been reported to
underestimate the surface wind by 1 ms™! relative to tower
measurements over the Amazon region (Schmitt et al., 2023).
Hence, overall, we conclude that CTL satisfactorily repre-
sents the three main climate variables that we are interested
in looking at.

For the analysis presented here, precipitation, temperature,
and surface wind are hourly averaged, and we focus on the
Amazon basin (see black contour in Fig. 7a). The moisture
convergence is computed from the residuals of the moisture
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Table 1. The values for CTL are an average of the grid point values
from JSBACH over the Amazon, and the values for DEF are taken
from and justified in Yoon and Hohenegger (2025).

Parameters CTL — DEF
Albedo 0.12 — 0.18
Leaf Area Index 8.40 — 2.70
Vegetation fraction 0.92 — 0.85
Roughness length (m) 1.80 — 0.05
Root depth (m) 1.33 — 0.60
Forest fraction 0.86 — 0.00

balance equation, including the time tendency of total col-
umn water vapor (TCW, MoistureConvergence = P — E —
@). This is done because the direct calculation of mois-
ture convergence is too inaccurate with the available output
frequency. 3D instantaneous data are saved in 6-hourly inter-
vals.

For the analysis, Convective Available Potential Energy
(CAPE) and Convective Inhibition (CIN) were computed
based on outputs using the MetPy v1.3.1 Python package
(May et al., 2022). Parcel ascent was modeled with dry adi-
abatic lifting to the level of free convection and pseudo-
adiabatic moist ascent thereafter, following the approxima-
tions of Bolton (1980). CAPE and CIN are calculated at pres-
sure levels using hourly air temperature and dewpoint tem-
perature starting from the surface.

Daily temperature variability is quantified using day-to-
day temperature variation (DTDT) index (Karl et al., 1995),
defined as the mean absolute difference in daily mean tem-
perature between successive days (87 = T;4+1 — T;) within a
given period (Eq. 1 in Ge et al., 2022).

n—1

1
DTDT = —— Tiv1—T; 1
n_1;| i1 — T (1)

n: Total days

To diagnose the impact of deforestation on human discom-
fort due to changes in temperature and humidity, we use
seven heat stress indices as described by Schwingshackl
et al. (2021): apparent temperature (AT), NOAA heat in-
dex (HI), humidex (Hu), simplified wet-bulb globe temper-
ature (Twgg,), indoor wet-bulb globe temperature (Twgg),
wet-bulb temperature (Twg), universal thermal climate in-
dex (UTCI). These indices serve different purposes, leading
to a wide range of formulations, with no single index univer-
sally regarded as superior (Barnett et al., 2010; Burkart et al.,
2011; Schwingshackl et al., 2021). Therefore, to better esti-
mate the impact of deforestation on heat stress, it is required
to analyze the overall characteristics of these indices.

HI and Hu are primarily used as heat warning indices.
HI, widely applied for assessing heat stress based on tem-
perature and relative humidity, categorizes heat risk into
four levels: caution (27 °C, fatigue possible), extreme cau-
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tion (32 °C, heat stroke, cramps, or exhaustion possible), dan-
ger (41 °C, heat stroke, cramps, or exhaustion likely), and
extreme danger (54 °C, heat stroke, cramps, or exhaustion
highly likely). Hu, developed in Canada, combines tempera-
ture and vapor pressure to evaluate thermal discomfort, with
threshold indicating some discomfort (30 °C), great discom-
fort (40 °C), dangerous heat stroke (45 °C), and imminent
heat stroke (54 °C). Twg is a physiologically relevant heat
stress index that defines the adaptability limits to extreme
heat. It represents the lowest temperature an air parcel can
reach through evaporative cooling, incorporating tempera-
ture, humidity, and pressure. A threshold of 35°C is con-
sidered intolerable for humans and likely lethal. Twpg and
Twgg, are widely used for occupational health assessments,
as they account for heat stress levels at different work inten-
sities and rest/work ratios for acclimatized workers. Twgg is
a weighted combination of Twp and air temperature, while
Twag, provides a computationally efficient alternative of
Twag using a linear combination of temperature and vapor
pressure. Both indices have the same thresholds, where in-
creasing heat stress requires 25 %, 50 %, and 75 % rest per
hour for levels 1 (29 °C), 2 (30.5 °C), and 3 (32 °C), respec-
tively, while level 4 (37 °C) indicates conditions where no
work is permitted. UTCI and AT are indices designed to
assess thermal comfort. UTCI, a model-based index incor-
porating air temperature, radiant temperature, wind speed,
and humidity, is commonly used in studies evaluating heat-
related mortality. Here we use the polynomial approxima-
tion based on temperature and vapor pressure introduced by
Brode et al. (2012). Its thresholds classify conditions as mod-
erate (26 °C), strong (32 °C), very strong (38 °C), and ex-
treme heat stress (46 °C). AT, derived from temperature and
vapor pressure, is commonly used in epidemiological studies
to assess heat-related health risks. Its severity levels range
from slight discomfort (28 °C) to moderate (32 °C), strong
(35 °C), and extreme discomfort (40 °C). A detailed descrip-
tion of the heat stress levels associated with these indices
is summarized in Tables S1 and S2 of Schwingshackl et al.
(2021).

3 Results

3.1 Violent Rain

We start by investigating the intensity of hourly precipitation
after deforestation. Figure 1a shows the distribution of hourly
precipitation in the Amazon basin for both CTL and DEF.
Across all three simulation years, the probability of intense
hourly precipitation is consistently higher after deforestation,
as indicated by the lighter color lines (Fig. 1a). To better
visualize changes, the hourly precipitation rates are catego-
rized into five intensity levels based on the WMO classifica-
tion (2018): “No rain”, “light” rain (< 0-2.5 mm h1), “mod-
erate” rain (2.5-10mmh—1), “heavy” rain (10-50 mm h~1h,
and “violent” rain (more than 50 mmh~"). Figure 1b illus-
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trates the percentage changes in each category after defor-
estation. Importantly, the two extreme categories — no rain
and violent rain — exhibit a substantial relative increase in
frequency after deforestation. No rain almost triples, and
violent rain increases by a factor of 1.5. In contrast, light
to heavy rainfall remains largely stable, and because light
rainfall dominates the frequency of events, the overall mean
precipitation remains unchanged as found in Yoon and Ho-
henegger (2025).

We hypothesize that the changes in the tails of the precip-
itation distribution can be attributed to the fact that it is more
difficult to trigger convection in DEF, leading to more vio-
lent outbursts when convection does happen. To confirm this,
we first examine the mechanisms leading to increased vio-
lent rain: the availability of atmospheric moisture and strong
updrafts (Trenberth, 1999; O’Gorman and Schneider, 2009;
Allan and Soden, 2008; Lenderink and Van Meijgaard, 2008;
Liu et al., 2009; Muller et al., 2011). Figure 2 shows the in-
tensity of hourly violent precipitation, binned by Total Col-
umn Water vapor (TCW) and vertical velocity at 500 hPa
(ws00)- Not surprisingly, Figure 2 shows that the intensity
of violent rain is stronger with higher TCW and/or stronger
wsoo in both simulations. These links become more pro-
nounced after deforestation, and more violent rains are sim-
ulated in DEF together with higher wsgg and TCW (Fig. 2b).
However, the overall relation between precipitation inten-
sity, TCW and wsgg remains largely unchanged. More impor-
tantly, Figure 2c indicates that the increase in the frequency
of violent rain after deforestation comes from a shift towards
stronger wsgp, whereas TCW remains in the same range of
50 to 60 mm. Hence, the increase in violent rain is primar-
ily driven by stronger updrafts and not by enhanced TCW
(Fig. 2¢).

Having established that the increase in violent rainfall
is mainly due to stronger updrafts, we now investigate the
factors responsible for the updraft enhancement. Updraft
strength is related to local atmospheric instability and conver-
gence that forces ascent (Davies et al., 2013; Loriaux et al.,
2017). Early studies consider moisture convergence as a dy-
namic variable determined by the circulation (Dai and Tren-
berth, 2004; Back and Bretherton, 2009). Although moisture
convergence mixes the TCW signal, we use it as a proxy for
convergence, given that TCW remains unaffected for violent
rains after deforestation (Fig. 2c).

First, atmospheric instability is assessed using Convective
Available Potential Energy (CAPE). We calculate CAPE one
hour prior to the violent rain events in order to relate it to
the prerequisites for strong updrafts (Figs. 3). The probabil-
ity distribution of CAPE values shifts toward lower values
after deforestation. The 99th percentile decreases from 3148
to 2138Jkg~! (Fig. 3a), and mean CAPE values decrease
from 1950 to 1058 Jkg~!. This reduction suggests that the
increase in updraft strength is not driven by an increase in
local atmospheric instability, as measured by CAPE. Similar
results are obtained when using a longer elapsed time of 2 or
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Figure 1. Distribution of hourly precipitation [mm h~1] over the Amazon basin before and after deforestation. (a) The logarithmic probability
density function of hourly precipitation rates across all Amazonian grid points. Dark green and dark magenta for CTL and DEF, respectively,
using all three years (2020-2022), lighter colors for each year separately. (b) Percentage change (written in numbers, %) in frequency for

different intensity categories.
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Figure 2. The mean intensity of hourly precipitation [mmh™!] only in violent events, averaged within each bin (shaded) ordered by Total
Column Water (TCW) and vertical velocity at 500 hPa (w5qg) for (a) CTL and (b) DEF. Dashed contours represent the frequency of TCW
and wsqq occurrences, with contour levels at 100, 500, 1000, 1500, and 2000; the innermost contour corresponds to the highest frequency.
(c) Shading shows the difference in frequency (DEF minus CTL) for TCW and w5 within each bin. Dashed (CTL) and solid (DEF) lines
indicate the frequency distributions already shown in (a) and (b), overlaid for comparison.

3 h between CAPE and the violent rain events, but we prefer
1h as the most conservative representation of the pre-storm
environment, and given the fast development of convective
cells. To understand why CAPE decreases under deforested
conditions, we examine its dependence on near-surface tem-
perature and humidity, as CAPE is directly influenced by
both factors (Fig. 3b—c). We take both values from the lowest
atmospheric layer to calculate CAPE. While higher temper-
atures generally increase CAPE, this effect is restricted by
the availability of atmospheric moisture. Before deforesta-
tion, the highest occurrence of near-surface temperature and
humidity is within 24-26 °C and 16-19 gkg~!, respectively,
where CAPE values range from 1500 to 3000Jkg~!. After
deforestation, this distribution shifts in the range of 27-30 °C
and below 15 gkg™!, leading to mean CAPE values around
1000 Jkg~!. The increase in drier near-surface conditions is
a direct consequence of the decrease in evapotranspiration
following deforestation, whereas the reduction in CAPE fol-
lows from the raised lifting condensation level and level of
free convection. In line with our findings, Abramian et al.
(2023) also indicated that CAPE is not a good predictor of
the strength of updrafts in their study of squall lines. Hence,
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increased instability cannot explain the stronger updrafts ob-
served after deforestation.

We now attribute the increase in updraft strength to en-
hanced moisture convergence. How does moisture conver-
gence change after deforestation, and how does it relate to the
occurrence of violent rain events? Figure 4a shows the proba-
bility distribution function of moisture convergence strength
one hour before violent precipitation in both CTL and DEF.
The tails of the convergence distribution are heavier after
deforestation, aligning with the simulated increase in vio-
lent precipitation. Now, to answer whether violent rain oc-
curs preferentially in regions with stronger moisture conver-
gence, we examine the spatial patterns of these two variables,
separately for dry (July—September) and wet (December—
February) seasons, given the distinct seasonal circulation pat-
terns in the Amazon region (Marengo, 1992; Leite-Filho
et al., 2020; Reboita et al., 2019; Yoon and Hohenegger,
2025). Figures 4b and c depict regions of stronger moisture
convergence in the DEF simulation than in CTL (blue con-
tours in Fig. 4b, c). The frequency change in violent rain is
defined as the difference in the number of violent rain occur-
rences between DEF and CTL for each grid point (shading

Earth Syst. Dynam., 17, 167-179, 2026
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Figure 3. CAPE [J kgfl] one hour before violent precipitation over the Amazon. (a) The logarithmic probability density function of CAPE
is represented with the mean (solid vertical lines) and the 99th percentile (dashed vertical lines). The PDF is derived from all grid cells and all
time steps. CTL is in dark green, and DEF is in dark magenta. CAPE intensity one hour before intense precipitation, binned by near-surface
temperature and near-surface specific humidity for (b) CTL and (c) DEF. Colors indicate the average CAPE in each bin. Dashed lines show
the frequency of near-surface temperature and specific humidity at levels 100, 500, 1000, 1500, and 2000 times (from white to black). Panel
(d) shows the change in the frequency of near-surface temperature and humidity in shading. Dashed (CTL) and solid (DEF) lines indicate

the frequency distribution (i.e., the same lines as in b and c).

in Fig. 4b, c¢). Notably, regions with enhanced convergence
largely overlap with those experiencing more violent rains,
supporting the hypothesis that enhanced convergence leads
to stronger updrafts and, consequently, more violent pre-
cipitation. These results are similar to an observation-based
study by Davies et al. (2013), which showed a strong corre-
lation between mechanical updraft and violent precipitation
due to moisture convergence rather than CAPE in their study
of convective precipitation over the tropical region at Dar-
win, Australia. Additionally, given that the spatial pattern of
stronger moisture convergence aligns with the location of the
rainbelt in the corresponding season, violent precipitation ap-
pears to be more closely linked to large-scale moisture con-
vergence.

While our results suggest that violent rains can be at-
tributed to increased updrafts through convergence, one
might wonder why we see more no-rain events. Along-
side the decrease in CAPE, Convective Inhibition (CIN) in-
creases, with the mean value rising from 27 to 111Jkg™!
(Fig. 5a). The environment is more inhibited for convec-
tion, and this explains why more no-rain events appear. After
all, the environment, in general, becomes less favorable to
convect thermodynamically, requiring a stronger dynamical
driver to precipitate.

3.2 Heat Stress

The mean 2 m temperature increases by 3.84 °C in the annual
mean averaged over the Amazon region. Looking at the diur-
nal cycle (Fig. 6a), we can see warm temperatures at all times
and an increased diurnal temperature range. The nighttime
minimum temperature after deforestation is as large as the
daytime maximum temperatures before deforestation. The
temperature changes are significant in the sense that the dif-
ference between DEF and CTL is larger than the interannual
variability in temperature in CTL. The temperature distribu-
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tion of daily mean, daily minimum, and maximum constantly
shifts to higher values after deforestation (Fig. 6b).

To understand the temperature changes, we analyze the
surface energy budget. The total net surface shortwave ra-
diation increases due to an increase in downwelling short-
wave radiation by 30.93 W m~2, which results from reduced
overall cloud cover in DEF. However, the higher albedo
partly offsets this increase, reducing it by 16.48 Wm™2.
On the other hand, surface energy loss by longwave ra-
diation increases from 29.25 to 61.84 Wm™2 due to both
enhanced upwelling longwave radiation by warmer surface
temperature and reduced downwelling longwave radiation
at the surface. Although the combined effects of shortwave
and longwave radiation lead to a net surface radiation de-
crease of 18.14 Wm™2, the redistribution of energy favors
sensible heat flux (+38.21 Wm~2) over latent heat flux
(—59.37 Wm™2), resulting in higher 2 m mean temperature.
This also explains the larger daytime temperature. At night,
the temperature in DEF is still higher than the temperature
in CTL. This occurs because daytime heating sets a warmer
initial condition at the start of nighttime cooling. Although
nighttime surface longwave cooling is stronger in DEF, the
nighttime period is too short for radiative cooling in DEF to
fully offset the temperature difference with CTL. As a result,
before DEF can cool to the same extent as CTL, the warm-
ing resumes at sunrise, maintaining a consistently higher 2 m
temperature throughout the diurnal cycle. This is consistent
with studies that have shown that in the tropical region, open
lands tend to be still warmer than forests at night, unlike in
boreal regions (Schultz et al., 2017).

We further examine day-to-day variability to understand
how temperature fluctuates between days. We use the day-
to-day temperature variation (DTDT), which measures the
absolute difference in daily mean temperature between con-
secutive days within a given period (see Methods). Follow-
ing deforestation, the mean DTDT increases across the Ama-
zon by, on average, 0.4 °C (Fig. 7a), indicating higher day-to-
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Figure 4. (a) Logarithmic probability density function of moisture convergence one hour before violent precipitation events over the Amazon,
shown for CTL (dark green) and DEF (dark magenta). (b, ¢) Differences in the frequency of violent precipitation events between DEF and
CTL (DEF minus CTL) at each grid point (shading). The area with a positive anomaly of convergence is defined as the grid points where
moisture convergence exceeds the same threshold, 90th percentile of CTL values, and shows a positive anomaly in DEF (blue contour lines)
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Figure 5. Same as Fig. 3 (a—c) but for CIN [Jkg~1].

day temperature variability in the deforested case. In Fig. 7b,
we look at the full distribution of daily §T between succes-
sive days (T;+1 — T;), not just the absolute value between
consecutive days (Fig. 7b). The distribution broadens, both
on the positive and negative sides. The increase is slightly
stronger on the positive side. We find a fourfold increase in
the probability of having between —3 and —1 °C changes in
temperature between days and an eightfold increase in the
probability of having between 1 and 3 °C changes between
days. Together with the documented increase in the diurnal
temperature cycle and day-to-day variability, seasonality also
increases after deforestation: the range between the yearly
maximum and minimum changes from 11.98 to 12.27 °C.
Given these changes, we assess their impact on human
thermal stress using seven heat stress indices (see Methods
for index explanation). We calculate indices from the full
spatio-temporally pooled distribution and show the distri-
bution through the box and whisker plot (Fig. 8). Each in-
dex has four heat stress thresholds, represented by color-
shading in Fig. 8, except Twp, which has a single thresh-
old. Although each index categorizes thermal stress levels
differently based on its intended application, we standard-
ized the descriptions for AT, HI, Hu, and UTCI as fol-
lows: “levell: slight discomfort”, “level2: moderate discom-
fort”, “level3: strong discomfort”, and “level4: extreme dis-
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comfort”. For Twgpg, and Twgpg, which are used in oc-
cupational health assessments, the levels are defined as
“levell: 25 %rest/hour”, “level2: 50 %rest/hour”, “level3:
75 %rest/hour”, and “leveld: 100 %rest/hour”. All indices,
except Twg, consistently indicate a shift toward higher stress
levels (Fig. 8). The median AT increases from slight discom-
fort to strong discomfort. Similarly, the median HI, Hu, and
UTCIT shift from moderate discomfort to strong discomfort.
The Twgrg, suggests that required rest periods increase from
50 %rest/hour to 75 %rest/hour, indicating a substantial de-
cline in work capacity. Moreover, the number of stressed
days increases. In the DEF, 70 % of days exceed level 2
across all indices, compared to only 10 %—-30 % in CTL. No-
tably, for level 3, Twgg, shows a sharp increase, with 63 %
of days exceeding this threshold in DEF compared to just
13.2% in CTL. In contrast, only Twp exhibits a slight re-
duction after deforestation, as the decrease in humidity off-
sets the temperature increase. To further examine the role of
temperature and humidity in 7wp compared to other heat
stress indices, we compared heat stress indices by (i) fix-
ing humidity at the CTL values while allowing temperature
to change due to deforestation, and (ii) fixing temperature
at the CTL values while allowing humidity to change. The
results show that the strongly increased temperature after de-
forestation leads to high heat stress in all indices, whereas the
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Figure 6. Changes in 2 m temperature [K] over the Amazon region after deforestation. (a) The mean diurnal cycle of 2 m temperature in
CTL (dark green) and DEF (dark magenta) with the vertical black lines representing internal variability. The internal variability is computed
from the standard deviations of 2 m temperature from a 30 year CTL simulation conducted with a 10km grid spacing. (b) Temperature
distributions of the daily mean (thick solid), daily maximum (thin solid), and daily minimum (thin dashed) temperatures for every grid point
in the Amazon.
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Figure 7. (a) Differences in day-to-day temperature variability (DTDT) over the Amazon basin, assessed over the 3-year simulation period.
The box-and-whisker plot shows the interquartile range (25th—75th percentiles) as the box, with the horizontal line inside the box indicating
the mean. The whiskers extend to the 10th and 90th percentiles. (b) The probability density function of §7 in CTL (dark green) and DEF
(dark magenta) is shown on the left y-axis. Percentage changes between CTL and DEF are represented by the black dashed line on the right

y-axis. The grey range is for temperature changes between (—3, —1K) to (1, 3 K).

decreased humidity after deforestation reduces heat stress.
However, Twsp is the only one where the humidity reduction
(—1.88 °C) manages to compensate for the increase in tem-
perature (+1.64 °C). Hence, the insignificant change in Twp
reflects its high sensitivity to humidity and highlights the im-
portance of using multiple indices to more comprehensively
assess heat stress changes. Also, we note that indoor Twgg
increases but does not yet show any days above level 2 af-
ter deforestation, which is not surprising as it is a weighted
mean of Twp and near-surface air temperature.

3.3 Damaging Winds

Lastly, we investigate how near-surface wind changes after
deforestation. The 10 m wind speed increases from a mean
value of 0.93 to 3.12ms™~!, and in particular the 99th per-
centile rises from 3.36 to 8.45ms~! (shading in Fig. 9). Pre-
vious studies have shown that the increase in mean wind
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speed is a direct result of the decrease in roughness length
(Sud et al., 1988) and an intensification of the large-scale cir-
culation after deforestation (Yoon and Hohenegger, 2025).
However, beyond that, the increase in hourly precipitation,
identified in Sect. 3.1, opens up the possibility of having ad-
ditional strong winds due to the downdrafts associated with
violent rain (Garstang et al., 1998; Windmiller et al., 2023).

We aim to quantify the additional increase in 10 m wind
speeds after deforestation that is due to downdrafts associ-
ated with violent rain, separating this effect from changes
caused by surface roughness and background circulation.
To achieve this, we use the Alpert-Stein factor separation
method (Stein and Alpert, 1993). We cannot distinguish be-
tween the effect of surface roughness and of background
circulation, as we do not have simulations with unchanged
roughness at hand. We refer to this factor as R/C and to
the downdraft effect as D. We categorize cases into “no-light
rain” (including no rain and light rain) and “violent rain” in
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Table 2. The categories of simulations and rain types to disentangle the impact of Roughness length/background Circulation (R/C), Down-
draft (D), and its synergy impact (R/C and D) on windspeed in response to deforestation compared to CTL. The impact of each component
is represented with f(0): CTL, f(R/C): roughness length/background circulation, f(D): downdraft, and f(R/C and D): synergy between

R/C and D. Values are in units of m s~1. O: included/X: not included

Simulation  Rain type R/C D R/Cand D Abbrev. value (ms~1)
CTL No-Light rain X X X [ 0.92
DEF No-Light rain ¢] X X fO)+ f(R/C) 3.11
CTL Violent rain X (0] X fO)+ f(D) 1.40
DEF Violent rain (0] (0] (0] fO)+ f(R/C)+ f(D)+ f(R/C,D) 4.56
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Figure 8. Box-and-whisker plots of heat stress indices (HSI),
showing the mean, interquartile range (25th—75th percentiles), and
whiskers (10th-90th percentiles): AT, HI, Hu, Twgg,, TWBG> TWB,
UTCI. The background colors show the range of discomfort for
each level following Table S1 from Schwingshackl et al. (2021).
Yellow shows the range between levels 1 and 2, orange is between
2 and 3, red shows between 3 and 4, and grey is above level 4. De-
scriptions of indices and levels are given in the Method section.
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Figure 9. Normalized probability density function of 10 m wind
speed. Hourly winds from all cases are shaded, with solid lines rep-
resenting no-light rain cases and dashed lines representing violent
rain cases. Wind speeds are collected from all grid cells within the
Amazon basin at any time when no-light/violent rain occurs, and
then pooled to construct the probability density function.

both the CTL and DEF simulations (Table 2). The mean wind
during no-light rain in CTL is the baseline case. We then as-
sume that wind changes between no-light rain and violent
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rain in CTL are due to D. Wind changes in the no-light rain
events between CTL and DEF primarily reflect the influence
of R/C, whereas wind changes in violent rain events in DEF
compared to no-light rain in CTL entail the three compo-
nents: R/C, D, and synergy between R/C and D.

In CTL, the mean wind speed during no-light rain is
0.92ms~! (see value in Table 2). For the violent rain, it
is 1.40 ms~!. This is an increase of 0.48 ms—!, which we
attribute to the effect of D alone. By contrast, the mean
wind speed for no-light rain in DEF is 3.11ms~!, giv-
ing an increase of 2.19ms™!. Hence, the effect of R/C
is much larger (f(R/C)=2.19ms™ ') compared with D
(f(D)=0.48m s, showing that R/C dominates the re-
sponse. In DEF, the mean wind speed during violent rain
rises to 4.56ms~!. Compared to the no-light rain in CTL,
this is an increase of 3.64 ms~! (4.56-0.92). Given the con-
tributions of 2.19ms™! for R/C and of 0.48ms~! for D,
their synergy account for 0.97 ms~!. Expressed in percent-
age, this gives a contribution of 60% R/C, 13% D, and
27 % from their synergy. This indicates that deforestation
amplifies wind speed not only by modifying surface rough-
ness and circulation but also by strengthening the contribu-
tion of downdrafts during violent rain events. Note that the
time resolution of outputs, hourly average value, may fail to
capture downdrafts, which last for less than 30 min (Wind-
miller et al., 2023).

4 Conclusions

In this study, we investigated the effect of Amazon deforesta-
tion on short-duration events by looking at changes in hourly
precipitation, temperature, and winds. We are particularly in-
terested in the changes in the tails of the distributions, given
the threats they pose. To do so, we use global simulations
of Amazon deforestation conducted with a grid spacing of
5 km and explicit convection. In contrast to coarse-resolution
simulations, such simulations are better suited to investigate
changes in extremes.
The main findings are:

— From the five categories of rain events, major changes
are only in the tails of the distributions: Violent rain in-
creases by 54 % and no-rain by 174 %.
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— daily minimum and maximum temperatures increase by
2.7 and 5.4 °C. Day-to-day temperature becomes more
variable, and all heat stress indicators, except for the
wet-bulb temperature, point toward higher heat stress.

— the 99th percentile wind values more than doubled.

The increase in violent rains is due to stronger mois-
ture convergence, not stronger CAPE and not stronger TCW,
while the increase in no-rain results from increased CIN. The
strong warming directly reflects the decrease in evapotranspi-
ration following deforestation, whereas the increase in Twp
is mitigated by a strong decrease in near-surface humidity.
Finally, we attributed the increase in mean wind speed dur-
ing violent rain events to changes in roughness length and
circulation (60 %), downdraft intensification (13 %), and syn-
ergistic interactions among the two factors (27 %). The docu-
mented changes would have impacts on human and forest re-
growth. Increased diurnal and seasonal temperature variabil-
ity will exacerbate the vulnerability of tropical trees, slow-
ing their regeneration. Likewise, the elevated surface wind
speeds are expected to create unfavorable conditions for for-
est regrowth and agriculture. In conclusion, we show that
even if annual mean precipitation may remain stable after
deforestation, the tail of temperature, precipitation, and wind
distribution broadens, making conditions more unfavorable.
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