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Abstract. Ocean heat content (OHC) is a depth-integrated physical oceanographic variable used to precisely
measure ocean warming. Because of the limitations associated with in situ conductivity, temperature, and depth
(CTD) data as well as ocean reanalysis system products, satellite-based approaches have gained importance in
estimating the daily to decadal variability of OHC over the vast oceanic region. Efforts to minimize the biases
in satellite-based OHC estimates are needed to realize the actual response of the ocean to the brunt of climate
change. In the current study, an attempt has been made to better implement the satellite-based ocean thermal
expansion method to estimate OHC at 17 depth extents ranging from the surface to 700 m. To achieve this
objective, artificial neural network (ANN) models were developed to derive thermosteric sea level (TSL) from
a given dataset of sea surface temperature, sea surface salinity, geographical coordinates, and climatological
TSL. The model-derived TSL data were further used to estimate OHC changes based on the thermal expansion
efficiency of heat. Statistical analysis showed high correlation coefficients and low errors in the validation of
model-derived TSL and OHC for the 700 m modeling depth (N 388 469,R 0.9926 and 0.9922, RMSE 1.16 m and
1.56 GJ m−2, MBE −0.19 m and −0.24 GJ m−2, MBPE −0.46 % and −0.03 %, MAE 0.76 m and 1.03 GJ m−2,
and MAPE 2.34 % and 0.13 %) and nearly similar results at the remaining modeling depths. These results suggest
that the proposed ANN models are capable of generating satellite-based daily OHC maps by covering both
shallower and deeper oceanic regions of varying bathymetry levels (≥ 20 m). In addition, the first-ever attempt
to estimate the ocean thermal expansion component (i.e., TSL) from satellite data was successful, and the model-
derived TSL can be used to obtain high-end sea level rise products in the global ocean.

1 Introduction

Owing to the vast spatial coverage and high heat capacity,
oceans balance the planet’s temperatures by absorbing 89 %
of the excess atmospheric heat caused by the greenhouse
effect and global warming (Abraham et al., 2013; IPCC,
2014; Roemmich et al., 2015; Riser et al., 2016; Trenberth
et al., 2016; Meyssignac et al., 2019; Von Schuckmann et al.,
2023). A precise understanding of the depth-wise penetration
of this heat and its accumulation in the upper-oceanic lay-
ers is of great importance to the scientific community (Liang
et al., 2015; Baxter, 2016; IPCC, 2022). Ocean heat content
(OHC), a depth-integrated physical oceanographic variable
that refers to the amount of heat energy accumulated between

any two depths, has gained attention in various studies of
the Earth’s energy imbalance (Von Schuckmann et al., 2016;
Trenberth et al., 2016; Cheng et al., 2017; Meyssignac et al.,
2019; Cheng et al., 2022). Thus, accurate estimation of OHC
changes at various depth extents is vital and is the motivation
of the current study.

To obtain a complete picture of OHC changes at different
depths, direct measurements of in situ conductivity, temper-
ature, and depth (CTD) profiles are necessary. These in situ
measurements of the ocean properties are limited in terms
of depth and spatial coverage, leading to the biased global
reconstruction of OHC estimates owing to sparse measure-
ment data and spatial coverage deficiencies (Jagadeesh et al.,
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2015; Meyssignac et al., 2019; Marti et al., 2022). How-
ever, in situ CTD profile measurements have been used to
develop and validate different OHC models (Momin et al.,
2011; Jagadeesh et al., 2015; Su et al., 2020; Vijay Prakash
and Shanmugam, 2022). On the other hand, synthetic CTD
profile data generated by ocean reanalysis systems (ORAs)
have been used to study OHC variability on spatial and tem-
poral scales (Balmaseda et al., 2015; Palmer et al., 2017).
More recently, satellite-based methods have become crucial
to overcome the limitations associated with in situ CTD data
and ORA products, to ensure the OHC trend at a global scale,
and to understand the evolution of the Earth’s climate system
(Meyssignac et al., 2019; Vijay Prakash and Shanmugam,
2022).

The existing satellite-based OHC algorithms can be
broadly grouped into three approaches based on the prin-
ciples and parameterizations employed: (i) internal tide
oceanic tomography (ITOT), (ii) ocean net surface heat
fluxes, and (iii) ocean thermal expansion coefficient. Apart
from these approaches, research is exploring ways to make
use of tidal magnetic satellite observations (Irrgang et al.,
2019), electrical conductance (Trossman and Tyler, 2019),
and atmospheric oxygen and carbon dioxide concentrations
(Resplandy et al., 2018) to infer OHC changes. The ITOT
technique involves correlating satellite-altimeter-derived in-
ternal tide phase changes with ocean warming to estimate
OHC variability. This technique is still at the proof-of-
concept level, and associated challenges remain to be ad-
dressed (Zhao, 2016, 2017; Meyssignac et al., 2019). OHC
estimation through ocean net surface heat fluxes employs
several assumptions and approximations in deriving the input
parameters to compute radiative and turbulent heat fluxes,
which in turn leads to higher uncertainty in global OHC
changes (Wild et al., 2015; L’Ecuyer et al., 2015; Meyssignac
et al., 2019).

On the other hand, the ocean thermal expansion method
is a promising technique for the estimation of OHC by con-
sidering the thermosteric sea level (TSL) and expansion effi-
ciency of heat (EEH). Numerous satellite-based OHC mod-
els have been developed based on the sea surface height
anomaly from altimeters, water mass change equivalent sea
level anomaly from the Gravity Recovery and Climate Ex-
periment mission (GRACE), sea surface temperature from
the various radiometers on board satellites, and wind speed
and stress from scatterometers and numerical weather mod-
els. Pioneering works by White and Tai (1995), Chambers et
al. (1997), Polito et al. (2000), and Sato et al. (2000) have at-
tempted to implement the ocean thermal expansion method
based on a relationship between OHC and satellite-altimeter-
based sea surface height anomaly (SSHA). It should be men-
tioned that regardless of the source, the volume of seawa-
ter changes when it is subjected to heating and cooling,
and it is eventually reflected in sea surface topography. The
SSHA data recorded by satellite altimeters comprise the sea
surface topography changes due to tides, atmospheric pres-

sure, salinity (haline), and barotropic flows along with the
thermal effects. The SSHA changes due to tides and atmo-
spheric pressure can be corrected, but the effects of salinity
and barotropic flows remain unresolved with the OHC esti-
mates produced by White and Tai (1995) and Chambers et
al. (1997). Sato et al. (2000) have introduced a haline cor-
rection factor as the integral product of the haline contrac-
tion coefficient and salinity anomaly from in situ CTD pro-
file data. Owing to the limitations associated with in situ
data, the in situ-based haline correction cannot be applied
to satellite-altimeter-based SSHA data while correlating with
space- and time-varying OHC data. Jayne et al. (2003) have
proposed the Alt-GRACE approach to resolve the effect of
barotropic flows in sea surface topography by subtracting the
satellite-gravimetry-derived water mass change component
from SSHA data. Though the Alt-GRACE approach has im-
proved the accuracy of satellite-based OHC estimates com-
pared to White and Tai (1995), Chambers et al. (1997), Polito
et al. (2000), and Sato et al. (2000), the issues associated with
the haline effects and other approximations on the ocean ther-
mal expansion coefficient and seawater density data have led
to significant uncertainties in satellite-based OHC estimates.

With the advancement of artificial intelligence, several re-
searchers have attempted to model OHC by directly relat-
ing it to the satellite-based parameters of relevance by us-
ing deep-learning regression techniques (Jagadeesh and Ali,
2006; Momin et al., 2011; Chacko et al., 2015; Jagadeesh
et al., 2015; Su et al., 2020, 2021; Marti et al., 2022; Ly-
man and Johnson, 2023). These deep-learning models have
oversimplified the OHC problem by neglecting the effects of
salinity and barotropic flows. In addition, no previous work
has accounted for the space- and time-varying nature of the
ocean thermal expansion coefficient and seawater density in
OHC computations. The other common drawbacks of exist-
ing works are discussed in Sect. 4.3. Consequently, there is a
need to develop a satellite-based model to accurately imple-
ment the ocean thermal expansion method to estimate OHC
by resolving all the issues associated with salinity variation,
barotropic flows, ocean thermal expansion, seawater density,
and the choice of temperature and its scale.

Given the above background, we have made a major at-
tempt to develop and implement satellite-based ocean ther-
mal expansion models for estimating OHC changes at var-
ious depth extents (such as 20, 30, 40, 50, 100, 150, 200,
250, 300, 350, 400, 450, 500, 550, 600, 650, and 700 m). It
enables the research community to generate satellite-based
OHC maps of varying bathymetry levels (≥ 20 m) by cover-
ing both shallower and deeper oceanic regions. For this, ar-
tificial neural network (ANN) models were developed to es-
timate TSL for the given sea surface temperature (SST), sea
surface salinity (SSS), geographical coordinates, and clima-
tological TSL. The model-derived TSL estimates were then
used to model OHC changes by accounting for the expansion
efficiency of heat. The proposed models are capable of esti-
mating TSL and OHC at multiple depth extents accurately.
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The robustness of the new models was tested by comparison
of model-derived TSL and OHC with in situ data.

2 Data

2.1 In situ data for model development and in situ-based
validation

For this study, in situ CTD profile data (collected by Argo
floats) were obtained from the World Ocean Database 2018
(WOD) at the NOAA National Centers for Environmen-
tal Information data archive for the period of 2005–2020
(Boyer et al., 2018a). WOD18 has been extensively used
by the research community for various ocean applications
(Levitus et al., 2009; Momin et al., 2011; Levitus et al.,
2012; Cheng et al., 2014; Roemmich et al., 2015; Jagadeesh
et al., 2015; Su et al., 2020). WOD18 comprises oceano-
graphic data of=n diverse biogeochemical parameters that
have been collected by various institutions, agencies, indi-
vidual researchers, and data recovery initiatives. The quality-
controlled CTD profile data (accepted_value flag) of stan-
dard depth levels recommended by the International Associ-
ation of Physical Oceanography in 1936 were considered in
this study to compute the TSLd and OHCd parameters and
to obtain the SST and SSS data. The standard depth levels
considered for deriving the TSL and OHC are given as 20,
30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
600, 650, and 700 m. The in situ TSLd and OHCd parameters
were computed by applying the integration formulae (Eqs. 1
and 2) to the CTD profile data for the depth range from
the ocean surface to the respective standard depth (d), and
the corresponding SST and SSS values were extracted. Sim-
ilarly, the climatological parameters such as TSLclim,d and
OHCclim,d were computed from the monthly climatological
temperature and salinity data of 41 vertical levels obtained
from the World Ocean Atlas 2018 (WOA) (Boyer et al.,
2018b). The theoretical considerations for computing OHC
change at a particular depth extent can be found in Vijay
Prakash and Shanmugam (2022) (Vijay Prakash and Shan-
mugam, 2022), and the same considerations were adopted in
this study. The Gibbs-SeaWater (GSW) Oceanographic Tool-
box of TEOS-10 (IOC et al., 2010) was used to compute the
in situ-based OHC and TSL.

OHCd =
∫ d

0
ρCP2dz (1)

TSLd =
∫ d

0
α2dz (2)

Here, OHCd refers to the heat energy accumulated in an
oceanic layer of a depth extent ranging from the surface to
a stipulated depth (d) and is given in units of joules per
unit area (J m−2). Similarly, TSLd (in m) refers to the ther-
mosteric sea level integrated from the surface to a stipulated
depth (d). And 2 is the conservative temperature in Kelvin

(derived from in situ temperature, absolute salinity, and pres-
sure), ρ is the seawater density in kilograms per cubic meter
(kg m−3) (derived from the conservative temperature, abso-
lute salinity, and pressure), CP is the specific heat capacity
(3991.87 J kg−1 K−1), and α is the ocean thermal expansion
coefficient (K−1; derived from the conservative temperature,
absolute salinity, and pressure).

Python programming was used to prepare the individual
databases for all the standard depth levels by extracting CTD
profile data from the WOD18 and WOA18 NetCDF files with
the help of NetCDF4, NumPy, Pandas, and GSW libraries.
Each database (in situ OHC, in situ TSL, in situ SST, in situ
SSS, climatological OHC, climatological TSL, and WOA18
geographical coordinates) was divided into two datasets, one
for the model development spanning 2005–2016 and the
other for validating the model spanning 2017–2020, by en-
suring a well distribution in spatiotemporal scales over the
global open ocean. The spatial distribution of data points
used to model TSL700 and OHC700 is shown in Fig. A1.
The in situ CTD profiles of depth coverage shallower than
700 m are also included in this process of deriving the TSL
and OHC of remaining depth extents. Indeed, the numbers
of CTD profiles and their distribution in global oceans are
higher than the CTD profile density of the modeling depth of
700 m.

2.2 Satellite-based validation

For the validation period of 2017–2020, the NOAA Ad-
vanced Very High-Resolution Radiometer (AVHRR) Opti-
mum Interpolation Sea Surface Temperature product (OISST
v2.1) was used for daily SST data at 0.25° spatial reso-
lution (Huang et al., 2021). Daily SSS data at the same
spatial resolution were obtained from the ORAS5 ocean
reanalysis system of the European Centre for Medium-
Range Weather Forecasts at the CMEMS portal (Product
ID: GLOBAL_REANALYSIS_PHY_001_031) (Zuo et al.,
2017). The NetCDF4 and NumPy Python libraries were used
to read and resample satellite data to the WOA18 grid and
to collocate with the corresponding Argo in situ data points.
The accuracy of the satellite-based SST and ORA-based SSS
was verified by comparing with Argo-measured SST and
SSS data (N = 244722). The observed R, RMSE, MBE,
and MAE values in SST and SSS validations are 0.99 and
0.99, 0.51 °C and 0.26 PSU, −0.05 °C and −0.006 PSU, and
0.33 °C and 0.12 PSU, respectively. High correlation coeffi-
cients and low errors indicate minimal deviation of satellite-
based data from the actual (in situ) data and ensure the relia-
bility of satellite data in accurately representing the physical
oceanographic conditions.
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3 Methodology

3.1 Theoretical formulations

Ocean thermal expansion is the best proxy to model the heat
content accumulated in an oceanic layer. Unlike fresh wa-
ter, seawater expands when it warms and contracts when it
cools to temperatures above its freezing point. The volumet-
ric expansion of seawater is non-isotropic in nature due to the
differences in the degree of constraint in different directions.
In a vertical direction, atmospheric pressure exerts a normal
force on the seawater parcel at the surface. The magnitude of
this normal and vertical force is less compared to the hori-
zontal forces exerted by physical barriers such as continental
boundaries and geographic features on the ocean floor. It al-
lows the ocean thermal expansion of seawater in the vertical
direction rather than the horizontal direction, as the seawa-
ter is less constrained in the vertical direction compared to
the horizontal direction. The amount of change in seawater
volume in response to the net warming or cooling depends
on the absolute conservative temperature and ocean thermal
expansion coefficient (Eq. 2). Following are the GSW func-
tions (Eqs. 3–5) (IOC et al., 2010) involved in the calculation
of TSL (Eq. 2) for the given set of measured temperature (T ),
practical salinity (SP), pressure (P ), longitude (x), and lati-
tude (y).

Absolute salinity (SA)= gswSA_from_SP(SPPxy) (3)
2= gswCT_from_T (SATP) (4)
α = gswAlpha(SA2P ) (5)

Hence, an attempt has been made in this study to model TSL
as a function of SST, SSS, and geographical coordinates. The
existing correlations between the proposed input parameters
and the targeted output parameter were explored by employ-
ing in situ-based data used in the model development process
(Fig. 1).

It is observed that SST has an almost one-to-one correla-
tion with TSL at shallower depth extents and can be solely
used to model the thermal expansion of upper-oceanic lay-
ers. Despite a decreasing trend in correlation strength when
moving towards deeper depths, SST plays a primary role in
accounting for TSL variations at deeper depths because of
its strong correlations with TSL. Observed weaker correla-
tions between SSS and TSL are plausible owing to salinity’s
secondary role in TSL variations compared to temperature.
However, an increasing trend in correlation coefficients be-
tween SSS and TSL is observed towards the deeper depth ex-
tents. Hence, SST and SSS are complementary to each other
in resolving the TSL variations, and their combination plays
a major role in modeling TSL of all depth extents considered
in this study. Apart from these physical parameters, absolute
salinity used in the computation of seawater density, conser-
vative temperature, and the ocean thermal expansion coef-
ficient is a function of geographical coordinates along with
practical salinity and pressure (Eq. 3). By considering all

these theoretical considerations and observed correlations, an
attempt has been made to model TSL of various depth extents
by employing SST, SSS, and geographical coordinates as the
input parameters along with the climatological TSL (Fig. 2).
Here, TSLd is an external manifestation of OHCd stored in
an oceanic layer based on EEHd (Eq. 6). The model-derived
TSL is further used to estimate OHC changes (along with
climatological OHC as shown in Fig. 2) as follows:

OHCd =
TSLd
EEHd

, (6)

where EEH is a conversion factor that explains the relation-
ship between the relative changes in OHC and the corre-
sponding TSL. EEH is not a constant value over the global
ocean as it varies as a function of temperature, salinity, and
pressure. Hence, ANN modeling is employed in this study
to estimate OHC from TSL by accounting for the complex
variations in EEH.

3.2 ANN model description

This section explains the various steps and architectures in-
volved in the ANN modeling of TSL and OHC. The multi-
layer perceptron regressor algorithm of deep neural networks
was used to model both TSL and OHC (Pedregosa et al.,
2011). It is observed that the input data of geophysical pa-
rameters have different units and scales. The range and or-
der of magnitude (O) of SST, SSS, latitude, and longitude
data are −1.8 °C to 34.15 °C and O(101), 2.53 to 40.45 PSU
and O(101), −76 to 80° and O(101), and −180 to 180°
and O(102), respectively. In addition, the range and order
of TSLclim,d and OHCclim,d are also distinct and vary with
depth extent. Hence, the input data were normalized using
the StandardScaler class of scikit-learn and feed-forwarded
through the neural networks. This StandardScaler normal-
izes the raw data to ensure the mean and standard devia-
tion of each input parameter as 0 and 1, respectively. It al-
lows the ANN model to focus on the relative importance and
relationships between the input parameters rather than their
magnitude. The standardized input data were injected into
the corresponding neurons in the input layer and forward-
propagated through the hidden layers and then the output
layer by applying the random weights and rectified linear
unit (ReLU) activation function at each neuron (Fig. 3).
The model outputs were compared with the actual data and
computed mean squared error (MSE) using a loss function
(Eq. 7). In addition, L2 regularization (αL2) was employed
to add a penalty term to the loss value to prevent overfit-
ting. The observed error was then back-propagated through
the network to update weights and biases using the Adam
optimizer based on the learning rate and gradient of the er-
ror (see Eq. 8 in Vijay Prakash and Shanmugam, 2022). This
process is repeated until the validation score improves more
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Figure 1. Heat map showing the Pearson correlation coefficients between the input parameters (i.e., SST, SSS, and geographical coordinates)
and the output parameter (TSL) of various depth extents.

Figure 2. Flowchart representing the parameters involved in TSL and OHC modeling. The dashed red and blue boxes represent the TSL and
OHC frameworks employed in ANNs, respectively.

than 0.0001.

MSE=
1
N

∑
(Ypred,i −Yact,i)2, (7)

where N is the number of samples, Ypred,i represents the pre-
dicted data, and Yact,i represents the actual data. The model
development work was carried out by employing both the
input and output parameters from the in situ sources. It en-
ables the ANN models to implement the input data of any
remote sensing sources to produce OHC estimates subject to
the reliability and accuracy of those data sources. The par-
ticle swarm optimization technique (Kennedy and Eberhart,
1995; Shi and Eberhart, 1998) was employed for hyperpa-
rameter tuning, and the hyperparameter combinations corre-
sponding to each modeling depth are presented in Table 1.
The Joblib module of the scikit-learn library was used to save
all the TSL and OHC models of various depth extents con-
sidered in this study, and the same module was used to load
the TSL and OHC models of desired depth extent with the
help of a unified Python script.

4 Results and discussion

The performance of TSL and OHC models on unseen data
from the in situ and satellite sources was assessed using

density scattergrams and statistical metrics. These metrics
include mean bias error (MBE), mean bias percentage er-
ror (MBPE), mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE),
Pearson correlation coefficient (R), slope, and intercept (also
referred to and presented in Vijay Prakash and Shanmugam,
2022). To better understand the relative magnitude of error
metrics, mean values of in situ data were presented for the
validation period and used to compute the weighted average
of validation metrics across all the modeling depths.

4.1 In situ validations with unseen data

The main objective of the in situ-based validations with un-
seen data is to evaluate the generalization ability and overall
accuracy of TSL and OHC–ANN models on unseen data. For
this purpose, the in situ-measured data of SST, SSS, latitude,
and longitude were used to predict the model-derived TSL
and OHC values, which were then compared with in situ TSL
and OHC data. The number of validation data points and their
spatial distribution are presented in Table 2 and Fig. A1b.
The performance of the TSL models is exceptionally good
on unseen data of all the modeling depths without any over-
fitting (Table 2 and Fig. 4). Similar model performance can
also be observed in the case of OHC estimates, as it primarily
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Table 1. ANN model hyperparameters employed in TSL (regular font) and OHC (bold font) modeling of various depth extents.

Depth (m) Hidden layers Batch size αL2 Learning rate No. of iterations

20 38, 10, 55 178 0.00422 0.0004 14

49, 12, 34 183 0.09023 0.0001 26

30 100, 97, 36 165 0.00001 0.0001 14

11, 50, 55 58 0.00079 0.0001 16

40 64, 71, 5 106 0.00001 0.0001 16

57, 89, 46 148 0.09691 0.0001 19

50 64, 99, 30 241 0.01478 0.0001 17

56, 59, 10 139 0.07188 0.0001 22

100 70, 100, 100 256 0.00001 0.0009 30

25, 36, 63 256 0.03556 0.0016 44

150 47, 83, 92 60 0.00001 0.0005 34

49, 77, 28 69 0.05176 0.0318 16

200 100, 100, 16 256 0.00315 0.0022 33

27, 48, 67 202 0.05638 0.0367 18

250 56, 82, 67 174 0.00001 0.0019 39

2, 100, 77 73 0.00001 0.0037 22

300 83, 28, 74 128 0.00001 0.0028 36

48, 92, 10 87 0.01364 0.0459 12

350 85, 25, 67 128 0.04606 0.0013 20

27, 53, 48 141 0.08585 0.0851 14

400 89, 75, 96 64 0.04859 0.0007 26

49, 1, 80 138 0.00001 0.0031 20

450 51, 83, 95 128 0.08582 0.0005 42

47, 27, 52 32 0.00263 0.0055 24

500 71, 100, 62 128 0.00001 0.0012 27

45, 100, 63 126 0.05162 0.0607 15

550 47, 89, 91 256 0.00843 0.0011 44

64, 75, 78 114 0.05176 0.0634 15

600 98, 65, 6 16 0.00001 0.0001 48

63, 17, 10 180 0.04654 0.0538 23

650 100, 69, 75 16 0.00001 0.0001 18

53, 74, 40 176 0.07072 0.0048 20

700 98, 37, 37 164 0.04262 0.0015 32

83, 63, 79 216 0.01217 0.0742 19
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Figure 3. Schematic of the ANN architecture employed in the modeling of TSL and OHC parameters. The flow of the modeling and the
associated mathematical transformations and formulations are given by considering a typical ANN architecture with n input parameters, one
output parameter, p hidden layers, and q1 to qp neurons in each hidden layer.

depends on the TSL estimates (Table 2 and Fig. 5). The high
values of R indicate a strong positive correlation between the
predicted and in situ OHC (TSL) values. This suggests that
the models are generally capable of capturing OHC (TSL)
patterns in the data. The slope and intercept of the regres-
sion line between predicted and actual values are close to 1
and 0, respectively. This suggests that the model-derived es-
timates have good agreement with the actual data with a min-
imal bias. The RMSE values are notably small, implying that
the predicted OHC values have a little random error when
compared to the actual data. The MBE and MBPE values
are close to zero, indicating that the model-derived estimates
have a negligible systematic error when compared to the ac-
tual values. The low MAE and MAPE values also indicate
high accuracy with the model-derived OHC values. These
results clearly demonstrate that the proposed ANN models
succeeded in generalizing and accurately predicting the OHC
(TSL) data with high accuracy.

The spatial distribution of the mean percentage error
(MPE) over the global open-oceanic regions was computed
by averaging the observed percentage errors of all modeling
depths available at each pixel (Fig. A2). It is observed that the
models’ performance is comparatively low over the north-
western parts of the North Atlantic gyre, southwestern parts

of the South Atlantic gyre, Kuroshio extension, and Antarc-
tic circumpolar current regions due to the high eddy kinetic
energy (Beech et al., 2022; Ni et al., 2023). An elaborate note
on the potential sources of the observed MPE values is given
in Sect. 4.4. Further, the entire validation dataset was divided
into two parts in terms of the observed overestimation and
underestimation of data. In the cases of overestimation (un-
derestimation), 95 % of the data points have MPE less than
or equal to 0.47 % (0.44 %). The lower values of MPE indi-
cate that the proposed ANN models are capable of capturing
OHC patterns in all major oceanic basins and can be used to
produce accurate OHC products upon implementation with
real-time data.

4.2 Satellite-based validations with unseen data

The performance of the proposed ANN models in satellite-
based applications has been assessed by injecting daily SST
and SSS data from the satellite sources (refer to Sect. 2.2)
in place of in situ sources. The choice of satellite sources
for SST and SSS data is completely subjective depending on
the intended application and their compatibility in terms of
spatial and temporal resolutions, whereas geographical coor-
dinate data can be employed from the WOA18 correspond-
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Table 2. Statistical results from the in situ-based validation of TSL (regular font) and OHC (bold font) against in situ data. The units for
the various metrics used in TSL and OHC validations are given as follows: mean (m and GJ m−2), RMSE (m and GJ m−2), MBE (m and
GJ m−2), MBPE (%), MAE (m and GJ m−2), MAPE (%), and intercept (m and GJ m−2).

Depth (m) N Mean R RMSE MBE MBPE MAE MAPE Slope Intercept

Model Model
development validation

20 801 303 536 719 1.44 0.9997 0.01 −0.0007 0.0575 0.006 0.60 0.9981 0.002

23.91 0.9997 0.02 −0.0011 −0.0047 0.009 0.04 0.9987 0.030

30 794 166 532 149 2.15 0.9993 0.03 0.0029 0.3764 0.015 0.99 0.9982 0.007

32.85 0.9992 0.04 0.0010 0.0027 0.021 0.06 0.9992 0.030

40 787 074 526 571 2.85 0.9988 0.05 −0.0009 0.1325 0.027 1.28 0.9988 0.002

47.78 0.9988 0.07 −0.0008 −0.0014 0.038 0.08 0.9978 0.103

50 779 134 520 102 3.54 0.9984 0.07 −0.0008 0.0861 0.042 1.47 0.9975 0.008

59.70 0.9984 0.10 0.0015 0.0028 0.057 0.10 0.9972 0.169

100 731 065 476 709 6.80 0.9974 0.18 −0.0129 −0.1725 0.120 2.09 0.9960 0.015

119.00 0.9973 0.25 −0.0279 −0.0233 0.169 0.14 0.9981 0.196

150 712 120 460 278 9.83 0.9967 0.29 −0.0407 −0.3419 0.205 2.41 0.9905 0.053

177.97 0.9965 0.40 −0.0369 −0.0198 0.279 0.16 0.9867 2.331

200 697 314 446 979 12.64 0.9961 0.38 −0.0001 0.0571 0.272 2.51 0.9960 0.050

236.62 0.9959 0.53 −0.0076 −0.0029 0.372 0.16 0.9939 1.426

250 686 378 436 906 15.28 0.9959 0.46 −0.0361 −0.1803 0.332 2.49 0.9943 0.051

295.04 0.9957 0.63 −0.0242 −0.0078 0.450 0.15 0.9918 2.392

300 678 526 429 501 17.80 0.9956 0.55 −0.0471 −0.0023 0.392 2.53 0.9851 0.218

353.29 0.9954 0.74 −0.0155 −0.0039 0.525 0.15 0.9889 3.902

350 672 148 423 688 20.23 0.9949 0.65 −0.1035 −0.3383 0.462 2.59 0.9860 0.179

411.40 0.9947 0.87 −0.0357 −0.0081 0.613 0.15 0.9861 5.676

400 666 605 418 686 22.57 0.9947 0.72 −0.0425 −0.0526 0.505 2.52 0.9887 0.213

469.39 0.9945 0.97 −0.0067 −0.0010 0.676 0.14 0.9879 5.683

450 661 336 413 987 24.83 0.9946 0.78 −0.1227 −0.4726 0.547 2.47 0.9916 0.087

527.25 0.9943 1.06 −0.1681 −0.0315 0.741 0.14 0.9872 6.588

500 654 880 408 240 27.03 0.9949 0.80 −0.0604 −0.1866 0.558 2.29 0.9945 0.089

585.03 0.9947 1.07 −0.0761 −0.0127 0.747 0.13 0.9894 6.105

550 649 850 403 357 29.14 0.9948 0.85 −0.0462 −0.0937 0.586 2.19 0.9911 0.213

642.69 0.9945 1.15 0.0347 0.0057 0.787 0.12 0.9900 6.479

600 645 150 398 855 31.21 0.9945 0.91 −0.0390 −0.0205 0.623 2.18 0.9883 0.327

700.28 0.9942 1.23 0.0298 0.0046 0.838 0.12 0.9873 8.937

650 640 479 392 921 33.18 0.9941 0.99 0.0185 0.0903 0.670 2.19 0.9949 0.189

757.74 0.9939 1.33 0.0086 0.0014 0.892 0.12 0.9904 7.296

700 633 004 388 469 35.13 0.9941 1.04 −0.1928 −0.4791 0.711 2.17 0.9858 0.307

815.15 0.9938 1.41 −0.2413 −0.0292 0.960 0.12 0.9836 13.134

Weighted average 0.9961 0.74 −0.0620 −0.1591 0.513 2.29 0.9927 0.177

0.9960 1.03 −0.0515 −0.0087 0.708 0.13 0.9914 6.648
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Figure 4. Density scattergrams showing the observed agreement between model-derived TSL values and in situ-measured TSL values during
in situ-based validations.

ing to the climatological TSL and OHC data. It is recom-
mended to resample SST and SSS data to the WOA18 grid to
eliminate the discrepancies arising from the nonuniform spa-
tial references among the input data. The satellite-based SST,
ORA-based SSS, latitude, and longitude data were given as
the inputs to the ANN models for producing TSL and OHC
estimates of all the modeling depths considered in this study.

Consequently, the model-derived TSL and OHC estimates
were compared with Argo-measured in situ data, and the ob-
served validation results are presented in this section (Table 3
and Figs. 6 and 7).

The performance of the proposed ANN models on
satellite-based validation data (Table 3, Figs. 6 and 7) is al-
most similar to their performance on in situ-based validation
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Figure 5. Density scatterplots showing the observed agreement between model-derived OHC values and in situ-measured OHC values
during in situ-based validations.

data (Table 2, Figs. 4 and 5). However, the models’ perfor-
mance on satellite-based validation data was marginally low
compared to the in situ-based validation, likely due to the er-
rors associated with the satellite-based products. According
to the statistical results, the R values were observed to be
slightly lower by an average percentage decrease of 0.11 %

across all the modeling depths. Similarly, the RMSE, MBE,
MBPE, MAE, and MAPE values were slightly larger than
those observed during the in situ-based validation. This rel-
atively lower performance of the proposed models on the
satellite-based validation datasets can also be observed by
comparing the spatial maps and the distribution of MPE
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(Figs. A2 and A3). And 95 % of the data have MPE less
than or equal to 0.56 % (0.5 %) in the cases of overestima-
tion (underestimation), which is higher than those reported
in Sect. 4.1. Though the performance of the proposed mod-
els on satellite-based data is comparatively lower than the in
situ-based validation, the observed difference in various val-
idation metrics is insignificant. It indicates the efficiency of
the proposed models in estimating OHC from satellite data
at various depths over the major oceanic basins. However, it
should be noted that the validation results presented in this
section may vary with the other sources of satellite-based
SST and SSS data.

4.3 Comparison with the contemporary satellite-based
OHC models

Comparison of our ANN models with the existing models is
crucial to determine the relative uncertainty in the OHC es-
timates. Previously, an ANN algorithm suite was developed
by the National Remote Sensing Centre (NRSC) of ISRO to
disseminate the daily OHC products over the northern Indian
Ocean (40–120° E, 0–30° N) at a spatial resolution of 0.25°
(Ali et al., 2012; Jagadeesh et al., 2015). This algorithm suite
includes ANN models to estimate OHC at multiple depth
extents such as 50, 100, 150, 200, 300, 500, and 700 m for
the given input data of SSHA, SST, and OHCclim,d . NRSC
ANN models estimate OHC changes by employing satellite-
altimetry-based SSHA data from the AVISO (Archiving, Val-
idation, and Interpretation of Satellite Oceanographic data)
data portal, SST from the Advanced Microwave Scanning
Radiometer-2 on board JAXA’s Global Change Observa-
tion Mission – Water (GCOM-W1), and climatological OHC
from the World Ocean Atlas 2009 monthly climatological
CTD fields. The multilayer perceptron regressor algorithm
of neural networks with three hidden layers was used to es-
timate OHC of all seven depth extents. The numbers of data
points used to develop and validate the NRSC ANN algo-
rithm were 11 472 and 2479, respectively. To compute in situ
OHC at different depths, this algorithm employed the Cel-
sius scale, in situ temperature, and average density data in-
stead of the Kelvin scale, conservative temperature, and in-
stantaneous density, respectively (see Eq. 3 in Jagadeesh et
al., 2015).

Validation datasets were prepared for the period of 2017–
2020 by computing in situ OHC on both Kelvin and Celsius
scales for the depth extents of 50, 100, 150, 200, 300, 500,
and 700 m from the Argo program. Daily OHC data were
downloaded from the NRSC’s Bhuvan portal and collocated
with the corresponding Celsius-scaled in situ OHC data to
evaluate the NRSC ANN models. Similarly, satellite-based
SST, ORA-based SSS data, geographical coordinates, and
climatological TSL and OHC data were extracted by col-
locating with Kelvin-scaled in situ OHC data for our ANN
models to generate the OHC estimates. Evaluation of these

two OHC estimates was done separately by means of the nor-
malized metrics such as R, MBPE, and MAPE (Table 4).

As expected, our ANN models produced relatively highly
accurate OHC estimates at all depth extents and hence
yielded higher correlation coefficients and lower errors com-
pared to the NRSC ANN models. The accuracy of OHC esti-
mates produced by our ANN model also increased with depth
in contrast to that of NRSC ANN OHC estimates. Determi-
nation of key input parameters based on a precise theoretical
basis, accurate computation of in situ OHC, and use of suit-
able ANN architectures for each modeling depth enabled our
ANN models to produce accurate OHC estimates.

It should be mentioned that SSHA is the combined out-
come of temperature (thermosteric), salinity (halosteric), and
water mass changes in the oceanic water column. The di-
rect use of satellite-altimeter-derived SSHA without elimi-
nating halosteric and water mass change components results
in weaker correlations with OHC. Moreover, different time
spans were used in the computation of the mean sea level
for AVISO (1993–2012) and monthly climatology data for
WOA09 (1955–2006). The combination of merged SSHA
data from AVISO/CMEMS and climatological OHC data
from WOA18 could lead to discrepancies in OHC estimates.
Hence, the prime criterion followed in determining the input
parameters in the current study is the theoretical relationship
between the input and output parameters rather than the di-
rect usage of all the relevant parameters. The one-to-one re-
lationship between OHC and TSL is employed in the OHC
modeling. To arrive at TSL, the theoretical dependency of
TSL on temperature, salinity, and geographical coordinates
is considered in TSL modeling work. However, SSHA and
climatological OHC data for the same base period are desir-
able and can be used in OHC (TSL) modeling if available in
the future.

The Celsius scale can be used to compute in situ OHC
where the temperature is always on the positive side. The us-
age of the Celsius scale when the temperatures are less than
zero and greater than the seawater freezing point is not appro-
priate because of the negative values. In addition, the conser-
vative temperature is an accurate variable to calculate OHC
compared to the measured in situ temperature or potential
temperature (IOC et al., 2010; Pawlowicz, 2013). Thus, con-
servative temperatures on the absolute scale (Kelvin scale)
are used to compute in situ OHC estimates in the current
study. On the other hand, employing instantaneous density
rather than an average density value is important to account
for the dynamic variations in seawater density.

The vertical distribution of conservative temperature fol-
lows a nonlinear profile with a mixed layer at the top, a
thermocline in the middle, and a deep ocean layer at the
bottom. This suggests that it is appropriate to customize
the ANN hyperparameters for each modeling depth. In this
study, hyperparameter tuning was performed for each mod-
eling depth and resulted in a better understanding of OHC
patterns at various depth extents. Though a clear improve-
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Table 3. Statistical results from satellite-based validation data of TSL (regular font) and OHC (bold font) against unseen Argo-measured in
situ data. The units for the various metrics used in TSL and OHC validations are given as follows: mean (m and GJ m−2), RMSE (m and
GJ m−2), MBE (m and GJ m−2), MBPE (%), MAE (m and GJ m−2), MAPE (%), and intercept (m and GJ m−2).

Depth (m) N Mean R RMSE MBE MBPE MAE MAPE Slope Intercept

Data for Data for
model model

development validation

20 801 303 536 719 1.44 0.9987 0.03 −0.0034 −0.0822 0.016 1.67 0.9960 0.002

23.91 0.9987 0.04 −0.0049 −0.0201 0.023 0.09 0.9965 0.080

30 794 166 532 149 2.15 0.9984 0.04 −0.0008 0.2562 0.027 1.88 0.9961 0.008

32.85 0.9984 0.06 −0.0043 −0.0118 0.037 0.10 0.9969 0.108

40 787 074 526 571 2.85 0.9980 0.07 −0.0054 0.0211 0.041 2.08 0.9969 0.003

47.78 0.9980 0.09 −0.0070 −0.0143 0.057 0.12 0.9959 0.191

50 779 134 520 102 3.54 0.9977 0.09 −0.0060 −0.0262 0.057 2.17 0.9960 0.008

59.70 0.9976 0.12 −0.0056 −0.0090 0.077 0.13 0.9956 0.257

100 731 065 476 709 6.80 0.9966 0.20 −0.0206 −0.2651 0.140 2.56 0.9951 0.013

119.00 0.9965 0.28 −0.0385 −0.0322 0.194 0.16 0.9971 0.301

150 712 120 460 278 9.83 0.9958 0.32 −0.0496 −0.4165 0.229 2.81 0.9897 0.052

177.97 0.9956 0.44 −0.0491 −0.0266 0.311 0.17 0.9858 2.474

200 697 314 446 979 12.64 0.9951 0.43 −0.0091 −0.0022 0.300 2.83 0.9951 0.053

236.62 0.9950 0.59 −0.0200 −0.0081 0.409 0.17 0.9929 1.653

250 686 378 436 906 15.28 0.9948 0.52 −0.0450 −0.2117 0.364 2.79 0.9928 0.065

295.04 0.9946 0.71 −0.0365 −0.0119 0.492 0.17 0.9904 2.807

300 678 526 429 501 17.80 0.9943 0.62 −0.0556 −0.0279 0.428 2.79 0.9837 0.235

353.29 0.9941 0.83 −0.0271 −0.0071 0.571 0.16 0.9875 4.398

350 672 148 423 688 20.23 0.9939 0.71 −0.1052 −0.3291 0.494 2.80 0.9846 0.206

411.40 0.9936 0.95 −0.0381 −0.0086 0.655 0.16 0.9847 6.264

400 666 605 418 686 22.57 0.9935 0.79 −0.0450 −0.0422 0.540 2.72 0.9869 0.252

469.39 0.9933 1.06 −0.0103 −0.0017 0.723 0.15 0.9860 6.557

450 661 336 413 987 24.83 0.9934 0.87 −0.1234 −0.4559 0.586 2.67 0.9898 0.129

527.25 0.9931 1.17 −0.1694 −0.0316 0.792 0.15 0.9854 7.508

500 654 880 408 240 27.03 0.9934 0.91 −0.0707 −0.2034 0.605 2.50 0.9924 0.134

585.03 0.9933 1.21 −0.0909 −0.0151 0.807 0.14 0.9874 7.293

550 649 850 403 357 29.14 0.9932 0.97 −0.0484 −0.0768 0.636 2.40 0.9887 0.280

642.69 0.9929 1.30 0.0315 0.0053 0.851 0.13 0.9876 8.021

600 645 150 398 855 31.21 0.9930 1.03 −0.0431 −0.0139 0.675 2.38 0.9861 0.392

700.28 0.9927 1.39 0.0242 0.0039 0.906 0.13 0.9850 10.52

650 640 479 392 921 33.18 0.9926 1.11 0.0193 0.1132 0.719 2.37 0.9925 0.267

757.74 0.9924 1.48 0.0092 0.0015 0.957 0.13 0.9880 9.090

700 633 004 388 469 35.13 0.9926 1.16 −0.1917 −0.4560 0.763 2.34 0.9835 0.387

815.15 0.9922 1.56 −0.2400 −0.0290 1.029 0.13 0.9813 14.982

Weighted average 0.9950 0.83 −0.0657 −0.1645 0.554 2.54 0.9909 0.224

0.9948 1.15 −0.0566 −0.0104 0.763 0.14 0.9896 7.799
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Figure 6. Density scatterplots showing the observed agreement between model-predicted TSL values and in situ-measured TSL values
during satellite-based validation.

ment was achieved with the proposed OHC models, rela-
tively lower correlations were observed for our ANN models
in the depth range of 100–300 m over the northern Indian
Ocean (refer to Table 4). It indicates that the ANN mod-
els generalized the OHC patterns less at the intermediate
depths over the northern Indian Ocean, and the correspond-

ing underlying factors are discussed in the following section.
Nevertheless, the observed results demonstrated that the pro-
posed ANN models are capable of improving the accuracy
and quality of OHC products through the ocean thermal ex-
pansion method.
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Figure 7. Density scatterplots showing the observed agreement between model-predicted OHC values and in situ-measured OHC values
during satellite-based validation.

4.4 Potential sources of uncertainty in OHC estimates

The relationship between the surficial parameters (SST and
SSS) and depth-integrated parameters (TSL and OHC) is
the prime factor determining the efficiency of the proposed
OHC models of various depth extents (Klemas and Yan,
2014). This relationship is expected to account for a wide
range of geophysical processes including ocean currents,

vertical mixing (upwelling and downwelling), stratification,
fronts, gyres, eddies, and air–sea interface processes. In ad-
dition, different climate modes and oscillations, solar radia-
tion, sea ice, phytoplankton growth, freshwater inputs, and
winds can also be considered in this context. Objectively an-
alyzed monthly climatological CTD profiles obtained from
WOA18 were used to calculate the monthly climatological
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Table 4. Statistical results observed during the validation of model-derived OHC estimates against in situ OHC data.

Depth (m) N R MBPE (%) MAPE (%)

NRSC Proposed NRSC Proposed NRSC Proposed
ANN ANN ANN ANN ANN ANN
model model model model model model

50 15 595 0.9223 0.9303 −0.0012 0.0227 1.4762 0.1104
100 14 546 0.8575 0.8780 −0.3539 0.0303 2.5145 0.1732
150 14 303 0.7678 0.8215 −0.6887 −0.0263 3.2401 0.2053
200 13 513 0.7169 0.8152 −1.1048 0.0072 3.4667 0.1903
300 12 833 0.7732 0.8690 −1.2656 0.0218 3.1671 0.1525
500 12 410 0.8965 0.9346 −0.6996 −0.0052 2.3939 0.1073
700 11 959 0.9447 0.9628 −0.6214 −0.0370 2.0035 0.0891

mean TSL and OHC over the period of 1955–2017. Hence,
these climatological data enabled the ANN models to bet-
ter generalize the prevailing geophysical processes and sub-
sequent patterns in TSL and OHC of various depth extents.
The same can be perceived from the improved accuracy lev-
els observed during the validations carried out on unseen data
(refer to Sect. 4.1 and 4.2) and the comparison with NRSC
OHC products (Sect. 4.3).

It should be noted that the established relationship between
the input parameters (surficial and climatological) and out-
put parameters (TSL and OHC patterns) may not hold in the
event of complex geophysical processes where the physical
oceanographic conditions differ significantly from the pre-
vailing conditions. Moreover, the relative contributions of
these geophysical processes may vary depending on the time
and location of the water parcel in oceans. The slightly lower
accuracy of the proposed ANN models can be attributed to
the influence of these complex geophysical processes. The in
situ and satellite-based retrieval of all these atmospheric, sur-
face, and subsurface processes and their incorporation into
the ANN models are difficult because of the scarcity or spar-
sity of the required datasets on different spatial, temporal,
and vertical scales. The above factors constitute a potential
source of uncertainty in OHC estimates and reduce the gen-
eralization ability of the model. Hence, it is advisable to carry
out vicarious calibration with the help of contemporary in
situ CTD profiles before adopting the OHC estimates for fur-
ther scientific analyses of specific interest at both regional
and global scales. Further efforts are needed to better under-
stand, quantify, and eliminate the different sources of identi-
fied uncertainties caused by complex geophysical processes.
More in situ CTD profiles are required to be collected and
analyzed in such oceanic regions to better account for the
associated complex patterns and processes.

5 Spatiotemporal variability of OHC

Here, we present the long-term variability of model-derived
OHC and its comparison with the existing global OHC prod-

ucts for the period 1993–2020. The time period (1993–2020)
was chosen based on the availability of satellite-based in-
put data to generate the model-derived OHC estimates and
the existing OHC products considered. Thus, model-derived
OHC estimates were generated from 1993 to 2020 at a spa-
tial resolution of 0.25° and computed annual time series of
model-derived OHC anomalies (OHCA) with reference to
the 1993–2020 long-term mean. It is worth mentioning that
the model-derived OHCA estimates presented in this section
represent heat changes in both shallower and deep oceanic
basins of bathymetry levels ≥ 20 m. The bathymetry values
at each pixel were rounded off to the nearest and lowest mod-
eling depth (d) with the help of GEBCO 2020 bathymetry
data, and the corresponding OHCAd values were considered
for each pixel (GEBCO Compilation Group, 2020).

On the other hand, OHCA time series annual maps ob-
tained from various global OHC products disseminated by
the National Centers for Environmental Information (NCEI),
Institute of Atmospheric Physics (IAP), Pacific Marine Envi-
ronmental Laboratory (PMEL), and OPEN-LSTM have been
employed for comparison. NCEI employs the objective anal-
ysis method for in situ CTD profile data from the World
Ocean Database 2009 and estimates annual OHCA at a spa-
tial resolution of 1° with reference to the 1955–2006 long-
term mean (Levitus et al., 2012). Similarly, IAP employs en-
semble optimal interpolation with a dynamic ensemble ap-
proach for in situ CTD profile data from the World Ocean
Database 2013 and distributes monthly OHC estimates at a
spatial resolution of 1° (Cheng et al., 2017). Annual OHC
means were computed from IAP monthly OHC data, and an-
nual OHCA estimates were generated with reference to the
1993–2020 long-term mean. Recently, PMEL has developed
a random forest regression model to predict OHCA of 0–40,
40–90, 90–190, 190–290, 290–450, 450–700, 700–950, and
950–1450 m depth layers with reference to the 1993–2022
long-term mean. This PMEL random forest regression model
employs satellite-based SST, SSHA, latitude, longitude, and
time data to predict weekly OHCA estimates at a spatial res-
olution of 0.25° (Lyman and Johnson, 2023). In the current
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Figure 8. Spatial maps showing the long-term trends of OHC obtained from (a) the current model, (b) NCEI, (c) IAP, (d) PMEL, and
(e) OPEN-LSTM products. Note that the oceanic regions shallower than 20 m depth and/or covered with sea ice are masked with a dark gray
color.

Figure 9. Time series distribution of global mean OHCA obtained
from the current model and the existing OHC products observed
over the period 1993–2020. Note that the NCEI time series has
been shifted by subtracting 0.3 GJ m−2 to better compare with the
remaining OHC time series plots.

study, PMEL layer-wise OHCA estimates from surface to
700 m have been summed up at each pixel to arrive at weekly
OHCA spatial maps and subsequently computed correspond-
ing annual OHCA estimates. Similarly, Su et al. (2021) have
developed a long short-term memory neural network model
to produce monthly OHC estimates (OPEN-LSTM) at a spa-
tial resolution of 1°. OPEN-LSTM employs satellite-based
SSHA, SST, and zonal and meridional components of sea
surface wind, latitude, longitude, and day of the year to pre-
dict monthly OHC. Annual OHC means were computed from
OPEN-LSTM monthly OHC data, and annual OHCA esti-
mates were generated with reference to the 1993–2020 long-
term mean.

Our model-derived annual OHCA estimates were regrid-
ded to 1° spatial resolution to maintain uniform spatial ref-
erence among all the OHC products considered. As the pro-
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posed models are built for open-oceanic regions, the regions
covered by sea ice are masked in both the North and South
Pole by verifying the corresponding sea ice concentration
data obtained from the National Snow and Ice Data Cen-
ter (Meier et al., 2021). Subsequently, long-term variability
maps (Fig. 8) and time series plots (Fig. 9) were produced
to compare model-derived OHC estimates with the existing
global OHC products. Further, the information on percentage
variance explained (PVE) by the observed long-term trend
values is provided to realize the short-term trends or periodic
signals in OHC variability (Fig. A4). Higher PVE values in-
dicate a persistent increase or decrease in OHC throughout
the study period, and vice versa.

Lower magnitudes of long-term warming and cooling
trends (±0.05 GJ m−2 yr−1) are observed in most of the
global ocean (Fig. 8a). The corresponding PVE values are
observed to be very low (≤ 30%), which indicates intermit-
tent trends in the majority of the global ocean rather than
persistent warming or cooling (Fig. A4a). The same can be
observed from the nonlinear distribution of model-derived
OHCA time series, indicating short-term periods of alter-
nate warming and cooling during the study period (Fig. 9).
However, the oceanic regions linked to the Kuroshio current,
Gulf Stream, Antarctic circumpolar current, North Atlantic
cold blob, and southeastern Pacific are experiencing rela-
tively higher magnitudes of persistent warming or cooling
(±0.1 to 0.15 GJ m−2 yr−1, PVE 50 %–90 %).

The spatial patterns of OHC trends observed from NCEI
(Fig. 8b), IAP (Fig. 8c), and PMEL (Fig. 8d) products are
almost similar and show relatively more warming regions
compared to the model-derived OHC estimates (Fig. 8a).
NCEI, IAP, and PMEL products indicate persistent warming
conditions over the vast oceanic regions of the Pacific, At-
lantic, and Indian Ocean, with higher PVE values (Fig. A4b–
d). The same can be observed from the persistent long-term
warming throughout the study period (Fig. 9). On the other
hand, OPEN-LSTM OHC estimates indicate lower warming
patterns all over the globe except the North Atlantic cold
blob and some parts of the Antarctic circumpolar current
(Fig. 8e), with higher PVE values over vast oceanic regions
of the Pacific, Atlantic, and Indian Ocean (Fig. A4e). As a re-
sult, OPEN-LSTM also showed persistent long-term warm-
ing throughout the study period (Fig. 9).

The observed time series plots indicate contrasting trends
between the current OHC model and the existing products.
The time series plot of model-derived OHCA indicates alter-
nate periods of short-term cooling and warming during the
study period. Global open oceans witnessed a cooling trend
of −0.017 GJ m−2 yr−1 (PVE 76.99 %) during 1993–1999,
a warming trend of +0.069 GJ m−2 yr−1 (PVE 92.73 %)
during 2000–2002, a cooling trend of −0.054 GJ m−2 yr−1

(PVE 99.71 %) during 2003–2008, and a warming trend of
+0.007 GJ m−2 yr−1 (PVE 36.50 %) during 2009–2020. The
observed results indicate the efficiency of the current model
in capturing the ocean cooling during 2003–2006 (Loehle,

2009; Lyman et al., 2006) and the global warming hia-
tus during 1998–2013 (Trenberth, 2015), whereas the ob-
served time series plots of NCEI, IAP, PMEL, and OPEN-
LSTM products indicated persistent warming trends of
+0.017 GJ m−2 yr−1 (PVE 95.75 %), +0.019 GJ m−2 yr−1

(PVE 97.94 %), +0.0198 GJ m−2 yr−1 (PVE 97.19 %), and
+0.0195 GJ m−2 yr−1 (PVE 97.48 %), respectively. How-
ever, full-depth pan-global OHCA estimates by including
OHC estimates over ice-covered oceanic regions are required
to substantiate these global ocean cooling and global warm-
ing hiatus signatures and to realize the role of excess heat
added by anthropogenic climate change.

6 Conclusions

Accurate reconstruction of OHC and analysis of its regional
patterns and long-term global records are critical for esti-
mating the Earth’s energy imbalance and understanding the
evolution of climate change. Owing to the lack of instru-
mentation to cover geographic and depth ranges, OHC es-
timates from in situ-measured temperatures are temporally
limited and insufficiently widespread to capture spatiotem-
poral changes and structures. OHC estimates from either dif-
ferent mapping methods or ocean reanalyses (ORAs) have
yielded large uncertainties in past studies. Thus, improving
OHC estimates through a novel satellite-based method is a
major step forward in overcoming sparse observations and
reducing the uncertainty in OHC trends. In this study, we pro-
posed an artificial network model to estimate OHC changes
in global open oceans. The proposed ANN model incorpo-
rates the ocean thermal expansion method as a promising
tool to estimate OHC changes from satellite data. Accurate
implementation of the ocean thermal expansion method was
challenging due to the inability of the present-day satellite
systems to directly measure the ocean thermal expansion–
contraction component. In this study, we proposed a satellite-
based novel approach to better implement the ocean thermal
expansion method by establishing a relationship between sur-
ficial parameters such as SST and SSS and subsurface T –S
profiles. This model predicts the depth-integrated TSL com-
ponent by making use of SST and SSS data and then utilizes
the predicted TSL to estimate OHC changes. For this appli-
cation, we developed ANN models for TSL and OHC of var-
ious depth extents such as 20, 30, 40, 50, 100, 150, 200, 250,
300, 350, 400, 450, 500, 550, 600, 650, and 700 m. The per-
formance of these TSL and OHC models was assessed by
carrying out in situ-based and satellite-based validations us-
ing unseen in situ CTD profiles from the Argo program. Ob-
served high correlations and low errors indicated that the pro-
posed ANN models performed exceptionally good on unseen
data of all modeling depths without any overfitting and can
be used in conjunction with sea ice thermodynamics-based
OHC models of the ice-covered oceans (Vijay Prakash and
Shanmugam, 2022) to better study pan-global OHC changes
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by covering both open and ice-covered oceanic regions of
varying bathymetry levels (≥ 20 m).

The model development and validation databases were
prepared by using in situ CTD profiles obtained from
the Argo program and collocated with the corresponding
satellite-based daily data of SST (AVHRR v2.1) and SSS
(ORAS5). The multilayer perceptron regressor algorithm of
deep neural networks was used and its architecture was opti-
mized by evaluating different combinations of hyperparam-
eters for each modeling depth using the particle swarm op-
timization technique. Precise consideration of theoretical as-
pects in the selection of input parameters, accurate computa-
tion of in situ OHC, and customized ANN architectures en-
abled the proposed models to establish accurate relationships
between the surficial parameters and depth-integrated OHC
(TSL) of various depths extents. The overall performance of
the proposed models on satellite data was good, suggesting
that these models can be used for a variety of applications
subject to accuracy requirements and can produce more ac-
curate satellite-based OHC (TSL) estimates at various depth
extents than previously possible. However, the influence of
complex geophysical processes on the generalization abil-
ity of ANN models is discussed, and the proposed models
generalized the data relatively less in the event of complex
geophysical processes. Further research should focus on the
implementation of these models over oceanic regions with
complex geophysical processes. More in situ CTD profiles
need to be collected and analyzed in such oceanic regions
to better account for the associated complex patterns. How-
ever, the scope of the current research includes minimizing
the observed marginal gap by exploring new methods and
parameterizations in satellite-based OHC modeling.
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Appendix A

Figure A1. The spatial distribution of in situ data points used for (a) model development (N = 633004 Argo CTD profiles) and (b) validation
(N = 388469 unseen Argo CTD profiles) in the case of TSL700 and OHC700.
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Figure A2. Spatial distribution of mean percentage errors observed during the in situ-based validation of OHC models. The oceanic regions
shallower than 20 m and/or covered with sea ice are marked with a dark gray color.

Figure A3. Spatial distribution of mean percentage errors observed during the satellite-based validation of OHC models. The oceanic regions
shallower than 20 m and/or covered with sea ice are marked with a dark gray color.
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Figure A4. Spatial maps showing the percentage variance explained by the OHC trends obtained from (a) the current model, (b) NCEI,
(c) IAP, (d) PMEL, and (d) OPEN-LSTM products. Note that the oceanic regions shallower than 20 m depth and/or covered with sea ice are
masked with a dark gray color.
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