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Abstract. Land use is a key human driver affecting Earth’s biogeochemical cycles, hydrology, and biodiver-
sity. Therefore, projecting future land use is crucial for global change impact analyses. This study compares
harmonized land-use and management trends, analyzing uncertainties through a three-factor variance analysis
involving socioeconomic–climate scenarios, land-use models, and climate models. The projected patterns are
used as human-forcing inputs for the Intersectoral Impact Model Intercomparison Project phase 3b (ISIMIP3b)
and multiple impact modeling teams. We employ two models (IMAGE and MAgPIE) to project future land
use and management under three socioeconomic–climate scenarios (SSP1–RCP2.6, SSP3–RCP7.0, and SSP5–
RCP8.5), driven by impact data like yields, water demand, and carbon stocks from updated climate projec-
tions of five global models, considering CO2 fertilization effects. On the global level, there is strong agreement
among land-use models on land-use trends in the SSP1–RCP2.6 scenario (low adaptation and mitigation chal-
lenges). However, significant differences exist in management-related variables, such as the area allocated for
second-generation bioenergy crops. Uncertainty in land-use variables increases with higher spatial resolution,
particularly concerning the locations where cropland and grassland shrinkage could occur under this scenario.
In SSP5–RCP8.5 and SSP3–RCP7.0, differences among land-use models in global and regional trends are pri-
marily associated with grassland area demand. Concerning the variance analysis, the selection of climate models
minimally affects the variance in projections at different scales. However, the influence of the socioeconomic–
climate scenarios, the land-use model, and interactions among the underlying factors on projected uncertainty
varies for the different land-use and management variables. Our results highlight the need for more intercompar-
ison exercises focusing on future spatially explicit projections to enhance understanding of the intricate interplay
between human activities, climate, socioeconomic dynamics, land responses, and their associated uncertainties
on the high-resolution level as models evolve. It also underscores the importance of region-specific strategies to
balance agricultural productivity, environmental conservation, and sustainable resource use, emphasizing adap-
tive capacity building, improved land-use management, and targeted conservation efforts.
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1 Introduction

Land use and land-use change substantially and directly im-
pact the Earth’s biogeophysical and biogeochemical pro-
cesses and systems (Luyssaert et al., 2014). Among others,
land-use changes perturb the interactions between the ter-
restrial biosphere and the atmosphere, including the hydro-
logical and carbon cycles and other processes (Foley et al.,
2005). For example, land-use change, which could have af-
fected up to 32 % of the world’s land between 1960 and 2019
(Winkler et al., 2021), has caused net changes in CO2, CH4,
and NOx fluxes (Kim and Kirschbaum, 2015). These distur-
bances on biogeochemical and biogeophysical processes can
lead, in turn, to local and global alterations of surface wa-
ter and groundwater levels, soil quality, species richness and
evenness (biodiversity), other ecosystem services, the spread
of diseases and pests, and weather and climate (Roy et al.,
2022; Lambin et al., 2001; Oliver and Morecroft, 2014).

Recently, land cover changes have been driven predom-
inantly by human land-use activities, particularly by man-
aging and expanding agricultural land (cropland and pas-
tures) into forests and other natural vegetation (Lambin and
Meyfroidt, 2011). This trend has been linked, on global and
local scales, to various factors such as shifts in population
(affecting food demand), changes in dietary patterns due to
growing incomes, advancements in agricultural yields (tech-
nological and intensification changes), growing demand for
bioenergy in recent decades (Alexander et al., 2015), and
climate change (Mendelsohn and Dinar, 2009). The evolu-
tion of these factors in the future has been explored using
the Shared Socioeconomic Pathways (SSPs) (Popp et al.,
2017), which indicate that projections based on inequality
(with highly unproductive agricultural land in low-income
countries), rapid population growth, or high demand for agri-
cultural commodities may lead to further agricultural land
expansion. Conversely, a more sustainable demand for agri-
cultural products, achieved through dietary changes and a de-
cline in population growth, could lead to decreased agricul-
tural land use and support mitigation measures like afforesta-
tion and forest protection, allowing for the restoration of nat-
ural vegetation.

Future projections of land-use and agricultural manage-
ment indicators are crucial for different impact assessments
that take into account the effects of socioeconomic and
climate change on the Earth system (e.g., greenhouse gas
(GHG) emissions resulting from land-use changes) (Pon-
gratz et al., 2018), water quality (e.g., issues stemming
from fertilizer and nutrient leakage into lakes and rivers)
(Schindler, 2006), and energy demand (e.g., considerations
related to urban development and associated heating/cooling
demands) (Nazarian et al., 2022), to name a few. Thus, there
have been different previous efforts in the land-use model-
ing community to define, harmonize, and evaluate climate

and socioeconomic development scenarios and their impacts.
For this purpose, various frameworks and models have been
utilized to project and compare future land-use and food
system-related variables focusing on crop and livestock pro-
duction, food prices, use of resources, and changes in land-
use areas, among others, under different scenarios (Sörgel
et al., 2024; Weindl et al., 2024; Doelman et al., 2022; Rose
et al., 2022; Lèclere et al., 2020; Hasegawa et al., 2018; Popp
et al., 2017; Nelson et al., 2014; Popp et al., 2014b). At the
same time, studies have evaluated different land-use model
types, including partial and computable general equilibrium
models, within specific scenarios to understand the main fac-
tors affecting land-use projections and food availability, the
models’ responses to those factors, and their associated un-
certainties on global, regional and spatially explicit resolu-
tions (Schmitz et al., 2014; Stehfest et al., 2019; Alexander
et al., 2017; Prestele et al., 2016). Although these studies
have pointed out and agreed that variance and spread of re-
sults come from differences in inputs, variable definitions,
parameterization, and sensitivity to change, no study has as-
sessed the level of agreement and the role of variance using
a set of harmonized high-resolution land-use and land-use-
management projections under different scenarios including
CO2 fertilization effects on yields.

This study compares the harmonized land-use and agri-
cultural management patterns generated as climate–human
forcing data by two land-use models (LUMs) for the ISIMIP
framework phase 3b (more details about ISIMIP can be
found in Appendix C1). We aim to inform about the dif-
ferences in trends and the level of agreement among projec-
tions in different resolutions and to point out differences with
previous estimations. Specifically, the comparison is made
on three resolutions: on the global level, for five world re-
gions, and at the grid level. Specifically, we compare the
land-use and land-use change patterns generated by the In-
tegrated Model to Assess the Global Environment (IMAGE)
(Stehfest et al., 2014; Van Vuuren et al., 2021) and the Model
of Agricultural Production and its Impact on the Environ-
ment (MAgPIE) (Dietrich et al., 2019) under assumptions for
three different socioeconomic–climate scenarios and climate
impact data generated using five Coupled Model Intercom-
parison Project Phase 6 (CMIP6)-biased corrected global cli-
mate models (GCMs). The global trends of the LUM pro-
jections under the different scenarios were compared to the
Land-Use Harmonization 2 (LUH2) data set (Hurtt et al.,
2019) of future land-use projections, which has commonly
been used for impact analyses in global and regional studies
(Yu et al., 2019; Qiu et al., 2023; Hoffmann et al., 2023).
In addition to comparing the projections, we consider the
variance of contributing factors to identify differences in the
land-use model outputs and the locations where the variation
among the projections is driven by factors different from the
socioeconomic–climate scenarios assumptions, e.g., where
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differences among land-use model dynamics, the interaction
among factors, or the uncertainty from the climate impact
data play a more prominent role in explaining the variance.
Our work differs from previous studies in the intercompar-
ison of aggregated and high-resolution land-use data for a
consistent set of scenarios, the consideration of climate im-
pacts on biophysical constraints (crop yields, water availabil-
ity and demand, and carbon densities) the consideration of
CMIP6 biased-corrected climate data, CO2 fertilization ef-
fects, and the harmonization of output data in the histori-
cal period of the time series (1995–2015). Besides cropland,
grassland, forest, and other natural vegetation land types, our
analysis focuses on second-generation bioenergy cropland
areas, irrigated areas, and synthetic nitrogen fertilizer use,
which we refer to as “land-use-management variables” in the
text.

The paper is structured as follows: in Sect. 2, the method-
ology and the concepts used throughout the text are described
and explained; Sect. 3 includes the results, where regional
trends of the LUMs are analyzed and compared to the LUH2
data set (Sect. 3.1); grid-level projections and hotspots of un-
certainty are assessed (Sect. 3.2); and sources of variance
in the different resolutions are identified (Sect. 3.3). Finally,
Sect. 4 contains a discussion of the results and the conclu-
sion.

2 Methods

2.1 Land-use models

This study used data from two land-use models that re-
ported data sets for the ISIMIP 3b round. Although their
approach and parameterization of biogeochemical, biogeo-
physical, and socioeconomic processes differ, both models
represent the global land system in detail through land-use
modules capable of representing and allocating land types
and management systems under different global change sce-
narios on the spatially explicit level.

The Integrated Model to Assess the Global Environment
(IMAGE) framework (Stehfest et al., 2014; Van Vuuren et al.,
2021) is developed by the Netherlands Environmental As-
sessment Agency (PBL) to understand changes in environ-
mental conditions and sustainability issues driven by chang-
ing socioeconomic development, such as economic and pop-
ulation growth, over time. For this purpose, the IMAGE
framework combines different submodels describing the en-
ergy system, agricultural and land-use sectors (26 world
regions), and biophysical and biogeochemical conditions
(grid level). The MAGNET Computable General Equilib-
rium (CGE) model represents the agricultural economy, pro-
jecting, e.g., demand, production, and trade in agricultural
commodities. The IMAGE land model allocates crop, live-
stock, and timber production on the grid level based on re-
gional information regarding food production and demand,
animal feed, fodder, grassland, bioenergy, timber, and local

climatic and geographic properties. Demand for bioenergy
production aligns with climate policies and is determined by
the energy system model TIMER. The TIMER energy model
defines bioenergy demand based on land supply, biomass
productivity, input costs, and learning dynamics, which influ-
ence bioenergy prices. Climate policies in the IMAGE frame-
work are designed to meet long-term climate targets by estab-
lishing global emission pathways. These pathways determine
carbon tax prices and mitigation costs, which, in turn, affect
bioenergy prices and demand (as detailed by Doelman et al.,
2018). An in-house version of the Lund-Potsdam-Jena man-
aged Land (LPJmL) dynamic global vegetation model, used
to calculate crop yields, soil characteristics, and other bio-
physical constraints, is dynamically coupled to IMAGE. Re-
garding disaggregation of land-use patterns to the grid level,
IMAGE relies on gridded potential yields from LPJmL, data
from the simulation’s previous time step, a regional man-
agement factor, and an empirical allocation algorithm. The
process begins with calculating potential cropland and crop
production data in the current time step using the patterns
from the previous step. If production is insufficient to meet
demand, less productive areas are abandoned, whereas crop-
land expansion employs the empirical algorithm that evalu-
ates cropland and grassland allocation. More information is
available in Doelman et al. (2018).

The Model of Agricultural Production and its Impact on
the Environment (MAgPIE) (Dietrich et al., 2019) (Version
4.4.0 for this study) is hosted at the Potsdam Institute for
Climate Impact Research (PIK). MAgPIE is a recursive par-
tial equilibrium optimization model of the agricultural and
forestry sectors. It integrates demographic and economic de-
velopment with agricultural commodities and timber produc-
tion under different land-use-management and land-based
mitigation policies, aiming to minimize global production
costs. As outputs, the model reports, among others, land-use
patterns, technological change needed to maintain produc-
tion, GHG emissions, and total cost of agricultural produc-
tion. The model uses PIK’s hosted LPJmL-generated spa-
tially explicit data of potential yields, carbon stocks, and
blue water availability and demand for agriculture (Müller,
2024; Müller, 2024). For this application, MAgPIE uses ex-
ogenous inputs from the REMIND model, which is a multire-
gional energy-economy general equilibrium model that con-
siders long-term macroeconomic growth. Specifically, RE-
MIND provides information on GHG pricing and the de-
mand for second-generation bioenergy crops (lignocellulosic
feedstocks). REMIND determines this demand by consider-
ing the supply, trade, and conversion of biomass feedstocks
through the value chain while accounting for the energy sec-
tor market conditions and regulatory frameworks in each so-
cioeconomic growth scenario (as detailed by Merfort et al.
(2023)). Since these scenarios are aligned with specific cli-
mate change pathways, bioenergy demand, for example, is
intrinsically linked to the emissions budgets and carbon taxes
required to achieve particular warming targets. Compared
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with ISIMIP2b (Frieler et al., 2017; Popp et al., 2014a),
MAgPIE was run using a new forestry module (Mishra et al.,
2021) and a module for the accounting of “sticky” on-farm
capital stocks, giving some inertia to the relocation of pro-
duction and improving spatially explicit outputs. For more
details regarding MAgPIE’s 4.4.0 version and modules, refer
to Dietrich et al. (2021). In MAgPIE, land-use disaggrega-
tion is based on the patterns of the previous time step, avail-
able cropland, and a mapping between the high and low res-
olutions. At each time step, starting with cropland, changes
in land use from the clusters are disaggregated using expan-
sion and reduction weights and information about land avail-
ability and suitability. Detailed information can be found in
the interpolateAvlCroplandWeighted function from the R li-
brary luscale developed by the MAgPIE team (Dietrich et al.,
2024).

The spatially explicit analyses in this study were con-
ducted at a 0.5°× 0.5° resolution, although harmonized land-
use projections are reported at 0.25°× 0.25° since ISIMIP
reports the set at the 0.5°× 0.5° resolution. Considering
that MAgPIE and IMAGE perform simulations using differ-
ent regions, we selected five mega-regions to illustrate re-
gional trends. Specifically, we used the so-called SSP re-
gions, which have been widely applied in studies involv-
ing the Shared Socioeconomic Pathways (SSPs) and cli-
mate change, e.g., in Popp et al. (2017), Bauer et al. (2017),
Meinshausen et al. (2020), and Fu et al. (2021) (see Ap-
pendix Fig. B1 for a map of the regions).

2.2 Scenarios

Following ISIMIP’s 3b protocol (https://protocol.isimip.org/
#ISIMIP3b/agriculture, last access: 23 May 2024), the land-
use patterns analyzed in this study represent three main
socioeconomic–climate scenarios (also called only scenar-
ios through the document): The first, SSP1–RCP2.6, corre-
sponds to an increasingly sustainable world (SSP1) charac-
terized, in the land-use context, by land regulation, a shrink-
ing population after the second half of the century, an in-
crease of productivity in developing economies, healthier
diets (less animal products), less waste, and a globalized
economy. It also assumes carbon prices for land-use emis-
sions. SSP1 was matched to RCP2.6, representing a mitiga-
tion pathway that limits global warming to +1.8 °C (with a
very like range of [+1.3 °C, +2.4 °C]) (Popp et al., 2017;
IPCC, 2023) at the end of the century relative to 1850–1900.
Secondly, the SSP3–RCP7.0 pathway describes a world with
a growing population and regions focused on internal en-
ergy and food security issues, with hardly any cooperation
due to regional rivalry. Land-use change is no further regu-
lated compared with existing policies, the trade of agricul-
tural commodities is reduced, livestock products dominate
diets, and food waste is high. RCP7.0 represents a medium
to high-end emissions pathway, with a warming increase
of +3.6 °C ([+2.8 °C, +4.6 °C]) (Popp et al., 2017; IPCC,

2023). The third, SSP5–RCP8.5, displays a globalized econ-
omy developed and driven by fossil fuels exploitation and
international trade. Regarding land use, no additional protec-
tion policies are considered, and, as for SSP3, diets based
on livestock products and high waste dominate. For RCP8.5,
a high warming scenario, a +4.4 °C ([+3.3 °C, +5.7 °C])
global mean surface temperature increase compared with
pre-industrial levels is expected at the end of the century
(Popp et al., 2017; IPCC, 2023). Specific details about how
the narratives were incorporated into the different land-use
models can be found in Table A1 of the Appendix.

Each simulation utilized biophysical data that captured the
impacts of the different climate change pathways (RCPs)
on cropland and pasture yields, water demand and avail-
ability, and carbon stocks–changes in carbon stock data ap-
plied to natural vegetation and planted forests. The impact
data were derived from internal (IMAGE) or external (MAg-
PIE) LPJmL computations and were generated using five
GCMs: GFDL-ESM4 (Dunne et al., 2020), IPSL-CM6A-LR
(Boucher et al., 2020), MPI-ESM1-2 (Müller et al., 2018),
MRI-ESM2-0 (Yukimoto et al., 2019), and UKESM1-0-LL
(Sellar et al., 2019) (see Fig. 1 for a graphical depiction of
the modeling workflow). These GCMs were selected based
on the completeness of their data across all ISIMIP sectors,
their performance during the historical period, and their rep-
resentation of key processes, among other criteria (Lange,
2021).

Although the three main scenarios are the focus of this
work, four counterfactuals were generated for the ISIMIP3b
phase. Three corresponded to projections based on the SSP
trajectories without climate impacts (SSPx-NoAdapt). In
these scenarios, socio-economic development trajectories
were considered; however, biophysical constraints impacted
by climate change (yields, water demand and availability,
and soil and natural vegetation organic carbon) remained at
2015 values during the projections’ horizon (2015–2100).
The fourth counterfactual corresponded to a sensitivity ex-
periment including SSP5–RCP8.5 forcing effects without
CO2 fertilization (SSP5-2015CO2) based on impact data de-
rived using the GFDL-ESM4 GCM. A brief analysis of these
scenarios can be found in Appendix D1.

2.3 Harmonization

A harmonization step was carried out in ISIMIP3b to facil-
itate a continuous transition between reconstructed gridded
historical land use and the projected land-use and agricul-
tural management patterns generated by the LUMs. The last
historical year was 2015. This step also ensured a consistent
format for the land-use data across all models.

The harmonization was done following the Land-Use Har-
monization (LUH2) methodology (Hurtt et al., 2020) de-
veloped for the CMIP6 scenarios and used previously for
ISIMIP2b (Frieler et al., 2017). This step was essential due
to the variations observed in the definitions (e.g., criteria for
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Figure 1. Modeling workflow. The flow diagram depicts the modeling workflow starting with the global climate models, which feed the
crop, natural vegetation, and hydrology models. In turn, these models generate the input data used by the land-use models (LUMs) together
with the multi-region and sector model data used to build the assumptions and constraints of the different SSPx–RCPy scenarios. Black
boxes represent processes (decision of scenarios and post-processing tests and steps), the purple represents the multi-region and multi-sector
models, the gray the climate models, the green the crop/natural vegetation/hydrology models, and the light brown the land-use models. The
dotted line represents the data transfer among models.

distinguishing forest and other types of natural vegetation),
resolutions, processes parameterization, and input sources
among the different LUMs. Specifics of the harmonization
can be found in Appendix C2.

2.4 Statistical analysis

2.4.1 Aggregation of raw data

For the present study, the harmonized data were then aggre-
gated from 0.25°× 0.25° to the global, the five world re-
gions, or 0.5°× 0.5° resolutions. The land-use types (crop-
land, grasslands, forest, other natural vegetation, and second-
generation bioenergy crop areas), which were reported as
fractional patterns (fraction of a grid cell) in the harmonized
ensemble of projections, were multiplied by the size of each
grid cell and then aggregated based on the respective map-
pings. For fertilizer use, reported in kilograms per hectare
per crop type on the grid level, the value at the different reso-
lutions was calculated by multiplying each grid-cell value by
the fraction of the specific crop type and the grid-cell area.
These values were then aggregated to the specific resolution
using the respective mappings.

For the global and regional trend analyses, the average per
SSPx–RCPy and LUM was calculated using the simulations
based on the five different GCMs.

2.4.2 Grid-level mean and coefficient of variation

To evaluate the resulting 0.5°× 0.5° projections by the dif-
ferent LUMs and their uncertainty, the mean and coefficient
of variation (CV) were calculated per grid cell. For this pur-
pose, the mean value, per scenario (SSPx–RCPy), of the
land-use types and management variables was calculated for
each grid cell, considering the simulations based on the two
LUMs and the five different GCMs. The mean per grid cell
was then based on 10 simulations (2 LUMs× 5 GCMs) for
each SSPx–RCPy scenario.

Similarly, to evaluate the dispersion among the
LUM×GCM patterns per grid cell with a standard-
ized measure, the coefficient of variation (CV, Eq. 1)
was calculated for each scenario using 10 simulations
(2 LUMs× 5 GCMs).

CVj =
σj

µj
, (1)

where the index j represents a grid cell, σ the standard devia-
tion, and µ the mean among the 10 simulations. The CV was
selected to ensure that grid cells with very different values of
the analyzed variable were comparable.

Once the mean and the CV were calculated per grid cell,
the cells were grouped per region, socioeconomic–climate
scenario, and analyzed variables. The median and spread of
the grouped cells for both indicators (mean and CV) were
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Figure 2. Global harmonized data from two different land-use models (LUMs) for the ISIMIP (3b) round under three socioeconomic–climate
scenarios (SSP1–RCP2.6, SSP3–RCP7.0, and SSP5–RCP8.5) and three impact types (RCP, NoAdapt, and 2015CO2 for SSP5). Panel (a)
shows the harmonized projections for five different land-use type areas (cropland, grassland, forest, other natural vegetation, and urban area)
in units of million hectares (mio. ha), and panel (b) shows harmonized projections for two different management-related variables: synthetic
nitrogen fertilizer use (fertilizer) in million kilograms (mio. kg) and irrigated cropland (irrigation) in units of mio. ha. Additionally, it reports
the area used for second-generation bioenergy crops (bioenergy crops) in mio. ha. The lines in green and blue correspond to the average
of the projections of each LUM based on impact data derived from five GCMs. The ribbon represents the upper and lower projections per
LUM of the impact data derived from five GCMs. The dashed line represents the counterfactual where no climate impact is considered
(SSPx-NoAdapt), and the dotted line is the counterfactual where CO2 fertilization is not included (SSP5-2015CO2) in the yield projections
used by the LUMs (only available for SSP5–RCP8.5). The orange line depicts LUH2 future projections for CMIP6 global climate model
simulations. Finally, the circular orange dots are the LUH2 historical values to which the ISIMIP3b projections were harmonized.
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Figure 3. Land-use change projections per region under the three socioeconomic–climate scenarios (SSP1–RCP2.6, SSP3–RCP7.0, and
SSP5–RCP8.5). (a) The difference in 2050 compared with 2015 of cropland (pink), grassland (orange), forest (light green), other natural
vegetation (blue), and urban area (dark green) in million of hectares (mio. ha) and (b) the difference in the year 2100 compared with 2015
based on harmonized LUMs future projections. Bars represent the average value of LUM projections under impacts based on five GCMs,
and the extremes of the error bars are the minimum and maximum values of the LUM-specific ensemble.
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then analyzed and depicted in box plots to identify regions
where the different variables had larger or smaller values per
grid cell, areas with large allocation of the variables, and un-
certainty hotspots.

2.4.3 Variance analysis

Similar to previous studies (e.g., Nishina et al., 2015; Hat-
termann et al., 2018; Vetter et al., 2015), a multi-factor vari-
ance analysis was performed at the global, regional, and grid
scales to decompose the sources of variation in the variables
of this study (land-use types, second-generation bioenergy
cropland area, synthetic nitrogen fertilizer use, and irrigated
cropland).

This analysis aims to evaluate the level of agreement
among LUMs informing about the primary sources of vari-
ation of the land-use and land-use-related projections of
ISIMIP3b on different scales. In other words, this analysis is
used to identify the locations and variables where variations
can be explained by the differences among the scenarios’ as-
sumptions rather than by differences among land-use model
dynamics, impact data, or their interactions. Given the level
of detail reported by the land-use models, we focus on the
factors corresponding to the categorical variables available.
Our central assumption is that the primary sources of vari-
ance in the data stem from (1) distinctions among scenario
trajectories; (2) differences in the processes, inputs, and mod-
eling approaches of the various land-use models; and (3) un-
certainties in the GCMs used to generate the impact data. In-
corporating additional variables would require re-running the
models and conducting further tests. However, as the primary
aim of this study is to evaluate data presented rather than
to, e.g., comprehensively analyze differences among land-
use models, such tests fall outside the scope of this work.
Schmitz et al. (2014) and Nelson et al. (2014) delve more
deeply into differences among land-use models. Table A2 in
the Appendix provides additional information on initial in-
puts and model processes relevant for calculating the land-
use types and management variables.

Then, first, three factors were considered: the land-use
model (LUM) factor with two levels (IMAGE and MAG-
PIE); secondly, the global climate model (GCM) factor with
five levels (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2,
MRI-ESM2-0, and UKESM1-0-LL); and thirdly the Sce-
nario factor with three levels (SSP1–RCP2.6, SSP3–RCP7.0,
and SSP5–RCP8.5).

The total sum of squares, which represents the total varia-
tion of the set, can be denoted as the individual factors’ sum
of squares plus the sum of squares of the residual (Eq. 2).

SStotal,v,t = SSLUM,v,t +SSGCM,v,t +SSSce,v,t +SSInt, (2)

where “SS” indicates the sum of squares, and the indexes “to-
tal” the overall sum of squares, “LUM” the SS explained by
the LUMs, “GCM” by the GCM-based impact data, “Sce”

by the Scenario, and “Int” the interactions among factors. Fi-
nally, the indexes v denote the land-use variable and t the
time step under consideration. The fraction of the variation
each factor explains was then calculated by dividing the in-
dividual factors’ SS by SStotal. On the grid scale, the variance
analysis was performed on each cell.

The residual term – SSInt in Eq. (2) – represents the por-
tion of variance the independent variables (GCMs, RCPs,
LUMs) cannot explain. This interpretation, where residuals
are equivalent to the interactions, is particular to this type of
study due to the deterministic nature of our data (the LUM
models are deterministic). Since the total (SStotal,v,t ) and fac-
tors’ variance (SSLUM,v,t+SSGCM,v,t+SSSce,v,t ) can be de-
rived from the data, the factor that reflects the effect of the
interactions SSInt can be calculated as the difference between
the total and the factor’s variance. This component captures
the non-additive or nonlinear contributions to the variance.

Similarly, an additional variance analysis was performed,
including the harmonization factor, to elucidate the locations
where the effect of harmonization was strongest on the spa-
tially explicit level. The unharmonized LUMs’ outputs were
used together with the harmonized. This means an additional
factor (Harm) with two levels (harmonized and unharmo-
nized) was added to Eq. (2):

SStotal,v,t = SSLUM,v,t +SSGCM,v,t +SSExp,v,t

+SSHarm,v,t +SSInt. (3)

We performed the variance analyses using the anova()
function of the rstatix package of the R software (R Core
Team, 2021).

2.5 Land-Use Harmonization 2 – CMIP6 data set
(LUH2)

To evaluate differences among the LUM’s outputs for the
ISIMIP 3b round with existing land-use and land-use-
management-related projections, we used the Land-Use Har-
monization 2 (LUH2) data set developed by Hurtt et al.
(2019) and used for CMIP6, which comprises the years from
2015–2100.

Using this data set offers multiple advantages, includ-
ing the same format and similar historical trends to which
the ISIMIP 3b-LUM’s projections are harmonized, the same
land-use and land-use-management variables as the ones
generated by the LUMs, and the three climate–human forc-
ings evaluated in this study. The LUH2 projections include
eight SSPx–RCPy combinations derived from five different
Integrated Assessment Models (IAMs). Each SSPx–RCPy
land-use projection reported is based on one IAM. Specifi-
cally, the SSP1–RCP2.6 LUH2 projection was based on the
IMAGE 3.0 modeling framework, the SSP3–RCP7.0 on the
Asia-Pacific Integrated assessment Model/Computable Gen-
eral Equilibrium mode (AIM/CGE) coupled with a land allo-
cation model (Fujimori et al., 2012, 2014, 2017; Hasegawa
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et al., 2017), and the SSP5–RCP8.5 on the REMIND–
MAgPIE integrated assessment modeling framework.

LUH2 data used for CMIP6 differ from the ISIMIP3b data
in that they do not account for CO2 fertilization. In crop
models such as LPJmL, CO2 fertilization has a positive ef-
fect in some crops (yield growth), leading, e.g., to lower re-
quired cropland areas to achieve the same production lev-
els. Additionally, LUH2 used for CMIP6 combines outputs
from multiple land-use models for different scenarios, intro-
ducing variability in dynamics based on the models used. In
contrast, for ISIMIP3b, each land-use model simulated each
SSP–RCP combination covered in this study. Another key
difference lies in the inputs of the LUH2 harmonization algo-
rithm, as the historical data sets used in ISIMIP3b have been
updated compared to those in LUH2 for CMIP6. Addition-
ally, a new representation of protected lands to better match
the IAM assumptions was included, affecting patterns related
to natural vegetation. There are also notable differences in
the versions of the models employed. For MAgPIE, the ver-
sion used for CMIP6 simulations was 3.0, while ISIMIP3b
utilized version 4.4.0. The latter (starting from MAgPIE 4.0)
introduces several enhancements, most notably, a food de-
mand model that accounts for detailed dietary composition,
food waste, and demographic characteristics. MAgPIE’s cur-
rent version also improves spatially explicit outputs by incor-
porating the accounting of capital stocks and their deprecia-
tion and a more detailed representation of the forestry sector.
Similarly, for IMAGE, the version used for ISIMIP3b was
3.3, whereas version 3.0 was used for LUH2. IMAGE 3.3 in-
cludes more crop categories and advancements in bioenergy,
deforestation, land-based mitigation, and water use model-
ing.

3 Results

3.1 Global and regional harmonized projections

3.1.1 Land-use dynamics

On the global scale, harmonized land-use projections of the
LUMs agree on the direction and rate of change for the differ-
ent land-use types in SSP1–RCP2.6 (Fig. 2a) over the model-
ing time horizon, with the largest land-use changes occurring
in grasslands. However, although the LUMs agree with the
direction of change in most of the land-use types for the dif-
ferent regions in 2050 in SSP1–RCP2.6, there are disagree-
ments in cropland in Latin America (LAM) and other natural
vegetation in the Middle East and Africa (MAF) (Fig. 3a). In
2100, LUMs also agree with the direction of change for most
land-use types, except for cropland in LAM (Fig. 3b).

In SSP3-7.0 and SSP5-8.5, projections show different
trends among LUMs and land-use types on the global and
regional aggregation levels, most notably for grasslands.
Specifically, there is a higher demand for grasslands in IM-
AGE compared with MAgPIE during the analysis time hori-

zon (Fig. 2a). In SSP3–RCP7.0, IMAGE’s grasslands grow
globally, mostly in LAM and MAF, compared with 2015 val-
ues, while for MAgPIE grasslands decrease, with most re-
ductions occurring in the OECD countries, LAM, and the
Asian countries excluding those that were part of the former
USSR (ASIA).

Concerning cropland, for SSP1–RCP2.6, ISIMIP3b’s pro-
jections for both LUMs display expansion until the mid-
century compared to 2015 and then a decrease. This decline
in cropland is likely associated with a decrease in popula-
tion and a change to more sustainable diets in SSP1–RCP2.6,
which reduces the demand for agricultural commodities for
food and feed (Popp et al., 2017). For SSP3-7.0 and SSP5-
8.5, although both LUMs estimate that cropland expands,
projections differ in terms of the size of the increase after
2050. Under SSP3–RCP7.0, MAgPIE projects larger crop-
land expansion than IMAGE. LUMs agree, however, that
this expansion would occur mostly in MAF. In SSP5-8.5,
cropland projections at the global scale almost overlap for
both LUMs throughout the century. The LUMs also agree
that MAF, ASIA, and LAM experience the highest growth in
cropland and that the reforming economies that used to be
part of the USSR (REF) undergo a slight decrease in 2050
and 2100 compared with 2015.

Regarding forest (primary and secondary) and other natu-
ral vegetation, an increase is expected in SSP1–RCP2.6 by
the two models. In contrast, LUMs agree that forests and
other natural vegetation areas steadily decline globally under
SSP3-7.0, especially in LAM, MAF, and ASIA. However,
there is a broad difference between LUM trends in SSP5-
8.5’s forest and other natural vegetation projections on the
global scale. While those land-use types stagnate after 2015
in MAgPIE, there is a large decline in forest and natural vege-
tation for IMAGE, mostly in MAF and LAM, related to com-
petition for grasslands in this scenario in the affected regions.

Urban land projections between IMAGE and MAgPIE
projections across different SSPx–RCPy are virtually the
same because this land type is an exogenous parameter in
MAgPIE, derived from the last LUH2 data set, which is
based on IMAGE’s LUH2 projections for CMIP6 for urban
land.

3.1.2 Land-use-management variables

Regarding land-use-management variables (second-
generation bioenergy crop areas, nitrogen fertilizer use,
and irrigated land), LUMs generally agree on the trends in
SSP1–RCP2.6. However, although both LUMs project a
peak of crop area destined for second-generation bioenergy
crops around 2090 (Fig. 2b) for SSP1–RCP2.6, the rate of
increase is different for the LUMs, starting in 2050, and
leads to the largest difference in the year 2075. In MAgPIE
projections, the increase of the second-generation bioenergy
cropland area occurs primarily in the ASIA and REF regions,
while in IMAGE projections, most of the bioenergy crop
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area is supplied by OECD countries and MAF (Fig. B2
in the Appendix). These differences among LUMs likely
relate to the models’ bioenergy crop yield proxies, regional
demand for bioenergy, emissions reduction potential, al-
location algorithms, or trading patterns. In SSP3–RCP7.0,
IMAGE projections display a bigger growth than MAGPIE
for second-generation bioenergy crops until 2050, while
MAgPIE estimates become larger than IMAGE’s after 2075.
On the regional scale, the LUMs agree that the ASIA region
displays the largest area destined for second-generation
bioenergy crops in 2100 under SSP3–RCP7.0. In SSP5–
RCP8.5, global second-generation bioenergy cropland grows
steadily for both LUMs. However, after 2060, the growth
rate becomes higher in the MAgPIE projections.

Substantial differences emerge after 2065 for fertilizer in
SSP1–RCP2.6, related to a reduction in cropland in MAg-
PIE in this period. In SSP1–RCP2.6, on the regional scale,
IMAGE estimates higher fertilizer use than MAgPIE except
for the OECD region throughout the century, and both LUMs
agree that ASIA has the highest fertilizer application over
the modeling time horizon. Both LUMs show increased syn-
thetic nitrogen fertilizer use in the SSP3-7.0 scenario, with
MAgPIE global fertilizer use projections growing steeper
than IMAGE’s. Regionally, the distribution of the fertilizer
use increase differs among the LUMs, but it is mostly con-
centrated in the MAF, OECD, and ASIA regions. In SSP5–
RCP8.5, fertilizer application increases for both LUMs until
2065, with a higher growth rate for MAgPIE. However, af-
ter 2065, MAgPIE’s fertilizer use projections decrease while
IMAGE’s steadily increase. Under SSP5–RCP8.5, the largest
difference among estimations occurs in 2050.

Similar to the fertilizer use patterns in SSP1–RCP2.6,
MAgPIE projects higher reductions in projected irrigated ar-
eas, following the decrease in cropland in the second half of
the century. In SSP3–RCP7.0 and SSP5–RCP8.5, irrigation
global and regional trends among LUMs are similar to those
in the low-emission scenario. In SSP3–RCP7.0, IMAGE’s ir-
rigated land is larger than MAgPIE projections, and in SSP5–
RCP8.5, MAgPIE’s global irrigated land projections decline
slightly after 2070, opposite to IMAGE’s behavior.

3.1.3 Differences between LUM’s ISIMIP3b projections
and LUH2-CMIP6

To assess how ISIMIP3b projections differ from existing es-
timates up to the generation of ISIMIP3b’s land-use data, we
compared aggregated global dynamics with the LUH2 data
set of projections used for CMIP6 simulations (Hurtt et al.,
2019).

In SSP1–RCP2.6, ISIMIP3b harmonized projections show
a larger reduction of grasslands globally than in the LUH2
data set, especially after 2050. Regarding cropland, opposite
to ISIMIP3b projections, LUH2 projections decrease until
2050 compared to 2015 and then increase. The different dy-
namics in cropland and grasslands lead to a larger increase

in forest area than previously reported in LUH2, most no-
tably after the second half of the century (Fig. 2a). As for
the global second-generation bioenergy cropland area un-
der SSP1–RCP2.6, estimates are considerably lower in the
ISIMIP3b projections than in LUH2. For example, in 2090,
IMAGE’s ISIMIP3b projections in SSP1–RCP2.6 are only a
third of LUH2’s. This drop in demand for second-generation
bioenergy crops is related to changes in the mitigation as-
sumptions of SSP1–RCP2.6, which involves updated impacts
on yields. Fertilizer-use trends seem similar between LUH2
and IMAGE’s ISIMIP3b projections. Finally, projected irri-
gated cropland areas start differing more strongly between
LUMs and LUH2 after 2050, with MAgPIE projections be-
ing considerably higher than those of LUH2.

Compared to ISIMIP3b’s SSP5–RCP8.5 and SSP3–
RCP7.0 socioeconomic–climate scenarios, LUH2’s land-use
projections fall between the range of outputs reported by the
LUMs for the different land-use types. Regarding land-use-
management variables, second-generation bioenergy crop-
land peaks around 2070 in LUH2 projections in SPP5-
RCP8.5 and SSP3–RCP7.0. ISIMIP3b global average pro-
jections grow steadily, with a slightly steeper rate for SSP5–
RCP8.5. The growing rates of ISIMIP3b projections in these
socioeconomic–climate scenarios are notably flatter, with
no peak than the LUH2 data set, showing lower demand
for cropland areas destined for second-generation bioenergy
crops in ISIMIP3b. Concerning synthetic nitrogen fertilizer
use in SSP5–RCP8.5 and SSP3–RCP7.0, ISIMIP3b projec-
tions, especially MAgPIE’s, show higher values than LUH2,
which could be related to a slightly higher cropland area in
ISIMIP3b’s MAgPIE estimates. Finally, for irrigated land,
the trends are completely distinct in SSP3–RCP7.0 among
the ISIMIP3b and LUH2 projections. For SSP5–RCP8.5,
LUM projections show a smaller irrigated area during the
time horizon than LUH2.

3.2 Spatially explicit intercomparison and uncertainty
hotspots

3.2.1 Cropland

In the grid-cell level analysis across LUM×GCM per sce-
nario, ASIA displays the highest median value of cropland
per grid cell (Figs. 4 and B4 in the Appendix). In contrast,
REF displays the lowest in 2050 in all scenarios, similar to
2015’s regional cropland distribution (see Fig. B3 in the Ap-
pendix). Regarding scenario differences, SSP3–RCP7.0 dis-
plays a larger median than the other two scenarios in ASIA.
In other regions, such as LAM, MAF, or the OECD, SSP3–
RCP8.5, and SSP5–RCP8.5 have similar values of median
cropland areas per grid cell in 2050. In 2100, ASIA remains
the region with the highest median allocation of cropland per
grid cell only for SSP1–RCP2.6, while MAF becomes the
region with the highest median for the SSP5–RCP8.5 and
SSP3–RCP7.0, the SSP3–RCP7.0 median value being larger
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than that of SSP5–RCP8.5. In 2100, although the SSP5–
RCP8.5 assumes a population reduction in the second half of
the century and, consequently, demand for agricultural prod-
ucts, SSP1–RCP2.6 remains, in all regions, as the scenario
with the lowest median.

Appendix B5 includes maps of land-use types in 2015
(LUH2 values) and average values per grid cell across
LUMs×GCMs for each socioeconomic–climate scenario in
2050 and 2100 (Fig. B7).

Regarding the distribution of the coefficient of variation
per grid cell across LUMs×GCMs and within the regions,
MAF shows the largest median value in 2050 in all sce-
narios (Fig. 4c). In 2100, REF has the largest median CV
for SSP1–RCP2.6 and SSP5–RCP8.5 and MAF for SSP3–
RCP7.0. REF’s behavior is related to its small average alloca-
tion of cropland per grid cell, while MAF’s is due to different
allocation dynamics among LUMs. Although cropland area
demand is the lowest in all regions in SSP1–RCP2.6, com-
pared to other scenarios, the median CV per region and grid
cell is larger than in other socioeconomic–climate scenarios
and increases between 2050 and 2100. Despite similar trends
in projections from LUMs on the aggregated level (global
and regional) in SSP1–RCP2.6, the large CV in this scenario
indicates major differences in allocation and impact distribu-
tion between the LUMs on the grid level.

Additionally, it can also be observed that in highly con-
centrated cropland areas, the coefficient of variation is lower
than in more dispersed cropland areas for all scenarios, which
holds for the other land-use types. This behavior can be seen,
e.g., in India in Figs. 5a and 6a, one of the largest crop pro-
ducers in ASIA and the world (Food and Agriculture Or-
ganization of the United Nations, 2024). Finally, although
cropland uncertainty hotspots vary for the different scenar-
ios, east Africa, Australia, and central Asia consistently dis-
play high coefficients of variation in the cropland area for
the three SSPx–RCPy scenarios across LUMs×GCMs and
years (Fig. B8 in the Appendix).

Figure B8 in the Appendix provides a visual global repre-
sentation of the coefficient of variation per grid cell based on
LUM×GCM simulations and for each SSPx–RCPy in 2050
and 2100.

3.2.2 Forests

In 2050 and 2100, the median forest area per grid cell is
highest under SSP1–RCP2.6 compared to SSP3–RCP7.0 and
SSP5–RCP8.5 and increases over time (Fig. 4 and B4 of
the Appendix), reflecting the protection policies associated
with the SSP1–RCP2.6 narrative. Specifically, LAM (Ama-
zon rainforest, Fig. 5b), followed by ASIA (southeast Asian
rainforests), has the largest median forest area per grid cell in
all socioeconomic–climate scenarios. Conversely, MAF has
the lowest median forest area per grid cell (close to zero) and
the highest median coefficient of variation across all regions

and scenarios. Uncertainty is particularly high in the African
tropical rainforests (ATRs) and the SSP3–RCP7.0 scenario.

3.2.3 Grassland

While MAF continues to have the highest median grassland
area per grid cell in all regions under SSP1–RCP2.6 in 2050
compared to 2015, a shift to LAM is observed in SSP3–
RCP7.0 and SSP5–RCP8.5. This shift results in a higher me-
dian grassland area per grid cell in LAM compared to other
regions across all scenarios by 2100.

Among the scenarios, SSP1–RCP2.6 has the lowest me-
dian grassland area per grid cell across all regions in 2050
and 2100. Although in SSP1–RCP2.6, global and regional
aggregated LUM×GCM projections agree with a reduction
in grasslands and in the rate of change, the median CV per
grid cell is the largest in all regions. This suggests differ-
ences among LUMs in the locations where grasslands could
be reduced under sustainable scenarios for afforestation or
reforestation, exemplified by the fact that in SSP1–RCP2.6,
northern hemispheric boreal forests and the Amazon rainfor-
est are hotspots of uncertainty for grasslands. The median
grassland area and coefficient of variation per grid cell are
similar between SSP3–RCP7.0 and SSP5–RCP8.5 in most
regions in 2050 and 2100, with slight differences in the MAF
and OECD regions (Figs. 4 and B4). Hot spots of uncertainty
include central and east Europe (Figs. 5c and 6c).

3.2.4 Other natural vegetation

Due to the extensive size and the difficulty of converting the
Sahara subregion to other land uses, MAF consistently shows
the largest median area of other natural vegetation per grid
cell across all regions, scenarios, and years. In the SSP1–
RCP2.6 scenario, the median area of other natural vegetation
is higher than that of other socioeconomic–climate scenar-
ios and increases over time. This trend is observed in MAF
and other regions as well. In contrast, for SSP3–RCP7.0 and
SSP5–RCP8.5, the median of other natural vegetation area
per grid cell declines over time, with SSP5–RCP8.5 having a
slightly higher median than SSP3–RCP7.0 across all regions.

Regarding the CV, its median is highest in all regions for
SSP3–RCP7.0 over time. For example, southern Africa, a
region with rich and diverse ecosystems, exemplifies this
trend (Figs. 5d and 6d). Key high-uncertainty regions for
the LUM×GCM ensemble include southeast South Amer-
ica, the Sahel, and the east coast of Australia.

3.2.5 Second-generation bioenergy

Second-generation bioenergy crops (Figs. B6, B9-B12) are
generally allocated in concentrated and highly fertile areas
across all scenarios. These areas primarily include the west
coast of Australia, southern Brazil, the Eastern European
Plain (especially in SSP1–RCP2.6), southeast Asia, southern
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Figure 4. Box plot representation of grouped cells per region, variable, and socioeconomic scenarios in 2100. (a) The distribution of average
land-use type area per grid cell and (b) the distribution of second-generation bioenergy crop area (bioenergy crops), synthetic nitrogen
fertilizer use (fertilizer), and irrigated cropland (irrigation). (c) The distribution of the coefficient of variation of land-use type area per grid
cell calculated based on 10 simulations (2 land-use models× impact data based on five global climate models) and (d) the distribution of
the coefficient of variation based on 10 simulations for second-generation bioenergy crop area, synthetic nitrogen fertilizer use, and irrigated
cropland.

China, and west Africa. The SSP1–RCP2.6 scenario has the
largest median second-generation bioenergy crop areas per
grid cell in 2050 and 2100 across regions, corresponding to
the higher demand seen on global and regional levels.

Despite high uncertainty for bioenergy crops (median CV
greater than 1 across all regions over time) (Fig. 4 and B4),
specific allocation sites show high agreement among LUMs.
These sites include parts of the Atlantic forest in southeast
Brazil, southern China and the North China Plain, mainland
southeast Asia (Indo-Burma region), and the west African
forest, which are also biodiversity hotspots (Myers et al.,
2000).

Unlike other land-use variables, LUMs do not include
initial maps of second-generation bioenergy cropland for
the historical period. Thus, differences in allocation among
LUMs arise from the absence of historical data on dedicated
second-generation bioenergy cropland locations and the dis-
tinct allocation rules of each LUM. Both models allocate
bioenergy crops based on biophysical suitability. However,
in MAgPIE, bioenergy crops must compete with other land
uses and crop types. Since REMIND determines regional de-
mand and trade flows, each region must fulfill its require-
ments in the land-use model. In contrast, in IMAGE, crop-
land dedicated to bioenergy is confined to abandoned agri-
cultural lands or, when insufficient, to natural grasslands.
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Figure 5. Mean area calculated per grid cell for different land-use spatially explicit projections and for different areas of interest under
three socioeconomic–climate change scenarios, SSP1–RCP2.6, SSP3–RCP7.0, and SSP5–RCP8.5. (a) Grid cell cropland projections for the
subcontinent of India in units of millions of hectares (mio. ha), (b) the Amazon rainforest, (c) Grassland area in central and east Europe, and
(d) other natural vegetation in southern Africa. The mean was calculated using 10 simulations (two land-use models× impact date based on
five climate models) per SSPx–RCPy.
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3.2.6 Irrigation and synthetic nitrogen fertilizer use

Across all scenarios for 2050 and 2100, irrigated areas
(Figs. B6, B9–12) correspond to historically irrigated loca-
tions. They are primarily located in ASIA along the Ganges
and Indus rivers, along main river basins in China (e.g., Hai
He, Huang rivers), and along the Arvand River in Iran. The
low CV in these regions indicates strong agreement among
the LUMs in all scenarios. The median of projected irri-
gated areas per grid cell is highest in the SSP5–RCP8.5 and
SSP3–RCP7.0 scenarios for both 2050 and 2100, with SSP3–
RCP7.0 showing slightly higher irrigation utilization across
all regions, which could be related to higher cropland area
demand in these scenarios. The median coefficient of varia-
tion per grid cell for the LUM×GCM ensemble is highest in
SSP1–RCP2.6 in most regions, reflecting reduced irrigation
due to lower agricultural commodity demand. High uncer-
tainty areas include northern Europe and Australia (OECD
countries).

While the SSP3–RCP7.0 and SSP5–RCP8.5 scenarios in-
dicate a higher nitrogen fertilizer use per grid cell, China
consistently exhibits the highest usage, followed by India,
the American Corn Belt, and Brazil in all scenarios for 2050
and 2100 (Figs. B9 and B10). Throughout regions, fertilizer
use is lowest under SSP1–RCP2.6 and decreases over time,
resulting in a higher median CV as time progresses. The re-
gions with the largest uncertainty include northern Australia
and east Africa.

3.3 Variance analyses

3.3.1 Global and regional projections

Generally, the variance, measured as the total sum of squares
(Fig. B13 in the Appendix), starts at zero and increases with
time for all variables and regions for the harmonized data
sets. After 2030, the variance analysis shows that the variance
of the different land-use and land-use-management projec-
tions through the century can be explained mainly by the dif-
ferences among the scenarios rather than by the LUMs or the
interactions among factors (Fig. 7) on the global level. The
GCM factor has little or no share in explaining the variance
among projections. GCMs only make a small difference for
irrigation on the global level and for the REF region, where
this factor explains a small share of the variance for cropland
and other natural vegetation until the first half of the century
(Fig. B14 in the Appendix).

Differences in the LUMs largely contribute to variance
in the projections, particularly for other natural vegetation,
forests, and grassland, before 2030, where variance is lower
(Fig. B14). This also holds true globally and in regions such
as ASIA, MAF, and the OECD, even though differences
are small among the scenarios on the global level. This is
in line with the climate and socioeconomic (population, in-
come, diet, and others) assumptions, where the largest differ-
ences start taking place around 2030 and start diverging more

strongly in the second half of the century (Figs. 7 and B13 in
the Appendix) (Popp et al., 2017; Müller et al., 2021).

Scenario differences contribute most significantly to the
overall variance in second-generation bioenergy crop projec-
tions, both globally and regionally, especially in ASIA and
the OECD, around the 2060–2070 period. Afterward, LUMs
and/or the Interactions factor have a higher share of ex-
plaining the variance than the other factors. The differences
among LUM models regarding second-generation bioenergy
projections suggest challenges for long-term bioenergy with
carbon capture and storage (BECCS) and related mitigation
policy on the global and local levels since, under the same
scenario, LUMs display different second-generation demand
and production sites. In the case of fertilizer use, although the
Scenario factor has a higher impact on variance, the shares of
the Interactions (at the global scale and for LAM and MAF)
and LUM (OECD and REF) factors contribution to variance
are individually comparable to those of the Scenario factor.

LUM and Scenario are the two factors that have the highest
influence on variance for grasslands globally throughout the
century. Specifically, differences in LUM dynamics have the
strongest influence until 2050, when the Scenario becomes
the factor with the highest share of the variance. This behav-
ior is similar for the ASIA, the OECD, and MAF regions. For
LAM, LUM explains the variance for grassland until almost
the end of the century.

3.3.2 Grid-level analysis and harmonization effects

By 2100, compared to 2050, the Scenario becomes the factor
with the highest share explaining variance in most grid cells
for cropland, other natural vegetation, and forests (Figs. 8
and B15). Specifically for cropland in high-producing re-
gions within the USA, southeast Asia, and Europe, the vari-
ance per grid cell can be explained to a large extent by the
Scenario factor in 2100, which points toward large differ-
ences among impacts under different climate and socioeco-
nomic pathways in these regions, better agreement between
LUM dynamics, and/or better data availability in these areas.
In the case of forests, the level of agreement among LUMs is
related to the fact that they are large and highly concentrated
(compared to cropland or grassland) and, in the case of nat-
ural vegetation, are hard to convert to other land types (e.g.,
the Saharan desert).

As in the regional and global analyses, the GCM factor can
explain the variance to a greater extent only in a few cells of
the different land-use and land-use-management variables.

For grassland, fertilizer use, irrigation, and especially
second-generation bioenergy crops, the Interactions factor
explains the variance for most grid cells in 2050 and 2100.

The fact that the Interactions factor is significant compared
to the other factors highlights the complexity of the relation-
ships between land-use patterns and the GCMs, LUMs, and
scenarios studied. Equation (2) in the Methods section sim-
plifies highly complex systems, spanning climate, crop, en-
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Figure 6. Coefficient of variation calculated per grid cell for different areas of interest under three socioeconomic–climate change scenarios,
SSP1–RCP2.6, SSP3- RCP7.0, SSP5–RCP8.5. (a) The coefficient of variation calculated for cropland for the subcontinent of India, (b)
forest area in the Amazon rainforest, (c) grassland area in central and northeast Europe, and (d) other natural vegetation in southern Africa.
The coefficient of variation was calculated using 10 simulations (two land-use models× impact data based on five climate models) per
SSPx–RCPy.
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Figure 7. Fraction of variance explained by different factors for the harmonized global land-use and land-use-management projections.
GCM stands for the global climate models used to generate the climate impact inputs used by the land-use models (LUMs). The Scenarios
factor relates to the different SSPx–RCPy scenarios. Finally, the Interactions factor refers to the residual, assumed here as the interactions
between the different factors.

ergy, and land-use models, as the workflow diagram shows
(Fig. 1). Therefore, a significant contribution from the In-
teraction factor highlights the varying sensitivities and com-
plexity of modeling different land-use variables and the ef-
fect that climate impacts and socioeconomic growth assump-
tions have on them.

In the case of irrigation, other factors have the highest
share in a few regions. Particularly regarding the Pampas in
South America, the Scenario factor has the highest contribu-
tion to variance. For grasslands and fertilizer use, the picture
is mixed. In grassland, while in some regions within China,
the Scenario makes the largest difference in variance, in oth-
ers like south Brazil, India, and the USA, LUM differences
have a higher influence. For fertilizer, for a large user such
as China, for example, LUMs and Scenario explain a sim-
ilar number of cells’ variance compared to the Interactions
factor. However, the Scenario factor explains the variance in
most cells in other regions, such as India, the USA, or In-
donesia.

Finally, the effects of harmonization (Fig. 9) on high-
resolution projections are evaluated through an additional
analysis of variance considering high-resolution harmonized
and raw projections (unharmonized projections reported by
the land-use models). Harmonization greatly impacts forest
spatially explicit projections. Specifically for forests in cen-

tral and east Europe and northeast Russia, harmonization has
the largest contribution to variance. One of the primary ex-
planations for the effect of harmonization on forests is the
difference between the LUMs’ reference data sets and LUH2
historical maps used in harmonization, especially in areas
with intermediate tree cover.

Table A2 in the Appendix shows the differences between
the starting or reference maps, the modeling dynamics, and
details regarding definitions among the land-use models for
the different variables here studied. Especially for forests,
definitions (e.g., based on potential standing stock thresh-
olds), inputs or reference data sets, and calculation methods
differ, explaining the large effect of harmonization on forest
patterns. These differences in definitions are not only seen
in the context of LUMs. For example, global forest areas in
2000 ranged between 3600 and 4300 Mha among different
satellite sources and FAO (Ma et al., 2020).

4 Discussion and conclusion

This paper compares and assesses the land-use and land-use-
management projections generated by two land-use models
as direct human forcing input to ISIMIP3b and their uncer-
tainties for multiple spatial resolutions (global, regional, and
0.5°× 0.5°).
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Figure 8. Highest fraction of variance explained by the specific factors for the harmonized spatially explicit land-use and land-use-
management projections in 2100. GCM stands for the global climate models used to generate the climate impact inputs used by the land-use
models (LUMs). Scenario relates to the different SSPx–RCPy. The Interactions factor refers to the residual, assumed here as the interactions
between the different factors. In the maps, the color represents the factor (LUMs, GCMs, Scenario, and Interactions) that explains the highest
share of the variance in each cell, and the opacity (lower values correspond to more transparent colors) depicts the coefficient of variance of
each cell calculated based on 30 simulations (two LUMs×five GCMs× three SSPx–RCPy).

For the SSP1–RCP2.6 scenario, we found that global
trends of different land-use types are very similar across the
LUM×GCM ensemble. However, we found some differ-
ences regarding the regional and local distribution of land-
use change, specifically in cropland for the LAM region. This
is most likely due to a higher demand for bioenergy crops
in this area in MAgPIE compared to IMAGE. For SSP5–
RCP8.5 and SSP3–RCP7.0, global and regional trends dis-
agree regarding the direction of change of grassland area,
which leads to differences in forests and natural vegetation.

A possible explanation for this behavior is the expected in-
crease in livestock products in the SSP5–RCP8.5 and SSP3–
RCP7.0 scenarios. Higher demand for meat and dairy prod-
ucts leads to a greater need for grasslands and crops used as
animal feed. Both models account for the feed mix required
to meet animal energy needs, considering factors like pro-
duction systems types and feed conversion. However, how
these demands and shares of the feed mix are estimated dif-
fers between the models, which can lead to varying projec-
tions for grassland use. On the one hand, in MAgPIE, grass-
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Figure 9. Highest fraction of variance explained by the specific factors for the harmonized and raw spatially explicit land-use and land-
use-management projections in 2100. GCM stands for the global climate models used to generate the climate impact inputs used by the
land-use models (LUMs). Scenario relates to the different SSPx–RCPy. The harmonization factor represents the variance associated with
the harmonized and unharmonized sets. Finally, the Interactions factor refers to the residual, assumed here as the interactions between the
different factors. In the maps, the color represents the factor (LUMs, GCMs, Scenario, and Interactions) that explains the highest share of the
variance in each cell, and the opacity (lower values correspond to more transparent colors) depicts the total sum of squares.

land intensification and reliance on crop-based feed sources
reduce the need for grassland expansion in scenarios with
high demand for livestock products. On the other hand, al-
though IMAGE moves to more intensive livestock systems
as well, the share of grass in the feed mix stays relatively
high – especially in SSP3–RCP6.0 – resulting in a grass-
land expansion. For information on livestock system model-
ing in IMAGE, refer to Bouwman et al. (2005) and Lassaletta
et al. (2019) and for MAgPIE to Weindl et al. (2017b, a).

In this case, LAM is one of the regions most affected by
the disagreement in grassland projections. Latin America is
one of the regions with high economic inequality and bio-
diversity concentration, which could be highly vulnerable to
climate change impacts, and mitigation due to its large po-
tential for re/afforestation and BECCS (Hirata et al., 2024;
Kim and Grafakos, 2019; Calvin et al., 2014; Reyer et al.,
2017). In general, differences in land-use projections are ex-
pected to directly affect the impact models that use these data
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as input. For instance, grasslands are among the ecosystems
with the highest wildfire frequencies (Donovan et al., 2017).
Therefore, uncertainty in LUM×GCM grassland projec-
tions could influence the identification of fire hotspots due
to human-induced effects (Thompson and Calkin, 2011). Un-
certainty propagation stemming from land-use patterns could
also impact, e.g., the calculation of emissions from land-
use transitions (Neuendorf et al., 2021), shifts in biomes
(Alexander et al., 2017), the assessment of ecosystem ser-
vices, habitat intactness, and biodiversity (Yang et al., 2024),
among others.

While both MAgPIE and IMAGE simulate the land-use
system by accounting for future socioeconomic, biogeo-
chemical, and biogeophysical changes, they differ in their
setups. These differences may partly explain discrepancies
in global projections for cropland and grassland areas un-
der some scenarios, as well as the significant influence of
the LUM factor on variance for certain variables at spatially
explicit levels. A key distinction lies in the economic mod-
eling approach. MAgPIE is a partial equilibrium model fo-
cused on the agricultural sector, whereas the IMAGE frame-
work uses the CGE model MAGNET, which accounts for
the entire economy. Additionally, MAgPIE’s cropland allo-
cation is based on minimizing production costs and local
biophysical constraints, while IMAGE’s approach relies on
a constant elasticity of transformation function, which asso-
ciates land supply responsiveness with changes in yields and
prices (Schmitz et al., 2014). Previous studies, e.g., Alexan-
der et al. (2015), have shown that CGE models often project
lower cropland areas. This outcome is likely due to factors
such as input substitutability; interactions between agricul-
ture and other economic sectors; and their effects on prices,
demand, and supply of agricultural commodities and inputs.
Another major difference involves the use of the LPJmL
model. MAgPIE employs LPJmL outputs as exogenous in-
puts, while IMAGE integrates LPJmL dynamically. As Doel-
man et al. (2022) highlighted, the dynamic coupling of crop,
hydrological, and vegetation models can influence estimates,
leading to variations in projected biophysical conditions on
the spatially explicit level under similar scenarios. Finally,
the approach to technological change (TC) is another criti-
cal factor. TC directly impacts yields for cropland and grass-
land, which, in turn, affects land demand and competition,
contributing to variations in land-use projections. For further
details on the key processes modeled in IMAGE and MAg-
PIE, please refer to Tables A1 and A2 in the Appendix.

The difference among LUMs regarding land-use
change and agricultural management for the different
socioeconomic–climate scenarios also highlights the impor-
tance of model and data set development. Due to impacts
and model dynamics updates, regional and national studies
in integrated assessment models (IAMs) are needed as much
as periodical model intercomparison exercises. On the one
hand, for example, LUMs have been used to conduct region-
specific studies. For instance, MAgPIE has performed

assessments focused on China (Wang et al., 2023) and
India (Singh et al., 2023), while IMAGE has examined the
European Union (Veerkamp et al., 2020). These studies have
involved further development and validation of the models’
outputs for these regions. It is important to note that China,
India, and Europe are among the largest producers of agri-
cultural commodities – often referred to as “breadbaskets” –
and have received considerable attention from the scientific
community studying the agricultural and food systems. In
our study, as shown in Fig. B8, B11, and B12, the coefficient
of variance in these regions, particularly for cropland area,
fertilizer use, and irrigation, is relatively low compared to
other areas. This remains true even under scenarios such as
SSP3-7.0 and SSP5-8.5 toward the end of the century. These
findings highlight the importance of expanding research to
less-studied regions and land-use variables. On the other
hand, the identification of uncertainties to better understand
land-use and land-related dynamics on different resolutions
among LUMs is key, e.g., for climate change mitigation
and adaptation decision-making and to reduce, as much as
possible, incompatibility among sustainability targets (e.g.,
growing second-generation bioenergy crops in biodiversity
hotspots).

Regarding second-generation bioenergy crops, we found
an agreement among LUMs regarding the peak period with
the highest crop area for the low-emissions scenario, which
is congruent with mitigation targets. Nonetheless, the peak
size differed between MAgPIE and IMAGE, with MAg-
PIE being almost double that of IMAGE. Previous stud-
ies, as in Popp et al. (2014b), suggest that such differences
among models on the global and regional level can be as-
sociated with bioenergy prices, energy deployment levels
and make-ups, crop yields, assumptions about economic and
technological growth, biomass resources, and sensitivities to
other variables. However, compared to the LUH2 projections
used in CIMIP6, ISIMIP3b MAgPIE’s peak is considerably
lower. This lower needed second-generation bioenergy crop
area than previously calculated in the SSP1–RCP2.6 scenario
could imply lower environmental impacts of bioenergy crop
deployment due to less water consumption, conversion of
land, or soil erosion (Wu et al., 2018; Calvin et al., 2021).

Respecting other land-use types, the larger reduction rate
of grasslands and larger increase rate of forests during the
century than LUH2, in the SSP1–RCP2.6 scenarios could,
for example, impact previous estimations related to water
resources (Shah et al., 2022) and biodiversity indicators
based on species adapted to open (e.g., grasslands) or closed
ecosystems (e.g., forests) (Bond, 2021), among others.

Concerning variance, although input uncertainty increases
as emissions grow (Molina Bacca et al., 2023; Jägermeyr
et al., 2021), there is also high uncertainty in spatially explicit
outputs for the SSP1–RCP2.6 scenario among the LUMs.
This behavior likely occurs due to the LUMs’ different land-
use allocation, intensification dynamics, and interpretation
of socioeconomic development narratives. The shrinkage of
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grassland, forests, or fertilizer use in sustainable develop-
ment scenarios can happen in different regions and socioe-
conomic or ecological contexts, which are interpreted differ-
ently by the LUMs based on the model type, inputs, substitu-
tion elasticities, and assumptions made in processes such as
trade (Schmitz et al., 2014). This supports the importance
of considering local impact studies to complement global
studies for informed decision-making on different govern-
ment and cooperation levels. Particularly, cropland uncer-
tainty hotspots include countries and regions such as east
Africa (Somalia) and central Asia, which are under a critical
food insecurity risk – due to limitations derived from their
geopolitical, socioeconomic, geographical, landscape (e.g.,
delicate ecological systems), and climatic impact contexts,
supporting previous works, which highlights the vulnerabil-
ity of these regions (Su et al., 2024; Boitt et al., 2018).

For the spatially explicit projections of grasslands, forests,
other natural vegetation, and second-generation bioenergy
crops, we identified forest areas such as the African and
Amazon rainforests, boreal forests of the Northern Hemi-
sphere, the Brazilian Atlantic forest, and the Indo-Burma
region as key regions of uncertainty for the LUM×GCM
ensemble. The uncertainty in these areas for multiple land-
use types and second-generation bioenergy crop areas pin-
points the tight link between food demand, biodiversity pro-
tection, and climate impacts (Behnassi et al., 2022). For ex-
ample, given that most mitigation pathways rely heavily on
BECCS (Calvin and Fisher-Vanden, 2017), the uncertainty
and the specific allocation of second-generation bioenergy
cultivation sites could represent challenges for global and lo-
cal mitigation policy-making and biodiversity protection (Hi-
rata et al., 2024). Finally, at the spatially explicit level, Aus-
tralia was an uncertainty hotspot for cropland, natural vege-
tation, second-generation bioenergy, fertilizer use, and irriga-
tion area projections. This result agrees with previous work
from Prestele et al. (2016) that uses a different methodology
and set of projections and where Australia is also a hotspot
of uncertainty for cropland area projections. The LUM factor
explains almost a third of the variance in this case.

Besides modeling dynamics and assumptions, another
source of uncertainty in the high-resolution patterns reflected
in the LUM factor of the variance analysis are the different
downscaling procedures used by the models. Disaggregation
of LUMs outputs to high-resolution levels is critical in de-
termining spatially explicit land-use patterns and could con-
tribute to uncertainty if different algorithms are used. During
the harmonization process, the original gridded data reported
by the LUMs are aggregated to a 2°× 2° resolution and sub-
sequently harmonized and disaggregated to 0.25°× 0.25° us-
ing the approach described in Hurtt et al. (2020). However,
the different algorithms the LUMs use to disaggregate their
outputs introduce uncertainty on where the reduction or ex-
pansion of cropland, or other land types, occurs, affecting
fertilizer and irrigation patterns on the spatially explicit level.

The uncertainties observed in land-use variables at differ-
ent resolutions arise from error propagation throughout the
modeling workflow, as well as from scenario narrative mod-
eling approaches and other factors. These uncertainties high-
light the need for conscientious use of the reported data, care-
fully considering its limitations and assumptions. The ob-
jective of the data is to provide a global overview of land
and agricultural systems and their development under a set
of socioeconomic and climate scenarios based on different
assumptions.

While our study’s primary focus is not to provide di-
rect policy recommendations, it could offer some general in-
sights. For example, our study suggests the need to promote
sustainable grassland management practices and diversified
feed mixes for livestock to balance ecological, environmen-
tal, and economic demands, particularly in regions like LAM
and MAF, where grasslands are projected to grow, especially
under the SSP3–RCP7.0 and SSP5–RCP8.5 scenarios in IM-
AGE’s simulations. Also, building adaptive capacity could
be key to addressing uncertainties in land-use changes and
management projections. It would need to prioritize region-
specific strategies that reconcile agricultural and environ-
mental priorities. Key uncertainty hotspots in our study in-
clude the allocation of cropland in east Africa, central Asia,
and Australia; forest areas in the African tropical rainforest
(ATR); grasslands in central and eastern Europe; and other
natural vegetation in southeast South America, the Sahel, and
the east coast of Australia.

Another key point is the decline of forests and other natu-
ral vegetation in scenarios such as SSP3–RCP7.0 and SSP5–
RCP8.5, especially in LAM, MAF, and ASIA. This empha-
sizes the urgency of prioritizing conservation efforts, moni-
toring, and dedicated policies to safeguard biodiversity-rich
ecosystems.

Likewise, the differences in second-generation bioenergy
crop allocation among models call for tailored regional
strategies that support sustainable bioenergy expansion while
considering local suitability and market demands. Develop-
ing a common framework for bioenergy crop allocation sce-
narios in land-use models (LUMs) could also help reduce
uncertainty and suggest better methods for the sustainable
allocation of bioenergy crops.

Projected increases in fertilizer use, particularly in Asia
(notably China and India), Brazil, and the American Corn
Belt due to their critical roles in food production, highlight
the need for efficient fertilizer management practices. Build-
ing regional capacity to balance food security requirements
while minimizing environmental impacts is essential. Fi-
nally, in the scenario with high agricultural demand (SSP3–
RCP7.0), areas around rivers such as the Ganges, Indus,
Huang, or Arvand rivers consistently appear as critical lo-
cations for irrigated cropland. Strengthening water manage-
ment systems in highly irrigated regions will ensure sustain-
able irrigation practices and support long-term agricultural
productivity.
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In policy and management decision-making contexts,
however, the data presented here should be seen as an
overview of global trends. In other words, it is not intended
to replace targeted assessments and actions specific to, e.g.,
country, local, or regional levels that include contextual re-
quirements and knowledge – including input from commu-
nities and experts – that should be incorporated during the
assessment and planning phases to ensure that proposed ac-
tions align with the actual needs of the stakeholders (Neuen-
dorf et al., 2021).

This study differs from earlier studies because the har-
monized land-use and land-use-management future projec-
tions were based on impact data derived from bias-corrected
CMIP6 climate model estimates, where CO2 was considered
under a standardized set of scenarios and climate models.
Additionally, the analyses comprised cropland, forest, and
grasslands and a set of land-use and land-use-related vari-
ables. However, one of the limitations of our work is that
the analyses were performed using a small set of land-use
models. This set was selected because the impact modeling
teams’ simulation capacities in the ISIMIP framework are
limited and need to consider a wide range of factors other
than land use, such as climate data from a wide range of
GCMs. Yet, despite these limitations, it is noteworthy that
this is the first consistent land-use input data set from differ-
ent LUMs for ISIMIP impact models, while in earlier rounds,
only projections from one LUM were used (Frieler et al.,
2017). Also, using projections from MAgPIE and IMAGE
still gives options for variance assessments since they cover
a large range of possible outcomes under the same scenarios
compared to other land-use models (Stehfest et al., 2019).
However, further analyses to evaluate, e.g., risks related to
biodiversity protection and food security or variance of so-
cioeconomic development–climate impacts on the agricul-
ture, forestry, and other land-use sectors at different scales,
would require a larger set of land-use models. Other limita-
tions include that even though the projections were harmo-
nized to LUH2 historical maps, different assumptions and
inputs related to the SSPx narratives depend on each LUM
team interpretation and sources of inputs, leading to impor-
tant shifts due to harmonization (e.g., in forests in central and
east Europe and northeast Russia). These shifts lead to mis-
matches between the original LUMs’ crop and forest areas,
their yields, and agricultural product demands, which drive
land-use allocation decisions. Thus, future land-use model
intercomparison exercises would greatly benefit from a stan-
dardized set of inputs and/or the interpretation of scenario
narratives.

Our analysis revealed that land-use and land-use-
management projection uncertainty varies across resolutions
and socioeconomic climate scenarios. Since these projec-
tions are crucial for networks such as ISIMIP, AgMIP, and
GGCMI and are fundamental for assessing impacts, attribu-
tion, and decision-making across different scales related to
climate change mitigation and adaptation in multiple sec-
tors and disciplines, further analyses and intercomparisons
at high-resolution levels are necessary. This will enhance our
understanding of the socioeconomic drivers of land-use dy-
namics, the effects of climate-related policies on land use,
and their associated uncertainties.

https://doi.org/10.5194/esd-16-753-2025 Earth Syst. Dynam., 16, 753–801, 2025



774 E. J. Molina Bacca et al.: Future land-use pattern projections and their differences

Appendix A: Appendix tables

Table A1. Assumptions of the different land-use models for different scenarios.

Process IMAGE MAgPIE

Trade Detail of the process→
Scenario ↓

Armington approach Endogenous. Historical patterns of self-sufficiency
until 2015 (FAO). After, trade barriers are relaxed
based on the scenario.

SSP1–RCP2.6 All tariffs are removed Up to 20 % of livestock and secondary products and
30 % of all other traded commodities are freely traded
in 2050, behavior stays until 2100

SSP3–RCP7.0 Trade tariffs are increased by 10 % Up to 5 % of livestock and secondary products and
10 % of all other traded commodities are freely traded
in 2050, behavior stays until 2100

SSP5–RCP8.5 All tariffs are removed Up to 20 % of livestock and secondary products and
30 % of all other traded commodities are freely traded
in 2050, behavior stays until 2100

Diets Detail of the process→
Scenario ↓

Function of population and income Driven by population, income, and demography details

SSP1–RCP2.6 Preference for animal-based products decreased by
30 %

Healthy and low-meat diets, reduced food waste

SSP3–RCP7.0 Preference for animal-based products increased by
30 %

Unhealthy and high-meat-consumption diets, high
shares of food waste

SSP5–RCP8.5 Preference for animal-based products increased by
30 %

Unhealthy and high-meat-consumption diets, high
shares of food waste

Management and
technological progress

Detail of the process→
Scenario ↓

Technological change based on FAO and GDP
projections. Substitution between production functions

Endogenous decisions of irrigated production of crops.
Endogenous intensification of inputs. Different levels
of R&D and irrigation costs

SSP1–RCP2.6 High development and management due to high GDP
growth

Low costs

SSP3–RCP7.0 Low management due to low GDP growth, stagnated
technological development, limited diffusion of
knowledge

High costs

SSP5–RCP8.5 High due to high population growth and strong
technological development

Low costs

Protected areas Detail of the process→
Scenario ↓

Exogenous and based on WDPA Exogenous and based on WDPA

SSP1–RCP2.6 Increase to protection of 30 % of all terrestrial area WDPA and land-use change in line with accomplished
nationally determined contributions (NDCs)

SSP3–RCP7.0 Decrease in protected areas to the areas that are strictly
protected currently

WDPA and land-use change in line with National
policies implemented (NPIs)

SSP5–RCP8.5 All currently protected areas without expansion WDPA and land-use change in line with NPIs

Bioenergy Detail of the process→
Scenario ↓

Endogenously determined by the TIMER energy
model and based on land availability, the food demand
balance, and decarbonization efforts

Based on bioenergy demand from REMIND

SSP1–RCP2.6 Strong increase, mostly second generation after 2040 Growing demand of second-generation bioenergy
peaking around 2070

SSP3–RCP7.0 Continuation of current bioenergy use and modest
uptake of the second generation in the second half of
the century

Sustained growing demand (a lower rate than SSP5)

SSP5–RCP8.5 Continuation of current bioenergy use and modest
uptake of the second generation in the second half of
the century

Sustained growing demand (a lower rate than SSP1)
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Table A2. Details of the models’ input sources and dynamics related to allocation and sizing of land-use types and management.

Variable Model Reference starting point/maps
of the models

General dynamics in the models Details regarding historical
sets/reference starting point

Cropland IMAGE HYDE 0.08°× 0.08°
(5 arcmin)

Crop allocation is driven by regional
production, potential yields, intensity
levels, and spatial suitability factors.
Regional production aims to meet
demand for agricultural commodities
shaped by demographic and income
changes. This process considers input
factors (e.g., labor and land),
technological advancements, and
income and price elasticities, as well as
trade and environmental policies.

The HYDE database is based on FAO,
subnational statistics, and ESA’s land
cover consortium maps. HYDE
allocation rules for this version and
land type include population
density> 0.1 cap km−2, areas with
better soil suitability (according to the
GAEZ FAO IIASA data set), easy
access, and temperatures higher than
0°C.

MAgPIE LUHv2 (based on HYDE 3.2)
0.5°× 0.5°

The model is driven by socioeconomic
changes, such as population growth
and income levels, which shape
demand for agricultural commodities.
Considering trade patterns, crop yields,
and land-use competition, it optimizes
cropland allocation, always aiming to
minimize costs.

Grassland IMAGE HYDE 0.08°× 0.08°
(5 arcmin)

As per crop production, grassland
allocation is determined by regional
requirements, yields, intensity, and
suitability, primarily for livestock feed,
which depends on socioeconomic
changes and policies, production
system types, feed conversion
efficiencies, and animal productivity.

HYDE’s grassland is based on FAO
and subnational statistics and ESA’s
land cover consortium maps.
Allocation rules include removing
urban and cropland areas from grid
cells and information regarding
population density, temperatures
(above −10°C), plant functional types,
and climatic and soil properties.

MAgPIE LUHv2 (based on HYDE 3.2)
0.5°× 0.5°

Pasture area depends on the demand
for biomass from pastures to feed
livestock and the intensity of pasture
utilization (“pasture yield”).

Forest IMAGE LPJmL (endogenously
calculated)

Timber and biomass demand,
conservation and afforestation policies,
land competition, harvest efficiency,
suitability, and carbon pools are the
main determinants of forest allocation
and area. IMAGE considers these
management systems: (1) clear-cutting
followed by natural or assisted
regrowth, (2) selective logging of
(semi) natural forests, and (3) forest
plantations.

Forest extent is based on the potential
biome map from IMAGE selecting all
forest biomes (Stehfest et al., 2014).
Forest growth productivity is
determined by the LPJmL dynamic
vegetation model. Historical patterns of
forestry are determined endogenously
by the model driven by region-based
demand for timber from FAO and a
process-based forestry model (Arets
et al., 2011)

MAgPIE LUHv2 (own map) rescaled to
match FAO country-level data
(FRA 2015)

Forest modeling includes managed,
primary, and secondary forests. The
main feature of managed forests is
afforestation for CDR, based on either
NPI or NDC policies, and timber
production. Drivers of change for
primary and secondary forests, as for
other natural vegetation land, include
land competition, primarily with land
for agricultural uses, area protection,
and emissions policies.

LUHv2 has its own estimation of
natural vegetation. From every grid
cell, cropland, urban, water, and ice
areas are removed, and whatever is left
is assumed to be a natural vegetation
area. Carbon stocks are calculated with
the help of the MIAMI-LU global
terrestrial model, and potential forest
areas are assumed to be those where
aboveground potential standing stocks
are higher than 2 kg C m−2.
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Table A2. Continued.

Variable Model Reference starting point/maps
of the models

General dynamics in the models Details regarding historical
sets/reference starting point

Other IMAGE LPJmL (endogenously
calculated)

Changes in other land are the derivative
from other model dynamics,
predominantly the expansion of
agricultural land as described above.

Other natural land is based on the
potential biome map from IMAGE,
where all non-forest biomes (Stehfest
et al., 2014) are selected, and all
agricultural land-use areas are
subtracted.

MAgPIE LUHv2 0.5°× 0.5° See drivers for primary and secondary
forest above.

See forest details for MAgPIE above.
Other natural vegetation areas are
assumed to be those where
aboveground potential standing stocks
are lower than 2 kg C m−2.

Urban IMAGE HYDE 0.08°× 0.08°
(5 arcmin)

Urban area increases over time is
determined as a function of urban
population (demographic changes) and
a country- and scenario-specific urban
density curve.

HYDE’s built-up area calculation is
based on historical satellite and
country-level data of population and
urban density.

MAgPIE LUHv2 (based on HYDE 3.2)
0.5°× 0.5°

Urban land is an exogenous parameter
based on the LUH2–CMIP6 data set
based on IMAGE’s projections varying
with the SSP narratives.

Bioenergy IMAGE IEA data on country level The TIMER energy model defines
bioenergy demand in IMAGE based on
land supply, biomass productivity,
input costs, and learning dynamics,
which together influence bioenergy
prices. Bioenergy prices are also
influenced by carbon tax prices and
mitigation costs based on
scenario-specific emission targets.

Historical shares of bioenergy are
based on IEA data and allocated
endogenously in the model with a
rule-based approach using land
availability and productivity drivers at
the grid level.

MAgPIE No initial dataset MAgPIE’s bioenergy crop patterns are
based on bioenergy demand
determined by the REMIND model,
based on land supply, biomass
productivity, input costs, and
scenario-specific emission targets and
bioenergy prices.

No initial dataset

Inorganic fertilizer (nitrogen) IMAGE FAO data on country level The IMAGE framework includes a
nutrient model that tracks nutrient
flows (nitrogen and phosphorus)
through wastewater discharges, soil
nutrient budgets, and their
environmental pathways, detailing the
fate of soil nutrient surpluses. Fertilizer
use is linked to crop production,
considering the efficiency of nutrient
uptake by crops.

Synthetic fertilizer use is based on FAO
statistics and is allocated to the crop
level using crop-specific nitrogen
requirements (Beusen et al., 2015).

MAgPIE IFA data on world region The demand for inorganic fertilizers is
based on nitrogen flow balances made
in each time step of the simulation in
cropland and pasture soils using
exogenous uptake efficiencies.

IFA’s inorganic fertilizer use database
includes the most common fertilizers
and industrial products derived from
ammonia (NH3), for which the N
content usually varies from 21 % to
82 %.
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Table A2. Continued.

Variable Model Reference starting
point/maps of the
models

General dynamics in the models Details regarding historical
sets/reference starting point

Irrigated cropland (area actually irrigated) IMAGE HYDE 0.08°× 0.08°
(5 arcmin)

Irrigated area expansion is exogenously
prescribed based on historical trend
extrapolation and scenario-specific
assumptions (Doelman et al., 2018)

HYDE’s area equipped for irrigation
pattern is based on FAO and
subnational statistics (Siebert et al.,
2015 and MIRCA2000). Allocation
rules include that the irrigated area
should be inside cropland areas and
surrounded by enough water
availability (discharge maps). Areas
with low aridity
(precipitation/evapotranspiration)
require more irrigation.

MAgPIE LUHv2 (based on
HYDE 3.2) 0.5°× 0.5°

The model endogenously determines
investments in area equipped for
irrigation (AEI). It considers that
irrigated crop production is limited to
areas with existing infrastructure and
accounts for regional differences in
unit costs per hectare for AEI
expansion. The demand for irrigated
cropland is determined by calculating
cropland requirements based on the
supply of demand for agricultural
commodities and overall cost
production minimization (see above).

Appendix B: Appendix figures

Figure B1. Regions used in the regional analysis. ASIA stands for Asian countries not part of the former USSR, LAM for Latin American
counties, MAF for Middle East and Africa, OECD for the countries that are part of the Organisation for Economic Co-operation and
Development (OECD), and REF for reforming economies that were part of the USSR. These five regions correspond to the so-called SSP
regions, which have been widely used in studies involving climate change and socioeconomic development.
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Figure B2. Regional projections of land-use-management-related variables from different land-use models and for different climate and
human forcings. (a) Second-generation bioenergy crops in units of million hectares, (b) nitrogen fertilizer use in million kilograms, and
(c) irrigated crop area in units of million hectares. The lines in green and blue correspond to the average of the projections of each LUM,
based on impact data derived from five GCMs under the scenario under consideration for the three SSPx–RCPy climate–human forcings
(SSP1–RCP2.6, SSP3–RCP7.0, and SSP5–RCP8.5). The ribbon represents the upper and lower projections per LUM of the impact data
derived from five GCMs. The dashed line represents the counterfactual scenario where no climate impact is considered (SSPx-NoAdapt),
and the dotted line is a scenario where CO2 fertilization is not included (SSP5-2015CO2) in the yield projections used by the LUMs (only
available for SSP5–RCP8.5).
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Figure B3. Box plot representation of grouped cells per region and variable in 2015. (a) The distribution of the land-use types and (b) that
of second-generation bioenergy crop area, synthetic nitrogen fertilizer use, and irrigated cropland. In the box plots, the thicker horizontal
line (usually close to the middle of the box) represents the median; the upper and lower sides of the box the upper and lower quartiles,
respectively; and the top of the vertical lines the upper quartile plus 1.5 times the interquartile range.
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Figure B4. Box plot representation of grouped cells per region, variable, and SSPx–RCPy in 2050. On the one hand, panel (a) displays the
distribution of average land-use type area per grid cell and panel (b) that of the second-generation bioenergy crop area, synthetic nitrogen
fertilizer use, and irrigated cropland. On the other hand, (c) shows the distribution of the coefficient of variation of land-use type area per
grid cell calculated based on 10 simulations (2 land-use models× impact data based on five global climate models) and (d) that of second-
generation bioenergy crop area, synthetic nitrogen fertilizer use, and irrigated cropland. In the box plots, the thicker horizontal line (usually
close to the middle of the box) represents the median; the upper and lower sides of the box the upper and lower quartiles, respectively; and
the upper extreme of the vertical lines on the upper side of the box the upper quartile plus 1.5 times the interquartile range, while the lower
extremes of the vertical lines on the bottom side of the box the lower quartile minus 1.5 times the interquartile range.
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Figure B5. Historical land-use map (2015) to which the LUM projections were harmonized.
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Figure B6. Historical second-generation, synthetic nitrogen fertilizer use, and irrigated cropland areas (2015) to which the LUM projections
were harmonized.
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Figure B7. Grid-level average of land-use types for the LUM–GCM ensemble under three socioeconomic and climate scenarios. (a) The
year 2050 and (b) the year 2100.
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Figure B8. Grid-level coefficient of variation of the different land-use types for the LUM–GCM ensemble under three socioeconomic and
climate scenarios. (a) The year 2050 and (b) the year 2100.
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Figure B9. Grid-level average of agricultural management variables for the LUM–GCM ensemble under three socioeconomic and climate
scenarios in 2050.
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Figure B10. Grid-level average of agricultural management variables for the LUM–GCM ensemble under three socioeconomic and climate
scenarios in 2100.
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Figure B11. Grid-level coefficient of variation of agricultural management variables for the LUM–GCM ensemble under three socioeco-
nomic and climate scenarios in 2050.
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Figure B12. Grid-level coefficient of variation of agricultural management variables for the LUM–GCM ensemble under three socioeco-
nomic and climate scenarios in 2100.
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Figure B13.
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Figure B13. Total regional variance based on four factors represented as the total sum of squares.
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Figure B14.
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Figure B14. Fraction of variance explained by the specific factors for the harmonized regional land-use and land-use-management projec-
tions. GCM stands for the global climate models used to generate the climate impact inputs used by the land-use models (LUMs). Scenario
relates to the different SSPx–RCPy. Finally, the Interactions factor refers to the residual, assumed here as the interactions between the
different factors.
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Figure B15. Highest fraction of variance explained by the specific factors for the harmonized spatially explicit land-use and land-use-
management projections in 2050. GCM stands for the global climate models used to generate the climate impact inputs used by the land-use
models (LUMs). Scenario relates to the different SSPx–RCPy. Finally, the Interactions factor refers to the residual, assumed here as the
interactions between the different factors. In the maps, the color represents the factor (LUMs, GCMs, Scenario, and Interactions) that explains
the highest share of the variance in each cell, and the opacity (lower values correspond to more transparent colors) depicts the coefficient of
variance of each cell calculated based on 30 simulations (two LUMs×five GCMs× three SSPx–RCPy).
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Appendix C: Additional concepts and methods

C1 ISIMIP

The Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) provides harmonized input data and protocols for
cross-sectoral global and regional climate impact model
comparisons. Its primary objective is to add to the under-
standing of climate change impacts at different levels of
warming across a wide range of sectors and impact mod-
els to assess model structural and input data uncertainties.
ISIMIP aims to evaluate climate change’s historical, current,
and future effects on natural and human systems and to make
impact data comparable across models and sectors (Rosen-
zweig et al., 2017).

Specifically, ISIMIP provides consistent climate and so-
cioeconomic forcing data sets generated within established
sectors and protocols, adhering to standardized formats,
scales, and configurations. The collected data are openly
accessible through a portal (https://data.isimip.org/, last ac-
cess: 23 May 2025). ISIMIP operates in a series of itera-
tive rounds linked with the Coupled Model Intercompari-
son Project (CMIP) phases. The ISIMIP3b phase focuses on
future projections (group III simulations) to examine future
changes resulting from direct human influences across differ-
ent sectors and climate change. Different land-use modeling
teams contributed with projections following a joint set of
assumptions and scenarios to provide future land-use projec-
tions from several LUMs as input for these ISIMIP3b group
III simulations. The reported variables include cropland, for-
est, grasslands, natural vegetation, urban area, and their re-
spective subtypes, which are relevant for all climate impact
models that cover land-use dynamics, such as agricultural or
land surface models. Additionally, the LUMs provided data
on the distribution of bioenergy crops (second-generation),
irrigated crop areas, fertilizer use rates, and wood harvest,
among other variables. These harmonized projections cover
the period between 2015 and 2100 and are reported at a reso-
lution of 0.5°× 0.5°. This study focuses on the four land-use
types, second-generation bioenergy cropland area, irrigation,
and nitrogen fertilizer use.

C2 LUH2 harmonization

In the first step of the harmonization, the land-use data from
the LUMs were standardized to a consistent spatial resolu-
tion of 0.25°× 0.25° and interpolated to annual time steps in
case the LUMs report at different resolutions and formatted
as fractional patterns. The management data were also aggre-
gated to national totals and converted to standard units. For
the harmonization, the land-use data were then aggregated
to a resolution of 2°× 2° since the historical data and fu-
ture projections had more consistency at this resolution, and
it is also a common spatial resolution used for the land sur-
face in climate models participating in CMIP6. Afterward,

annual changes were computed from the LUMs’ patterns
and sequentially applied to the patterns from the previous
time step, starting with the last year of the historical data
set. This process was specifically carried out for cropland,
grassland (pastures and rangelands), and urban land projec-
tions. The resulting harmonized patterns were then converted
to the 0.25°× 0.25° original resolution. Following this, the
cropland and grassland were divided into five different crop
functional types, as well as pastures and rangelands. Forests
and other natural vegetation were later calculated as the re-
maining surface area not used for cropland, grazing, or urban
areas. Further disaggregation into forests and other natural
vegetation was based on LUH2’s map of potentially forested
areas, which was based on an empirically based ecosystem
model and a climatology data set. As the next step, similar to
the land-use patterns, annual changes in the LUM’s manage-
ment data were calculated and applied to the previous year’s
management gridded data, including irrigated areas, fertilizer
inputs, and second-generation bioenergy crop areas. Bioen-
ergy crop areas are harmonized separately from the cropland
areas. Annual changes were calculated at the country level
and applied to the corresponding grid cells within each coun-
try based on a pre-established mapping along with gridded
data provided by the future projections. Detailed information
on the harmonization and historical reconstruction of land-
use and management patterns can be found in Hurtt et al.
(2020).

Appendix D: Additional analyses

D1 Counterfactual comparison

Global and regional projections of the counterfactuals with-
out climate impacts (SSPx-NoAdapt) and without CO2 fertil-
ization (SSP5-2015CO2), done as sensitivity analyses, show
larger cropland areas than those with climate impacts for
both LUMs. This effect particularly increases as emissions
rise (SSP3-7.0 and SSP5-8.5) and aligns with modeling stud-
ies (Jägermeyr et al., 2021; Molina Bacca et al., 2023), sup-
ported by experimental evidence (Toreti et al., 2020) that
shows that introducing the CO2 fertilization process to the
global gridded crop models (GGCMs) could positively af-
fect yields in some crops leading to lower future cropland.
However, most GGCMs barely consider negative effects due
to the redistribution of pests and diseases or compound cli-
mate effects, although there is ongoing work towards their
inclusion, which could add additional local stresses to crop
production (Fu et al., 2023; Jägermeyr et al., 2021).

On the global scale, regarding the management variables
without the effect of climate change and without dynamic
CO2 fertilization effects on crop yields, we see slightly larger
areas of second-generation bioenergy crops, with a larger ef-
fect in IMAGE than the scenarios including impacts. This
holds for all socioeconomic-NoAdapt scenarios. For irriga-
tion, the scenarios without impacts (SSPx-NoAdapt), espe-
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cially in SSP3-NoAdapt for MAgPIE, lead to considerably
higher irrigated cropland demand towards the end of the cen-
tury compared to SSP3–RCP7.0. Finally, fertilizer use in
SSP1-NoAdapt and SSP5-NoAdapt compared to their coun-
terparts, including climate change impacts, show little to
no difference, while SSP3-NoAdapt is higher than SSP3–
RCP7.0 due to considerably larger cropland areas in the sce-
nario without impacts.

Code and data availability. Data sets and scripts used for the
analyses done in the study and for creation of the plots can be
found at https://doi.org/10.5281/zenodo.12964394 (Molina Bacca,
2024a) and https://doi.org/10.5281/zenodo.12964533 (Molina
Bacca, 2024b), respectively. MAgPIE version 4.4.0 documentation
is available at https://rse.pik-potsdam.de/doc/magpie/4.4.0/,
last access: 23 May 2025, and the code is available at
https://github.com/magpiemodel/magpie/releases/tag/v4.4.0
(Dietrich et al., 2021).
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F., Iacobuţă, G. I., Keppler, D., Koch, J., Luderer, G., Lotze-
Campen, H., Pehl, M., Poblete-Cazenave, M., Popp, A., Remy,
M., van Zeist, W.-J., Cornell, S., Dombrowsky, I., Hertwich,
E. G., Schmidt, F., van Ruijven, B., van Vuuren, D., and
Kriegler, E.: Multiple pathways towards sustainable develop-
ment goals and climate targets, Environ. Res. Lett., 19, 124009,
https://doi.org/10.1088/1748-9326/ad80af, 2024.

Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade,
R., Bakkenes, M., Biemans, H., Bowman, A., den Elzen, M.,
Janse, J., Lucas, P., van Minnen, J., Müller, C. P., and Ger-
dien, A. : Integrated assessment of global environmental change
with IMAGE 3.0 model description and policy applications,
Tech. rep., PBL Netherlands Environmental Assessment Agency,
https://www.pbl.nl/en/publications/ (last access: 26 May 2025),
2014.

Stehfest, E., Van Zeist, W.-J., Valin, H., Havlik, P., Popp, A.,
Kyle, P., Tabeau, A., Mason-D’croz, D., Hasegawa, T., Bodirsky,
B. L., Calvin, K., Doelman, J. C., Fujimori, S., Humpenöder, F.,
Lotze-Campen, H., Van Meijl, H., and Wiebe, K.: Key determi-
nants of global land-use projections, Nat. Commun., 10, 2166,
https://doi.org/10.1038/s41467-019-09945-w, 2019.

Su, F., Liu, Y., Chen, L., Orozbaev, R., and Tan, L.: Impact of cli-
mate change on food security in the Central Asian countries, Sci.
China Earth Sci., 67, 268–280, https://doi.org/10.1007/s11430-
022-1198-4, 2024.

Thompson, M. P. and Calkin, D. E.: Uncertainty and risk in wildland
fire management: A review, J. Environ. Manag., 92, 1895–1909,
https://doi.org/10.1016/j.jenvman.2011.03.015, 2011.

Toreti, A., Deryng, D., Tubiello, F. N., Müller, C., Kimball, B. A.,
Moser, G., Boote, K., Asseng, S., Pugh, T. A., Vanuytrecht,
E., Pleijel, H., Webber, H., Durand, J. L., Dentener, F., Ceglar,
A., Wang, X., Badeck, F., Lecerf, R., Wall, G. W., van den
Berg, M., Hoegy, P., Lopez-Lozano, R., Zampieri, M., Gal-
marini, S., O’Leary, G. J., Manderscheid, R., Mencos Contr-
eras, E., and Rosenzweig, C.: Narrowing uncertainties in the
effects of elevated CO2 on crops, Nature Food, 1, 775–782,
https://doi.org/10.1038/s43016-020-00195-4, 2020.

Van vuuren, D., Stehfest, E., Gernaat, D., de Boer, H. S., Daioglou,
V., Doelman, J., Edelenbosch, O., Harmsen, M., Van zeist,
W.-J., van den Berg, M., Dafnomilis, I., van Sluisveld, M.,
Tabeau, A., de Vos, L., de Waal, L., van den Berg, N., Beusen,
A., Bos, A., Biemans, H., Bouwman, L., Chen, H.-H., Deet-
man, S., Dagnachew, A., Hof, A., van Meijl, H., Meyer, J.,
Mikropoulos, S., Roelfsema, M., Schipper, A., van Soest, H.,
Tagomori, I., and Zapata, V.: The 2021 SSP scenarios of the
IMAGE 3.2 model, Tech. Rep., PBL Netherlands Environmen-

tal Assessment Agency, https://www.pbl.nl/en/publications/
the-2021-ssp-scenarios-of-the-image-32-model (last access:
26 May 2025), 2021.

Veerkamp, C. J., Dunford, R. W., Harrison, P. A., Mandryk, M.,
Priess, J. A., Schipper, A. M., Stehfest, E., and Alkemade, R.: Fu-
ture projections of biodiversity and ecosystem services in Europe
with two integrated assessment models, Reg. Environ. Change,
20, 103, https://doi.org/10.1007/s10113-020-01685-8, 2020.

Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V.,
and Hattermann, F.: Multi-model climate impact assessment and
intercomparison for three large-scale river basins on three conti-
nents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-
6-17-2015, 2015.

Wang, X., Xu, M., Lin, B., Bodirsky, B. L., Xuan, J., Dietrich, J. P.,
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