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Abstract. The constant rise in atmospheric CO2 concentrations is warming the planet and causing climate
change. Here, we propose digital filtration with a Laplacian filter for preliminary detection of areas with different
changes in the characteristics of natural processes, using CO2 sinks and sources as an example. This approach
may improve CO2 monitoring capabilities and enable near-real-time detection of CO2 sources and sinks.

Over the past few decades, anthropogenic greenhouse
gas (GHG) emissions have led to clearly detectable surface
warming (IPCC, 2023). The major part – 75 % of all GHGs
(Xiao et al., 2016) – is atmospheric carbon dioxide (CO2).
Our primary research, therefore, focuses on the development
of a new method for CO2 reduction. As part of this method,
we propose an algorithm for the near-real-time preliminary
detection of CO2 source and sink areas. This algorithm can
help to facilitate the monitoring, reporting, and verification
of CO2 source and sink areas. This includes the identifica-
tion of an area as a CO2 source or sink and its localization.
We test the proposed algorithm using two types of CO2 data
measured at the near-surface layer. We applied digital filtra-
tion (Burger and Burge, 2016) to a CO2 concentration (CDC)
dataset to detect sink and source areas and CO2 flux data to
verify the results. Identifying the type of area as a CO2 sink
or source could help to improve the usability and functional-
ity of CO2 monitoring services, e.g., the Copernicus Atmo-
sphere Monitoring Service and the NASA Carbon Monitor-
ing System, or to assess the role and efficiency of different
ecosystems in the global carbon cycle.

Applying digital filtration to CO2 sink and source prelimi-
nary detection can be challenging due to their nature and be-
havior. Industrial objects have more stable emission charac-

teristics. Natural objects have a clear seasonal and also daily
periodic dependence. This leads to the need for continuous
observations in near-real-time mode. Another potential chal-
lenge for satellite datasets is the technical limitation in the
resolution of satellite datasets (the resolution of a sensor),
which indirectly challenges the preliminary detection. At the
current stage of our work, we do not focus on the factors that
may affect the accuracy of detection but aim to explore the
ability of digital filters to capture and detect changes in vari-
ous characteristics of natural processes, for example, for the
preliminary detection of CO2 sinks and sources.

The response of an ecosystem to external and internal
disturbances is reflected in the carbon balance (CB) of its
sources and sinks (Xiao et al., 2016). Recent studies have de-
scribed ecosystem responses to disturbances using functional
indices – normalized difference vegetation index (Liu et al.,
2022), net primary productivity, gross primary productivity
(Mahecha et al., 2022), solar-induced fluorescence (Li et al.,
2022) biodiversity (Mahecha et al., 2022), and others – in
complex multivariate models (Holm et al., 2023). This makes
them potentially accurate but also more resource-intensive,
less straightforward, and less sensitive to short-term changes.
Therefore, we propose the CDC as an integral parameter for
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the near-real-time detection of CO2 sources and sinks that
can also be applied to long-term observations.

Existing CO2 monitoring services provide spatially dis-
tributed CDC on a global scale (Weir et al., 2022; CAMS,
2020). This does not include the detection of local CO2 sink
and source areas. A possible solution could be edge detec-
tion using digital filtration. This could sharpen the bound-
aries and make it possible to detect the CO2 sink and source
areas with a size corresponding to the resolution of the CDC
dataset. Digital filtration is a well-known tool also used
in geosciences, for example, to detect plumes of burning
biomass (Goudar et al., 2023). In our paper, we do not quan-
tify CO2 sources and sinks because quantification is valuable
for understanding the consequences of CO2 changes after
these changes have occurred. Our focus is on short-term (e.g.,
hours) CO2 changes, which can help detect CO2 sources and
sinks and their different phases of development in near-real
time until further analyses can be performed.

Before applying digital filtration, we need to consider the
size of the areas, the characteristics of the internal physical,
chemical, and biological processes, and the CB of each area.
We work with the concept of a “small area” as a cell whose
size depends on the inertia rate of chemical and physical pro-
cesses and interpret it as a closed ecosystem based on the
characteristics described below. Here the term small area is
an analog of “small ecosystem”, defined by a set of charac-
teristics and their values that describe an ecosystem in all its
parts with a slight (or within the specified range) deviation.
This deviation can be neglected at any time and at any place
within the ecosystem.

The carbon balance can be seen as a strictly hierarchical
system in which lower-level subsystems separately describe
the CB in terms of its environmental and other conditions.
The components of the subsystems are spatially distributed,
defining the unique set of components of each area and de-
termining the variability of environmental characteristics in
different areas. To identify fluxes in the upper-atmospheric
CB, we use two principles. The first is the direction of CO2
flows (suffixes “In” and “Src” into the atmosphere or “Out”
and “Sink” out of it). The second principle is relative to the
boundary of the area – the prefix “Env” for the external en-
vironment and “Int” for internal processes and objects. Ac-
cordingly, we describe the total CB of the area of interest
with Eq. (1):

CB= EnvIn−EnvOut+
∑

IntSrck −

∑
IntSinkl, (1)

where EnvIn is the flux intensity of the CO2 injection from
the external environment, EnvOut is the flux intensity of the
CO2 emission to the external environment,

∑
IntSrck is the

total flux intensity of internal CO2 sources, and
∑

IntSinkl

is the total flux intensity of internal CO2 sinks.
The external components of CB and their effects are in-

dependent of the characteristics of the area of interest, un-
like the internal components. The internal components of the
CB clearly correspond to the components of the ecosystem

– plants of certain species, soil, etc. This balance defines the
total amount of CO2 in the atmosphere of the area and con-
sequently the CDC=Func(CB).

The process of gas injection is inertial. For example, CO2
emissions from a power plant do not change the CDC in
every part of the Earth’s atmosphere; they only affect the
neighboring areas, and even then, it happens slowly, over
some time. This process is described by diffusion and en-
vironmental conditions. We assume that the CDC in a small
area that was formed at some earlier time does not change
significantly during the time it takes the satellite to measure
the CDC in neighboring small areas, and we interpret a data
acquisition as a “monochrome image snapshot” of data.

The next two characteristics are also relevant to the defini-
tion of small area. Firstly, the characteristics of physical and
chemical inertness in the atmosphere and soils will lead to
different spatial distributions of the characteristics, and the
speed of these processes will affect the size of the cells by
considering the value limit of the specified deviation. Sec-
ondly, in digital filtration, the size of the cells processed must
be the same, which is limited by the size of the smallest area
of the system. Another filtration requirement concerns the
presence and location of neighboring areas around the area
of interest. According to the mathematical rules of sliding fil-
tration (Aubry et al., 2014), cells should be located close to
each other and partially have common boundaries, as shown
in Fig. 1a. This requirement also leads to the neglect of air
mass transport, as the short distances between the area of
interest and neighboring areas minimize its impact – trans-
ferred external air masses will give approximately the same
EnvIn and EnvOut components in all neighboring areas (in
the filter focus). The small size and close location of cells
also make it possible to detect the influence of external fac-
tors with synchronous changes in the monitored parameter
with equal or proportional values (Fig. 1b).

For example, at t0, we expect different concentrations at
points X, Y , and Z – CDCX(t0), CDCY (t0), and CDCZ(t0),
respectively – and assume that concentrations are related ac-
cording to inequality (Eq. 2):

CDCX (t1) > CDCX (t0)CDCY (t1)

> CDCY (t0)CDCZ (t1)
> CDCZ (t0) . (2)

Inequality (Eq. 2) can be explained by natural processes –
continuous changes in temperature, humidity, and other char-
acteristics that lead to changes in the CO2 emissions, e.g.,
from a swamp (Fig. 1a) – and corresponding changes in
the CO2 concentration in neighboring forest areas. Distance
from the source and wind direction also affect the concentra-
tion. The time step for observing changes in CO2 concentra-
tions is 3 h in the selected dataset.

If, at t1>t0, the concentrations change according to Eq. (2)
while all internal environmental conditions remain stable,
this will result in a simultaneous multi-point (X–Z) increase
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Figure 1. Spatial and temporal CDC changes.

in CDC as shown in Eq. (3):

1CDCX '1CDCY '1CDCZ, where

1CDCX,Y,Z = CDCX,Y,Z (t1)−CDCX,Y,Z (t0) . (3)

Equations 1–3 describe the connectivity and synchronic-
ity of concentration change processes, but not their random-
ness. For example, Eq. (3) describes a synchronous increase
in concentration due to daytime solar radiation based on the
conditions outlined in Eq. (3).

CDCX (t0) < CDCX (t1)CDCY (t0)

< CDCY (t1)CDCZ (t0)
< CDCZ (t1) (4)

The above relationships and assumptions lead us to the con-
clusion that the CO2 deltas shown in Eq. (4) correspond to
the synchronous CDC changes for the whole area under the
influence of external environmental conditions.

Based on Eq. (1), the difference between the CBs for two
small neighboring ecosystems can be described by Eq. (5):

CB1−CB2

=

(
EnvIn1−EnvOut1+

∑
IntSrck1−

∑
IntSinkl1

)
−

(
EnvIn2−EnvOut2+

∑
IntSrck2−

∑
IntSinkl2

)
. (5)

According to the concept of small neighboring areas, the
values of EnvIn and EnvOut are equal in all cells, and there-
fore the result of Eq. (5) can be interpreted as the difference
in CO2 fixation efficiency with Eq. (6):

CB1−CB2 =
(∑

IntSrck1−
∑

IntSinkl1

)
−

(∑
IntSrck2−

∑
IntSinkl2

)
. (6)

If the characteristics of the neighboring ecosystems are sim-
ilar (each of the IntSrck1 sources of the first area is equal to
IntSrck2 in the second neighboring area, and each IntSinkl1
is equal to IntSinkl2), then based on Eq. (6) it is possible to
identify the emergence of the external CO2 source according
to Eq. (7):

CB1−CB2 = (EnvIn1−EnvOut1)− (EnvIn2−EnvOut2) . (7)

Each ecosystem is surrounded by neighboring ecosystems,
which can be represented in the Cartesian coordinate system
with a set of indices in the vertical, horizontal, and diagonal
directions.∣∣∣∣∣∣

4 3 2
5 0 1
6 7 8

∣∣∣∣∣∣ (8)

When we form the convolutional filter of the difference
between the central element and a given element, the coeffi-
cient 1 is placed in the center of the matrix (zero index) and
the coefficient −1 is in the position defined by a given in-
dex. Using this indexing system and the convolutional filter
principle, the difference (Eq. 5) can be described in a matrix
operation form over CB data as follows.

F (CB)= (CB1−CB2)⇒ (1×CB1+ (−1)×CB2)

⇒

∣∣∣∣∣∣
0 0 −1
0 0 1
0 0 0

∣∣∣∣∣∣ (9)

The central index corresponds to the area of interest, and the
rest are neighboring areas. The matrix for evaluating the dif-
ference between all eight neighboring cells is as follows.

F (CB)=
∑i=8

i=1
(CB0−CBi)

⇒∇ (CB)=

∣∣∣∣∣∣
−1 −1 −1
−1 8 −1
−1 −1 −1

∣∣∣∣∣∣ (10)
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The area of interest is identified as a CO2 sink or source
based on its CDC in relation to that of the neighboring areas.
This means that the resolution of the dataset and the num-
ber of neighboring areas define the area of identification. De-
pending on the expected sizes of CO2 sinks and sources, the
resolution of the dataset and the size of the matrix of coef-
ficients can be adjusted. This option shows the universality
of the proposed algorithm with respect to the sizes of CO2
sources and sinks.

This matrix corresponds to the Laplacian convolutional fil-
ter. This is a second-order filter used for edge detection and
feature extraction (Aubry et al., 2014). Unlike first-order fil-
ters, we do not need separate filters to detect and then com-
bine vertical and horizontal edges, as the Laplacian filter de-
tects all edges regardless of direction.

In order to apply the Laplacian filter to a CDC dataset
formed by carbon balances, we performed a convolution op-
eration, which mathematically means a combination of two
matrices, in our case one containing the CDCs and the other
the filter coefficients. The convolution operation, represented
by Eq. (11), involves sliding the filter over the dataset, mul-
tiplying the CDCs by the corresponding coefficients, and
adding them up. The result is a new dataset of the same size
as the original, but the calculated CDC differences can be
positive, negative, or zero. A positive value after digital fil-
tration means that the original CDC in the area of interest is
greater than the average CDC in the neighboring areas. This
area is identified as containing the CO2 source. Conversely,
an area with a negative value is identified as containing a CO2
sink. A zero value indicates CO2 homogeneous areas.

CDCfiltered =

 CDC4 CDC3 CDC2
CDC5 CDC0 CDC1
CDC6 CDC7 CDC8


×

 −1 −1 −1
−1 8 −1
−1 −1 −1

 (11)

This filter, with a size of 3× 3 cells, covers the area of
4.8× 6.6 km when scanned with OCO satellites (Orbiting
Carbon Observatory, 2015). It is optimal for our task in terms
of processing time and computational complexity – 15 arith-
metic operations for an area of interest – and does not require
additional computational resources. This partially provides
real-time computation for the six areas in the satellite scan
area strip, which requires 90 operations per second.

The test results of the proposed algorithm (Appendix A)
for CO2 source and sink area detection show that it is suf-
ficient for a rapid-fire response or for a detailed subsequent
study of the CO2 fixation characteristics of the vegetation
in the sink area. We do not consider CO2 advection for the
source area detection because the influence of air mass trans-
port is small. It is close to 6 % at a wind speed of 30 m s−1

and a scanning time of three data rows by satellite for 1 s

(Orbiting Carbon Observatory, 2015). This value is applica-
ble for the tasks of rough CO2 source and sink area detection.

Appendix A: Results of CO2 source and sink area
detection with a Laplacian filter

According to the proposed method, the preliminary detec-
tion of CO2 sources and sinks involves the following steps:
(1) digital filtration of the CO2 concentrations in the area of
interest and identification of the area as a source or sink by
the sign (+ is a source, − is a sink), (2) comparison of the
superimposed filtered CO2 concentrations with fire fluxes in
the area of interest, and (3) finding the area where two param-
eters are closely superimposed at their maximum intensities.

To test the proposed algorithm with a CO2 source area de-
tection, we chose a large fire event in the Serengeti National
Park, Tanzania, which started on 22 July 2016 and lasted for
31 d. We used CDC values as an indicator of a fire area and
CDC spatial differences to detect area boundaries. For the
experiment, we took the CDCs for 27 July 2016 (Weir et al.,
2022), the fifth day after the fire had started, to avoid the
influence of additional CO2 from a previous fire event in the
area. The CDC distribution for this date is shown in Fig. A1a,
but it is not possible to see the clear boundaries of the area
because the spatial CDC differences are blurred. In order to
detect the fire area boundaries, we applied the Laplacian fil-
ter, assuming that all the CDCs in the area were measured at
the same time. The results are shown in Fig. A1b, where each
cell has a different shading, representing a change in CDC in-
tensity. The dark shaded cells are defined as CO2 sources.

To verify the obtained results, we compared them with
CO2 fire flux data for the aboveground layer that contains
daily fire emissions from 2003 to 2017 (Ott, 2020). These
data are presented in Fig. A1c, which shows the CO2 fire
flux rate with color intensity and isolines, and in Figs. A1a
and A1b with isolines only. The density of the isolines is re-
lated to the rate of flux intensity change – higher density cor-
responds to a higher rate, and lower density corresponds to
a lower rate of change. The spatial resolutions of the CDC
dataset and the CDC flux dataset are different at 1°× 1° and
0.5°× 0.5°, respectively. Different resolutions pose a chal-
lenge for source validation, so we use a graphical image over-
lay with a relative placement by the object coordinates for
preliminary detection.

The greater the number of isolines around the point, the
faster the concentration changed. The comparison of the ex-
perimental results and the flux data showed rough agreement
in the detection of the CO2 source area. The differences in
location can be explained by the higher spatial resolution of
the flux data. However, the process of obtaining flux data re-
quires either a complex information model that is not real-
time or a satellite to fly over the same point on Earth at least
twice. In situations that require a more operational response,
such as the start of a large forest fire near a populated area or
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Figure A1. Spatial distributions of the CO2 parameters and the obtained results of the CO2 source area detection.

Figure A2. Spatial distributions of filtered CDC and vegetation indices for CO2 sink area detection.

an emergency at a power plant with high CO2 emissions, this
may be too long. In our experiment, we chose available CDC
data, interpreted as “at the moment”, and applied a Lapla-
cian filter to detect CO2 source areas. In reality, the proposed
method can be applied to the satellite-scanned data “strip” in
real time.

Identifying areas that are CO2 sinks is different from iden-
tifying areas that are short-term sources of CO2. The most
important terrestrial CO2 sink is vegetation, the characteris-
tics of which depend mainly on the time of day and the sea-
son. The size of large forests does not change over hours or
days but over years or decades. We, therefore, need to define
the boundaries of large forests once and then monitor them.

For our experiment, we chose CDC data (CAMS, 2020)
for the period of active vegetation growth and analyzed data

for Alaska in June 2016. We considered land cover (LC) type,
biomass, and growth phase (NDVI) as parameters of CO2 fix-
ation. First, we compared the CDC data processed with the
Laplacian filter (Fig. A2a) with the LC types in Alaska. The
results of this comparison are shown in Fig. A2b, where the
LC data are presented in the FAO Land Cover Classification
System (LCSS) (Friedl and Sulla-Menashe, 2019). The iso-
lines in the figure show the change in CDC intensity, which
roughly corresponds to the formal boundaries of the LCCS
vegetation classes. Forests with more than 60 % tree cover
(Di Gregorio, 2005) – evergreen forests, deciduous forests,
and mixed forests – show a higher CO2 fixation.

In contrast, there is little spatial difference in CO2 fixation
between the areas covered by shrubs and herbs in Fig. A2b,
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possibly due to the small amount of biomass in these ecosys-
tems and the potential influence of the nearby ocean.

The filtered CDC is nearly negligible on the mountaintops
due to the uniform barren ground, ice, and snow zones. The
NDVI (Fig. A2c) is also less significant in these areas. In
contrast, the central part of Alaska, which is covered by a
large amount of evergreen biomass with high NDVI (Didan,
2020) is identified as a CO2 sink. Mountains protect this area
from the influence of the oceans. These results could help in
further work to explain the different CO2 fixation potentials
in different subregions of these areas based on the absolute
values of processed CDCs.
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