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Abstract. Land cover and land management changes (LCLMCs) have a substantial impact on the global carbon
budget and, consequently, on global climate via the biogeochemical (BGC) effects. The commonly considered
BGC effects refer to the direct influence of LCLMCs on local carbon stocks (local BGC effects). However,
LCLMCs also influence climate by altering the local surface energy balance due to changes in land surface
properties, such as albedo, leaf area, and roughness (local biogeophysical (BGP) effects). Altered local air mass
properties can impact regions remote from LCLMCs through advection and changes in large-scale circulation
(nonlocal BGP effects). Previous studies have shown potentially substantial nonlocal BGP effects on tempera-
ture and precipitation. Given that the terrestrial carbon cycle strongly depends on climate conditions, this raises
the question of whether LCLMCs can trigger remote carbon cycle changes (nonlocal BGC effects) – a currently
overlooked, potentially large climate and ecosystem impact. To assess the nonlocal BGC effects, we analyze
sensitivity simulations for three selected types of hypothetical large-scale LCLMCs, global cropland expansion,
global cropland expansion with irrigation, and global afforestation, which were performed by three state-of-the-
art Earth system models (ESMs). We separate the nonlocal BGC effect using a checkerboard-like LCLMC per-
turbation that has previously only been applied to BGP effects. We show that nonlocal BGC effects on vegetation
and soil carbon pools persistently accumulate, exceeding natural fluctuations and typically becoming detectable
within the first 40 years after LCLMCs. By the end of our 160-year simulation period, nonlocal BGC effects lead
to an absolute magnitude of change in total terrestrial carbon stock by 1 to 37 GtC, with strong changes over the
densely forested Amazon region (0.2 to 7 GtC) and central Congo Basin region (0.3 to 15 GtC), depending on
models and LCLMCs implemented. For the irrigation scenario, the nonlocal BGC effects are comparable to the
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total BGC effects, with the nonlocal-to-total ratio for vegetation carbon pools commonly reaching around 90 %.
Our results reveal that the nonlocal BGC effects could be substantial and call for these effects to be considered
for accurate impact assessment and sound policymaking. This becomes even more relevant when LCLMCs are
expected to play a pivotal role in achieving the Paris Agreement’s goal of limiting global warming below 1.5 °C
above pre-industrial levels.

1 Introduction

Land-use-induced land cover and land management changes
(LCLMCs) alter climate by greenhouse gas (GHG) emis-
sions and removals and by affecting the surface energy bal-
ance, which are summarized as biogeochemical (BGC) and
biogeophysical (BGP) effects, respectively (Bonan, 2008;
Boysen et al., 2020; Bright et al., 2017; Pongratz et al., 2021).
As a key strategy to mitigate climate change, LCLMCs
play an important role in the Paris Agreement’s goal to
limit global warming below 1.5 °C above pre-industrial lev-
els (Grassi et al., 2017; Jia et al., 2019; Roe et al., 2021).
LCLMCs also support other sustainable development goals
(SDGs), such as zero hunger (goal 2) or life on land (goal
15) (Hurlbert et al., 2022). To optimize LCLMCs as strate-
gies to mitigate climate change and pursue win-win solutions
with other SDGs, a comprehensive and deep understanding
of the LCLMCs’ climate effect is required.

LCLMCs influence the local climate via energy, water,
and momentum fluxes due to changed land surface prop-
erties, such as albedo, leaf area, and roughness. These di-
rect consequences are collectively known as the local BGP
effect (see Table 1). Observational data by design quantify
the local BGP effects (Bright et al., 2017; Duveiller et al.,
2018), and this effect can also be isolated from Earth system
model (ESM) simulations (Kumar et al., 2013; Malyshev et
al., 2015; Winckler et al., 2017a), as explained below. Studies
reveal, for example, a regionally distinct pattern with warm-
ing related to deforestation in the tropics and much of the
temperate regions and a cooling effect in the high latitudes
(Duveiller et al., 2018; Mahmood et al., 2014; Winckler et
al., 2019b), with species-dependent variation (Bright et al.,
2017). Local BGP effects can be substantial, with regional
annual mean temperature changes of several degrees Celsius,
as shown for changing a forest to grassland (Bright et al.,
2017; De Hertog et al., 2023; Winckler et al., 2017a).

However, LCLMCs also influence remote climate via
advection of the altered air mass properties and possible
changes in large-scale circulation, namely the nonlocal BGP
effects (see Table 1; see also Laguë and Swann, 2016; Port-
mann et al., 2022; Winckler et al., 2019a). The nonlocal ef-
fects can only be quantified by models. The definition of
local vs. nonlocal scales depends on the application: while
changes in micro- or mesoscale phenomena could be re-
solved by high-resolution modeling, our study focuses on the
global impacts of large-scale LCLMCs connected to synop-

tic scales. Studies changing forest to grasslands show that
idealized deforestation, while able to warm the climate on a
global average with local BGP effects, brings about nonlocal
BGP effects that cool the climate by several 10ths of a de-
gree on global average (Winckler et al., 2019a). This cooling
effect dominates the overall climate impact and is consistent
across most models after historical deforestation (Winckler
et al., 2019a). Meier et al. (2021) show that substantial non-
local effects in precipitation are caused by afforestation. In
Europe, these changes often exceed 0.1 mm d−1 and are at
least comparable to the local effects, and in some regions
they even exceed the local effect. Other studies investigat-
ing land management suggest that nonlocal effects may be
strong: irrigation, for example, has been found to change pre-
cipitation and temperature (Gormley-Gallagher et al., 2022;
Hirsch et al., 2017; Thiery et al., 2017, 2020) even in regions
unaffected by the application of irrigation (Cook et al., 2015;
De Vrese et al., 2016; Mahmood et al., 2014). Regionally,
the nonlocal irrigation effects can dominate the precipitation
change with a magnitude of several 10ths of a millimeter per
day (mm d−1; De Hertog et al., 2024). The nonlocal irriga-
tion effect on temperature is notable too, with a magnitude of
several 10ths of a degree Celsius (De Hertog et al., 2023; De
Vrese et al., 2016), depending on models and scenarios (De
Hertog et al., 2023), particularly the implemented area extent
(Sacks et al., 2009).

LCLMCs also influence climate substantially via BGC ef-
fects: in the period 2010–2019, LCLMC emissions account
for 25 % of total anthropogenic GHG emissions (Hong et
al., 2021), or 10 %–15 % if only CO2 emissions are consid-
ered (Friedlingstein et al., 2023). Moreover, pre-industrial
LCLMC CO2 emissions contribute about one-third to the
current cumulative emissions leading to one-quarter of to-
day’s higher temperatures (Pongratz and Caldeira, 2012).
However, research mainly concentrates on the direct effect
of LCLMCs on climate (see Table 1): the carbon (C) emis-
sions and removals at the location of the LCLMCs are a re-
sult, for example, of the clearing of carbon-dense forests for
agricultural lands, regrowth of natural vegetation when agri-
cultural areas are abandoned, or altered carbon stocks due to
a management practice. However, BGC cycles and C pools
also strongly depend on environmental conditions. The rise
in atmospheric CO2 concentration over the industrial era has
turned the land’s soil and vegetation into a substantial car-
bon sink, absorbing one-quarter to one-third of the current
anthropogenic CO2 emissions (Friedlingstein et al., 2023),
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Table 1. Definitions of land cover and land management change (LCLMC) effects (BGP: biogeophysical; BGC: biogeochemical).

LCLMC effects Affected regions Definition

Local BGP effects Regions with LCLMCs LCLMCs influence the local climate via energy, water, and mo-
mentum fluxes due to changed land surface properties, such as
albedo, leaf area, and roughness.

Nonlocal BGP effects Regions without LCLMCs LCLMCs influence remote climate via advection of the altered
air mass properties and possible changes in large-scale circula-
tion.

Local BGC effects Regions with LCLMCs LCLMCs directly influence the local carbon stocks by changing
the local vegetation type or its management.

Nonlocal BGC effects Regions without LCLMCs LCLMCs influence remote carbon stocks through climate
changes driven by nonlocal BGP effects.

in response to the overall beneficial effects of CO2 on plant
growth (Walker et al., 2021). Changes in climate can increase
or decrease C stocks, such as warming in boreal regions ex-
tending the growing season or increased droughts and fires
reducing carbon stocks. Overall, the climate effects have off-
set the natural land sink by about 20 % in the last decade
(Friedlingstein et al., 2023). The underlying processes, be-
sides disturbances, are the strong dependence of plants on
temperature, moisture, and other BGP drivers. Given that
nonlocal BGP effects may be large, as described above, it
becomes obvious that LCLMCs may not only impact remote
regions’ climate discernibly, but also their C stocks. Agricul-
ture, forestry, and natural ecosystems may be affected, and
any changes in C stocks will feed back on global climate
change by altering the atmospheric CO2 concentration. De-
spite these potentially severe consequences, research has not
yet addressed this indirect effect of LCLMCs.

Earth system models show significant variability in their
results of climate and carbon cycle changes due to differ-
ing implementations of LCLMCs, vegetation processes, and
parameterizations (Boisier et al., 2012; Boysen et al., 2020;
Fisher and Koven, 2020). This leads to substantial divergence
in the magnitude and even the sign of LCLMC-induced BGP
effects (De Hertog et al., 2023; Pongratz et al., 2021). Few
studies have compared hydrological responses, revealing re-
gional precipitation changes that also diverge in sign (Boysen
et al., 2020; De Hertog et al., 2024; Pitman et al., 2009). To
address model uncertainty, employing multiple models is a
common strategy (Eyring et al., 2016; Jia et al., 2019). Previ-
ous studies, using a multi-model approach, mainly focus on
total BGP effects (Boisier et al., 2012; de Noblet-Ducoudré
et al., 2012; Pitman et al., 2009, Yao et al., 2025), yet
inter-model comparisons of nonlocal BGP effects and cer-
tain LCLMCs like irrigation remain scarce (De Hertog et al.,
2023, 2024; Pongratz et al., 2018). For instance, in CMIP6
simulations, only three Earth system models included irriga-
tion (Al-Yaari et al., 2022).

Here, for the first time, we analyze simulations with three
state-of-the-art ESMs combined with irrigation schemes to
address the impacts of the nonlocal BGP effects on terres-
trial C stocks (called “nonlocal BGC effects” from now on;
see Table 1) due to LCLMCs. We present a method to quan-
tify the nonlocal BGC effects using ESMs and apply this
method to three selected types of LCLMCs: cropland expan-
sion without irrigation, cropland expansion with irrigation,
and afforestation. We investigate these effects under present-
day climate conditions, as they are of greatest relevance to
near-term decisions on how to use our land. Nonetheless, our
approach is fully transferable to any scenario with different
climate conditions. More specific aims of our study are (i) to
quantify the simulated global development and spatial distri-
bution of nonlocal effects of LCLMCs on different terrestrial
carbon pools (Sect. 3.1 and 3.2); (ii) to assess the importance
of nonlocal BGC effects in relation to the total effects, which
consist of both local and nonlocal BGC effects and repre-
sent the overall carbon cycle response at the location of the
LCLMCs (Sect. 3.3); (iii) to identify the point in time when
the nonlocal BGC effects become larger than the natural in-
ternal variability (Sect. 3.4); and (iv) to assess the sensitiv-
ity of nonlocal BGC effects to temperature and soil moisture
(Sect. 3.5). This work thus forms the basis for expanding our
understanding of the unintended side effects of LCLMCs, in-
cluding in regions where no LCLMCs occur. This work also
presents an approach for quantifying unintended CO2 emis-
sions or removals in remote areas. When assessing the overall
climate benefit of an LCLMCs practice, this remote carbon
cycle response needs to be accounted for.

2 Methods

2.1 Earth system model setup and scenarios

The ESMs and scenarios used in our study are summarized
here, with full detail provided in De Hertog et al. (2023).
Three state-of-the-art ESMs were included in this study: the
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Community Earth System Model (CESM) version 2 (Dan-
abasoglu et al., 2020), the Max Planck Institute Earth System
Model (MPI-ESM) version 1.2 (Mauritsen et al., 2019), and
the European Community Earth System Model (EC-Earth)
version EC-Earth3-Veg (v3.3.3.1; Döscher et al., 2022). Our
model versions and spatial resolutions are identical to the
CMIP6 setup, with dynamically coupled model components
of land, atmosphere, and ocean. Consistency with CMIP6
has the advantage that the models have been evaluated and
are shown to generally be in line with the historical climate
evolution (Craigmile and Guttorp, 2023; Danabasoglu et al.,
2020; Fan et al., 2020; Rashid, 2021; Wehner et al., 2020).
Furthermore, our results complement and can be directly
compared to analyses based on CMIP6 and spin-off projects
like the Land Use Model Intercomparison Project (LUMIP;
Lawrence et al., 2016), which are driven by other land use
changes or climate forcings.

We analyzed the ESM output of three idealized LCLMC
scenarios – cropland expansion without irrigation (CROP),
cropland expansion with irrigation (IRR), and afforestation
(FRST) – and one control scenario without any LCLMCs as
a reference (see Table 1). The general idea of all scenarios
is not to present plausible realizations under realistic socio-
economic pathways but to simulate large-scale LCLMCs.
This has two advantages. Firstly, simulating disturbances at
large scale will increase the signal-to-noise ratio. While the
idealized nature of the scenarios prohibits conclusions for
concrete realizations of future global LCLMCs, the higher
signal-to-noise ratio allows us to better establish the poten-
tial importance of nonlocal BGC effects and provide a proof
of concept to account for them. Secondly, unlike historical
LCLMCs or realistic future scenarios where LCLMCs oc-
cur in limited regions, idealized global LCLMCs enable the
estimation and comparison of impacts across most regions
worldwide.

All scenarios are branched from the official CMIP6 histor-
ical concentration-driven simulation at the end of the year
2014 with a simulation period of 160 years. The general
idea behind these choices is to derive LCLMC effects un-
der approximately present-day climate, to be independent of
scenario choices, to be indicative for land use choices that
could be taken today, and to run simulations that are suffi-
ciently long to average out internal variability. The scenarios
are forced using the same anthropogenic forcing (trace gas,
troposphere anthropogenic aerosols, and population density)
and natural forcing (solar radiation, wildfire, lightning, and
natural stratosphere aerosols) of the year 2014. The only
forcing that differs among the scenarios is the prescribed land
cover change and land management change (see Table 1). For
the control scenario we use a constant land use data set of
the year 2014 from the end of the CMIP6 historical scenario
(originating from the LUH2 data set; Hurtt et al., 2020) but
without any land management implemented, i.e. no irriga-
tion and no wood harvest. In the CROP and FRST scenarios,
we applied a land cover change to crop or forest plant func-

tional types (PFTs) for the entire hospitable land of a grid cell
(see Appendix A for more details). This was done for half of
all land grid cells (Fig. C1). We chose to change grid cells
such that the final land mask has a checkerboard pattern of
changed and unchanged land cover (see Fig. C1 for LCLMC
distributions in this study; see Winckler et al. (2017a) for an
illustration of the checkerboard approach). With this homo-
geneous distribution of changed and unchanged grid cells,
we could apply an established method to separate local and
nonlocal effects of LCLMCs (see Sect. 2.2 for more details).
The distribution of the specific crop or forest PFTs (e.g. trop-
ical broadleaf evergreen forest or tropical deciduous forest)
remains constant in the changed grid cells (see Appendix A
for more details). The IRR scenario uses the CROP sce-
nario and additionally applies each model’s native irrigation
scheme to all LCLMC grid cells globally (see Appendix B
for more details).

Despite adopting the identical experimental design, ESMs
are diverse in LCLMC implementations (see Table 2). We
summarize the main differences; further details are provided
in Appendix B. (i) Differently to the other two models,
EC-Earth uses the dynamic vegetation model LPJ-GUESS,
which allows PFTs to compete on six stand types (natural,
pasture, urban, crop, irrigated crop, and peatland). Conse-
quently, converted cropland or natural land could be further
replaced by other PFTs based on climate conditions, lead-
ing to less target land cover. (ii) For the FRST scenario, we
could only prescribe the entire natural stand instead of ex-
plicit forest in EC-Earth. As a result, depending on the cli-
mate, grassland coexists with the forests and shrubs. (iii) In
EC-Earth, the physical properties of trees gradually estab-
lish depending on biomass buildup, in contrast to an imme-
diate physical forest representation in MPI-ESM and CESM.
(iv) Differently to the other two models, in EC-Earth, the
water cycle components between LPJ-GUESS and the atmo-
spheric model (Integrated Forecasting System, IFS) are not
coupled. This implies that irrigation affects the water budget
only within LPJ-GUESS, without directly impacting the at-
mosphere through surface water and energy fluxes (Döscher
et al., 2022). However, irrigation within LPJ-GUESS influ-
ences vegetation growth and physical properties (e.g. leaf
area index (LAI) and vegetation cover), which subsequently
impact the atmosphere by surface energy exchange.

The global distributions of land cover changes and the
magnitude of irrigation application are shown in Fig. C1.
Generally, EC-Earth shows smaller changes in land area frac-
tions of forest for the afforestation scenario and also, to a
lesser extent, in land area fractions of cropland for the crop-
land expansion scenario than the other two models (Fig. C1).
The amount and spatial distribution of irrigation varies sub-
stantially between all three models. Notably, the approach
taken by MPI-ESM shows irrigation in the boreal latitudes,
different from the other two models.
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Table 2. Overview of the Earth system model scenarios analyzed in our study, together with a brief description of the simulated land cover
and land management changes (PFT: plant functional type).

Scenario name Land cover change Land management change

Control (CTL) None. Constant land cover of the year 2014. No wood harvest and irrigation

Cropland expansion without ir-
rigation (CROP)

We replace all PFTs that are neither cropland nor bare
soil (such as pasture, grassland, shrubland, and forest)
in the 2014 land cover with crop PFTs. This ensures
cropland occupies 100 % of the hospitable land within a
grid cell for MPI-ESM and CESM. For EC-Earth, how-
ever, the cover fraction also depends on climate con-
ditions. Performed on half of the land grid cells in a
checkerboard pattern.

No wood harvest and irrigation.

Cropland expansion with irriga-
tion (IRR)

Same as in the CROP scenario. Performed on half of the
land grid cells in a checkerboard pattern.

Irrigation on all cropland PFTs.

Afforestation (FRST) We replace all PFTs that are neither forest nor bare soil
(such as pasture, grassland, shrubland, and forest) in the
2014 land cover with forest PFTs. This ensures forest
occupies 100 % of the hospitable land within a grid cell
for MPI-ESM and CESM. For EC-Earth, however, the
cover fraction also depends on climate conditions. Per-
formed on half of the land grid cells in a checkerboard
pattern.

No wood harvest and irrigation.

2.2 Isolating local and nonlocal LCLMC effects,
including the nonlocal signal in the terrestrial carbon
stocks

Isolating the local and nonlocal signal of LCLMCs – though
only in terms of biogeophysical effects – has become a com-
mon type of analysis in LCLMC studies. For our analysis,
we follow the well-established checkerboard approach by
Winckler, which has also been applied in previous studies
(Winckler et al., 2017a, b, 2019a, b; De Hertog et al., 2023).
However, no previous study has isolated the nonlocal signal
in the terrestrial carbon stocks. Here, we describe the full
approach of isolating local and nonlocal LCLMC effects, in-
cluding our new developments concerning the nonlocal sig-
nal in the terrestrial carbon stocks.

We simulate LCLMCs by applying the land cover forcing
in a checkerboard pattern of changed and unchanged land
cover (Fig. C1), as described in Sect. 2.1, and compare it to
a reference with only unchanged land cover (CTL). As we
are interested in global impacts of large-scale LCLMCs at
the scale of 100 km upwards, which matches the resolution
of the ESMs, we implement the checkerboard pattern at the
native resolution of each ESM (Table 3). We then follow the
post-processing approach by Winckler et al. (2017a) to sepa-
rate effects induced by LCLMCs into the local and nonlocal
signal.

We assume that the signal in grid cells without LCLMCs
consists only of nonlocal effects, while the signal in grid
cells with LCLMCs captures total (local plus nonlocal) ef-

fects. To separate these effects, we proceed with the follow-
ing steps. (i) We calculate the difference between the con-
trol scenario and the LCLMC scenarios. In grid cells without
LCLMCs, the difference is entirely driven by the nonlocal ef-
fects. (ii) Nonlocal effects are also present in grid cells with
LCLMCs. To obtain the global distribution of nonlocal ef-
fects, we spatially interpolate the result of the unchanged grid
cells to the changed LCLMC grid cells by applying a lin-
ear interpolation (nearest-neighbor interpolation for coastal
land grid cells). (iii) We then calculate local effects in the
grid cells with LCLMCs by subtracting the nonlocal effects
from the total effects. (iv) To obtain the global distribution
of local effects, we spatially interpolate the values from the
changed LCLMC grid cells to the unchanged grid cells, using
the same interpolation approach as in step (ii).

While Winckler et al. (2017a) applied this method to cli-
mate variables such as surface energy balance, as did De Her-
tog et al. (2023) for the same simulations used in our study,
we apply the method to detect the nonlocal BGC effect.
Specifically, (i) we subtract the spatially gridded C stocks
of the control scenario from the LCLMC scenarios. This dif-
ference at the grid cells without LCLMCs must be entirely
driven by the nonlocal BGP effects (Fig. 1b). By contrast, at
the grid cells where LCLMCs occur, direct local effects, such
as the loss of vegetation carbon by replacing forest with crop-
land, co-occur with nonlocal effects (Fig. 1a). (ii) To obtain
the global distribution of nonlocal effects, we spatially inter-
polate the result of the unchanged grid cells to the changed
LCLMC grid cells. The result is the globally distributed non-
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Table 3. Comparison of land cover and land management change (LCLMC) implementations across Earth system models (PFT: plant
functional type).

LCLMC
implementation

MPI-ESM CESM EC-Earth

Land surface scheme
and resolution

JSBACH3
(1.88°× 1.88°)

CLM5
(0.90°× 1.25°)

HTESSEL with LPJ-GUESS vegeta-
tion dynamics
(0.7°× 0.7°)

Dynamic vegetation Dynamic competition among PFTs
switched off

Dynamic competition among PFTs
switched off

Dynamic competition between all PFTs
allowed in each stand type

Implementation of
afforestation

Uses prescribed transitions to model-
intrinsic forest PFTs

Uses prescribed land cover states for
model-intrinsic forest PFTs

Does not support exact afforestation
fractions; afforestation occurs by ex-
panding natural fraction, allowing coex-
istence of grass, shrub, and tree PFTs

Establishment of plant
physical properties

Immediate establishment after land
cover change, lower sensitivity of sur-
face properties to state and age of forest

Immediate establishment after land
cover change, lower sensitivity of sur-
face properties to state and age of forest

Succession to forest via grass and shrub
PFT composition, high sensitivity of
surface properties to forest fraction of
area

Land–atmosphere cou-
pling concerning irriga-
tion

Fully coupled between land and atmo-
sphere, i.e. irrigation impacts the atmo-
sphere directly via the water cycle and
indirectly via vegetation changes

Fully coupled between land and atmo-
sphere; i.e. irrigation impacts the atmo-
sphere directly via the water cycle and
indirectly via vegetation changes

Irrigation impacts on vegetation type
and LAI are simulated in LPJ-GUESS
and influence land–atmosphere fluxes;
direct water cycle impacts are not rep-
resented

local BGC effect due to 50 % global LCLMCs according to
the checkerboard pattern.

2.3 Calculation of the nonlocal-to-total ratio

To assess the relevance of the nonlocal BGC effects in
comparison to the overall changes in carbon induced by
LCLMCs, we compute the ratio between nonlocal and total
BGC effects, which are comparable across models and sce-
narios. Therefore, we use the difference between the LCLMC
scenarios and the control scenario directly, without any inter-
polation. For the nonlocal BGC effects, we take only those
grid cells without LCLMCs into account. For the total ef-
fects, we use all grid cells. This implies that the total ef-
fects include both the sum of local and nonlocal effects on
grid cells with LCLMCs (Fig. 1a) and the nonlocal effects
on grid cells without LCLMCs (Fig. 1b). The magnitude of
the total BGC effects therefore refers to the actual simula-
tion signals of a given LCLMC scenario, even though it ap-
plies to a highly idealized scenario of checkerboard changes
in LCLM as in our case. The magnitude of the nonlocal BGC
effects is calculated from the unchanged grid cells only. For
all our analyses except for Figs. 5 and 6, we spatially in-
terpolate the nonlocal BGC effects to also estimate the ef-
fects over changed grid cells. However, for the calculation of
the nonlocal-to-total ratio, this would have created an incon-
sistency when comparing to total effects in these grid cells:
the interpolation of nonlocal BGC effects from unchanged
grid cells (Fig. 1b) to changed LCLMC grid cells is based on
the assumption of similar C stock changes, driven by simi-
lar nonlocal BGP effects, between adjacent grid cells, ignor-
ing the vegetation type changes due to LCLMCs. By con-
trast, the nonlocal effects actually simulated at the changed

grid cells are the C stock response with changed LCLMCs
(Fig. 1a). For example, in the FRST simulation, the nonlocal
BGC effects represent the response of the present-day vege-
tation types to the BGP climate changes induced by the forest
cover increase elsewhere. In contrast, the nonlocal effects oc-
curring over the changed grid cells represent the response of
the forest to the nonlocal BGP effects. To avoid this incon-
sistency of a direct comparison here, we restrict the nonlocal
BGC effects to unchanged grid cells. The values for the non-
local BGC effects assumed in this analysis are thus smaller
(around half) than the nonlocal BGC effects we use in the
rest of the analysis but can be interpreted more intuitively as
the extent to which C stock changes in unchanged grid cells
(Fig. 1b) contribute to the overall changes across all grid cells
after LCLMCs.

2.4 Calculation of the time of emergence

To analyze the temporal development and identify the year
from when nonlocal BGC effects pass the model’s internal
natural variability, we apply the concept of time of emer-
gence (ToE). The ToE identifies the presence of LCLMC-
induced nonlocal BGC effects and pinpoints the moment
when they become detectable. An early ToE characterizes a
relatively large and fast impact on the nonlocal BGC effect.
The ToE was frequently used in climate predictions and risk
assessments (Abatzoglou et al., 2019; Boysen et al., 2020;
Hawkins and Sutton, 2012). Following the criterion from
Hawkins and Sutton (2012), we use Eq. (1) to calculate the
signal-to-noise ratio; the ToE is the first year in which the
signal-to-noise ratio exceeds 1:
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Figure 1. Local and nonlocal BGP and BGC effects of LCLMCs in two adjacent grid cells in the CROP scenario as an example. In grid
box (a) with LCLMCs, both local and nonlocal BGP and BGC effects occur. In grid box (b) without LCLMCs, only nonlocal BGP and
BGC effects occur. Local BGP effects describe changes in local climate due to altered energy, water, and momentum fluxes from changed
land surface properties. Nonlocal BGP effects result from the advection of altered air mass properties and changes in large-scale circulation.
Nonlocal BGC effects are carbon cycle responses to nonlocal BGP climate changes, while local BGC effects represent direct carbon emissions
and removals induced by local LCLMCs.
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At each grid cell, we define the signal (St ) as the 16-year
(m) moving mean of the nonlocal BGC effect (Cnonlocal

i ) and
the noise (Nt ) as the variability in the detrended control sim-
ulation signal (cj , where the index j refers to years of the
simulation) for 160 years (n), where c is the 160-year mean
of cj . Note that capital C refers to the effects, as the dif-
ference between two simulations, while lower-case c refers
to individual simulations. Since the control simulation is not
affected by any changes in forcing, we use it to quantify the
internal variability that occurs naturally. However, because
of the slow response of the C cycle, the C pools of the con-
trol simulation (cctl

j ) continued to change after the cessation
of anthropogenic alterations in the year 2014 (moving from
historical climate, CO2, and land use changes to constant
present-day forcing). To nevertheless derive an approximate
value of the internal variability, we apply Eq. (2) to eliminate
the long-term trend. Since the evolution of vegetation and
soil C stocks towards their equilibrium value can be approxi-

mated by a decaying exponential function, we use Eq. (3) as
a fit for c′j , with coefficients K , A, and τ determined by the
evolution of carbon pools over time.

2.5 Attribution of nonlocal vegetation C and soil C
effects to temperature and soil moisture

Generally, nonlocal BGC effects arise as a result of climate
change (nonlocal BGP effects) and the corresponding re-
sponse of the terrestrial ecosystems. The sensitivity of this re-
sponse is governed by various plant physiological processes,
including carbon assimilation and plant respiration, while the
specific vegetation biomass density can additionally enhance
the impact. To better understand which aspects of the nonlo-
cal BGP changes drive the nonlocal BGC effects, we apply
a multiple linear regression analysis (Eq. 4), with which we
attribute the nonlocal BGC effects to temperature and soil
moisture (Franklin et al., 2016; Friedlingstein et al., 2006).
We selected two specific factors, near-surface air temperature
(called “temperature” from now on) (Fig. C2) and moisture
of the upper 10 cm soil layer (called “soil moisture” from
now on) (Fig. C3) as explanatory variables, since they were
more indicative for changes as compared to other similar
variables (not shown; tested for JSBACH). Using Eq. (4), we
estimate the nonlocal C stock change. The regression coeffi-
cients of the multiple linear regression serve as indicators of
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ecosystem sensitivity to temperature and soil moisture:

1Cnonlocal
t =K0+K1× tasnonlocal

t +K2

×mrsosnonlocal
t +R(t = 1 to 160); (4)

1Cnonlocal
t = Cnonlocal

t −Cnonlocal
t−1 ,

where Cnonlocal
0 = 0; (5)

Cnonlocal
j =

∑j

t=1
1Cnonlocal

t . (6)

To accurately assess the interannual increment in nonlocal
BGC, we estimate the year-by-year difference in annual non-
local BGC effects, denoted as 1Cnonlocal

t (see Eq. 5). K0
denotes a constant, and K1 and K2 denote the sensitivity
of the carbon cycle to annual mean temperature (tasnonlocal

t )
and soil moisture (mrsosnonlocal

t ), respectively. R denotes the
residuals. Compared to the nonlocal BGC effect (Cnonlocal

j ),
1Cnonlocal

t is influenced less by the climate change of previ-
ous years and thus has a better correlation with the nonlocal
BGP effects of that year. The cumulative change in nonlocal
BGC of year j (Cnonlocal

j ) is the sum of annual nonlocal BGC
(1Cnonlocal

t ) across the time span before year j (Eq. 6).
The nonlocal BGP effects of temperature and soil mois-

ture diverge in magnitude and even sign (see Figs. C2 and
C3). For the CROP scenario, MPI-ESM presents minor dry-
ing and warming in the Northern Hemisphere high latitudes,
while CESM and EC-Earth present cooling and wetting, with
CESM being more pronounced, and MPI-ESM and CESM
present warming and drying in most areas of the western
Amazon and central Congo Basin, while EC-Earth presents
warming and wetting; these nonlocal soil moisture discrep-
ancies can be attributed to strong mesoscale effects in EC-
Earth, better resolved with high spatial resolution (De Her-
tog et al., 2024). For the FRST scenario, CESM presents ma-
jor drying in the Northern Hemisphere high latitudes, while
MPI-ESM and EC-Earth present minor drying. For the IRR
scenario, both MPI-ESM and CESM present global cooling
and wetting, with cooling being more substantial in MPI-
ESM; EC-Earth, however, presents minor warming and dry-
ing. These less pronounced nonlocal BGP effects in EC-
Earth, compared to the other two models, arise because the
water cycle is not fully coupled between the land and atmo-
sphere, blocking the direct impact of irrigation on surface en-
ergy fluxes (Döscher et al., 2022). Apart from the IRR sce-
nario, nonlocal soil moisture changes in EC-Earth are typi-
cally 1 order of magnitude smaller than in the other models
for the CROP and FRST scenarios.

3 Results

Firstly, we analyze the global integral transient carbon stock
changes in terrestrial carbon pools (Sect. 3.1). We then con-
centrate on particular carbon pools that influence total terres-
trial carbon stock (cLand) changes as components. Specifi-
cally, we analyze changes in vegetation carbon stock (cVeg)

and soil carbon stock (cSoil). Litter carbon stock (cLitter)
changes often present similar but generally minor changes
compared to cSoil and are thus not shown. We also inves-
tigate the magnitude and importance of nonlocal BGC ef-
fects from both spatial distribution and relative magnitude
perspectives (Sect. 3.2 and 3.3). Next, we investigate when
these signals are established over time (Sect. 3.4). Lastly, we
attribute the nonlocal BGC effects to climate factors, with cli-
mate distributions presented in Figs. C2 and C3 (Sect. 3.5).

3.1 Nonlocal effect on global carbon stock changes

Over the 160-year simulation, nonlocal carbon changes ac-
cumulate and show saturating trends in some pools across
models and scenarios (Fig. 2). Toward the end of the simu-
lation, it is not clear if the natural ecosystem has stabilized
or will continue to change under LCLMC-induced nonlocal
climate changes.

For the CROP scenario, the global nonlocal cLand is sim-
ulated to decrease by −11 GtC in MPI-ESM and −28 GtC
in CESM, respectively, on average over the last 30 years of
our 160-year simulation period (Fig. 2a). In contrast, EC-
Earth simulates a gain of +32 GtC for cLand. For MPI-ESM
and CESM, the nonlocal cVeg changes dominate the non-
local cLand changes, whereas, for EC-Earth, the cSoil and
cLitter stocks also contribute substantially. The global inte-
gral of cSoil and cLitter presents only minor changes over
time in MPI-ESM and CESM, but this hides substantial (but
opposing) signals among regions. Additionally, the nonlocal
BGC stock changes show strong interannual variability, par-
ticularly in MPI-ESM and EC-Earth. This variability is pri-
marily driven by the western Amazon region, while the cen-
tral Congo Basin shows much weaker variability (see Ap-
pendix D for details). This variability is related to the internal
climate variability, which varies across regions (Loughran et
al., 2021).

In the IRR scenario, CESM shows a substantial increase
of +13 GtC in cVeg and a +4 GtC increase in cSoil leading
to an overall growth of +18 GtC in cLand (Fig. 2c). In con-
trast, MPI-ESM and EC-Earth simulate small nonlocal BGC
stock gains and losses due to the offset among regions with
opposing signals (see Sect. 3.2).

For the FRST scenario, MPI-ESM and EC-Earth simulate
cLand increases of +7 GtC and +2 GtC, respectively (see
Fig. 2b). In MPI-ESM and EC-Earth, these cLand changes
are dominated by cVeg with a growth of +5 and +9 GtC,
respectively, whereas, for EC-Earth, both cLitter and cSoil
present decreasing nonlocal BGC stock effects. Conversely,
the results of CESM show a cLand decrease of −9 GtC,
mainly due to a decrease in cSoil by −6 GtC and cVeg by
−4 GtC. Compared to the CROP scenario, the response of
cLand in the FRST scenario starts with a delay after the start
of the simulations in MPI-ESM and CESM.

There are several reasons for the divergence across mod-
els regarding the magnitude, trend, and variability in global
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Figure 2. Simulated nonlocal effect on the development of global terrestrial carbon pools after an idealized change of 50 % of all grid cells to
(a) cropland expansion, (b) afforestation, and (c) irrigation of cropland expansion. The total land carbon (black) is separated into vegetation
(green), soil (orange), and litter (blue) pools. The results for MPI-ESM (solid lines), CESM (dashed lines), and EC-Earth (dotted lines) are
shown for each carbon pool and for total land carbon.

integral transient nonlocal BGC effects. Firstly, the differ-
ence in BGC effects concerning their magnitude divergence
occurs in some key regions where nonlocal BGP effects
diverge considerably (see Sect. 3.2). For example, for the
CROP scenario, opposing nonlocal cVeg and cLand changes
between MPI-ESM/CESM and EC-Earth are mainly caused
by opposing cVeg changes in the western Amazon region
due to opposing nonlocal climate conditions (see Sect. 3.2.1,
Sect. 3.5, and Appendix D for details). Additionally, model
divergence concerning trend and variability is related to how
each model’s land surface scheme handles LCLMCs (see
Sect. 2.1). For example, for the FRST scenario, the dynamic
vegetation competition and replacement, along with the grad-
ual establishment of tree physical properties, induce oscilla-
tions in EC-Earth between gains and losses in nonlocal car-
bon pools during the simulation period.

3.2 The spatial distribution of nonlocal carbon stock
changes

3.2.1 Nonlocal vegetation carbon stock changes

For the CROP scenario, the spatial distribution of the non-
local cVeg changes shows a general decrease in the C stock
with similar patterns between CESM and MPI-ESM (Fig. 3a,
b). However, for EC-Earth, the lower-latitude (30° S–30° N)
regions show increasing nonlocal cVeg stocks. In particu-
lar, the substantial cVeg increase in the western Amazon and
central Congo Basin regions contrasts with the patterns ob-
served in MPI-ESM and CESM (Fig. 3c). In the low lati-
tudes (17° S–17° N), MPI-ESM and CESM simulate a total
loss in cVeg of −12 GtC and -10 GtC, respectively, whereas
EC-Earth simulates a gain in cVeg of +18 GtC. The CESM
results additionally show cVeg losses in the Northern Hemi-
sphere high latitudes (41–90° N) of −15 GtC.

In the IRR scenario, an increase in nonlocal soil mois-
ture (Fig. C3) consistently induces higher cVeg across most
regions and among the three models (Fig. 3i–k). In the
low latitudes and mid-latitudes, cVeg is generally simulated
to increase, especially over the western Amazon and cen-
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Figure 3. Nonlocal effects on vegetation carbon of the last 30 years in the 160-year simulation period using MPI-ESM, CESM, and EC-
Earth after an idealized change of 50 % of all grid cells to (a–c) cropland expansion, (e–g) afforestation, and (i–k) cropland expansion with
irrigation. The red boxes in panel (a) define areas used for the calculation of regional averages in Figs. 5 and 6. Panels (d), (h), and (l) are
latitudinal means over the land areas.

tral Congo Basin rainforests, northern Central America, and
Eurasia. However, for MPI-ESM and CESM, cVeg in the
Northern Hemisphere boreal latitudes (50–90° N) is simu-
lated to slightly decrease. In the special case of MPI-ESM,
the loss of cVeg is large enough to offset the cVeg increases
observed elsewhere globally. Furthermore, a high percent-
age of bare land cover in the boreal grid cells, with cVeg
unaffected by nonlocal BGP effects, reduces the grid aver-
age nonlocal BGC effects. Generally, despite some inconsis-
tency between the global integrals among the three models,
the spatial distribution of nonlocal cVeg changes shows sim-
ilar features.

For the FRST scenario, MPI-ESM and CESM present
mostly opposite nonlocal cVeg effects compared to the
CROP scenario; however, EC-Earth presents similar effects
compared to the CROP scenario in the entire western Ama-
zon and central Congo Basin regions. MPI-ESM and CESM
present minor cVeg increases in the western Amazon region
(Fig. 3e–g). In the central Congo Basin region, MPI-ESM
presents a large cVeg increase by +4 GtC. Both MPI-ESM
and EC-Earth present a similar latitudinal pattern for cVeg
increases in the Northern Hemisphere, albeit with differing
magnitudes. Conversely, CESM presents a substantial cVeg
decrease by −6 GtC in the Northern Hemisphere high lati-
tudes.

The model divergence regarding regional nonlocal BGC
effects can be attributed to several factors. Firstly, in the
CROP scenario, opposite to MPI-ESM and CESM, the cVeg
increase in EC-Earth over the tropics is related to wetting,

which is related to the strong mesoscale effects and higher
spatial resolution of EC-Earth (De Hertog et al., 2024). Sec-
ondly, in the IRR scenario, opposite to MPI-ESM and CESM,
the cVeg increase in EC-Earth over the Northern Hemisphere
high latitudes is related to two main reasons. (i) The direct
flux in surface water and energy to the atmosphere is limited
in EC-Earth due to uncoupled water cycle components be-
tween land and atmosphere (see Sect. 2.1). Consequently, ir-
rigation induces only minor local and nonlocal BGP climate
changes, resulting in correspondingly minor nonlocal BGC
effects. (ii) For MPI-ESM and CESM, the decrease in cVeg
aligns with the cooling observed over Northern Hemisphere
high latitudes. This cooling is more pronounced in MPI-ESM
and relatively minor in CESM (Fig. C2), which is related to
increased cloud cover occurring in both models – substan-
tial in MPI-ESM and moderate in CESM (De Hertog et al.,
2023). Thirdly, in the FRST scenario, opposite to MPI-ESM
and EC-Earth, the cVeg decrease in CESM over the Northern
Hemisphere high latitudes is related to a strong soil moisture
decrease in these regions (Fig. C3).

3.2.2 Nonlocal soil carbon stock changes

Usually, cSoil changes are simulated to be consistent with
cVeg when cVeg is large, explicable by the fact that the car-
bon input to cSoil stems from cVeg. However, respiration
by soil heterotrophs is climate-dependent and largely inde-
pendent of the climate dependency of the vegetation pro-
cesses. Overall, an alignment of cVeg and cSoil changes ap-
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plies to many regions for all three scenarios and all three
models, particularly the tropics, and occasionally to high
latitudes in the Northern Hemisphere. For the CROP sce-
nario, CESM and EC-Earth show that cSoil changes typ-
ically align with cVeg changes in most regions but with
smaller magnitudes (Figs. 3b–c and 4b–c). An exception is
EC-Earth in the Northern Hemisphere high latitudes, sim-
ulating +1 GtC cSoil gains and −6 GtC cVeg losses. MPI-
ESM, however, simulates opposite changes, with cSoil gains
of +2 and +0.3 GtC and cVeg losses of −11 and −12 GtC
in the Northern Hemisphere high latitudes and low latitudes,
respectively (Figs. 3a and 4a). For EC-Earth, the mechanism
involves dynamic shifts in vegetation types driven by climate
change; our simulations show that, with this model behavior,
a reduction in cVeg and subsequently a significant input of
cVeg into soil pools occur. Concurrently, the lower temper-
ature in the Northern Hemisphere high latitudes suppresses
the decomposition rate of soil organic matter (Fig. C2c).

In the FRST and IRR scenarios, EC-Earth also simulates
cSoil decreases in contrast to cVeg increases. This implies
that climate change negatively impacts soil carbon seques-
tration following these two LCLMC scenarios.

3.3 Magnitude of the nonlocal-to-total BGC effect

We aggregate results to a few core regions. These regions
were chosen because they exhibit a large absolute nonlo-
cal signal and because the signal across models is consistent
(Figs. 5, 6). Additionally, we choose regions across various
latitudes to capture latitudinal diversity.

In the CROP scenario, the total cVeg and cSoil effects
are negative across all models globally and in selected re-
gions. The globally integrated nonlocal effect on cVeg con-
stitutes approximately 6 %, 4 %, and 3 % of the total effect
for MPI-ESM, CESM, and EC-Earth, respectively. This ra-
tio can exceed 12 %, 9 %, and 8 % in regions such as eastern
North America, northeastern Asia, and northern Eurasia for
MPI-ESM, CESM, and EC-Earth, respectively. There is less
model consistency in ratios for nonlocal cSoil changes in the
CROP scenario. EC-Earth simulates negative signals of the
nonlocal-to-total effect, both globally and in the selected key
regions.

In the IRR scenario, we find a pronounced relative global
nonlocal cVeg response constituting 98 % and 85 % of the
total cVeg gains for CESM and EC-Earth, respectively. In
contrast, MPI-ESM shows nonlocal cVeg losses opposite to
the total gains, with a nonlocal-to-total ratio of −79 %. Re-
gionally, CESM shows nonlocal cVeg gains exceeding to-
tal gains in eastern North America (117 %) and northeastern
Asia (141 %). For cSoil effects, EC-Earth shows globally in-
tegrated nonlocal cSoil losses constituting 66 % of total cSoil
losses, whereas MPI-ESM exhibits nonlocal cSoil gains op-
posing total losses, with a ratio of −169 %. The main reason
behind the pronounced relative importance of the nonlocal
cVeg response is that the land management change in irri-

gation per se, in the absence of land cover change, does not
induce carbon stock changes directly. Consequently, the local
BGC effects are mostly a response to the changes in local cli-
mate through irrigation. The local and nonlocal BGC effects
are of comparable magnitude.

In the FRST scenario, apart from cSoil changes in CESM
and EC-Earth, total BGC effects show a positive trend glob-
ally and in specific regions. For CESM, total cSoil losses are
observed, except in the central Congo Basin and in north-
ern Eurasia, while, for EC-Earth, total cSoil gains are ob-
served, except in northern Eurasia. The relative importance
of nonlocal cVeg changes in EC-Earth surpasses 26 %, 30 %,
16 %, and 12 % in the central Congo Basin, northern Eura-
sia, northeastern Asia, and northern Australia, respectively.
The values are similar for MPI-ESM, with 13 % in the cen-
tral Congo Basin and in northern Australia. Notably, nonlo-
cal cSoil changes in EC-Earth constitute over 70 % of total
cSoil changes in northern Eurasia, while, for CESM, non-
local cSoil changes represent only about 27 % of the total
cSoil changes globally and over 9 % in all key regions except
northern Australia. The relative nonlocal effect also exceeds
17 % and 36 % in the central Congo Basin and in northern
Australia, respectively, for MPI-ESM.

The model divergence regarding the nonlocal-to-total ra-
tio derives from the divergence in both nonlocal and total
BGC effects. The ratio of cSoil, for instance, is less consis-
tent across models for the CROP scenario. EC-Earth presents
negative ratios across regions, while the sign of the ratio in
CESM and MPI-ESM varies by region. Ratio signs of the
CROP scenario are related to an overall decrease in total
cSoil in the selected regions and globally across all three
models, alongside an increase in nonlocal cSoil in these re-
gions for EC-Earth (see Sect. 3.2.2). In the IRR scenario, the
global negative ratio of cVeg in MPI-ESM is largely influ-
enced by nonlocal cVeg losses in the Northern Hemisphere
boreal regions, driven by strong cooling effects in these re-
gions.

3.4 Time of emergence

Generally, nonlocal cVeg changes emerge within less than
40 years (Figs. 7 and E1) for the majority of the hospitable
land area for all LCLMC scenarios. ToE shows a similar pat-
tern of variation with latitude across models for all three sce-
narios (Fig. 7). In the tropics and Northern Hemisphere high
latitudes, the ToE occurs earlier, typically within 30 years. In
the tropics, this early ToE is dominated by the western Ama-
zon and the central Congo Basin, i.e. for rather forested re-
gions; here, ToE can be even shorter than 10 years, depending
on the model and scenario (Fig. E1). The mid-latitudes show
a later ToE, with different magnitudes across models. For ex-
ample, eastern North America typically shows a later ToE,
which is indicated by the relatively flat trend in the tempo-
ral development of carbon pools during the initial decades
(Figs. E1 and D4). Crop- and grasslands take a consider-
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Figure 4. Nonlocal effects on soil carbon of the last 30 years in the 160-year simulation. See Fig. 3 for details.

Figure 5. Relative contribution of the nonlocal-to-total effect of LCLMC on vegetation carbon of the last 30 years in the 160-year simulation
period using MPI-ESM (green), CESM (blue), and EC-Earth (orange) for (a) cropland expansion, (b) afforestation, and (c) irrigation of
cropland expansion. Values are separated into the global integral (global) and regional means for eastern North America (ENA), the western
Amazon (WA), the central Congo Basin (CCB), northern Eurasia (NE), northeastern Asia (NEA), southern Southeast Asia (SSEA), and
northern Australia (NAU). Regions are defined within the red boxes in Fig. 3a, and only terrestrial areas are considered.

able fraction of land in eastern North America, indicating
that the response of those land cover types is slower than
that of forests. However, for MPI-ESM and CESM, the non-
local BGC effect in eastern North America reaches a mag-
nitude comparable to that in northern Eurasia, northeastern
Asia, and southern Southeast Asia by the end of the simu-
lation period (see Fig. 3 and Appendix D for details). This
suggests that the nonlocal climate impact on crop- and grass-
lands persistently accumulates over time and ultimately be-
comes comparable to that on forests.

For cSoil, the ToE is also generally shorter than 40 years
for the majority of the hospitable land area for all scenarios
and models (Figs. 8 and E2). The latitudinal mean ToE shows
smaller variation for all models and scenarios. The ToE for

cSoil is typically shorter than that for cVeg, which is related
to the relatively smaller internal variability of cSoil.

In the mid-latitudes, the ToE for nonlocal cVeg changes
in EC-Earth is generally later than in the other two models
across all three scenarios. This delay is related to the impact
of dynamic vegetation competition and replacement. Addi-
tionally, the ToE is further delayed in the FRST scenario due
to the gradual establishment of tree physical properties.

3.5 Impacts of temperature and soil moisture on
nonlocal BGC effects

Except for EC-Earth’s cSoil sensitivity to soil moisture, the
sensitivity of cVeg and cSoil to temperature and soil mois-
ture is highly consistent across three models and scenarios in
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Figure 6. Relative contribution of the nonlocal-to-total effect of soil carbon of the last 30 years in the 160-year simulation period. See Fig. 5
for details.

Figure 7. Latitudinal mean time of emergence for nonlocal vegetation carbon changes surpassing natural variability in the (a) cropland
expansion, (b) afforestation, and (c) irrigation of cropland expansion scenarios. Results are shown for MPI-ESM (blue), CESM (black), and
EC-Earth (red).

global distribution and sign. We discuss the CROP scenario
and present the signals of the FRST and IRR scenario with
Figs. D1–D4.

All three models agree that, in the low latitudes, elevated
nonlocal temperatures and decreased nonlocal soil moisture
induce reductions in nonlocal cVeg. The magnitude of cVeg
sensitivity to nonlocal BGP effects is particularly high in the
western Amazon and central Congo Basin regions (Fig. 9a–c
and e–g). Obviously, less soil moisture restricts plant assimi-
lation. Elevated temperatures induce an increase in gross pri-
mary productivity and even more in autotrophic respiration,
which in the end leads to a decrease in cVeg (Lawrence et
al., 2019; Reick et al., 2021; Smith et al., 2014). In the North-
ern Hemisphere boreal latitudes, increased temperatures pos-
itively influence cVeg.

Generally, while the distribution of cVeg sensitivity is sim-
ilar across models, the magnitude differs. In low latitudes,
the cVeg of CESM decreases by −11 GtC for every kelvin
increase in temperature. This is less than the magnitudes for

MPI-ESM and EC-Earth, which are −18 and −19 GtC K−1,
respectively. In the central Congo Basin and western Ama-
zon regions, the sensitivity difference of cVeg is even greater
among the three models. MPI-ESM and EC-Earth simulate
a cVeg loss of about −10 GtC K−1 more than CESM in the
central Congo Basin region, while MPI-ESM experiences a
cVeg loss of about −12 GtC K−1 more than CESM and EC-
Earth in the western Amazon region. For every millimeter in-
crease in soil moisture, cVeg increases the most in EC-Earth
and the least in CESM. For example, in the low latitudes,
cVeg increases by 85, 231, and 821 GtC for CESM, MPI-
ESM, and EC-Earth, respectively (Fig. 9h). For MPI-ESM
and CESM, the multiple linear regression model in the low
latitudes provides a better explanation of the cVeg changes,
with the average coefficient of determination (R2) being 0.70
and 0.57 for MPI-ESM and CESM, respectively (Fig. 9l).

Both MPI-ESM and CESM show that, in most regions,
global increases in temperature and soil moisture lead to de-
creased cSoil due to accelerated decomposition rates. This
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Figure 8. Latitudinal mean time of emergence for nonlocal soil carbon changes surpassing natural variability. For details, see Fig. 7. Same
as Fig. 7 but for soil carbon.

Figure 9. Attribution of vegetation carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) from a multiple linear regression analysis for the cropland expansion scenario for MPI-ESM, CESM, and EC-Earth
(see Figs. D1 and D3 for afforestation and irrigation of cropland scenarios, respectively). Note that the value scale differs between models.
Panels (d), (h), and (l) are latitudinal means over the land areas.

feature remains consistent across scenarios (Figs. D1–D4),
except for EC-Earth, where soil moisture plays an opposing
role, with increasing soil moisture correlating with increased
cSoil. The magnitude of cSoil sensitivity to nonlocal BGP ef-
fects is particularly high in the western Amazon and central
Congo Basin regions. Except for a similar pattern, the mod-
els present a large difference in magnitude. For example, in
the low latitudes, the cSoil sensitivity to temperature is 1 or-
der of magnitude smaller for CESM (−8 GtC K−1) and EC-
Earth (−12 GtC K−1) than for MPI-ESM (−106 GtC K−1).

For every millimeter increase in soil moisture, cSoil typi-
cally gains in EC-Earth and loses in the other two models
globally. For example, in the low latitudes, cSoil increases
by 20 GtC for EC-Earth and declines by−94 and−9 GtC for
MPI-ESM and CESM, respectively. For MPI-ESM, the mul-
tiple linear regression model in the low latitudes and North-
ern Hemisphere high latitudes provides a better explanation
of the cSoil changes (Fig. 10l). CESM and EC-Earth present
a similar pattern but smaller magnitude. Overall, MPI-ESM
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has the highest R2 in the low latitudes (0.58), followed by
CESM (0.41) and EC-Earth (0.29).

The model divergence regarding the sensitivity depends on
each ESM and its respective land surface scheme, such as
how it represents respiration, photosynthesis, and dynamic
vegetation. In our study, a more complex carbon cycle re-
sponse in EC-Earth is related to the dynamic global changes
in vegetation types. In addition to the metabolic responses
of plants and soil to nonlocal climate changes, competition
and sequential replacement among various plant functional
types also influence the carbon cycle. This complexity ex-
plains the lowerR2 value for EC-Earth compared to the other
two models in both nonlocal cVeg and cSoil regression mod-
els. Additionally, the positive cSoil response to soil moisture
in EC-Earth, opposite to the negative responses in the other
two models, is related to the fact that nonlocal cSoil changes
are driven by nonlocal cVeg changes, which exhibit a strong
positive relationship with soil moisture.

4 Discussion

4.1 Summary and broader relevance

The nonlocal BGC effects accumulate as a result of the
persistent nonlocal BGP effects induced by large-scale
LCLMCs. The nonlocal changes in cVeg and cSoil appear
substantially within the first 40 years for all three scenarios
and models. For the CROP scenario, the signals even emerge
within the first 10 years in the western Amazon and central
Congo Basin regions. By the end of our 160-year simula-
tion period, the global nonlocal cLand changes by several to
dozens of gigatonnes of carbon. The nonlocal BGC effects
are often stronger in the western Amazon and central Congo
Basin regions compared to other regions. For all scenarios,
regionally the nonlocal BGC effects are comparable to the
total effects, especially for the IRR scenario, in which the
nonlocal cVeg and cSoil changes usually approach or even
exceed the total effects. The cVeg and cSoil decrease with in-
creasing temperature in the low latitudes, whereas the cVeg
increases while the cSoil decreases with increasing soil mois-
ture, except for the simulations with EC-Earth. This major
model consistency in sensitivity supports our hypothesis that
the model divergence in nonlocal BGC effects is the result
of distinct nonlocal climate effects (Figs. C2 and C3). The
carbon cycle sensitivity to temperature and soil moisture is
consistent among the three scenarios.

The nonlocal BGC effects are typically more pronounced
for the CROP scenario globally and in key regions like
the western Amazon and central Congo Basin regions. This
holds for all three models. This is due to the more pro-
nounced nonlocal BGP effects of the CROP scenario, as the
sensitivity of the carbon pool changes with climate is highly
consistent across scenarios and consistent with previous re-
search of the low latitudes (Arora et al., 2013; Hubau et al.,
2020; Koch et al., 2021; Sullivan et al., 2020). Nonlocal soil

moisture changes are dominant, given the magnitude of tem-
perature and soil moisture changes (Figs. C2 and C3) and the
fact that 1 mm soil moisture changes result in larger carbon
stock changes than 1 K temperature changes.

The nonlocal BGC effects show an asymmetric response
between the CROP and FRST scenarios due to LCLMC pat-
terns. For instance, given the originally high percentage of
forest cover over the western Amazon region, the CROP sce-
nario shows an extensive land cover transition to cropland.
The FRST scenario, in contrast, only shows a slight transition
to forest. This asymmetry leads to smaller remote changes in
the FRST scenario for both temperature (Fig. C2) and soil
moisture (Fig. C3) compared to the CROP scenario, particu-
larly in MPI-ESM. Previous studies using observation-based
assessments have shown the difference in land surface prop-
erties between newly grown young forest and previously lost
older forest (Su et al., 2023; Zhang et al., 2024). A new
forest can only have the same influence as a mature forest,
on local and nonlocal climate, after a substantial period of
development. However, the models in this study differ in
representing these processes: only EC-Earth (LPJ-GUESS)
simulates the gradual establishment of tree physical prop-
erties (Döscher et al., 2022; Smith et al., 2014), explaining
the delayed growth trend and typically larger ToE for nonlo-
cal BGC effects in EC-Earth’s FRST scenario compared to
CESM and MPI-ESM (Figs. 2 and 7).

Apart from nonlocal BGP effects, the local BGP effects
are more pronounced for the CROP scenario, especially for
EC-Earth (De Hertog et al., 2023). This highlights the im-
portance of stopping cropland expansion, which potentially
triggers substantial nonlocal BGC effects, in contrast to the
lagging and smaller nonlocal BGC effects from afforestation.
Previous studies have demonstrated the priority of stopping
deforestation from multiple perspectives. Regarding carbon
stock and biodiversity, after decades of development, regen-
erated forests still fall behind the undisturbed primary forest
(Lennox et al., 2018; Smith et al., 2020). Additionally, taking
the economy and society into account, avoiding deforestation
is the most cost-effective LCLMC action to mitigate climate
change in the short term (Eriksson, 2020).

The IRR scenario has the largest relative magnitude of
nonlocal BGC effects among all LCLMC scenarios. This
is mainly because of the substantial nonlocal BGP effects
(Fig. C2) and the comparatively minor local BGC effects
compared to the CROP and FRST scenarios. Irrigation has
gained attention due to its significant hydrological and cli-
matic impacts (Devanand et al., 2019; Leng et al., 2015;
Mahmood et al., 2014; Thiery et al., 2020). For MPI-ESM
and CESM, in the low latitudes, irrigation mitigates the
warming and drying trend following cropland expansion
(Figs. C2 and C3) and consequently partially compensates
the cVeg losses in these regions (Fig. 3). The nonlocal BGC
effects, as a major contributor to land management emis-
sions, run the risk of being overlooked if we concentrate only
on irrigated land and local BGC effects.
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Figure 10. Attribution of soil carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) for the cropland expansion scenario (see Figs. D2 and D4 for afforestation and irrigation of cropland scenarios,
respectively). For details, see Fig. 9. Same as Fig. 9 but for soil carbon.

Overall, we show that the nonlocal BGC effects are typ-
ically strong over dense forest regions, such as the west-
ern Amazon and central Congo Basin regions, for all three
models and scenarios. This is consistent with prior research
suggesting that regions with high growth potential, such as
forests, are particularly vulnerable (Huxman et al., 2004;
Knapp and Smith, 2001). In addition, dense forests experi-
ence an earlier ToE than other types. One reason is the higher
sensitivity of carbon pools in these regions to nonlocal BGP
effects (Figs. 9 and 10; see Sect. 2.4 for the calculation of
ToE), which is related to the high biomass density of the for-
est. While a higher sensitivity weakens the signal-to-noise ra-
tio, the dominating effect is the larger response of forests to
the BGP climate changes. For the CROP scenario, the transi-
tion from forest to cropland in the western Amazon and cen-
tral Congo Basin region (Fig. C1) causes substantial nonlocal
BGP effects on nearby regions. This is in line with previous
studies that indicate nonlocal BGP effects to be stronger over
regions close to LCLMCs compared to more remote regions
(Boysen et al., 2020; Butt et al., 2023; Cohn et al., 2019;
Crompton et al., 2021). Our findings warn us of the potential
risks that come with LCLMCs around old, dense forests.

The nonlocal BGC effects are currently neglected in scien-
tific assessments and political decision-making around land
use change, adaptation, and climate mitigation. Our study
highlights the importance of considering these effects. A fur-
ther consideration is whether nonlocal BGC effects should
enter the definition of land use emissions. The nonlocal BGC

effects fall under indirect effects on managed and unmanaged
land, accounted for as anthropogenic removals or emissions
by the National Greenhouse Gas Inventories (NGHGIs) un-
der UNFCCC rules (Grassi et al., 2018). The indirect human-
induced effects represent land carbon pool changes resulting
from climate change, atmospheric CO2, nitrogen deposition,
and natural disturbances. These changes partly result from
LCLMCs; the contribution could be substantial with exten-
sive LCLMCs, though not fundamentally different than for
other types of human-induced environmental changes. The
presented LCLMC-induced climate effects and their results
on remote C stock changes highlight that land use, land use
change, and forestry (LULUCF) activities in one country in-
fluence the ecosystem fluxes and thus land use emissions, as
defined by the country reporting under UNFCCC, in another
country. By contrast, the indirect human-induced effects, in-
cluding the nonlocal BGC effects, are categorized as natural,
not anthropogenic, land sinks/sources in the global carbon
budgets (Friedlingstein et al., 2023) and in the IPCC Sixth
Assessment Report (Canadell et al., 2021). For the NGHGIs,
the nonlocal BGC effects on managed land are accounted for,
while those on unmanaged land are currently unaccounted
for, as NGHGIs typically measure land use emissions on
managed land.

To achieve the Paris Agreement’s goal of limiting global
warming to below 1.5 °C above pre-industrial levels, which
necessitates net-zero CO2 emissions around 2050 and sub-
sequent net-zero emissions for all other greenhouse gases in
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the second half of the 21st century (Riahi et al., 2022), carbon
dioxide removal and negative CO2 emissions are inevitable.
The land sector is expected to contribute significantly to this
goal, with LCLMCs playing a pivotal role (Humpenöder et
al., 2022; Roe et al., 2019). Given that the nonlocal BGC
effect is a non-negligible component of LCLMC emissions,
it should be taken into account for consistent budgeting of
greenhouse gas fluxes in line with intended climate policies.

4.2 Robustness of results

Despite substantial discrepancies in the global integral of
nonlocal BGC effects due to regional magnitude differences,
the spatial patterns and signs are consistent among models.
An exception is the cVeg changes in EC-Earth in the CROP
and the FRST scenarios where the signs are different to the
other models. This consistency indicates the robustness of the
nonlocal BGC effect, while the multi-model approach pro-
vides an assessment of model uncertainty.

The model discrepancies stem from two sources: diver-
gence in nonlocal BGP effects and divergence in the car-
bon cycle sensitivity to climate change. The nonlocal BGP
effects diverge in magnitude and even sign (Figs. C2 and
C3). The difference in temperature and soil moisture could
reach several degrees kelvin and millimeters, respectively,
in some regions. The divergence in nonlocal BGP effects is
related to the divergence in implemented LCLMCs among
models. Typically, in EC-Earth, the land cover does not fully
change to a target type due to its dynamic global vegetation
model. All three models have substantially different irriga-
tion amounts and spatial distributions. Notably, MPI-ESM
shows high irrigation amounts in the boreal latitudes, dif-
fering from the other two models, which could explain the
substantial cooling there. Except for EC-Earth, the sensitiv-
ity patterns and signs are consistent among models, but there
is a substantial discrepancy in the magnitude. The sensitivity
depends on each ESM and its respective land surface scheme,
for example, how it represents respiration, photosynthesis,
and dynamic vegetation. In our research, EC-Earth is the only
model that simulates dynamic changes in the global distribu-
tion of vegetation types. The carbon cycle response is there-
fore more intricate than in the other two models. For instance,
unfavorable climatic conditions (such as warming and dry-
ing) usually result in smaller carbon losses than for the other
ESMs or even carbon increases in EC-Earth (Fig. 3c, g, k).
Although carbon sequestration benefits from plant acclima-
tion to nonlocal BGP effects, the influence of competition
and the sequential replacement between various plant func-
tional types depends on the timescale. It could increase cVeg
in the long term while decreasing cVeg in the short term, with
a portion of substantial dead vegetation carbon transferred
to the litter and soil carbon pool. This explains the opposite
cVeg and cSoil changes in EC-Earth for the CROP scenario
in the Northern Hemisphere high latitudes, contributing to
model divergence. The model divergence in nonlocal BGC

effects is the combined results of both nonlocal BGP effects
and the carbon cycle sensitivity. For example, EC-Earth sim-
ulates an increase in soil moisture in the low latitudes for
the CROP scenario which is opposite in sign and 1 order of
magnitude smaller in magnitude compared with the changes
in CESM and MPI-ESM. Nevertheless, this increment plays
a key role in the arid tropics, given that cVeg’s sensitivity
to soil moisture is far greater for EC-Earth than it is for the
other two models. cVeg ends up with a major increase, which
is opposite to the cVeg loss in other two scenarios.

The nonlocal BGC effects especially depend on the back-
ground climate and CO2 concentration. BGP effects depend
on the background climate (Pitman et al., 2011; Winckler et
al., 2017b), and the sensitivity of the carbon cycle to climate
change is also influenced by the CO2 concentration. In this
study, we investigate effects under present-day environmen-
tal conditions, which are of greatest relevance to near-term
decisions on how to use our land. However, the results may
differ under future or historical conditions.

The nonlocal BGC effects are substantially dependent on
the pattern and magnitude of global LCLMCs. In this study,
we implement idealized LCLMC scenarios (see Sect. 2.1).
However, some of our findings apply to realistic LCLMCs;
for instance, with a similar initial climate, the carbon cy-
cle sensitivity to climate change is highly consistent among
scenarios. Apart from that, the adjacent extensive LCLMCs
could generate nonlocal BGC effects comparable to our find-
ings in the target region, considering the LCLMCs typically
generate more substantial nonlocal BGP effects nearby (Guo
et al., 2024a). Our results could serve as an approximate esti-
mation. However, more realistic simulations or emulator de-
velopment efforts (Nath et al., 2023) are necessary for accu-
rate estimation in application.

5 Conclusions

The nonlocal BGC effects accumulate as a result of the
persistent nonlocal BGP effects brought on by large-scale
LCLMCs. They affect regions remote from the locations of
LCLMCs as unintended, though potentially large, effects.
The nonlocal BGC effects typically appear within the first
40 years and even emerge within the first 10 years in the
western Amazon and central Congo Basin regions under the
CROP scenario. By the end of the 160-year simulation pe-
riod, the global cLand changes by several to dozens of gi-
gatonnes of carbon. For the IRR scenario, the nonlocal BGC
effects are typically comparable to or exceed the total effects,
with the nonlocal-to-total ratio for vegetation carbon pools
commonly reaching around 90 %. Nonlocal BGC effects can
be attributed to nonlocal climate changes such as changes
in temperature and soil moisture, with tropical regions be-
ing particularly sensitive. In these regions, every kelvin in-
crease in temperature results in a decrease of over 10 GtC
in cVeg. The cVeg response to soil moisture changes varies
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across models, with each millimeter increase in soil mois-
ture leading to a rise in cVeg of+85 to more than+200 GtC.
The priority of stopping cropland expansion is underscored
by the fact that the slow regrowth of a new forest induces
lagging nonlocal BGC effects in contrast to the quick effects
of mature forest loss. For all scenarios, the signals are of-
ten stronger in the western Amazon and central Congo Basin
regions. The LCLMCs around old, dense forests run a risk
of triggering amplified nonlocal BGC effects in these forest
regions due to high biomass density and to the intensifica-
tion of near-source-induced nonlocal BGP effects. Though
the nonlocal BGC effects are currently neglected in scientific
and political assessments, our study highlights their impor-
tance. It is essential to reconsider the definition of land use
emissions and include the nonlocal BGC effects of LCLMCs.
This becomes more relevant when LCLMCs are expected to
play a pivotal role in achieving the Paris Agreement’s goal of
limiting global warming below 1.5 °C above pre-industrial
levels.

Appendix A: Distribution of PFTs within crop and
forest categories

PFTs are used in Earth system models to represent the di-
versity of land cover types within a grid box. These PFTs
have specific biochemical and biophysical properties, which
are represented by model-specific parameters. The number
and specific types of PFTs within the broader crop and for-
est categories vary among Earth system models: MPI-ESM
includes four forest types and one crop type. CESM includes
eight forest types and nine crop types, with each crop type
having a corresponding irrigated version for irrigation im-
plementation. EC-Earth does not have specific forest types;
instead, it uses a natural type that includes coexistence be-
tween grass, shrub, and tree PFTs, and it includes four crop
types along with corresponding irrigated versions.

The distribution of the specific crop or forest PFTs within
the respective cropland expansion or afforestation scenario
remains constant in the changed grid cells for each ESM (i.e.
we did not change the relative importance of broadleaf to
needleleaf forest types, for example); we only scaled each
crop or forest PFT in such a way that their sum covered the
entire hospitable land. For grid cells without any crop or for-
est PFTs in the year 2014 land cover data set, we calculated
a mean latitudinal value of the distribution of specific crop or
forest PFTs. We then assumed this as an initial distribution
and applied the same scaling as described before to replace
all other vegetation of that grid cell.

Appendix B: LCLMC implementation in the different
ESMs

The exact implementation depended on the specific way
each ESM and its respective land surface scheme handles

LCLMCs: for CESM, with its land surface scheme CLM5
(Lawrence et al., 2019), we applied the land cover change
scenarios using prescribed states of land cover for each year.
For MPI-ESM, with its land surface scheme JSBACH3 (Re-
ick et al., 2021), we prescribed the transition between land
cover types, thereby also considering effects from gross land
cover changes within a grid cell. EC-Earth uses the second-
generation dynamic global vegetation model LPJ-GUESS
(Smith et al., 2014), which simulates age-structured dynam-
ics of woody vegetation due to plant growth and competi-
tion for light, space, and soil resources with a herbaceous
understory. EC-Earth separates between six stand types (nat-
ural, pasture, urban, crop, irrigated crop, and peatland). It
does not include the option to simulate prescribed forest
PFTs, so we could only prescribe the entire natural stand in-
stead of explicit forest for the FRST scenario in EC-Earth.
In the natural stand type, 10 woody and 2 herbaceous PFTs
are in competition. As a result, depending on the climate,
grassland coexists with the forests and shrubs. Additionally,
the dynamic vegetation model determines that the physical
properties of trees gradually establish depending on biomass
buildup through vegetation growth, unlike the immediate
physical forest representation in MPI-ESM and CESM after
afforestation (Döscher et al., 2022; Smith et al., 2014).

Regarding irrigation implementation, for MPI-ESM, we
adapted and implemented a simple irrigation scheme into
JSBACH. It ensures water mass conservation in a coupled
atmosphere–ocean climate model and maximizes the effect
of irrigation to recycle locally available water to the atmo-
sphere by evapotranspiration. Surface runoff and drainage
are first collected in a storage reservoir with 20 cm capacity
before being transferred to the skin reservoir, filling it com-
pletely as long as water is available in the storage reservoir.
In contrast to MPI-ESM, CESM and EC-Earth do not have
a constraint on water availability. CESM applies daily irri-
gation to the surface to retain a target soil moisture, while
EC-Earth applies daily irrigation to the top of the soil col-
umn depending on the water deficit. All three models imple-
ment the flood irrigation method. In CESM, irrigation wa-
ter is first taken from river storage, with additional water
drawn from the ocean when river water is insufficient. In EC-
Earth, irrigation water is added to the vegetation model LPJ-
GUESS without considering its source. This approach does
not directly affect EC-Earth’s water cycle, as irrigation in
LPJ-GUESS only influences land–atmosphere water fluxes
in EC-Earth through its impacts on vegetation type and LAI
(Döscher et al., 2022).
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Appendix C: Implementation of LCLMCs and
resulting remote climate changes

Figure C1. Land cover and land management changes implemented in the sensitivity simulations. The cover fraction increase in cropland in
the CROP scenario compared to the CTL scenario is shown for CESM (a), MPI-ESM (b), and EC-Earth (c). The cover fraction increase in
forest in the FRST scenario compared to the CTL scenario is shown for CESM (d), MPI-ESM (e), and EC-Earth (f). The amount of irrigation
implemented in the IRR scenario compared to the CROP scenario is shown for CESM (g), MPI-ESM (h), and EC-Earth (i). Source: De
Hertog et al. (2023).

Figure C2. Nonlocal BGP effects on annual mean near-surface air temperature of the last 150 years in the 160-year simulation period using
MPI-ESM, CESM, and EC-Earth after an idealized change of 50 % of all grid cells to (a–c) cropland expansion, (e–g) afforestation, and
(i–k) cropland expansion with irrigation. Panels (d), (h), and (l) are latitudinal means over the land areas.
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Figure C3. Nonlocal BGP effects on annual mean surface soil moisture of the last 150 years in the 160-year simulation period using MPI-
ESM, CESM, and EC-Earth after an idealized change of 50 % of all grid cells to (a–c) cropland expansion, (e–g) afforestation, and (i–k)
cropland expansion with irrigation. Panels (d), (h), and (l) are latitudinal means over the land areas.
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Appendix D: Temporal development of regionally
integrated nonlocal BGC effects

Figure D1. Simulated nonlocal effect on the development of terrestrial carbon pools in the western Amazon after an idealized change of
50 % of all grid cells to (a) cropland expansion, (b) afforestation, and (c) irrigation of cropland expansion. Carbon pools are separated into
vegetation (green), soil (orange), litter (blue), and land as the total terrestrial C pools (black) between results of MPI-ESM (solid lines),
CESM (dashed lines), and EC-Earth (dotted lines).
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Figure D2. Simulated nonlocal effect on the development of terrestrial carbon pools in the central Congo Basin. See Fig. D1 for details.
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Figure D3. Simulated nonlocal effect on the development of terrestrial carbon pools in northern Eurasia. See Fig. D1 for details.
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Figure D4. Simulated nonlocal effect on the development of terrestrial carbon pools in eastern North America. See Fig. D1 for details.
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Figure D5. Simulated nonlocal effect on the development of terrestrial carbon pools in northeastern Asia. See Fig. D1 for details.
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Figure D6. Simulated nonlocal effect on the development of terrestrial carbon pools in southern Southeast Asia. See Fig. D1 for details.
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Figure D7. Simulated nonlocal effect on the development of terrestrial carbon pools in northern Australia. See Fig. D1 for details.
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Appendix E: Spatial distribution of ToE

Figure E1. Time of emergence for nonlocal vegetation carbon changes surpassing natural variability in the cropland expansion (a–c),
afforestation (d–f), and irrigation of cropland expansion (g–i) scenarios. Results are shown for MPI-ESM, CESM, and EC-Earth.

Figure E2. Time of emergence for nonlocal soil carbon changes surpassing natural variability. For details, see Fig. E1. Same as Fig. E1 but
for soil carbon.
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Appendix F: Impacts of temperature and soil
moisture on nonlocal BGC effects for the FRST and
IRR scenarios

Figure F1. Attribution of vegetation carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) for the afforestation scenario (see Figs. 9 and F3 for the cropland expansion and irrigation of cropland scenarios,
respectively). For details, see Fig. 9.

Figure F2. Attribution of soil carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) for the afforestation scenario (see Figs. 10 and F4 for the cropland expansion and irrigation of cropland scenarios,
respectively). For details, see Fig. 9.
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Figure F3. Attribution of vegetation carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) for the irrigation of cropland scenarios (see Figs. 9 and F1 for the cropland expansion and afforestation scenarios,
respectively). For details, see Fig. 9.

Figure F4. Attribution of soil carbon changes to changes in near-surface air temperature (a–d) and surface soil moisture (e–h) and the
respective R2 values (i–l) for the irrigation of cropland scenarios (see Figs. 10 and F2 for the cropland expansion and afforestation scenarios,
respectively). For details, see Fig. 9.
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Code and data availability. CESM is open-source (National
Center for Atmospheric Research: Downloading Instructions
| Community Earth System Model, https://www.cesm.ucar.edu/
models/cesm2/release_download.html; NCAR, 2024). MPI-ESM is
available under the MPI-M software license agreement (https://doi.
org/10.17617/3.H44EN5; Model Development Team Max-Planck-
Institut für Meterologie, 2024). EC-Earth is available to insti-
tutes that have signed a memorandum of understanding with the
EC-Earth community and a software license agreement with the
ECMWF. The source code can be requested from the EC-Earth
community via the EC-Earth website (https://ec-earth.org/; EC-
Earth Consortium, 2025). The scripts used for data post-processing
and analysis can be found here: https://github.com/SuqiGuo/Guo_
etal_2025_ESD (last access: 16 April 2025; https://doi.org/10.5281/
zenodo.15192278, Guo, 2025). The data that support the findings of
this study can be found here: https://www.wdc-climate.de/ui/entry?
acronym=DKRZ_LTA_1147_ds00006 (Guo et al., 2024b).

Author contributions. The simulation protocol was designed by
CFS, QL, WT, JP, FH, IM, SJDH, and SG. SJDH performed the
simulations and produced the data using CESM. IM performed the
simulations and produced the data using EC-Earth. FH and SG per-
formed the simulations and produced the data using MPI-ESM. SG
analyzed the data and drafted the article. TR implemented the irri-
gation scheme for MPI-ESM. HL assisted in setting up the MPI-
ESM simulations. FH and SJDH performed the post-processing
for the signal separation. FL prepared the EC-Earth data for post-
processing and helped with the signal separation for EC-Earth. DW
and LN contributed to the explanation of signals in EC-Earth. All
authors commented on the paper and provided feedback on the data
analysis.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This study was funded through the project
“Land Management for Climate Mitigation and Adaptation”
(LAMACLIMA). The LAMACLIMA project is part of AXIS, an
ERA-NET initiated by JPI Climate and funded by DLR/BMBF
(DE, grant no. 01LS1905A-C), RCN (NO; grant no. 300478),
BELSPO (BE, grant no. B2/181/P1), and NWO (NL, grant no.
438.19.904) and co-funded by the European Union under Hori-
zon 2020 (grant no. 776608). This work used resources of the
Deutsches Klimarechenzentrum (DKRZ), granted by its Scientific
Steering Committee (WLA) under project ID bm1147. Resources
for CESM simulations and data storage were provided by the
VSC (Flemish Supercomputer Center), funded by the Research
Foundation–Flanders (FWO) and the Flemish government depart-

ment EWI. EC-EARTH simulations were conducted using plat-
forms at the European Center for Medium-Range Weather Fore-
casts (ECMWF). Steven J. De Hertog acknowledges funding by
BELSPO (B2/223/P1/DAMOCO). Fei Luo acknowledges the VIDI
award from the Netherlands Organization for Scientific Research
(NWO) (Persistent Summer Extremes “PER SIST” project no.
016.Vidi.171.011). David Wårlind and Lars Nieradzik were sup-
ported by the Strategic Research Area MERGE (ModElling the Re-
gional and Global Earth system – https://www.merge.lu.se, last ac-
cess: 11 April 2025) and by the European Union’s Horizon Europe
research and innovation programme through the research project
RESCUE (grant no. 101056939). Hongmei Li was supported by
the European Union’s Horizon 2020 research and innovation pro-
gramme through the research project 4C (grant no. 821003) and the
German Research Foundation (DFG) under Germany’s Excellence
Strategy’s Cluster of Excellence “Climate, Climatic Change, and
Society” (CLICCS) (project no. 390683824). The authors would
like to thank Björn Maier for his valuable suggestions and the icon
design for Fig. 1, which greatly improved the visualization.

Financial support. This research has been supported by the
Deutsches Zentrum für Luft- und Raumfahrt and Bundesmin-
isterium für Bildung und Forschung (grant no. 01LS1905A-C),
the Research Council of Norway (grant no. 300478), the Bel-
gian Federal Science Policy Office (grant no. B2/181/P1), the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (grant
no. 438.19.904), the European Union under Horizon 2020 (grant
no. 776608), and the Deutsches Klimarechenzentrum (project ID
bm1147).

Review statement. This paper was edited by Somnath Baidya
Roy and reviewed by two anonymous referees.

References

Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global
Emergence of Anthropogenic Climate Change in Fire
Weather Indices, Geophys. Res. Lett., 46, 326–336,
https://doi.org/10.1029/2018GL080959, 2019.

Al-Yaari, A., Ducharne, A., Thiery, W., Cheruy, F., and Lawrence,
D.: The role of irrigation expansion on historical climate change:
insights from CMIP6, Earth’s Future, 10, e2022EF002859,
https://doi.org/10.1029/2022EF002859, 2022.

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C.
D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cad-
ule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and
Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks
in CMIP5 Earth System Models, J. Climate, 26, 5289–5314,
https://doi.org/10.1175/JCLI-D-12-00494.1, 2013.

Boisier, J. P., De Noblet-Ducoudré, N., Pitman, A. J., Cruz, F.
T., Delire, C., Van Den Hurk, B. J., Van Der Molen, M. K.,
Mller, C., and Voldoire, A.: Attributing the impacts of land
cover changes in temperate regions on surface temperature and
heat fluxes to specific causes: Results from the first LU CID
set of simulations, J. Geophys. Res.-Atmos., 117, D12116,
https://doi.org/10.1029/2011JD017106, 2012.

https://doi.org/10.5194/esd-16-631-2025 Earth Syst. Dynam., 16, 631–666, 2025

https://www.cesm.ucar.edu/models/cesm2/release_download.html
https://www.cesm.ucar.edu/models/cesm2/release_download.html
https://doi.org/10.17617/3.H44EN5
https://doi.org/10.17617/3.H44EN5
https://ec-earth.org/
https://github.com/SuqiGuo/Guo_etal_2025_ESD
https://github.com/SuqiGuo/Guo_etal_2025_ESD
https://doi.org/10.5281/zenodo.15192278
https://doi.org/10.5281/zenodo.15192278
https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_1147_ds00006
https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_1147_ds00006
https://www.merge.lu.se
https://doi.org/10.1029/2018GL080959
https://doi.org/10.1029/2022EF002859
https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.1029/2011JD017106


662 S. Guo et al.: Overlooked impacts on the remote carbon cycle

Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks,
and the Climate Benefits of Forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.

Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M.,
Lawrence, P., Vuichard, N., Peylin, P., Liddicoat, S., Hajima,
T., Zhang, Y., Rocher, M., Delire, C., Séférian, R., Arora, V. K.,
Nieradzik, L., Anthoni, P., Thiery, W., Laguë, M. M., Lawrence,
D., and Lo, M.-H.: Global climate response to idealized de-
forestation in CMIP6 models, Biogeosciences, 17, 5615–5638,
https://doi.org/10.5194/bg-17-5615-2020, 2020.

Bright, R. M., Davin, E., O’Halloran, T., Pongratz, J., Zhao, K., and
Cescatti, A.: Local temperature response to land cover and man-
agement change driven by non-radiative processes, Nat. Clim.
Change, 7, 296–302, https://doi.org/10.1038/nclimate3250,
2017.

Butt, E. W., Baker, J. C. A., Bezerra, F. G. S., von Randow, C.,
Aguiar, A. P. D., and Spracklen, D. V.: Amazon deforestation
causes strong regional warming, P. Natl. Acad. Sci. USA, 120,
e2309123120, https://doi.org/10.1073/pnas.2309123120, 2023.

Canadell, J. G., Monteiro, P. M., Costa, M. H., Cunha, L. C. d., Cox,
P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven,
C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani,
S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Bio-
geochemical Cycles and Feedbacks, in: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pi-
rani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lon-
noy, E., Matthews, R. J., Maycock, T. K., Waterfield, T., Yelekçi,
O., Yu, R., and Zhou, B., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 673–816,
https://doi.org/10.1017/9781009157896.007, 2021.

Cohn, A. S., Bhattarai, N., Campolo, J., Crompton, O., Dralle, D.,
Duncan, J., and Thompson, S.: Forest loss in Brazil increases
maximum temperatures within 50 km, Environ. Res. Lett., 14,
084047, https://doi.org/10.1088/1748-9326/ab31fb, 2019.

Cook, B. I., Shukla, S. P., Puma, M. J., and Nazarenko, L. S.: Irri-
gation as an historical climate forcing, Clim. Dynam., 44, 1715–
1730, https://doi.org/10.1007/s00382-014-2204-7, 2015.

Craigmile, P. F. and Guttorp, P.: Comparing CMIP6 Climate Model
Simulations of Annual Global Mean Temperatures to a New
Combined Data Product, Earth Sp. Sci., 10, e2022EA002468,
https://doi.org/10.1029/2022EA002468, 2023.

Crompton, O., Corrêa, D., Duncan, J., and Thompson, S.:
Deforestation-induced surface warming is influenced by the
fragmentation and spatial extent of forest loss in Mar-
itime Southeast Asia, Environ. Res. Lett., 16, 114018,
https://doi.org/10.1088/1748-9326/ac2fdc, 2021.

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., Du-
Vivier, A. K. , Edwards, J., Emmons, L. K., Fasullo, J., Gar-
cia, R., Gettelman, A., Hannay, C., Holland, M. M., Large,
W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M.,
Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Ole-
son, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes,
S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis,
J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinni-
son, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickel-
son, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J.,

and Strand, W. G., The Community Earth System Model Ver-
sion 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020.

De Hertog, S. J., Havermann, F., Vanderkelen, I., Guo, S., Luo,
F., Manola, I., Coumou, D., Davin, E. L., Duveiller, G., Leje-
une, Q., Pongratz, J., Schleussner, C.-F., Seneviratne, S. I., and
Thiery, W.: The biogeophysical effects of idealized land cover
and land management changes in Earth system models, Earth
Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-
2023, 2023.

De Hertog, S. J., Lopez-Fabara, C. E., van der Ent, R., Ke-
une, J., Miralles, D. G., Portmann, R., Schemm, S., Haver-
mann, F., Guo, S., Luo, F., Manola, I., Lejeune, Q., Pongratz,
J., Schleussner, C.-F., Seneviratne, S. I., and Thiery, W.: Ef-
fects of idealized land cover and land management changes on
the atmospheric water cycle, Earth Syst. Dynam., 15, 265–291,
https://doi.org/10.5194/esd-15-265-2024, 2024.

de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B.,
Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B.
J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C.,
Reick, C. H., Strengers, B. J., and Voldoire, A.: Determining
Robust Impacts of Land-Use-Induced Land Cover Changes on
Surface Climate over North America and Eurasia: Results from
the First Set of LUCID Experiments, J. Climate, 25, 3261–3281,
https://doi.org/10.1175/JCLI-D-11-00338.1, 2012.

Devanand, A., Huang, M., Ashfaq, M., Barik, B., and Ghosh, S.:
Choice of Irrigation Water Management Practice Affects Indian
Summer Monsoon Rainfall and Its Extremes, Geophys. Res.
Lett., 46, 9126–9135, https://doi.org/10.1029/2019GL083875,
2019.

De Vrese, P., Hagemann, S., and Claussen, M.: Asian irrigation,
African rain: Remote impacts of irrigation, Geophys. Res. Lett.,
43, 3737–3745, https://doi.org/10.1002/2016GL068146, 2016.

Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T.,
Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver,
G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker,
E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U.,
Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus,
J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R.,
Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro,
E., Nieradzik, L., van Noije, T., Nolan, P., O’Donnell, D., Ol-
linaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos,
A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P.,
Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Mad-
sen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancop-
penolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang,
S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system
model for the Coupled Model Intercomparison Project 6, Geosci.
Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-
2973-2022, 2022.

Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation
change on Earth’s surface energy balance, Nat. Commun., 9, 679,
https://doi.org/10.1038/s41467-017-02810-8, 2018.

EC-Earth Consortium: EC-Earth: A Community-Based Earth Sys-
tem Model, EC-Earth Consortium [code], https://ec-earth.org/,
last access: 11 April 2025.

Eriksson, M.: Afforestation and avoided deforestation in a multi-
regional integrated assessment model, Ecol. Econ., 169, 106452,
https://doi.org/10.1016/j.ecolecon.2019.106452, 2020.

Earth Syst. Dynam., 16, 631–666, 2025 https://doi.org/10.5194/esd-16-631-2025

https://doi.org/10.1126/science.1155121
https://doi.org/10.5194/bg-17-5615-2020
https://doi.org/10.1038/nclimate3250
https://doi.org/10.1073/pnas.2309123120
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.1088/1748-9326/ab31fb
https://doi.org/10.1007/s00382-014-2204-7
https://doi.org/10.1029/2022EA002468
https://doi.org/10.1088/1748-9326/ac2fdc
https://doi.org/10.1029/2019MS001916
https://doi.org/10.5194/esd-14-629-2023
https://doi.org/10.5194/esd-14-629-2023
https://doi.org/10.5194/esd-15-265-2024
https://doi.org/10.1175/JCLI-D-11-00338.1
https://doi.org/10.1029/2019GL083875
https://doi.org/10.1002/2016GL068146
https://doi.org/10.5194/gmd-15-2973-2022
https://doi.org/10.5194/gmd-15-2973-2022
https://doi.org/10.1038/s41467-017-02810-8
https://ec-earth.org/
https://doi.org/10.1016/j.ecolecon.2019.106452


S. Guo et al.: Overlooked impacts on the remote carbon cycle 663

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fan, X., Duan, Q., Shen, C., Wu, Y., and Xing, C.: Global
surface air temperatures in CMIP6: historical perfor-
mance and future changes, Environ. Res. Lett., 15, 104056,
https://doi.org/10.1088/1748-9326/abb051, 2020.

Fisher, R. A. and Koven, C. D.: Perspectives on the Future
of Land Surface Models and the Challenges of Represent-
ing Complex Terrestrial Systems, J. Adv. Model. Earth Sy.,
12, e2018MS001453, https://doi.org/10.1029/2018MS001453,
2020.

Franklin, J., Serra-Diaz, J. M., Syphard, A. D., and Re-
gan, H. M.: Global change and terrestrial plant commu-
nity dynamics, P. Natl. Acad. Sci. USA, 113, 3725–3734,
https://doi.org/10.1073/pnas.1519911113, 2016.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,
Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala,
G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M.,
Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner,
P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R.,
Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the
C4MIP Model Intercomparison, J. Climate, 19, 3337–3353,
https://doi.org/10.1175/JCLI3800.1, 2006.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Lui-
jkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl,
C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S.
R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin,
N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Cham-
berlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini,
L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely,
R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T.,
Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner,
M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina,
T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang,
F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein
Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan,
X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G.,
Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Mor-
gan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K.
M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D.,
Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy,
L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J.,
Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso,
R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P.,
Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf,
G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-
Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S.,
Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst.
Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-
2023, 2023.

Gormley-Gallagher, A. M., Sterl, S., Hirsch, A. L., Seneviratne, S.
I., Davin, E. L., and Thiery, W.: Agricultural management effects
on mean and extreme temperature trends, Earth Syst. Dynam.,
13, 419–438, https://doi.org/10.5194/esd-13-419-2022, 2022.

Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and
Penman, J.: The key role of forests in meeting climate targets
requires science for credible mitigation, Nat. Clim. Change, 7,
220–226, https://doi.org/10.1038/nclimate3227, 2017.

Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A.,
Peters, G. P., Sanz, M. J., Viñas, R. A., Alkama, R., Arneth, A.,
Bondeau, A., Dentener, F., Fader, M., Federici, S., Friedlingstein,
P., Jain, A. K., Kato, E., Koven, C. D., Lee, D., Nabel, J. E.
M. S., Nassikas, A. A., Perugini, L., Rossi, S., Sitch, S., Viovy,
N., Wiltshire, A., and Zaehle, S.: Reconciling global-model esti-
mates and country reporting of anthropogenic forest CO2 sinks,
Nat. Clim. Change, 8, 914–920, https://doi.org/10.1038/s41558-
018-0283-x, 2018.

Guo, S.: Guo_etal_2025_ESD_v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.15192278, 2025.

Guo, J., Liu, Y., and Hu, Y.: Climate Response to Vegetation Re-
moval on Different Continents, J. Geophys. Res.-Atmos., 129,
e2023JD039531, https://doi.org/10.1029/2023JD039531, 2024a.

Guo, S., Havermann, F., Pongratz, J., De Hertog, S. J.,
Thiery, W., Manola, I., Luo, F., and Coumou, D.: Post-
processed data of LAMACLIMA simulations underlying
the analysis done in Guo et al. (2024) ESD, DOKU
at DKRZ [data set], https://www.wdc-climate.de/ui/entry?
acronym=DKRZ_LTA_1147_ds00006, last access: 21 Novem-
ber 2024b.

Hawkins, E. and Sutton, R.: Time of emergence of
climate signals, Geophys. Res. Lett., 39, L01702,
https://doi.org/10.1029/2011GL050087, 2012.

Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W., and Senevi-
ratne, S. I.: Can climate-effective land management reduce re-
gional warming?, J. Geophys. Res.-Atmos., 122, 2269–2288,
https://doi.org/10.1002/2016JD026125, 2017.

Hong, C., Burney, J. A., Pongratz, J., Nabel, J. E. M. S., Mueller,
N. D., Jackson, R. B., and Davis, S. J.: Global and regional
drivers of land-use emissions in 1961–2017, Nature, 589, 554–
561, https://doi.org/10.1038/s41586-020-03138-y, 2021.

Hubau, W., Lewis, S. L., Phillips, O. L., et al.: Asynchronous car-
bon sink saturation in African and Amazonian tropical forests,
Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0,
2020.

Humpenöder, F., Popp, A., Schleussner, C.-F., Orlov, A., Windisch,
M. G., Menke, I., Pongratz, J., Havermann, F., Thiery, W., Luo,
F., v. Jeetze, P., Dietrich, J. P., Lotze-Campen, H., Weindl, I.,
and Lejeune, Q.: Overcoming global inequality is critical for
land-based mitigation in line with the Paris Agreement, Nat.
Commun., 13, 7453, https://doi.org/10.1038/s41467-022-35114-
7, 2022.

Hurlbert, M., J. Krishnaswamy, Davin, E., Johnson, F. X., Mena, C.
F., Morton, J., Myeong, S., Viner, D., Warner, K., Wreford, A.,
Zakieldeen, S., and Zommers, Z.: 2019: Risk management and
decision-making in relation to sustainable development, in: Cli-
mate Change and Land, edited by: Shukla, P. R., Skea, J., Calvo
Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.
C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat,
M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J.,
Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belka-
cemi, M., and Malley, J., Cambridge University Press, 673–800,
https://doi.org/10.1017/9781009157988.009, 2022.

https://doi.org/10.5194/esd-16-631-2025 Earth Syst. Dynam., 16, 631–666, 2025

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1088/1748-9326/abb051
https://doi.org/10.1029/2018MS001453
https://doi.org/10.1073/pnas.1519911113
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.5194/essd-15-5301-2023
https://doi.org/10.5194/essd-15-5301-2023
https://doi.org/10.5194/esd-13-419-2022
https://doi.org/10.1038/nclimate3227
https://doi.org/10.1038/s41558-018-0283-x
https://doi.org/10.1038/s41558-018-0283-x
https://doi.org/10.5281/zenodo.15192278
https://doi.org/10.1029/2023JD039531
https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_1147_ds00006
https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_1147_ds00006
https://doi.org/10.1029/2011GL050087
https://doi.org/10.1002/2016JD026125
https://doi.org/10.1038/s41586-020-03138-y
https://doi.org/10.1038/s41586-020-2035-0
https://doi.org/10.1038/s41467-022-35114-7
https://doi.org/10.1038/s41467-022-35114-7
https://doi.org/10.1017/9781009157988.009


664 S. Guo et al.: Overlooked impacts on the remote carbon cycle

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky,
B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S.,
Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann,
A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J.,
Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pon-
gratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Ste-
hfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and
Zhang, X.: Harmonization of global land use change and man-
agement for the period 850–2100 (LUH2) for CMIP6, Geosci.
Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-
5425-2020, 2020.

Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M.
R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J.
F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch,
G. W., Schwinning, S., Small, E. E., and Williams, D. G.: Con-
vergence across biomes to a common rain-use efficiency, Nature,
429, 651–654, https://doi.org/10.1038/nature02561, 2004.

Jia, G., Shevliakova, E., Artaxo, P., Noblet-Ducoudré, N. D.,
Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A.,
Sirin, A., Sukumar, R., and Verchot, L.: Land–climate interac-
tions, in: Climate Change and Land: an IPCC Special Report on
Climate Change, Desertification, Land Degradation, Sustainable
Land Management, Food Security, and Greenhouse Gas Fluxes
in Terrestrial Ecosystems, edited by: Shukla, P. R., Skea, J.,
Buendía, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts,
D. C., Zhai, P., Slade, R., Connors, S. L., Diemen, R. v., Fer-
rat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J.,
Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belka-
cemi, M., and Malley, J., Cambridge University Press, 1 edn.,
https://doi.org/10.1017/9781009157988.004, 2019.

Knapp, A. K. and Smith, M. D.: Variation among biomes in tempo-
ral dynamics of aboveground primary production., Science, 291,
481–4, https://doi.org/10.1126/science.291.5503.481, 2001.

Koch, A., Hubau, W., and Lewis, S. L.: Earth System
Models Are Not Capturing Present-Day Tropical For-
est Carbon Dynamics, Earth’s Future, 9, e2020EF001874,
https://doi.org/10.1029/2020EF001874, 2021.

Kumar, S., Dirmeyer, P. A., Merwade, V., DelSole, T., Adams,
J. M., and Niyogi, D.: Land use/cover change impacts in
CMIP5 climate simulations: A new methodology and 21st cen-
tury challenges, J. Geophys. Res.-Atmos., 118, 6337–6353,
https://doi.org/10.1002/jgrd.50463, 2013.

Laguë, M. M. and Swann, A. L. S.: Progressive Mid-
latitude Afforestation: Impacts on Clouds, Global Energy
Transport, and Precipitation, J. Climate, 29, 5561–5573,
https://doi.org/10.1175/JCLI-D-15-0748.1, 2016.

Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin,
K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-
Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova,
E.: The Land Use Model Intercomparison Project (LUMIP) con-
tribution to CMIP6: rationale and experimental design, Geosci.
Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-
2016, 2016.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W.,
Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kam-
penhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F.,
Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M.,
Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A.
M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S.

P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B.,
Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman,
F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Le-
ung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J.
D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B.
M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Mar-
tin, M., and Zeng, X.: The Community Land Model Version
5: Description of New Features, Benchmarking, and Impact of
Forcing Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287,
https://doi.org/10.1029/2018MS001583, 2019.

Leng, G., Huang, M., Tang, Q., and Leung, L. R.: A modeling study
of irrigation effects on global surface water and groundwater re-
sources under a changing climate, J. Adv. Model. Earth Sy., 7,
1285–1304, https://doi.org/10.1002/2015MS000437, 2015.

Lennox, G. D., Gardner, T. A., Thomson, J. R., Ferreira, J.,
Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E.
O. C., Ferraz, S. F. B., Louzada, J., Moura, N. G., Oliveira,
V. H. F., Pardini, R., Solar, R. R. C., Vaz-de Mello, F. Z.,
Vieira, I. C. G., and Barlow, J.: Second rate or a second
chance? Assessing biomass and biodiversity recovery in regen-
erating Amazonian forests, Glob. Change Biol., 24, 5680–5694,
https://doi.org/10.1111/gcb.14443, 2018.

Loughran, T. F., Boysen, L., Bastos, A., Hartung, K.,
Havermann, F., Li, H., Nabel, J. E. M. S., Obermeier,
W. A., and Pongratz, J.: Past and future climate vari-
ability uncertainties in the global carbon budget using
the MPI Grand Ensemble, Global Biogeochem. Cy., 35,
e2021GB007019, https://doi.org/10.1029/2021GB007019,
2021.

Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer,
P. A., McAlpine, C., Carleton, A. M., Hale, R., Gameda, S.,
Beltrán-Przekurat, A., Baker, B., McNider, R., Legates, D.
R., Shepherd, M., Du, J., Blanken, P. D., Frauenfeld, O. W.,
Nair, U. S., and Fall, S.: Land cover changes and their bio-
geophysical effects on climate, Int. J. Climatol., 34, 929–953,
https://doi.org/10.1002/joc.3736, 2014.

Malyshev, S., Shevliakova, E., Stouffer, R. J., and Pacala, S. W.:
Contrasting Local versus Regional Effects of Land-Use-Change-
Induced Heterogeneity on Historical Climate: Analysis with
the GFDL Earth System Model, J. Climate, 28, 5448–5469,
https://doi.org/10.1175/JCLI-D-14-00586.1, 2015.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M.,
Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M.,
Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M.,
Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hoheneg-
ger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus,
J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel,
J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S., Paulsen, H.,
Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M.,
Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschnei-
der, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch,
J., Tian, F., Voigt, A., Vrese, P., Wieners, K., Wilkenskjeld,
S., Winkler, A., and Roeckner, E.: Developments in the MPI-
M Earth System Model version 1.2 (MPI-ESM1.2) and Its Re-
sponse to Increasing CO2, J. Adv. Model. Earth Sy., 11, 998–
1038, https://doi.org/10.1029/2018MS001400, 2019.

Earth Syst. Dynam., 16, 631–666, 2025 https://doi.org/10.5194/esd-16-631-2025

https://doi.org/10.5194/gmd-13-5425-2020
https://doi.org/10.5194/gmd-13-5425-2020
https://doi.org/10.1038/nature02561
https://doi.org/10.1017/9781009157988.004
https://doi.org/10.1126/science.291.5503.481
https://doi.org/10.1029/2020EF001874
https://doi.org/10.1002/jgrd.50463
https://doi.org/10.1175/JCLI-D-15-0748.1
https://doi.org/10.5194/gmd-9-2973-2016
https://doi.org/10.5194/gmd-9-2973-2016
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1002/2015MS000437
https://doi.org/10.1111/gcb.14443
https://doi.org/10.1029/2021GB007019
https://doi.org/10.1002/joc.3736
https://doi.org/10.1175/JCLI-D-14-00586.1
https://doi.org/10.1029/2018MS001400


S. Guo et al.: Overlooked impacts on the remote carbon cycle 665

Meier, R., Schwaab, J., Seneviratne, S. I., Sprenger, M., Lewis,
E., and Davin, E. L.: Empirical estimate of forestation-induced
precipitation changes in Europe, Nat. Geosci., 14, 473–478,
https://doi.org/10.1038/s41561-021-00773-6, 2021.

Model Development Team Max-Planck-Institut für Me-
terologie: MPI-ESM 1.2.01p7, Edmond [data set],
https://doi.org/10.17617/3.H44EN5, last access: 26 July 2024.

Nath, S., Gudmundsson, L., Schwaab, J., Duveiller, G., De Hertog,
S. J., Guo, S., Havermann, F., Luo, F., Manola, I., Pongratz, J.,
Seneviratne, S. I., Schleussner, C. F., Thiery, W., and Lejeune,
Q.: TIMBER v0.1: a conceptual framework for emulating tem-
perature responses to tree cover change, Geosci. Model Dev., 16,
4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, 2023.

National Center for Atmospheric Research (NCAR): Download-
ing Instructions | Community Earth System Model, NCAR
[data set], https://www.cesm.ucar.edu/models/cesm2/release_
download.html, last access: 26 July 2024.

Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L.,
Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld,
L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van
der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I.,
Strengers, B. J., and Voldoire, A.: Uncertainties in climate re-
sponses to past land cover change: First results from the LU-
CID intercomparison study, Geophys. Res. Lett., 36, L14814,
https://doi.org/10.1029/2009GL039076, 2009.

Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P.,
Phipps, S. J., and de Noblet-Ducoudré, N.: Importance of
background climate in determining impact of land-cover
change on regional climate, Nat. Clim. Change, 1, 472–475,
https://doi.org/10.1038/nclimate1294, 2011.

Pongratz, J. and Caldeira, K.: Attribution of atmospheric CO2
and temperature increases to regions: importance of prein-
dustrial land use change, Environ. Res. Lett., 7, 034001,
https://doi.org/10.1088/1748-9326/7/3/034001, 2012.

Pongratz, J., Dolman, H., Don, A., Erb, K., Fuchs, R., Herold,
M., Jones, C., Kuemmerle, T., Luyssaert, S., Meyfroidt,
P., and Naudts, K.: Models meet data: Challenges and op-
portunities in implementing land management in Earth
system models, Glob. Change Biol., 24, 1470–1487,
https://doi.org/10.1111/gcb.13988, 2018.

Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Haver-
mann, F., and Guo, S.: Land Use Effects on Climate: Current
State, Recent Progress, and Emerging Topics, Curr. Clim. Chang.
Reports, 7, 99–120, https://doi.org/10.1007/s40641-021-00178-
y, 2021.

Portmann, R., Beyerle, U., Davin, E., Fischer, E. M., De Hertog, S.,
and Schemm, S.: Global forestation and deforestation affect re-
mote climate via adjusted atmosphere and ocean circulation, Nat.
Commun., 13, 5569, https://doi.org/10.1038/s41467-022-33279-
9, 2022.

Rashid, H. A.: Diverse Responses of Global-Mean Surface Tem-
perature to External Forcings and Internal Climate Variability
in Observations and CMIP6 Models, Geophys. Res. Lett., 48,
e2021GL093194, https://doi.org/10.1029/2021GL093194, 2021.

Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heid-
kamp, M., Nabel, J. E. M. S., Raddatz, T., Roeckner, E.,
Schnur, R., and Wilkenskjeld, S.: JSBACH 3 – The land
component of the MPI Earth System Model: documentation

of version 3.2, Max Plank Society [model documentation],
https://doi.org/10.17617/2.3279802, 2021.

Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C.,
Hasegawa, T., Jiang, K., Kriegler, E., Matthews, R., Peters,
G. P., Rao, A., Robertson, S., Sebbit, A. M., Steinberger, J.,
Tavoni, M., and van Vuuren, D. P.: Mitigation pathways com-
patible with long-term goals, in: IPCC, 2022: Climate Change
2022: Mitigation of Climate Change, Contribution of Working
Group III to the Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change, edited by: Shukla, P. R., Skea,
J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum,
D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi,
M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge
University Press, Cambridge, UK and New York, NY, USA,
https://doi.org/10.1017/9781009157926.005, 2022.

Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet,
L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather,
Z., Havlík, P., House, J., Nabuurs, G.-J., Popp, A., Sánchez, M. J.
S., Sanderman, J., Smith, P., Stehfest, E., and Lawrence, D.: Con-
tribution of the land sector to a 1.5 °C world, Nat. Clim. Change,
9, 817–828, https://doi.org/10.1038/s41558-019-0591-9, 2019.

Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou,
V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann,
J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B.,
Havlik, P., Hanssen, S., Humpenöder, F., Landholm, D., Lomax,
G., Lehmann, J., Mesnildrey, L., Nabuurs, G., Popp, A., Rivard,
C., Sanderman, J., Sohngen, B., Smith, P., Stehfest, E., Woolf,
D., and Lawrence, D.: Land-based measures to mitigate climate
change: Potential and feasibility by country, Glob. Change Biol.,
27, 6025–6058, https://doi.org/10.1111/gcb.15873, 2021.

Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., and Helkowski,
J. H.: Effects of global irrigation on the near-surface climate,
Clim. Dynam., 33, 159–175, https://doi.org/10.1007/s00382-
008-0445-z, 2009.

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Silt-
berg, J., and Zaehle, S.: Implications of incorporating N cy-
cling and N limitations on primary production in an individual-
based dynamic vegetation model, Biogeosciences, 11, 2027–
2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.

Smith, C. C., Espírito-Santo, F. D. B., Healey, J. R., Young, P. J.,
Lennox, G. D., Ferreira, J., and Barlow, J.: Secondary forests
offset less than 10 % of deforestation-mediated carbon emissions
in the Brazilian Amazon, Glob. Change Biol., 26, 7006–7020,
https://doi.org/10.1111/gcb.15352, 2020.

Su, Y., Zhang, C., Ciais, P., Zeng, Z., Cescatti, A., Shang, J., Chen,
J. M., Liu, J., Wang, Y.-P., Yuan, W., Peng, S., Lee, X., Zhu, Z.,
Fan, L., Liu, X., Liu, L., Lafortezza, R., Li, Y., Ren, J., Yang,
X., and Chen, X.: Asymmetric influence of forest cover gain and
loss on land surface temperature, Nat. Clim. Change, 13, 823–
831, https://doi.org/10.1038/s41558-023-01757-7, 2023.

Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., et al.: Long-term
thermal sensitivity of Earth’s tropical forests, Science, 368, 869–
874, https://doi.org/10.1126/science.aaw7578, 2020.

Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L.,
Hauser, M., and Seneviratne, S. I.: Present-day irrigation miti-
gates heat extremes, J. Geophys. Res.-Atmos., 122, 1403–1422,
https://doi.org/10.1002/2016JD025740, 2017.

Thiery, W., Visser, A. J., Fischer, E. M., Hauser, M., Hirsch, A. L.,
Lawrence, D. M., Lejeune, Q., Davin, E. L., and Seneviratne,

https://doi.org/10.5194/esd-16-631-2025 Earth Syst. Dynam., 16, 631–666, 2025

https://doi.org/10.1038/s41561-021-00773-6
https://doi.org/10.17617/3.H44EN5
https://doi.org/10.5194/gmd-16-4283-2023
https://www.cesm.ucar.edu/models/cesm2/release_download.html
https://www.cesm.ucar.edu/models/cesm2/release_download.html
https://doi.org/10.1029/2009GL039076
https://doi.org/10.1038/nclimate1294
https://doi.org/10.1088/1748-9326/7/3/034001
https://doi.org/10.1111/gcb.13988
https://doi.org/10.1007/s40641-021-00178-y
https://doi.org/10.1007/s40641-021-00178-y
https://doi.org/10.1038/s41467-022-33279-9
https://doi.org/10.1038/s41467-022-33279-9
https://doi.org/10.1029/2021GL093194
https://doi.org/10.17617/2.3279802
https://doi.org/10.1017/9781009157926.005
https://doi.org/10.1038/s41558-019-0591-9
https://doi.org/10.1111/gcb.15873
https://doi.org/10.1007/s00382-008-0445-z
https://doi.org/10.1007/s00382-008-0445-z
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.1111/gcb.15352
https://doi.org/10.1038/s41558-023-01757-7
https://doi.org/10.1126/science.aaw7578
https://doi.org/10.1002/2016JD025740


666 S. Guo et al.: Overlooked impacts on the remote carbon cycle

S. I.: Warming of hot extremes alleviated by expanding irri-
gation, Nat. Commun., 11, 290, https://doi.org/10.1038/s41467-
019-14075-4, 2020.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Geor-
giou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore,
D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Bat-
tipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M.,
Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth,
D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C.,
Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hun-
gate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F.,
Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y.,
MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz,
J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J.,
Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn,
M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., van
Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P.
A.: Integrating the evidence for a terrestrial carbon sink caused
by increasing atmospheric CO2, New Phytol., 229, 2413–2445,
https://doi.org/10.1111/nph.16866, 2021.

Wehner, M., Gleckler, P., and Lee, J.: Characterization of
long period return values of extreme daily tempera-
ture and precipitation in the CMIP6 models: Part 1,
model evaluation, Weather Clim. Extrem., 30, 100283,
https://doi.org/10.1016/j.wace.2020.100283, 2020.

Winckler, J., Reick, C. H., and Pongratz, J.: Robust Identifica-
tion of Local Biogeophysical Effects of Land-Cover Change
in a Global Climate Model, J. Climate, 30, 1159–1176,
https://doi.org/10.1175/JCLI-D-16-0067.1, 2017a.

Winckler, J., Reick, C. H., and Pongratz, J.: Why does the lo-
cally induced temperature response to land cover change dif-
fer across scenarios?, Geophys. Res. Lett., 44, 3833–3840,
https://doi.org/10.1002/2017GL072519, 2017b.

Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlo-
cal Effects Dominate the Global Mean Surface Temperature Re-
sponse to the Biogeophysical Effects of Deforestation, Geophys.
Res. Lett., 46, 745–755, https://doi.org/10.1029/2018GL080211,
2019a.

Winckler, J., Reick, C. H., Luyssaert, S., Cescatti, A., Stoy, P. C.,
Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., and Pon-
gratz, J.: Different response of surface temperature and air tem-
perature to deforestation in climate models, Earth Syst. Dynam.,
10, 473–484, https://doi.org/10.5194/esd-10-473-2019, 2019b.

Yao, Y., Ducharne, A., Cook, B. I., De Hertog, S. J., Aas, K. S.,
Arboleda-Obando, P. F., Buzan, J., Colin, J., Costantini, M.,
Decharme, B., Lawrence, D. M., Lawrence, P., Leung, L. R., Lo,
M.-H., Devaraju, N., Wieder, W. R., Wu, R.-J., Zhou, T., Jäger-
meyr, J., McDermid, S., Pokhrel, Y., Elling, M., Hanasaki, N.,
Muñoz, P., Nazarenko, L. S., Otta, K., Satoh, Y., Yokohata, T.,
Jin, L., Wang, X., Mishra, V., Ghosh, S., and Thiery, W.: Impacts
of irrigation expansion on moist-heat stress based on IRRMIP re-
sults, Nat. Commun., 16, 1045, https://doi.org/10.1038/s41467-
025-56356-1, 2025.

Zhang, Y., Wang, X., Lian, X., Li, S., Li, Y., Chen, C., and
Piao, S.: Asymmetric impacts of forest gain and loss on
tropical land surface temperature, Nat. Geosci., 17, 426–432,
https://doi.org/10.1038/s41561-024-01423-3, 2024.

Earth Syst. Dynam., 16, 631–666, 2025 https://doi.org/10.5194/esd-16-631-2025

https://doi.org/10.1038/s41467-019-14075-4
https://doi.org/10.1038/s41467-019-14075-4
https://doi.org/10.1111/nph.16866
https://doi.org/10.1016/j.wace.2020.100283
https://doi.org/10.1175/JCLI-D-16-0067.1
https://doi.org/10.1002/2017GL072519
https://doi.org/10.1029/2018GL080211
https://doi.org/10.5194/esd-10-473-2019
https://doi.org/10.1038/s41467-025-56356-1
https://doi.org/10.1038/s41467-025-56356-1
https://doi.org/10.1038/s41561-024-01423-3

	Abstract
	Introduction
	Methods
	Earth system model setup and scenarios
	Isolating local and nonlocal LCLMC effects, including the nonlocal signal in the terrestrial carbon stocks
	Calculation of the nonlocal-to-total ratio
	Calculation of the time of emergence
	Attribution of nonlocal vegetation C and soil C effects to temperature and soil moisture

	Results
	Nonlocal effect on global carbon stock changes
	The spatial distribution of nonlocal carbon stock changes
	Nonlocal vegetation carbon stock changes
	Nonlocal soil carbon stock changes

	Magnitude of the nonlocal-to-total BGC effect
	Time of emergence
	Impacts of temperature and soil moisture on nonlocal BGC effects

	Discussion
	Summary and broader relevance
	Robustness of results

	Conclusions
	Appendix A: Distribution of PFTs within crop and forest categories
	Appendix B: LCLMC implementation in the different ESMs
	Appendix C: Implementation of LCLMCs and resulting remote climate changes
	Appendix D: Temporal development of regionally integrated nonlocal BGC effects
	Appendix E: Spatial distribution of ToE
	Appendix F: Impacts of temperature and soil moisture on nonlocal BGC effects for the FRST and IRR scenarios
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

