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Abstract. Accurately projecting future precipitation patterns over land is crucial for understanding climate
change and developing effective mitigation and adaptation strategies. However, projections of precipitation
changes in state-of-the-art climate models still exhibit considerable uncertainty, in particular over vulnerable
and populated land areas. This study aims to address this challenge by introducing a novel methodology for con-
straining climate model precipitation projections with causal discovery. Our approach involves a multistep pro-
cedure that integrates dimension reduction, causal network estimation, causal network evaluation, and a causal
weighting scheme which is based on the historical performance (the distance of the causal network of a model to
the causal network of a reanalysis dataset) and the interdependence of Coupled Model Intercomparison Project
Phase 6 (CMIP6) models (the distance of the causal network of a model to the causal network of other cli-
mate models). To uncover the significant causal pathways crucial for understanding dynamical interactions in
the climate models and reanalysis datasets, we estimate the time-lagged causal relationships using the Peter–
Clark momentary conditional independence (PCMCI) causal discovery algorithm. In the last step, a novel causal
weighting scheme is introduced, assigning weights based on the performance and interdependence of the CMIP6
models’ causal networks. For the end-of-century period, 2081–2100, our method reduces the very likely ranges
(5th–95th percentile) of projected precipitation changes over land between 10 % and 16 % relative to the un-
weighted ranges across three global warming scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5). The sizes of the
likely ranges (17th–83rd percentile) are further reduced between 16 % and 41 %. This methodology is not lim-
ited to precipitation over land and can be applied to other climate variables, supporting better mitigation and
adaptation strategies to tackle climate change.
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1 Introduction

Global mean precipitation and evaporation are expected to
rise with warming by approximately 2 % °C−1–3 % °C−1,
driven by increased atmospheric water vapor according to
thermodynamics (Allan et al., 2020). Although recent obser-
vations have struggled to detect a response of global precipi-
tation to the current warming level, new research has demon-
strated that precipitation variability has already increased
globally over the past century (Zhang et al., 2024). The Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) mod-
els represent the latest generation of climate models used to
simulate past, present, and future climate conditions, provid-
ing vital projections to inform policy and adaptation strate-
gies (Eyring et al., 2016). However, a significant challenge
associated with these models is the large uncertainty range
in land precipitation projections, reflecting the complex na-
ture of precipitation processes and their representation in cli-
mate models (Tebaldi et al., 2021). Studies have shown that
uncertainty in climate projections can be attributed to mul-
tiple factors, including, e.g., model structure, parameteriza-
tion, and internal variability (Hawkins and Sutton, 2009).
Model uncertainty is commonly assessed as the range of
values projected by different climate models for a given fu-
ture scenario (also known as intermodel spread). According
to the Intergovernmental Panel on Climate Change (IPCC)
Sixth Assessment Report (Douville et al., 2021), the aver-
age projected precipitation rate over land increases by 2.4 %
in the low-emission scenario by 2081–2100 (with the 17th–
83rd percentile range varying from −0.2 % to +4.7 %) rela-
tive to the period 1995–2014. In comparison, the very high-
emission scenario shows a more substantial increase of 8.3 %
(with the 17th–83rd percentile range varying from 0.9 % to
12.9 %) by 2081–2100. Reducing intermodel spread in pre-
cipitation projections is crucial for enhancing the reliability
of climate projections.

These changes in future precipitation patterns have pro-
found implications for various sectors, including natural and
human systems (IPCC; Seneviratne et al., 2021). Kotz et al.
(2022) discuss the extensive economic impacts associated
with precipitation shifts, emphasizing the need for precise
and reliable projections. The economic consequences of cli-
mate change, particularly in regions vulnerable to precipi-
tation changes, underscore the urgency of reducing the un-
certainty in these projections. Accurate projections are there-
fore critical for developing effective adaptation and mitiga-
tion strategies to minimize these negative impacts and en-
hance resilience.

To reduce the intermodel spread of future climate projec-
tions, a common method is the usage of an emergent con-
straint (Hall and Qu, 2006; Eyring et al., 2019). An emergent
constraint identifies a statistically significant relationship be-
tween a constrained observable and a future climate variable.
This observable can be a trend or variation observed during
the historical period and includes metrics such as tempera-

ture variability (Cox et al., 2018) and shortwave low-cloud
feedback (Qu et al., 2018). The future climate variable of-
ten relates to key climate sensitivity metrics such as equilib-
rium climate sensitivity (ECS) and transient climate response
(TCR) (Nijsse et al., 2020; Schlund et al., 2020b). By estab-
lishing a robust statistical relationship and combining it with
observed data, the probability distribution of ECS and TCR
can be constrained, leading to a narrower range in future cli-
mate projections.

However, when it comes to global precipitation and pre-
cipitation over land, the emergent constraints tend to be
weaker compared to those for TCR or ECS (Ferguglia et al.,
2023). Previous studies attribute this to the complexity of
precipitation processes, model parameterizations, and obser-
vational constraints (Ferguglia et al., 2023). For example,
complex atmospheric processes affecting precipitation, in-
cluding aerosol impacts on cloud microphysics (Allen and
Ingram, 2002; Beydoun and Hoose, 2019), convection, and
large-scale circulation, are challenging to model accurately,
leading to larger uncertainties. Furthermore, climate models
use different parameterizations for subgrid-scale processes
such as cloud formation, contributing to the spread. In ad-
dition, precipitation observations are often limited and carry
substantial uncertainties (Trenberth and Zhang, 2018), weak-
ening the relationships between historical predictors and fu-
ture projections. The robustness of emergent constraints also
depends on the specific ensemble of models used. For exam-
ple, the constraints identified in the previous generation of
models, CMIP5, may not hold in CMIP6 (Pendergrass, 2020;
Schlund et al., 2020b). Building on this understanding, Sh-
iogama et al. (2022) investigated emergent constraints related
to future global precipitation changes using past temperature
and precipitation trends. They revised the upper bound (95th
percentile) of global precipitation change for 2051–2100 un-
der a medium-greenhouse-gas-concentration scenario from
a 6.2 % change to a range of 5.2 %–5.7 %. Additionally,
other studies have also explored constraining future precip-
itation projections using observational data and past warm-
ing trends. Thackeray et al. (2022) developed an emergent
constraint to reduce the uncertainty in projections of fu-
ture heavy-rainfall occurrence. Dai et al. (2024) proposed an
emergent constraint that utilizes past observational warming
trends to constrain future projections of mean and extreme
precipitation on both global and regional scales. They con-
strained the projected globally averaged mean precipitation
fractional changes under the high-emission scenario for the
2081–2100 period relative to 1981–2014, reducing the av-
erage estimate from 6.9 % to 5.2 % and narrowing the 5 %–
95 % range from 3.0 %–10.9 % to 1.9 %–8.5 %.

Other methods have been developed to constrain future
climate projections. For instance, Schlund et al. (2020a)
employed a machine learning regression approach known
as a gradient-boosted regression tree (GBRT) on histor-
ical climate data to reduce the uncertainty range of fu-
ture projections of gross primary production (GPP). An-
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other key method to address the intermodel spread is mul-
timodel weighting based on model performance and interde-
pendence. This addresses the issues in the commonly used
“model democracy” approach, used in the IPCC Sixth As-
sessment Report (IPCC; Lee et al., 2021), where each climate
model is given equal weight regardless of its performance
and interdependence with other models. Equal weighting
can lead to significant issues, such as overrepresenting sim-
ilar models and ignoring differences in model performance
(IPCC; Doblas-Reyes et al., 2021). The methodology intro-
duced by Knutti et al. (2017) and further explored by Brun-
ner et al. (2020) evaluates the historical model performance
and interdependence based on several diagnostics and applies
weights to combine the model outputs. This technique refines
ensemble projections by prioritizing models that more accu-
rately simulate historical climate conditions and accounts for
redundancy among models.

These previous studies highlight the importance of using
advanced statistical techniques and observational data. No-
tably, Nowack et al. (2020) introduced a causal model evalu-
ation framework which assesses models based on their abil-
ity to capture cause-and-effect relationships within the sys-
tem. In particular, Nowack et al. (2020) applied a causal
discovery algorithm to sea level pressure (SLP) data from
CMIP5 simulations and meteorological reanalyses. They
constructed causal networks, referred to as fingerprints, to
conduct a process-oriented evaluation of the models. Inter-
estingly, models with fingerprints closer to observations bet-
ter reproduced precipitation patterns over various regions, in-
cluding South Asia, Africa, East Asia, Europe, and North
America. These findings highlight the potential of causal
model evaluation to address uncertainties in climate projec-
tions but have not yet been applied as such.

Nowack et al. (2020) also underscore the role of using
SLP components as proxies for modes of variability to bet-
ter understand precipitation patterns. Furthermore, we em-
phasize the strong connection between dynamical interac-
tions imprinted in SLP fields and precipitation patterns. Nu-
merous studies (e.g., Lavers et al., 2013; Thompson and
Green, 2004; Müller-Plath et al., 2022) revealed how large-
scale pressure variations, such as the North Atlantic Oscil-
lation (NAO), the Azores High, the Arctic Oscillation, and
the North Sea–Caspian Pattern, can influence precipitation
variability across Europe and the Mediterranean basin. Dia-
Diop et al. (2021) have shown that SLP anomalies over spe-
cific areas such as the Azores and St. Helena highs are inter-
connected with monthly mean precipitation in West Africa,
indicating a relationship between SLP and rainfall. Further-
more, Benestad et al. (2007) demonstrated the importance of
statistical models that use SLP to predict interannual varia-
tions in rainfall, revealing the connection between these vari-
ables. Costa-Cabral et al. (2016) confirmed the importance
of large-scale climate indices, particularly the North Pacific
High (NPH) wintertime anomaly, in predicting precipitation
variability in northern California. These studies support the

broader applicability of SLP indices to understand precipita-
tion patterns.

A research gap lies in the need to explore new meth-
ods, such as causal model evaluation, to more accurately as-
sess the performance of climate models. Combining these
advanced evaluation techniques with multimodel weighting
schemes promises to reduce the uncertainty in climate pro-
jections. The goal of this study is to explore causal discov-
ery for evaluating climate models and reducing the uncer-
tainty in their projections, particularly for precipitation over
land. We further demonstrate the application of causal ap-
proaches in capturing complex climate dynamics. Addition-
ally, we address the practical challenges of integrating causal
model evaluation with multimodel weighting. As such, this
research will ultimately help to improve projections of pre-
cipitation change over land, enhancing our ability to antic-
ipate and respond to the consequences of climate change in
populated and vulnerable areas. This is essential for water re-
source management, agriculture, infrastructure planning, and
overall climate resilience efforts (IPCC, 2021).

To constrain precipitation change projections over land,
our methodology involves a multistep process that integrates
data preprocessing, dimension reduction, causal relationship
estimation, causal network evaluation, and model weighting.
Our study utilizes CMIP6 historical simulations of sea level
pressure (SLP) complemented by reanalysis datasets which
serve as references. Future projections based on shared so-
cioeconomic pathways (SSPs; O’Neill et al., 2014) are em-
ployed to calibrate the weighting scheme and project pre-
cipitation changes. To address the high dimensionality of
the data, principal component analysis (PCA; Shaffer, 2002;
Ramsay and Silverman, 2005) with varimax rotation (Rohe
and Zeng, 2023; Kaiser, 1958) is utilized, extracting 60 com-
ponents that capture the essential modes of variability. We es-
timate the time-lagged causal relationships using the PCMCI
(Peter–Clark momentary conditional independence; Runge
et al., 2019b) causal discovery algorithm to uncover the sig-
nificant causal pathways crucial for understanding dynamical
interactions in the climate models. The identified causal net-
works are evaluated against the reference networks derived
from the reanalysis data using the F1 score and its comple-
ment 1−F1. The causal networks of the climate models are
also compared with one another with the F1 score to mea-
sure their similarities. This quantitative approach provides
insights into the relative performance and uniqueness of each
model’s representation of dynamical processes. In the last
step, a novel causal weighting scheme is introduced, assign-
ing weights based on the performance and interdependence
metrics of the causal networks. This scheme prioritizes mod-
els closely matching the reference causal network and ex-
hibiting distinctive causal structures. The resulting weights
inform the computation of the multimodel-weighted means
and ranges of precipitation changes over land.
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Section 2 provides an overview of the materials and meth-
ods used in this study. The results are detailed in Sect. 3. We
summarize and discuss our findings in Sect. 4.

2 Materials and methods

Here we introduce the data and methodology used in this
study. Section 2.1 describes the CMIP6 and reanalysis data
that we integrate. Section 2.2 explains the preprocessing of
the data and its relevance in this study. Section 2.3–2.6, re-
spectively, introduce our multistep methodology consisting
of dimension reduction, causal network estimation, causal
network evaluation, and causal weighting of climate models.
Figure 1 presents the different steps of our framework.

2.1 Data

This study utilizes CMIP6 historical simulations of SLP
spanning 1979 to 2014, with daily time resolution. These
simulations, derived from 23 different climate models, each
with 2 to 10 ensemble members, are used to estimate the
historical causal networks. This results in a total of 154 en-
semble members. The daily resolution of the SLP data pro-
vides a robust foundation for analyzing the climate mod-
els and evaluating their performance in simulating SLP pat-
terns. In addition to the historical simulations of CMIP6, the
study employs ERA5 reanalysis datasets (Hersbach et al.,
2020) and NCEP–NCAR (Kalnay et al., 1996), covering the
period 1979–2014 with daily resolution. These reanalysis
datasets serve as a reference for estimating the causal net-
works of SLP, providing a benchmark against which the per-
formance of the climate models could be assessed. In addi-
tion to the SLP datasets, future climate projections of pre-
cipitation of the same climate models are incorporated us-
ing simulations based on three shared socioeconomic path-
ways (SSPs; O’Neill et al., 2014) – the medium-emission
SSP2-4.5 scenario (101 total members), the high-emission
SSP3-7.0 scenario (96 total members), and the very high-
emission SSP5-8.5 scenario (107 total members) – for the
period 2015–2100, focusing on precipitation over land with
yearly time resolution. These simulations are used to cali-
brate the model performance parameter σD of the weighting
scheme. They are also used for the projections of precipita-
tion changes over land. A complete list of included models
and members for the SLP historical simulations and precipi-
tation SSP simulations is available in Table S1 in the Supple-
ment.

2.2 Data preprocessing

The preprocessing of the SLP data involved several crucial
steps to ensure consistency and enhance the quality of the
analysis. Firstly, all datasets (including the ERA5 dataset)
are linearly interpolated to the 2.5° latitude× 2.5° longitude

grid of NCEP–NCAR. Subsequently, the daily data are de-
trended on a grid-cell basis to remove small trends and ensure
robust causal discovery. Anomalies are then calculated us-
ing a long-term daily climatology by subtracting each day’s
mean and dividing by its standard deviation. While SLP data
are largely stationary even under historical forcing (Nowack
et al., 2020), these steps improve the stationarity of the time
series, which is essential for the effective application of the
PCMCI causal discovery algorithm (Runge et al., 2023a).
Additionally, the data are separated to isolate winter (DJF:
December, January, February), spring (MAM: March, April,
May), summer (JJA: June, July, August), and autumn (SON:
September, October, November), as different causal depen-
dencies are expected for each meteorological season.

2.3 Dimension reduction (Step 1)

As in Nowack et al. (2020), a PCA with varimax rotation is
used to extract the main modes of variability and to manage
the high dimensionality of the SLP dataset. This dimension
reduction step is crucial to represent the processes of interest.

PCA serves as a dimension reduction technique, preserv-
ing as much information as possible while reducing the num-
ber of dimensions (Shaffer, 2002; Ramsay and Silverman,
2005). This is accomplished by identifying orthogonal lin-
ear combinations (known as principal components) from the
original spatial data. These initial components often lack
straightforward interpretation. Varimax rotation’s role is to
enhance interpretability by transforming the principal com-
ponents. Varimax rotation achieves this by maximizing the
variance of loadings on each component (Rohe and Zeng,
2023; Kaiser, 1958). The loadings become more localized
on specific variables, making them distinct and easier to in-
terpret.

The PCA–varimax transformation is derived from the ref-
erence reanalysis datasets individually for each season and
subsequently applied to the datasets of all climate models.
For the final analysis, the first 60 components are selected
that capture the essential characteristics of the variability in
SLP data. In the remainder of the study, we use the terms
components and modes interchangeably to refer to the PCA–
varimax components.

2.4 Causal network estimation (Step 2)

The next step is the estimation of time-lagged causal relation-
ships within the reduced datasets. As correlation alone does
not establish causation, we choose to apply causal discovery
methods, which come with certain assumptions. Here, the
assumptions are that all the relevant variables are included
in the analysis (causal sufficiency), the causal relationships
and the distributions of the variables remain consistent in the
sample data (stationarity), and the statistical dependencies
and independencies are a true reflection of the underlying
causal structure (faithfulness and Markov condition) (Runge
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Figure 1. Overview of the causal weighting framework. (a) Daily SLP data from NCEP–NCAR and ERA5 reanalyses are reduced using
PCA–varimax to yield (b) regionally confined climate modes for each meteorological season and climate model. PCMCI estimates lagged
causal relationships, resulting in (c) dataset-specific causal networks for reanalysis and climate models. These networks enable (d) causal
model evaluation via network similarity and (e) causal model weighting, which informs the multimodel-weighted precipitation projections
over land.

et al., 2023a). We underscore that not all of these assump-
tions are strictly verified in this study. For instance, causal
sufficiency is not fully met, as our analysis is restricted to
SLP causal networks. However, these assumptions are less
critical in our case because our main goal is to derive a metric
of the data rather than to determine the exact causal relevance
of each link. The rationale behind using causal discovery is

that it offers a more precise estimation of dynamical interac-
tions compared to correlation networks, thanks to its ability
to filter out spurious relationships.

Given this last assumption, we choose to implement the
PCMCI causal discovery algorithm, which is well suited for
time series data with no contemporaneous effects (Runge
et al., 2019b). PCMCI aims to uncover causal relationships
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among variables by assessing conditional dependencies over
different time lags. PCMCI builds on the PC algorithm – a
constraint-based causal discovery method – by incorporat-
ing momentary conditional independence (MCI) tests. These
tests help identify causal links even when variables ex-
hibit high autocorrelations, which is common with climate
time series (Runge et al., 2019a). During the MCI step, the
PCMCI algorithm tests for conditional independence among
variables. A causal link is only considered significant if the
p value of the test is less than or equal to a significance level
αMCI set by the user.

In this study, the PCMCI algorithm is applied to the prin-
cipal component time series of each dataset (one dataset per
member and season), which are derived from the previous
dimension reduction step. The PCMCI algorithm outputs a
causal network, enabling the identification of causal path-
ways between the SLP modes of individual climate datasets
or reanalysis datasets. This step identifies significant causal
relationships, which is crucial for understanding the dynam-
ical interactions between the SLP modes.

2.5 Causal network evaluation (Step 3)

Following the identification of causal relationships, the re-
sulting causal networks are evaluated using similarity and
distance metrics. Given the relatively large size, consisting
of 60 variables and a maximum time lag of 20 d, it is chal-
lenging to discern patterns. This complexity underscores the
necessity of employing a similarity metric to facilitate the
comparison of causal networks. The similarity is quantified
using the F1 score introduced in Nowack et al. (2020), while
its complement 1−F1 score serves as a measure of distance.
The F1 score is defined as the harmonic mean between pre-
cision and recall, where precision= TP

TP+FP , recall= TP
TP+FN

and F1 =
2·precision·recall
precision+recall .

Compared to a reference network, FP represents the count
of falsely identified links, FN is the count of undetected links,
and TP denotes the number of correctly identified links. Like
Nowack et al. (2020), we adjusted the traditional F1 score
definition to account for the sign of the dependencies and
integrated a relaxation of the time lags of identified links.
Specifically, if a link exists in reference network A and cor-
responds to a link in network B with the same causal direc-
tion within a time range of ±τDiff time lags, we consider it a
correctly identified link (TP).

The performance of each climate model’s causal network
is assessed against a reference causal network derived from
observational data, with the distance to this reference net-
work serving as the performance metric. Furthermore, the
interdependence among the causal networks of the climate
models is quantified, reflecting the degree of similarity or di-
vergence among the networks. Smaller distance values in-
dicate greater similarity, in terms of both performance rel-
ative to the reference and dependence among the models.
These measures are averaged over separate causal networks

obtained for the four meteorological seasons for each model
and reanalysis dataset. The results provide insights into the
relative performance and distinctiveness of each model’s rep-
resentation of atmospheric dynamical processes.

2.6 Causal weighting scheme based on performance
and interdependence (Step 4)

In this study, we develop a new weighting scheme called
causal weighting, which is based on the performance and in-
terdependence of the model causal networks. Specifically, we
measure performance and assess interdependence between
the networks using the complements of the F1 scores, cal-
culated as 1−F1 score. These scores are then normalized
by the median score across all models. The causal weighting
scheme aims to assign higher weights to models that closely
match the reference causal network (indicating high perfor-
mance) and exhibit unique causal structures (indicating high
independence). The scheme is formulated as

wi ∝
e

−

(
1−Fi1

)2

σ2
D

1+
∑M
j 6=ie

−

(
1−Fij1

)2

σ2
S

. (1)

In Eq. (1), M indicates the number of models in the en-
semble, 1−F i1 is the normalized “distance” of model i rel-
ative to observations or reanalyses, and 1−F ij1 is the nor-
malized “distance” of model i relative to model j . Weights
are normalized to sum to 1. The causal weighting is inspired
by the scheme introduced in Knutti et al. (2017) and further
explored in several follow-up studies (Brunner et al., 2020).
In the original scheme, the performance and interdependence
are measured with root-mean-square differences (RMSDs).

The parameters σD and σS determine the balance between
model performance and interdependence. The calibration of
the interdependence shape parameter σS is performed first.
In the original weighting scheme, different options are avail-
able to calibrate σS as reported in Merrifield et al. (2020).
We choose one of the more robust options. Namely, we
identify an interdependence shape parameter larger than the
typical distances between members of the same model but
smaller than the typical intermodel distances. More inde-
pendent models are given smaller denominators, resulting in
larger weights.

The other weighting parameter is the performance shape
parameter σD . Large σD values result in equal weighting
across models, whereas small σD values cause aggressive
weighting, with high-performance models receiving the ma-
jority of the weights. After calibrating σS , a perfect model
test is used to estimate the performance shape parameter σD
by evaluating climate models based on their historical perfor-
mance without being overconfident (Karpechko et al., 2013;
Abramowitz and Bishop, 2015; Wenzel et al., 2016; Sander-
son et al., 2017; Knutti et al., 2017; Brunner et al., 2020). In

Earth Syst. Dynam., 16, 607–630, 2025 https://doi.org/10.5194/esd-16-607-2025



K. Debeire et al.: Constraining uncertainty in projected precipitation over land with causal discovery 613

the perfect model test approach, each model is sequentially
treated as the “truth”, while the other models are weighted to
project the future target response of the perfect model. After
testing σD values between 0.1 and 2.0, the calibration selects
the smallest σD value for which the projection is not overcon-
fident, i.e., when 80 % of these “perfect models” fall within
the 10th–90th percentile range of the weighted distribution in
the target period. To prioritize performance over interdepen-
dence in the weighting trade-off, we reduce this proportion
to 70 %. In this study, the target to predict is the precipita-
tion over land for different SSPs and periods (2041–2060 and
2081–2100), resulting in different calibrated values.

Once the two shape parameters have been calibrated,
the weights are computed to obtain multimodel-weighted
means and ranges of future climate projections. The weight-
ing scheme and associated figures were developed using the
Earth System Model Evaluation Tool (ESMValTool) version
2 (Eyring et al., 2020; Righi et al., 2020; Lauer et al., 2020;
Brunner et al., 2020; Schlund et al., 2023).

2.7 Technical details

Both the observational data and the climate model simula-
tions contain internal variability, which can introduce noise
and potentially bias the comparison between models and
observations. To mitigate its influence, multiple ensemble
members for each model were processed, with causal net-
works derived independently for each. The final F1 scores
represent an ensemble average, which reduces the variability
effects by smoothing out member-specific results. Recogniz-
ing that reanalysis datasets themselves are subject to internal
variability and measurement uncertainties, we have analyzed
multiple reanalysis products (ERA5 and NCEP–NCAR).

In the dimension reduction step, we keep the first 60 com-
ponents of the 100 obtained from the PCA–varimax analysis.
Some tests are also performed with only the first 50 com-
ponents. Components with unresolved frequency spectra or
dipolar patterns are discarded similarly to the methodology
used in Nowack et al. (2020). This selection ensures that only
the most significant and stable modes of variability are con-
sidered, enhancing the quality of the following steps in our
methodology.

Time-lagged dependencies within the data are estimated
using the PCMCI algorithm, with a minimum time lag τmin of
1 d and with a maximum time lag τmax set to 20 d, though tri-
als with a maximum time lag of 10 d are also tested. PCMCI
outputs a time series directed acyclic graph (DAG; Runge et
al., 2023a), where the nodes represent variables, the directed
edges indicate lagged causal relationships, and there are no
cycles in the graph. We assume that the causal dependen-
cies are linear and with additive Gaussian noise. Under such
assumptions, we employ the partial correlation conditional
independence tests within PCMCI to detect these dependen-
cies. The hyperparameter αMCI, which controls the signifi-
cance threshold for the PCMCI algorithm’s MCI step, is set

to 10−5 in the results presented in the main text. We briefly
investigate the sensitivity of the causal model evaluation to
larger values of this parameter in Appendix D1.

The causal network evaluation employs the F1 score,
which is “relaxed” by counting links as true positives even
if they occur at slightly different time lags than the reference.
We set this window at 2 d (τDiff = 2d).

3 Results

In this section, we present the findings for each step of our
methodology as applied to the CMIP6 model datasets.

3.1 Dimension reduction and causal network estimation
(Steps 1 and 2)

Results of the dimension reduction step are shown in
Figs. A1 and A2 in the Appendix. In our analysis, we chose
to retain the first 60 components from the 1979–2014 data
to better cover the Northern Hemisphere, particularly during
the JJA season. Using SLP data from 1948 to 2017, Nowack
et al. (2020) truncated and kept a selection of 50 components,
discarding additional components due to unphysical time se-
ries, such as sudden jumps observed in 1979 when enter-
ing the satellite era. We do not encounter these jumps in the
time series that start in 1979. We also perform tests with 50
components to investigate the stability of the methodology.
Components retrieved from NCEP–NCAR were used across
all climate models to obtain reduced datasets. Additionally,
components derived from ERA5 were used as an alternative
reference for all models.

Discussed in more detail in Appendix B, our findings indi-
cate that the causal network estimation step identifies phys-
ically meaningful dependencies between the SLP modes for
both reanalysis datasets.

3.2 Causal network evaluation (Step 3)

Figure 2 compares climate models’ causal networks’ F1
scores relative to NCEP–NCAR and ERA5 reference
datasets. Higher F1 scores indicate greater similarity be-
tween model networks and the references, averaged across
all members and seasons. Interestingly, the F1 scores are
consistently higher when compared to ERA5 than to NCEP–
NCAR, indicating that the models’ dynamical SLP patterns
generally match ERA5 more closely. A more detailed analy-
sis of the consistency between the model performance across
reanalysis datasets and meteorological seasons is given in
Appendix C.

Sensitivity tests for the significance level αMCI, the maxi-
mum time lag parameter in PCMCI, and the number of com-
ponents retained during the dimension reduction step are pro-
vided in Appendix D.

In Fig. 3, models with shared developmental features ex-
hibit higher causal network similarity, likely due to their
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Figure 2. Comparison of the climate models’ causal networks’ F1 scores with NCEP–NCAR (green) and ERA5 (blue) as reference. This
figure illustrates the similarity between climate models’ causal networks and those of the reference reanalysis datasets, averaged across all
available members and seasons, using the F1 score. Higher F1 scores indicate greater similarity. The rank of each model’s similarity is
denoted on top of each bar.

comparable dynamical representations. For example, the AC-
CESS, UKESM, HadGEM, and K-ACE models share more
similar causal networks as measured by the F1 scores. As
reported in the genealogy tree of CMIP6 models in Kuma
et al. (2023), the HadGEM2 model was an ancestor of the
aforementioned models. Additionally, climate models devel-
oped by the same institute (such as the CNRM-CM6-1 and
CNRM-ESM2-1) exhibit more similar causal networks, as
indicated by the F1 scores. This finding confirms that the
evaluation of the SLP causal networks can identify models
with similar physical cores and, consequently, similar dy-
namical sea level pressure processes. This result is consistent
with previous literature, as Nowack et al. (2020) showed that
CMIP5 models with shared development and atmospheric
models also exhibited more similar causal networks.

Figure 4 shows the relationship between the F1 scores of
the CMIP6 climate models’ causal network and the changes
in precipitation over land for the SSP2-4.5, SSP3-7.0, and
SSP5-8.5 scenarios. The shape indicates an approximately
parabolic relationship over the space of opportunities cov-
ered by CMIP6 models between the F1 scores and the precip-
itation changes. Statistically significant parabolic relation-
ships (polynomial of degree 2) with p values of less than
0.05 (except for a p value of 0.06 for SSP3-7.0 and ERA5
reference) are found. Significant parabolic relationships are
found for all SSPs and the two different references, under-
scoring the robustness of this relationship for different global

warming scenarios and reference reanalysis datasets. No-
tably, climate models with higher F1 scores, indicating bet-
ter representations of observed dynamical sea level pressure
patterns, tend to cluster around the center of the parabola.
These models project precipitation changes in the mid-range
compared to other CMIP6 models. In contrast, climate mod-
els with lower F1 scores, indicating lower representations
of observed dynamical sea level pressure patterns, tend to
either overestimate or underestimate precipitation changes
over land. Nowack et al. (2020) previously reported a sig-
nificant parabolic relationship between precipitation changes
under the RCP8.5 scenario and F1 scores of CMIP5 mod-
els. Our findings extend this relationship to CMIP6 models
using daily data, compared to the 3 d resolution in Nowack
et al. (2020), suggesting that F1 scores may serve as a robust
constraint for projecting precipitation changes over land.

Unlike emergent constraints, which typically display lin-
ear relationships, we present a different approach. On the
x axis in Fig. 4, we consider a metric which is an observ-
able (the causal network) relative to the observed values (the
reference causal network), rather than the observable itself.
As a result, the relationship is not linear but rather a concave
function with a peak, here an approximately parabolic rela-
tionship between the F1 scores and the precipitation changes.
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Figure 3. Similarities of the climate models’ causal networks when the modes are obtained from (a) NCEP–NCAR and (b) ERA5. This
figure illustrates the similarity between the causal networks of different climate models. Similarity is quantified using the F1 scores between
two models. Higher values denote greater similarity or lower independence. The causal networks of one climate model (row) are compared
against the causal networks of other climate models used as reference (columns). The values are averaged across the members of each climate
model and over all seasons.

Figure 4. Relationship between precipitation change over land under SSP2-4.5 (c, f), SSP3-7.0 (b, e), and SSP5-8.5 (a, d) scenarios and
F1 scores, using NCEP–NCAR (a–c) and ERA5 (d–f) causal networks as references. The x axis shows precipitation changes between
1850–1900 and 2050–2099, while the y axis represents F1 scores of climate model causal networks relative to the reference. F1 scores are
averaged across all seasons and available members of a model. The solid red line shows a polynomial fit, and the red-filled area depicts the
90 % confidence band based on a two-tailed t test. The dashed blue line corresponds to the linear fit.
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Table 1. Calibrated performance shape parameters σD for differ-
ent target periods (columns), SSPs (rows), and reference reanalysis
datasets (sub-tables).

NCEP–NCAR 2041–2060 2081–2100

SSP2-4.5 0.4 0.3
SSP3-7.0 0.28 0.3
SSP5-8.5 0.53 0.29

ERA5 2041–2060 2081–2100

SSP2-4.5 0.36 0.26
SSP3-7.0 0.25 0.29
SSP5-8.5 0.48 0.28

3.3 Causal weighting scheme based on performance
and interdependence (Step 4)

Our previous findings suggest that leveraging the climate
models’ causal networks’ similarity to reference reanaly-
sis causal networks and the intermodel similarities can be
promising to constrain precipitation changes over land. We
found that models sharing atmospheric characteristics ex-
hibit higher causal network similarity, highlighting the abil-
ity of the methodology in capturing sea level pressure (SLP)
dynamics accurately. Furthermore, the parabolic relationship
between F1 scores – measuring a model’s ability to replicate
observed SLP dynamics – and its projection of precipitation
changes over land support the use of the F1 scores as a di-
agnostic to weight climate projections of precipitation based
on their SLP representation skill.

Using the notation of Eq. (1), the complement of the F1
score serves to measure the distance of models to a cho-
sen reference reanalysis dataset and to evaluate the interde-
pendence among the different models. These distances are
separately normalized by the median over all models. After
this normalization, the distances can range from 0 to values
greater than 1.

The interdependence shape parameter σS is calibrated first.
We calculate the average distance between members of the
same model and the average distance between members
of different models. A robust choice for σS should lie be-
tween these typical distances. These distances are presented
in Fig. E1, leading to a calibrated σS value of 0.9.

The model performance parameter σD is then calibrated
using the perfect model test described in Sect. 2.6. A specific
σD value was calibrated for each SSP (SSP5-8.5, SSP3-7.0,
SSP2-4.5), target period (2041–2060 and 2081–2100), and
reference dataset (NCEP–NCAR and ERA5). The calibration
results, reported in Table 1, range from 0.25 to 0.53.

3.4 Weighted projections of land precipitation changes

Using the calibrated shape parameters, the weights for each
combination of SSP, target period, and reference dataset are

derived by applying Eq. (1). These weights are used to cal-
culate the weighted projections for a medium- (SSP2-4.5),
high- (SSP3-7.0), and very high-emission (SSP5-8.5) sce-
nario.

The weighted and unweighted projections are shown in
Fig. 5. The boxplot indicates the mean and the likely (17th–
83rd percentile) and very likely (5th–95th percentile) ranges
of projected precipitation changes over land relative to 1995–
2014. In general, we observed narrower ranges for the
weighted projections. Across all scenarios and reference
datasets, the weighted means of precipitation over land do
not significantly differ from the unweighted mean. However,
the likely and very likely weighted ranges are generally re-
duced compared to the unweighted ranges, except for those
based on the SSP2-4.5 scenario in the 2041–2060 period. The
reduction in uncertainty is consistently higher when ERA5
is used in the dimension reduction and causal model eval-
uation steps compared to NCEP–NCAR. In particular, the
upper bounds of the weighted ranges (83rd percentiles for
the likely range, 95th percentiles for the very likely range)
are consistently shifted downward, indicating that ensem-
bles with larger projected precipitation changes over land are
less probable. The most substantial reductions in uncertainty
ranges occur for the SSP5-8.5 scenario during the 2081–
2100 period. This reduction in the weighted upper bound
aligns with previous studies that constrained global (not only
land) mean precipitation, which also reported lower upper
bounds of projections for various SSPs and target periods
(Shiogama et al., 2022; Dai et al., 2024). In contrast, no con-
sistent trend is observed for the lower bounds of the weighted
ranges across the SSPs and target periods. For the period
2081–2100, the very likely range in the weighted ERA5 pro-
jections is narrowed compared to raw CMIP6 projections.
Under SSP5-8.5, the range is reduced from 0.099–0.321 to
0.113–0.299 mmd−1. Similarly, under SSP3-7.0, the range
decreases from 0.070–0.244 to 0.060–0.216 mmd−1, and un-
der SSP2-4.5, it is reduced from 0.055–0.205 to 0.057–
0.188 mmd−1. This represents a decrease from 10 % to 16 %
in range sizes relative to the unweighted ranges and across
the different SSP scenarios. The reduction is even more pro-
nounced for the likely ranges, decreasing substantially by
16 % to 41 % relative to the unweighted ranges and across
the different SSP scenarios. These findings highlight the ef-
fectiveness of the weighting method in narrowing the projec-
tion uncertainty in precipitation over land.

Given that the causal weighting accounts for models that
better represent the dynamical pattern of SLP globally, we
also examine the spatial pattern of precipitation change over
land under global warming. Figure 6a–c show the spatial dis-
tribution of the causally weighted projections of mean pre-
cipitation changes for three SSP scenarios (SSP2-4.5, SSP3-
7.0, and SSP5-8.5) for the period 2081–2100 relative to
1995–2014. ERA5 was used as a reference for the causal
weighting. The projections indicate substantial regional vari-
ability across all scenarios. Significant increases in mean pre-
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Figure 5. Boxplots of weighted and unweighted projections of precipitation over land relative to 1995–2014 for (a) the SSP5-8.5, (b) SSP3-
7.0, and (c) SSP2-4.5 scenarios. The gray boxplots represent unweighted projections, the green boxplots represent projections weighted
using NCEP–NCAR as a reference, and the blue boxplots represent projections weighted using ERA5 as a reference. Each boxplot displays
the mean (solid black line), likely ranges (17th–83rd percentile), and very likely ranges (5th–95th percentile). The y axis indicates the
precipitation change over land, while the x axis indicates the target period.

cipitation are projected in northern Europe, northern Asia,
and parts of North America, as well as in East and South
Asia and central and eastern Africa. These regions could
see increases of up to 1.2 mmd−1 under the SSP5-8.5 sce-
nario. Conversely, decreases in precipitation are projected
for the Mediterranean basin, Central America, and northern
South America, with reductions reaching up to−1.2mmd−1.
These trends are consistent across all three SSP scenar-
ios, though the intensity varies, with the most pronounced
changes observed under the SSP5-8.5 scenario.

Figure 6d–f present the difference between the absolute
changes in the causally weighted and unweighted mean for
the period 2081–2100 relative to 1995–2014, while Fig. 6g–
i depict the difference between the relative changes in the
causally weighted and unweighted mean. Despite the spa-
tially averaged weighted projections of precipitation change
over land showing no significant deviation from the un-
weighted averages (refer to Fig. 5), Fig. 6d–i highlight
that the weighted patterns exhibit notable spatial variations
compared to the unweighted mean precipitation absolute
change. Regions with positive absolute differences indicate
areas where the weighted projections forecast greater in-
creases in precipitation relative to the unweighted mean.
Conversely, negative absolute differences denote areas where
the weighted projections give smaller increases or larger de-
creases in precipitation than the unweighted mean. In par-
ticular, South America demonstrates the most significant
variations in the weighted projections, with absolute differ-
ences reaching up to±0.4mmd−1. However, the map of dif-
ferences between the relative changes in the weighted and
unweighted mean precipitation suggests that these absolute
changes are not the largest relative changes globally. The
regions of the Sahara, the Arabian Peninsula, southwestern
South America and North America, and northeastern Green-
land exhibit more pronounced relative changes, with values
reaching up to 20 %.

A figure comparable to Fig. 6 is presented in Fig. F1 of
the Appendix, illustrating the projected changes for the pe-
riod 2041–2060. The observed trends for 2081–2100 remain
consistent for this earlier period.

4 Summary and discussion

Climate projections derived from an ensemble of multiple
climate models participating in the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016) con-
tinue to have large uncertainties for precipitation (Tebaldi
et al., 2021). This hinders the delivery of accurate informa-
tion for mitigation and adaptation. Eyring et al. (2019) ar-
gue that advanced methods for model weighting are needed
to distill more credible information on regional climate
changes, pointing out the importance of considering both
model performances and interdependencies in model weight-
ing studies as for example presented by Knutti et al. (2017)
and Brunner et al. (2020). Machine learning can play an im-
portant role in pushing the frontiers of climate model analysis
(Eyring et al., 2024a), including approaches to weight multi-
model projections (Schlund et al., 2020a). Here we build on
a previous study that evaluates the performance of a CMIP
ensemble with causal networks (Nowack et al., 2020) and
expand this concept to a weighting scheme for precipitation
projections with causal discovery.

We first demonstrate that causal model evaluation of
CMIP6 models can effectively identify specific causal fin-
gerprints of sea level pressure (SLP) that influence precipi-
tation patterns and their projections. Notably, we identify a
parabolic relationship between the ability of climate mod-
els to represent observed dynamical SLP patterns in causal
networks, quantified by the networks’ F1 scores, and the
projected precipitation changes over land by the end of the
century. CMIP6 models that better represent reference dy-
namical interactions in their causal networks produce pro-
jections within the middle range of the CMIP6 ensemble,
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Figure 6. Patterns of causally weighted projections of mean precipitation change over land for the period 2081–2100 relative to 1995–2014
for the (a) SSP5-8.5, (b) SSP3-7.0, and (c) SSP2-4.5 scenarios. The differences between the weighted and unweighted mean precipitation
change are shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5. The differences between the weighted and unweighted mean
precipitation relative change are shown in (g) for SSP5-8.5, (h) for SSP3-7.0, and (i) for SSP2-4.5. ERA5 was used as a reference for the
causal weighting.

while models with lower skill either overestimate or underes-
timate the mean projections. This pattern is consistent across
various global warming scenarios (SSP2-4.5, SSP3-7.0, and
SSP5-8.5) and reference reanalysis datasets (NCEP–NCAR
and ERA5). Similar findings were reported by Nowack et al.
(2020) for the RCP8.5 simulations of CMIP5 models.

Additionally, our study reveals that CMIP6 models with
shared development, such as those with a common ancestor
model or the same atmospheric model, exhibit more simi-
lar causal pathways. This result underscores the ability of
the causal model evaluation to effectively identify interde-
pendencies of the CMIP6 models.

Building on these findings, the study introduces a causal
weighting scheme for climate projections based on the per-
formance and interdependence of their causal networks. By
combining causal model evaluation with multimodel weight-
ing, this approach offers a convincing alternative to tradi-
tional weighting based on metrics such as root-mean-square
error or trend analysis (Knutti et al., 2017; Brunner et al.,
2020; Liang et al., 2020; Tokarska et al., 2020).

The implementation of this causal weighting scheme for
projecting precipitation over land significantly reduces the
uncertainty range of the climate projections. While the
weighted mean projections are closely aligned with the un-
weighted means, the likely (17th–83rd percentile) and very

likely (5th–95th percentile) weighted ranges were notably
narrower, and the spatial patterns revealed regional differ-
ences in precipitation. For the end-of-century period, 2081–
2100, the sizes of the very likely weighted ranges under
SSP2-4.5, SSP3-7.0, and SSP5-8.5 are reduced by 10 % to
16 %, while the likely ranges show an even greater reduc-
tion, ranging from 16 % to 41 %, when ERA5 was used as a
reference.

For future research, we consider several areas to be par-
ticularly promising. One potential direction is the develop-
ment of multi-diagnostic weighting (Schlund et al., 2020a),
which involves integrating multiple metrics alongside the
SLP causal network distance metric into the weighting pro-
cess. This multi-diagnostic approach could improve precip-
itation projections further by addressing model differences
more comprehensively. By considering additional diagnos-
tics, such as temperature trends, weighted projections may
further reduce the uncertainty in projected precipitation over
land. Another promising direction is the regional weight-
ing of precipitation change. This approach would focus the
weighting scheme specifically on regional precipitation pro-
jections, incorporating both global and region-specific diag-
nostics. Tailoring multimodel weighting to specific regions
could prove especially effective. Exploring alternative sim-
ilarity measures is also a key area for future investigation.

Earth Syst. Dynam., 16, 607–630, 2025 https://doi.org/10.5194/esd-16-607-2025



K. Debeire et al.: Constraining uncertainty in projected precipitation over land with causal discovery 619

Currently, F1 scores are used to measure the similarity be-
tween causal networks, but alternative measures that better
discriminate between causal networks or that consider causal
effects could provide new insights.

Finally, we want to emphasize that our methodology is not
limited to projecting precipitation changes over land. Its ap-
plicability could extend to any target variable, provided that
pertinent variables and diagnostics exhibiting a robust and
consistent relationship (e.g., a parabolic relationship) with
the target variable are selected. Our results highlight the
importance of integrating advanced evaluation methods and
weighting schemes to reduce the uncertainty ranges of cli-
mate projections (Nowack and Watson-Parris, 2025). Along-
side the development of improved hybrid Earth system mod-
els with machine learning with demonstrated reduction in
long-standing systematic errors (Eyring et al., 2024a, b), this
research provides a novel methodology to constrain uncer-
tainties in multimodel climate projections towards more ro-
bust climate change information and more effective mitiga-
tion and adaptation strategies.

Appendix A: Maps of sea level pressure components

In Figs. A1 and A2, we show the centers of the first 60 PCA–
varimax components. By comparing the spatial patterns for
each season between ERA5 and NCEP–NCAR, we can ob-
serve similarities and differences in the distribution of com-
ponents. Generally, we see similar large-scale patterns since
both datasets are reanalyses of atmospheric variables. How-
ever, differences arise due to variations in data assimilation
methods and model physics. PCA–varimax identifies major
modes of variability for all seasons and datasets, as reported
in Vejmelka et al. (2015) and Nowack et al. (2020). The com-
ponents explaining the most variance are located in the trop-
ics (for example the El Niño region), influencing atmospheric
circulation globally.
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A1 NCEP–NCAR components

Figure A1. Principal component analysis (PCA) with varimax rotation for the NCEP–NCAR dataset during DJF (December, January,
February), MAM (March, April, May), JJA (June, July, August), and SON (September, October, December). Here, each component is
represented by its core, which consists of loadings greater than 80 % of the maximum loading.
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A2 ERA5 components

Figure A2. Principal component analysis (PCA) with varimax rotation for the ERA5 dataset during DJF (December, January, February),
MAM (March, April, May), JJA (June, July, August), and SON (September, October, December). Here, each component is represented by
its core, which consists of loadings greater than 80 % of the maximum loading.

Appendix B: Causal network estimation results

Although a maximum time lag of 20 d was set for PCMCI,
99.9 % of the dependencies were found within the first 10 d.
The causal networks are too complex to visualize, with an
average of 18 causal dependencies per mode for NCEP–
NCAR and 20 for ERA5. For this reason, we choose to in-
spect only the most significant causal dependencies of each
mode. Figure B1 displays the most significant causal depen-
dencies for each mode in the two reanalysis datasets during
the winter months (DJF). Despite the lack of spatial informa-
tion provided to the PCMCI causal discovery algorithm, the
most significant dependencies predominantly originate from
neighboring modes, indicating that the causal network esti-
mation step identifies physically meaningful dependencies
between the SLP modes for both reanalysis datasets.
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Figure B1. Most significant causal dependencies of each mode in DJF (December, January, February) for the (a) NCEP–NCAR or (b) ERA5
dataset. The PCMCI causal discovery algorithm identifies physically meaningful links. Despite the lack of spatial information provided to the
algorithm, the most significant dependency for a mode generally originates from a neighboring mode. Each mode has, on average, 18 or 20
causal dependencies for NCEP–NCAR or ERA5, respectively, with time lags ranging from 1 to 20 d. Notably, 99.9 % of these dependencies
are found with a time lag of less than 10 d.
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Appendix C: Causal network evaluation results

For Fig. 2, the Spearman rank correlation coefficient is cal-
culated between the rankings of climate models to assess
variation in rankings across the different reference datasets
(NCEP–NCAR and ERA5), yielding a coefficient of 0.91.
This confirms a strong consistency between the climate
model rankings with the NCEP–NCAR and ERA5 refer-
ences. The obtained p value from the Student t test is
1.1× 10−9, rejecting the null hypothesis of no ordinal cor-
relation between the rankings of models with NCEP–NCAR
or ERA5 taken as reference. In Fig. C1, we compare the
climate models’ causal networks’ F1 scores relative to the
NCEP–NCAR and ERA5 reference datasets across different
seasons (DJF, MAM, JJA, and SON). Although the structure
of the causal networks exhibits substantial seasonal variation,
the comparison of F1 scores consistently highlights similar
performance patterns across seasons. This consistency rein-
forces the validity of using season-averaged F1 scores in the
rest of this study.

Figure C1. Comparison of the climate models’ causal networks’ F1 scores with NCEP–NCAR (green) and ERA5 (blue) as reference for
the four meteorological seasons. This figure illustrates the similarity between climate models’ causal networks and those of the reference
reanalysis datasets, averaged across all available members, using the F1 score. Higher F1 scores indicate greater similarity. The rank of each
model’s similarity is denoted on top of each bar.
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Appendix D: Impact of the number of modes,
maximum time lag of PCMCI, and αMCI

In Fig. D1, we vary the significance level αMCI of PCMCI
from 10−5 to 10−4 and 10−3. Figure D2 demonstrates the ef-
fects of reducing the number of modes in the networks from
60 to 50 and decreasing the maximum time lag in the PCMCI
algorithm from 20 to 10 d. While these variations affected
the F1 score values moderately, they had a minimal influ-
ence on the rankings of the climate models. This was evalu-
ated by calculating the Spearman rank correlation coefficient
for the modified experiments against the baseline experiment
presented in the main text (Fig. 2a), which used the NCEP–
NCAR reference with 60 modes and αMCI = 10−5. The cor-
relation coefficients were close to 1, ranging from 0.95 to
0.98, confirming a strong ordinal correlation between the
rankings of models in the different experiments. The p val-
ues, all smaller than 10−11, rejected the null hypothesis of no
ordinal correlation between the alternative experiments and
the baseline experiment.

D1 Impact of αMCI on the causal model evaluation step

Figure D1. Impact of αMCI on climate models’ causal networks’ F1 scores with NCEP–NCAR as reference. The causal networks, composed
of 60 modes, were constructed using varying levels of αMCI. Specifically, αMCI is varied from (a) 10−4 to (b) 10−3, whereas αMCI = 10−5

is used in the main text. αMCI represents the significance level for the MCI step in PCMCI. A causal link is established if the MCI test
value is equal to or smaller than αMCI. The Spearman rank correlation coefficient was calculated to compare the variation in model rankings
relative to the main text results in Fig. 2a. The resulting Spearman rank correlation coefficient and the associated p value from a Student
t test, testing the null hypothesis of no ordinal correlation between the rankings, are displayed in red.
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D2 Impact of the number of modes and maximum time
lag on the causal model evaluation step

Figure D2. Impact of the number of PCA–varimax modes on climate models’ causal networks’ F1 scores with NCEP–NCAR as reference.
The causal networks are composed of 50 modes, in contrast to the 60 modes used in the main text. Additionally, the maximum time lag in
PCMCI is set to 10 d instead of 20 d. The parameter αMCI of PCMCI is also varied from (a) 10−5 to (b) 10−4. The Spearman rank correlation
coefficient was calculated to compare the variation in model rankings relative to the main text results in Fig. 2a. The resulting Spearman rank
correlation coefficient and the associated p value from a Student t test, which tests the null hypothesis of no ordinal correlation between the
rankings, are displayed in red at the top of each subfigure.

Appendix E: Calibration of interdependence shape
parameter σS

In Fig. E1, we note that internal variability itself offers oppor-
tunities to learn about the robustness of our method. Specifi-
cally, we have found differences between the causal networks
of the models, which were shown to be larger than the differ-
ences between the causal networks across ensemble mem-
bers of individual models. This supports the idea that the
differences we capture are meaningful and not purely due
to internal variability. This finding aligns with results from
previous work (Nowack et al., 2020), where this was demon-
strated clearly.
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Figure E1. Distances between ensembles of the same model and intermodel distances for (a) NCEP–NCAR and (b) ERA5 taken as reference.
The distances are calculated using the complement of the F1 scores normalized by the median across all models. σS is set to 0.9 (dashed
orange line), which separates most of the intermodel distances and the intramodel distances.

Appendix F: Weighted projections of land
precipitation changes

Figure F1. Patterns of causally weighted projections of mean precipitation change over land in the period 2041–2060 relative to 1995–2014
for the (a) SSP5-8.5, (b) SSP3-7.0, and (c) SSP2-4.5 scenarios. The differences between the weighted and unweighted mean precipitation
change are shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5. The differences between the weighted and unweighted mean
precipitation relative change are shown in (g) for SSP5-8.5, (h) for SSP3-7.0, and (i) for SSP2-4.5. ERA5 was used as a reference for the
causal weighting.
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Code and data availability. The code is written in Python and
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