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Abstract. Effective climate change mitigation necessitates swift societal transformations. Positive social tip-
ping processes, where small triggers initiate qualitative systemic shifts, are potential key mechanisms towards
instigating the desired emissions mitigation. A necessary foundation for societal tipping processes is the cre-
ation of enabling conditions. Here, we assess future sea level rise estimates and social survey data within the
framework of a network-based threshold model to exemplify the enabling conditions for tipping processes. We
find that in many countries, the level of climate change concern is already sufficient, suggesting the enabling
conditions and opportunities for social activation already exist. Further, drawing upon the interrelation between
climate change concern and anticipation of future sea level rise, we report three qualitative classes of tipping
potential that are regionally clustered, with the greatest potential for tipping in western Pacific Rim and East
Asian countries. These findings propose a transformative pathway where climate change concern increases the
social tipping potential, while extended anticipation time horizons can trigger the system towards an alternative
trajectory of larger social activation for climate change mitigation.
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1 Introduction

With increasing greenhouse gas emissions and resultant
global warming, the Earth’s climate system is becoming
increasingly vulnerable to irreversible and abrupt changes
(Steffen et al., 2018; Armstrong McKay et al., 2022). The
urgency of projected climate impacts is accentuated by in-
teracting tipping elements in the Earth system that, once
initiated, carry the potential for cascading “domino effects”
(Lenton and Williams, 2013; Rocha et al., 2018; Wunderling
et al., 2021). Rapid societal transformations are necessary to
reduce greenhouse gas emissions and stabilize the Earth’s cli-
mate system (Otto et al., 2020a; Winkelmann et al., 2022).

Contemporary societies are faced with a milieu of in-
creased threats posed by climate change (e.g. increased risks
for floods, wildfires, hurricanes, droughts). Of these threats,
sea level rise (SLR) presents one of the greatest potential
risks of climate change – as the impact of SLR is compar-
atively longer-lasting. The impact of floods, wildfires, and
hurricanes can be similarly devastating to communities, yet
the event itself lasts relatively shorter durations (magnitude
of days), and infrastructure can be rebuilt, while for SLR,
the impacts are likely irreversible (DeConto et al., 2021;
Golledge, 2020), persisting at the magnitude of millennia.

With approximately 40 % of the world’s population resid-
ing within 100 km of the coastline, SLR poses a global threat
to coastal cities, infrastructure, and cultural heritage sites
(Nicholls and Cazenave, 2010; Hinkel et al., 2014; Cazenave
and Cozannet, 2014; Marzeion and Levermann, 2014). The
impacts of SLR are already manifesting today (e.g. increased
storm surges, flooding, groundwater salination, and harm to
marine ecosystems), and the expected future impacts vary by
region (Nicholls et al., 2021; Barragán and de Andrés, 2015).
For example, densely populated urban centres in Japan, In-
dia, and China are among those potentially most affected by
future SLR (Barragán and de Andrés, 2015) (Fig. 1b, c). De-
pending on the Representative Concentration Pathway (RCP)
emission scenario, future SLR estimates range between 1 and
5 m (Nauels et al., 2017a) by the year 2300 (Fig. 1a), where
up to 15 m of SLR by 2300 cannot be ruled out under high-
emission scenarios (Masson-Delmotte et al., 2021). SLR im-
pacts are further projected to amplify due to the large iner-
tia and positive feedbacks (Garbe et al., 2020), locking in
long-term commitments to potentially irreversible SLR (Lev-
ermann et al., 2013).

The problem of future sea level rise presents a unique
social–ecological dilemma: a severe clash of timescales. The
most serious potential direct impacts of SLR will likely
manifest on the order of centuries or more (Garbe et al.,
2020; Levermann et al., 2013), but mitigation of these im-
pacts necessitates rapid countering societal actions within
the next few years to decades (Clark et al., 2016). How-
ever, future problems are often discounted (Frederick et al.,
2002), and human forethought for the future becomes lim-
ited beyond the order of decades (Tonn et al., 2006; Winkel-

mann et al., 2022). People who do not consider distant fu-
ture consequences are more likely to have climate-sceptical
views (Većkalov et al., 2021) and are less likely to engage in
mitigating behaviours (Milfont et al., 2012; Corral-Verdugo
et al., 2017). Indeed, the dilemma of climate change presents
not only a classic tragedy of the commons, but also a tragedy
of the horizon (Hurlstone et al., 2020).

1.1 Social tipping as a transformative mechanism for
pro-environmental behaviours

Social tipping has been proposed as a mechanism for bring-
ing about necessary sustainability transformations and mit-
igating climate impacts (Milkoreit et al., 2018; Moser and
Dilling, 2007; Otto et al., 2020a; Farmer et al., 2019; Tàbara
et al., 2018; Nyborg et al., 2016; Lenton, 2020; Winkelmann
et al., 2022). Social tipping is exemplified by qualitative sys-
temic changes resulting from comparatively small changes
within the social system or the broader environment in which
the system is embedded (Winkelmann et al., 2022). Simi-
lar to the notion of climate tipping processes (Lenton et al.,
2008; Armstrong McKay et al., 2022), social tipping dynam-
ics are internally self-amplifying via positive feedback mech-
anisms such that rapid movements from one qualitative state
into another become possible, resulting in sudden large-scale
structural changes (Otto et al., 2020a; Milkoreit et al., 2018;
Van Ginkel et al., 2020). Recent work has explored potential
“positive tipping elements” (candidate systems for tipping)
within the energy, mobility, food, and financial systems, for
example (see Lenton et al., 2023, for and overview). Further,
some studies have identified systems which they claim may
be close to tipping or have already tipped, such as electric
vehicle adoption in Norway (Lenton et al., 2022).

Social tipping processes are deeply related to other similar
transformation mechanisms, where the “theory of change”
initiates at the micro-level, which are eventually exhibited
in structural-level changes (Geels, 2002; Olsson et al., 2014;
Olsson and Moore, 2024). This is in contrast to change that
initiates from the “top down” (e.g. policy change). That is,
we explore how these individual changes can enact sys-
tem regime changes, which themselves co-evolve to reshape
the individual actions nested within these regimes. This ap-
proach should naturally be interpreted as complementary to
(and not competing with) broader mechanisms towards how
such rapid shifts could occur.

Within social tipping conceptualizations, two interrelated
mechanisms have been proposed which shape the likelihood
of the initiation of a transformation. The first is the inter-
vention, or triggering element, which can come from a myr-
iad of forces initiated in both natural and social systems
(Winkelmann et al., 2022), as well as those emerging from
diverse individual-level changes (Otto et al., 2020a; Milkor-
eit et al., 2018; Lenton et al., 2022). The second necessary el-
ement for social tipping processes is the development of “en-
abling conditions” (Tàbara et al., 2018; Lenton et al., 2022;
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Figure 1. Projected global mean sea level rise and affected world regions. (a) Projected SLR in response to greenhouse gas emissions under
different RCP scenarios with low (blue), medium (orange), and high emissions (red) (estimates by MAGICC v2.0). Thick lines indicate the
median projected SLR, and shaded areas indicate the range that includes 66 % of all ensemble runs. (b) Regions affected by future SLR in
the five countries with the largest share of global greenhouse gas emissions. Lines indicate the areas that are directly affected by future global
mean SLR within one (red), four (orange), or seven generations (yellow). (c) Average shares of population for the largest national emitters –
China, United States of America, India, Russia, and Japan – that is estimated to be directly affected by projected SLR. Shaded areas again
indicate the 66 % range.

Olsson and Moore, 2024). Here, these enabling conditions
refer more to the structure of the system itself and how
favourable it is to change processes. If the enabling condi-
tions are rather “low”, a large intervention (e.g. shock, in-
tervention) would be needed to initiate transformation pro-
cesses. But, if the conditions are comparatively “high”, a
wider array of even potentially unintended interventions
could initiate the transformation process. Yet, how enabling
conditions shape the likelihood of social tipping processes re-
mains comparatively rather underexplored. Accordingly, we
focus on how two factors, levels of climate change concern
and exposure to sea level rise, can shape enabling conditions.

1.2 Climate change concern and pro-environmental
behaviours

Within social systems, extensive empirical studies have fo-
cused on identifying drivers of engagement (van Valkengoed
and Steg, 2019; Bergquist et al., 2022; Cologna and Siegrist,
2020) in what we will term “pro-environmental behaviours”.
The idea of pro-environmental behaviours draws upon pre-
vious definitions from the broader environmental literature
(Stern, 2000; Steg and Vlek, 2009) to designate an inten-
tional action that is taken towards reducing carbon emissions.
This could entail, for example, changes in individual con-
sumption patterns, political behaviours, or even activism.

Climate change concern has been demonstrated as pro-
viding a likely necessary foundation for individual-level en-
gagement (van Valkengoed and Steg, 2019; Hoffmann et al.,
2022) in pro-environmental behaviours. Most simply, if a
person is presumed to adopt a pro-environmental behaviour
to mitigate the likelihood of individual or societal exposure

to a climate-induced risk, they must likely first be concerned
about this risk to act. Yet, concern is often insufficient, on
its own, to ultimately serve as the triggering mechanism in a
shift toward pro-environmental behaviour, as the role of con-
cern is often moderated by other characteristics (Kollmuss
and Agyeman, 2002), such as increased costs (Diekmann
and Preisendörfer, 2003), perceptions of individual efficacy
(Mayer and Smith, 2019), behavioural plasticity, (Nielsen
et al., 2024), and trust (Cologna and Siegrist, 2020; Smith
and Mayer, 2018). Rather, there likely needs to be an inter-
action with some other intervention in order to enact latent
climate change concern as pro-environmental behaviour.

1.3 Anticipation of SLR can activate pro-environmental
behaviours

Within social–ecological systems, experienced climate im-
pacts (Demski et al., 2017; Konisky et al., 2016), e.g. floods
and heat waves (Ricke and Caldeira, 2014), have the potential
to shift attitudes and behaviours toward climate change and
instigate social tipping processes (Müller et al., 2021). Be-
havioural changes are more likely if extreme weather events
elicit an emotional response, increase the salience of climate
change, or are directly attributed to climate change (Sisco,
2021).

In the case of SLR, immediate pro-environmental be-
haviours for mitigation are required, as even 5-year delays
in reaching peak greenhouse gas (GHG) emissions can affect
a future commitment of ∼+0.2 m in SLR by 2300 (Mengel
et al., 2018). Yet, the most severe immediate impacts of SLR
are unlikely to be experienced within current lifetimes, likely
between +0.3–1.0 m by 2100 (Oppenheimer et al., 2019).
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Accordingly, direct experiences of SLR impacts are unlikely
to trigger necessary societal changes on timescales required
for mitigation (Pahl et al., 2014) within the remaining “in-
tervention time horizon” (the period within which societal
actions can influence whether a natural system tips) (Winkel-
mann et al., 2022).

Rather, the anticipation of the impacts of SLR presents a
crucial potential pathway towards bridging the intergenera-
tional gap. On one side, several studies have noted that sea
level rise is not particularly well understood by the public (in
terms of scientific accuracy; e.g. Thomas et al., 2015; Priest-
ley et al., 2021), is seen as occurring quite far into the future
(Covi and Kain, 2016), and may not receive frequent me-
dia attention (e.g. Akerlof et al., 2019). On the other side,
communicating the risks posed by SLR can increase climate
change attitudes – even amongst more “hard to reach” au-
diences such as Republicans in the United States (Bolsen
et al., 2018; Smith et al., 2022). Concern about future SLR
can activate desires to leave a positive legacy for the de-
scendants of one’s homeland, facilitating engagement in pro-
environmental behaviours (Hurlstone et al., 2020). Recent
empirical evidence suggests that concerns about future SLR
constitute a unique form of societal climate risk perceptions,
increasing support for climate change policies and willing-
ness to engage in pro-climate behaviours by ∼ 15 %–30 %
(Smith et al., 2020, 2022). Simulation modelling approaches
have further noted the importance of anticipation of future
climate impacts, where extended time horizons can foster
social tipping dynamics towards stabilizing the environment
and potentially preventing social–ecological collapse (Müller
et al., 2021).

In this case, we suggest that anticipation of SLR can act as
an instigating trigger of pro-environmental behaviour. When
the enabling conditions of a system are such that social tip-
ping processes are increasingly likely, anticipation of climate
impacts may be a sufficient trigger, bridging the temporal gap
between risk exposure and impacts.

Here, we explore this interrelated role of anticipation of
SLR and concern for climate change in triggering social
tipping processes towards pro-environmental behaviour via
adoption of a network-based threshold model for social tip-
ping. We combine projections of future SLR and cross-
national social survey data on climate change concern to es-
timate likelihoods of social tipping processes (Ashwin et al.,
2012) resulting from varying anticipation time horizons and
levels of concern in 66 countries. We thereby investigate
mechanisms which close the temporal gap between causes
and effects of climate impacts, exploring the potential for so-
cietal transformations toward pro-environmental behaviour
and planetary stewardship.

1.4 Network-based threshold model for social tipping

Models of complex social behavioural contagions (Lehmann
and Ahn, 2018; Jusup et al., 2022) have explored thresh-

olds for individual action, whereby a Pareto effect of ∼ 25 %
of the population becoming activated can result in social-
tipping-like processes of cascading behaviours (Centola
et al., 2018). In such cases, changes in individual preference
factors (Nyborg et al., 2016) and network structures (Cen-
tola and Baronchelli, 2015) can trigger rapid shifts in so-
cial norms and behaviours. Complex contagion is commonly
simulated using threshold models (Dodds and Watts, 2004),
social learning and diffusion models, adaptive network mod-
els (Gross and Sayama, 2009; Chu et al., 2021), or agent-
based voter models (De Marchi and Page, 2014).

Recent advancements have further modelled social tipping
dynamics (Müller et al., 2021) – notably, behavioural eco-
nomic experimental approaches have investigated the diffi-
culty in overcoming perceived costs associated with adopt-
ing new norms (Andreoni et al., 2021), agent-based models
have identified conditions for rapid adoption of environmen-
tal behaviours (Kaaronen and Strelkovskii, 2020), and cou-
pled social–climate models have explored emissions reduc-
tion pathways (Moore et al., 2022). Yet, modelling social
tipping dynamics, and environmental behavioural change
more broadly, remains challenging, as the drivers of human
behaviour and preference formation are non-deterministic
and are rather the product of an interrelated web of factors
(e.g. risk perceptions, costs, social norms, perceived efficacy,
trust, political and cultural tastes). Such modelling endeav-
ours are further complicated within cross-cultural settings,
as the drivers of climate attitudes and behaviours can vary
greatly even between cultural and geographically similar lo-
cales (Smith and Mayer, 2019; Marquart-Pyatt et al., 2019).

Given these uncertainties and heterogeneities, we adopt
a low-dimensional approach to modelling the interrelated
role of concern and anticipation of SLR impacts that is the-
oretically based and driven by empirically derived param-
eters. We extend a recently developed refinement of Gra-
novetter’s threshold model (Granovetter, 1978) for social tip-
ping processes (Wiedermann et al., 2020) that explores en-
gagement in pro-environmental behaviours from cascading
contagious dynamics on social networks (Watts, 2002). Pro-
climate change behaviours are those taken with the intention
of mitigating – or adapting to – anticipated, perceived, or ex-
perienced climate impacts (Stern, 2000). These can encom-
pass a broad range of individual or social behaviours, such as
changing consumption patterns, participating in environmen-
tal collective actions, and supporting climate-change-focused
policies and political actors (Tobler et al., 2012).

This approach divides populations into three distinct
groups (McCarthy and Zald, 1977; Jenkins, 1983): (I) cer-
tainly active instigators of pro-environmental behaviours
(e.g. opinion shifts, social movements, or adoption of new
technologies), (II) contingently active individuals whose
characteristics (e.g. norms, beliefs, social identity) broadly
align with those of the certainly active population but who
have yet to join these pro-environmental behaviours, and (III)
certainly inactive individuals who are unlikely to ever join
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Figure 2. Visualization of the modelling approach. The tipping po-
tential in a country (green box) is estimated from sea level projec-
tions (based on climate model emulator MAGICC) and the extended
Granovetter model of social tipping dynamics. Blue shading indi-
cates external data sources (see Sect. 3). Yellow shading indicates
parameters to the model. Core components of the model are marked
with grey boxes.

pro-environmental behaviours (e.g. those with norms, val-
ues, or identities in opposition or those who lack the ca-
pacity to change). Specifically, we adopt a one-dimensional
macroscopic approximation of an emergent threshold func-
tion which incorporates microscopic network dynamics ac-
counting for the interrelation of behavioural contagion and
network structures (see Sect. 3 for details).

2 Model design

We apply the network-based threshold model for social tip-
ping to the case of SLR, examining how national-level pro-
jections of SLR impacts at varying temporal scales (2100,
2200, 2300) and climate change concern affect the share of
certainly and contingently active populations across different
states worldwide (Fig. 2). For this purpose we use multiple
data sources to estimate the necessary parameters and input
quantities: (i) future sea level projections from the MAGICC
climate model (Nauels et al., 2017a) (Fig. 1a); (ii) global
high-resolution topographic (Farr et al., 2007) and popula-
tion distribution (Center for International Earth Science In-
formation Network, 2016) data; and (iii) pooled, harmonized
social survey data on climate change concern from 66 differ-
ent countries.

We consider people who live in an area that is likely di-
rectly impacted by SLR within a certain anticipation time
horizon to be certainly active (Group I, Fig. 1c). A coun-
try’s potentially active population (the sum of Groups I and
II) with share p is estimated from cross-national survey data
on climate change concern (see Tables S1–S3 in the Sup-
plement), assuming that higher levels of concern correspond
to larger population shares that can potentially be mobilized
for collective pro-environmental behaviour. Based on both

group sizes, our model simulates the population share that
ultimately participates in an action (see Fig. 3).

The more parsimonious design incorporates a similar level
of qualified complexity across all model components and an-
alytical interpretations, with the goal of minimizing sources
of error originating from increased assumptions regarding
additional parameters which remain unknown or are po-
tentially even unknowable. Similar approaches have further
adopted survey data and low-dimensional modelling designs
to explore cross-national social tipping dynamics, particu-
larly in the case of groundwater management (Castilla-Rho
et al., 2017). Accordingly, the modelling goal is to provide
grounded, interpretable, qualitative assessments of the cross-
national role of concern and anticipation of SLR, providing
a foundation for further exploratory studies in the emerging
research on social tipping dynamics.

For every simulation, we expect to find the population
share that ultimately engages in pro-environmental behaviour
in one of three regimes: (i) an uncritical regime where only
the untipped state exists and a large share of the population
remains passive; (ii) a critical bi-stable regime where event-
induced tipping (Ashwin et al., 2012) can move the system
into an alternative state (i.e. potentially active population can
be either active or passive, depending on initial conditions);
and (iii) the tipped regime that is reached via bifurcation-
induced tipping (Ashwin et al., 2012), i.e. where a large share
of the potentially active population is active (see Fig. 3). By
using a Monte Carlo approach, we compute the likelihoods of
entering one of the three regimes and denote those as the re-
spective per-country tipping potentials. To ensure the robust-
ness of our results, all respective quantities are computed as
averages over an ensemble of simulations for random choices
of unknown parameters that govern the specific structure of
the social tipping model (see Fig. 2 and Sect. 3).

3 Detailed model description

3.1 Network-based threshold model for social tipping

We adopt a recently developed framework for explaining
processes and mechanisms behind social tipping through a
network-based micro-foundation of Granovetter’s threshold
model of collective behaviour (Wiedermann et al., 2020;
Granovetter, 1978). The model explains collective action
from cascading contagious dynamics (Watts, 2002) of so-
cial activation in a complex social network, exploring the in-
terrelation of individual behavioural dynamics and network
structures. For parsimony, we draw upon resource mobiliza-
tion theory to broadly conceptualize the population as di-
vided into three distinct groups (Jenkins, 1983; McCarthy
and Zald, 1977): (i) a small fixed population share a con-
sisting of certainly active individuals, such as instigators of
a pro-environmental behaviour, that deliberately act upon a
certain issue; (ii) a fixed population share c consisting of con-
tingently active individuals whose opinions and norms align
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with the behaviour of the instigators but who have not joined
the pro-environmental behaviour yet; and (iii) a remaining
population share consisting of certainly inactive individuals
who, due to opposing opinions and values, will never join a
respective pro-environmental behaviour. The first two groups
taken together then form the fixed potentially active popula-
tion share p = c+ a. Actors in those groups are connected
along ties in a social network, with an average number of
such ties per individual,K , commonly referred to as the “av-
erage degree” of the social network (Newman, 2018). Actors
become active via cascading dynamics if at least a fixed share
ρ of their neighbours is active as well (Watts, 2002). The
model’s dynamics can be described by a one-dimensional
discrete-time difference equation that computes the share of
acting individuals, r(t + 1), at a given time t + 1 as

r(t + 1)= a+ (p− a)F (r(t)). (1)

Here, a denotes the certainly active population share and p
the potentially active population share, i.e. those that can be
mobilized via social activation. F is the cumulative distri-
bution function of the actors’ activation thresholds, referred
to as the emergent macroscopic threshold function. In other
words, F (r(t)) represents the fraction of the contingent pop-
ulation (with relative size p−a) that takes part in a given pro-
environmental behaviour once that movement has reached a
relative size of r(t). It was first suggested (Granovetter, 1978)
and then shown (Wiedermann et al., 2020) that such a thresh-
old distribution F with typically assumed properties, such
as being broad-shaped and similar to a normal distribution,
emerges from pairwise social interactions between individu-
als in their underlying social network. In particular, assum-
ing a random network topology given by the Erdős–Rényi
model as a first approximation for the unknown underlying
social network (Erdős and Rényi, 1960) yields the following
analytical expression for F (Wiedermann et al., 2020).

F (r)= 1− exp(−K)
∞∑
bi=0

(K −Kr)bi

bi !

⌊
%bi
1−%

⌋∑
ai=0

(Kr)ai

ai !
(2)

Note that the emergent threshold function (F (r(t))) in-
tegrates information from individual behavioural thresholds
and network structures and acts as a parsimonious tool for
modelling social tipping processes, but the threshold func-
tion itself is rather an outcome of these processes and should
not be treated as a social construct with a causal effect in its
own right. Also note that even though the approximation as-
sumes the topology of an Erdős–Rényi random network, the
emergent threshold function F also represents other less triv-
ial network structures sufficiently well (see below for details
and the Supplement for numerical simulations).

The fixed points r∗ of Eq. (1) can be estimated by setting

r∗ = a+ (p− a)F (r∗) (3)

and solving for r∗ numerically. The model shows two saddle-
node bifurcations with respect to both a and p (Wiedermann
et al., 2020), which is the typical form of stability land-
scape for a tipping element (Fig. 3a). For sufficiently large
p and small values of a, i.e. a = 0 in the extreme case, the
model displays an uncritical regime where no tipped state
exists (Fig. 3a). Increasing a pushes the system closer to a
bi-stable critical regime in which external influences, such as
shocks or events, can lift the system into an alternative stable
state (yellow area in Fig. 3a). Further increasing a eventu-
ally triggers the commonly studied form of social tipping, i.e.
bifurcation-induced tipping, where the untipped fixed point
r∗ vanishes and the system enters the tipped regime (green
area in Fig. 3a). Notably, similar dynamics and the distinc-
tion of three qualitative regimes can be observed for increas-
ing p from low to large values, thereby giving rise to a cusp
catastrophe (Wiedermann et al., 2020). In particular, for each
value of p there is a critical value of a (given by the boundary
between the red- and yellow-shaded area in Fig. 3) at which
the system first enters the bi-stable critical regime. In that
sense, increasing values of p move the boundary between
the uncritical and critical regime closer to smaller values of
a.

Given that the social network structures within the 66
countries that are included in our simulation are likely largely
heterogeneous and in many cases undetermined, we adopt a
Monte Carlo approach to check for the robustness of our re-
sults by numerically estimating the potential for social tip-
ping and resultant instantiations of emergent threshold func-
tions by randomly sampling unknown parameter values for
K and ρ. We observed that the resulting ensemble of thresh-
old functions (F (r)) then not only resembles simple network
topologies such as the Erdős–Rényi random network, but
also sufficiently covers other more realistic network topolo-
gies. In particular, we perform robustness checks using an ar-
ray of topologies (real-world empirical data about Facebook
friendships – Barabási and Albert, 1999, Watts and Strogatz,
1998; real-world empirical data about ring topologies and
random geometric networks – Dall and Christensen, 2002),
finding that in most cases, the ensemble threshold function
fits estimates emerging from micro-simulation models, ex-
cept in cases where the certainly active nodes are heavily
clustered in modular networks (see Figs. S1 and S2 in the
Supplement). This is to be expected, since in networks where
the certainly active population is clustered within a highly
modularized network structure, it is unlikely for the network
to exhibit cascading processes resulting in social tipping
across a broader population, as tipping would be contained to
specific clusters and not throughout the network as a whole.
However, we suggest that in the case of anticipation of SLR,
real-world social networks are less likely to have such highly
modularized network structures, as for many countries, SLR
affects broad sections of coastlines, stretching across diverse
social and geographic groupings.
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Figure 3. (a) Exemplary bifurcation diagram of the social tipping
model with respect to one of several influencing factors: the cer-
tainly active population share a. For low shares a of certainly active
individuals the system is in the uncritical regime (red-shaded area)
where no tipping is possible since only the lower branch exists. With
increasing a the system enters the critical regime (yellow-shaded
area) and event-induced tipping becomes possible if large enough
shocks kick the steady state into the tipped state’s basin of attraction
(orange-shaded area). With further increasing a the model reaches
its critical threshold for bifurcation-induced tipping above which
only the upper branch exists (green-shaded area). (b) The tipping
potential computed as the relative size of the basin of attraction of
the upper branch.

3.2 Estimation of certainly active population from SLR

We estimate the certainly active population share a(T ) per
country by the proportion of individuals that are projected
to be affected by sea level rise (SLR) at a given anticipation
time horizon T after 2020. Here, we assume individuals to
be affected if they live at an elevation X that lies at or below
projected SLR at time T .

Particularly, we use median SLR projections until 2300
obtained from the MAGICC climate model v2.0 (Nauels
et al., 2017a) for the RCP8.5 scenario that provides an up-
per bound of the RCPs (Riahi et al., 2011) (solid red line
in Fig. 1a). Generally, the MAGICC climate model emula-
tor estimates approximately 1 m of sea level change for low-
emission scenario RCP2.6, ranging up to approximately 5 m
of sea level rise for high-emission scenario RCP8.5 by the
year 2300 (Fig. 1a). These projections are consistent with
process-based models in IPCC AR6 (Masson-Delmotte et al.,
2021), which further note that even more severe SLR of more
than 15 m by 2300 cannot be excluded under high-emission
scenarios (IPCC, 2019).

In order to estimate the population–elevation distribution
(Fig. 4) we combine country-specific gridded population

data from the Socioeconomic Data and Applications Center
(SEDAC) (Center for International Earth Science Informa-
tion Network, 2016) with SRTM30 near-global digital ele-
vation data (Farr et al., 2007), both provided at an angular
resolution of 1/120°. Since entries in the SRTM30 data are
truncated to full metres, we add uniformly distributed ran-
dom noise of magnitude 1 m to the entry of each grid cell.
The median SLR projections are then combined with the
country-specific population–elevation distributions to obtain
a time series of population shares that are affected by SLR
until 2300.

3.3 Estimation of potentially active population from
social survey data

We estimate the potentially active population share pC
in a country C from subjects’ expressed concern for cli-
mate change in six different recent cross-national social
survey programmes: International Public Opinion on Cli-
mate Change (2022), International Social Survey Programme
(2010, Environment III), European Social Survey (2016,
Wave 8), PEW Global Attitudes Survey (spring 2015), Eu-
robarometer (2017, EB 87.1; 2019, EB 91.3), and Life in
Transition Survey (2010, II) – see Tables S1–S3 in the Sup-
plement.

We assume that subjects that are not concerned at all are
not potentially active. In contrast, subjects with the highest
level of concern are counted as surely belonging to the po-
tentially active population share. For subjects with interme-
diate levels of concern, we assume that a certain share is
potentially active, using the following approach to estimate
this share: each survey “sp” contains an item capturing in-
dividual perceptions of climate change concern across mul-
tiple countries C. These items are given on an ordinal scale,
with varying numbers of outcomes nsp. We rescale those out-
comes to take integer values isp = 0,1, . . .,nsp− 1 such that
pi,C,sp gives the relative frequency of response i in countryC
and survey programme “sp”. We then estimate the potentially
active population share pC,sp in country C as

pC,sp =
1
nsp

∑
nsp

pi,C,sp
i

nsp− 1
∈ [0,1] (4)

such that pC,sp = 0 if all participants were to respond isp = 0,
and pC,sp = 1 if all participants were to respond isp = nsp−1.
In total, we compile data for 66 countries with access to the
sea. Some countries, especially in the European Union, are
covered by all six surveys, while other countries only ap-
pear in a single instance, with an average coverage of 2.36
survey programmes per country. In cases where multiple sur-
vey programmes are available for a particular country, we
then adopt the median value of concern over all survey pro-
grammes for that country as the estimated potentially active
population share pC in Fig. 5 and Fig. 6. An overview of esti-
mated levels of concern across countries is given in Tables S2
and S3.
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Figure 4. Cumulative distributions of country-specific population shares living at or below an elevation level of X above sea level for the
five largest emitters of greenhouse gas that are considered in this study.

3.4 Preprocessing, model setup, and ensemble
simulations

In alignment with earlier works (Marzeion and Levermann,
2014), we exclude countries with exceptionally low elevation
profiles, i.e. the Netherlands, Azerbaijan, and Kazakhstan,
that for large parts show elevation values even below the
present sea level. We additionally exclude all countries that
are not adjacent to any larger body of water and, thus, ex-
clusively lie inland, e.g. Mongolia or Austria. In total, we
excluded 22 countries from these analyses.

In a first step, we vary the potentially active population
share p across its entire valid value range p ∈ [0,1] in or-
der to obtain comprehensive statistics about the model’s dy-
namics. We draw N = 2000 random combinations of param-
eters ρ ∈ (0,1) andK ∈ (0,100) and compute r∗ numerically
from Eq. (3) for every combination of p ∈ [0,1] and a(T ), for
T = 0,1, . . .,280. In a second analysis, we then fix the poten-
tially active population share in each country, pC , according
to the estimated levels of concern (see above).

3.5 Tipping potential and intervention sizes

The tipping potential in Figs. 5 and 6 is computed as the av-
erage basin stability (Menck et al., 2013) of the tipped fixed
point r∗ub (subscript “ub” for the upper branch) in Fig. 3 taken
over an ensemble of N = 2000 simulations with randomly
drawn values ofK and ρ (see above). For a single simulation
s we define the tipping potential utot(s) as follows.

utot(s)=


0 if only untipped lower branch exists
p−r∗m
p−a

if unstable middle branch exists

1 if only tipped upper branch exists

(5)

Here, r∗m (subscript “m” for the middle branch) is the location
of the fixed point corresponding to the unstable branch of the
model’s bifurcation diagram (dashed line in Fig. 3a), p is
the potentially active population share, and a is the certainly
active population share. The total tipping potential utot is then

given as follows.

utot = 〈utot(s)〉s (6)

=
1
N

∑
s|utot(s)∈(0,1)

utot(s)+
1
N

∑
s|utot(s)=1

1 (7)

=
1
N

∑
s|utot(s)∈(0,1)

utot(s)+ ubif (8)

The total tipping potential utot measures the combined ef-
fects of event-induced (first term on the right-hand side of
Eq. 8) and bifurcation-induced tipping (second term on the
right-hand side of Eq. 8). Each contribution to utot is thus ei-
ther 0< utot(s)< 1 if the system is in the critical regime or
utot(s)= 1 if the system is in the tipped regime (Fig. 3b).
When aggregated over all simulations s, the bifurcation-
induced tipping potential ubif computes the share of sim-
ulations in which bifurcation tipping occurred (depicted in
Fig. 5, third row) and forms a direct contribution to utot.

For all simulations s where the model’s steady state falls
into the critical regime (yellow-shaded area in Fig. 3), we
compute the required intervention size I (s) to tip the equili-
brated system from the stable untipped state r∗l (subscript “l”
for the lower branch) into the stable tipped state. Specifically,
we express I (s) as the minimum contingent population share
c = p−a required to lift the system from r∗l over the middle
branch r∗m. This yields

I (s)=

{
r∗m−r

∗

l
p−a

if 0< utot(s)< 1

0 otherwise.
(9)

The required intervention sizes I depicted in Fig. 5 are then
computed as the respective percentiles of the set of all en-
semble members s for which we obtain positive values of
I (s).

4 Results

4.1 Anticipation and concern foster complementary
forms of social tipping

The tipping potentials are first estimated for the five countries
with the largest greenhouse gas emissions (China, the US, In-
dia, Russia, and Japan) (IEA, 2020) for varying anticipation
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time horizons (e.g. 100, 150, or 200 years into the future)
and potentially active population shares. These five coun-
tries were chosen as examples as they present cases where
effective shifts towards pro-environmental behaviours might
have the most substantial impact on global carbon emissions,
an approach similarly adopted in other modelling work (e.g.
Ricke and Caldeira, 2014). We then further assess the cor-
responding tipping potentials for the fixed potentially active
population share according to the estimated level of climate
change concern in each country (see also Sect. 3).

We find that the overall tipping potential increases strongly
with greater potentially active population shares. A notable
dependency of this tipping potential on the time horizon can
especially be observed for countries where a larger part of
the population lives at or close to sea level, as in the case of
Japan or China (Fig. 5a).

With extended anticipation time horizons, the bifurcation-
induced tipping potential, i.e. cases where the system shifts
into the tipped regime, increases most significantly if the
potentially active population is larger than at least approxi-
mately 20 % (see Fig. 5b) – a level that is surpassed in all
five considered countries. For the estimated values of the
potentially active population, our model suggests increased
bifurcation-induced tipping potential in countries with large
near-sea-level population density, particularly China and
Japan (Fig. 5c). This implies that while the overall tipping
potential is relatively similar across contexts, bifurcation-
induced tipping becomes more likely in regions which are
more vulnerable to future SLR.

However, compared with the overall large potential,
bifurcation-induced tipping remains comparatively unlikely
(see Fig. 5a and b). This implies that even though an alter-
native stable state of collective pro-environmental behaviour
may exist, the system is unlikely to reach this state by mere
crossing of a single critical threshold or tipping point. This
is because in most cases, the share of the certainly active
population directly affected by SLR is not sufficient to trig-
ger such bifurcation-induced tipping. Instead, the system is
mostly found in a critical, yet not tipped, state where in-
terventions then carry the potential to kick the system into
its alternative stable state via event-induced tipping. The re-
quired intervention size, measured in terms of the contingent
population share, generally decreases as the anticipation time
horizon grows, moving the system closer to the tipped state
(see Fig. 3). Comparatively, small intervention sizes (less
than 10 %) of spontaneously activated populations can suf-
fice to trigger transitions to the alternative state with a 5 %
chance, indicating a potential for event-induced tipping (see
black lines in Fig. 5d).

Additionally, our model indicates that countries with
larger potentially active population shares have correspond-
ingly lower required intervention sizes for initiating event-
induced tipping (for instance, India and Japan; see Fig. 5d),
as the gap is lowered between an untipped stable state and
the basin of attraction of the tipped state (see the last row of

Fig. 5 and Fig. 3). But, even in cases of the highest climate
change concern, such as in India, our model indicates that
a non-zero intervention size is needed when the anticipation
time horizon is shorter, implying that at least some interven-
tion is necessary to trigger tipping processes. Increasing the
anticipation time horizon translates into substantially smaller
required intervention sizes, eventually even reaching zero for
the modelled cases of Japan and, in parts, China (Fig. 5d).

4.2 Three global classes of tipping processes

Drawing upon a broader comparative analysis covering 66
countries with access to the sea, we find that concern for
climate change and the total tipping potential are strongly
correlated (Fig. 6a and b). Accordingly, we identify three
qualitative classes of tipping processes facilitating pro-
environmental behaviour that vary by the country-specific
values of total and bifurcation-induced tipping potentials (Ta-
ble 1).

4.2.1 Tipping Class I – large total and high
bifurcation-induced tipping potential

In these countries, the emergence of social tipping processes
is fostered by heightened levels of climate change concern
and SLR-sensitive elevation–population profiles. In this case,
an increase in the anticipation time horizon or a relatively
small intervention size can trigger a transition to an alterna-
tive state of increased pro-environmental behaviour. There-
fore, such social systems can be considered to already be in
a rather critical state.

Examples for this class (Class I) primarily include coun-
tries along the Pacific Ocean, such as Indonesia, Japan, Viet-
nam, and China. Here, SLR is likely to affect large popu-
lation shares due to large metropolitan areas located near
the coast (Kulp and Strauss, 2019). Combined with overall
heightened climate change concern in these countries (see
Fig. 6a), individual events and expanded anticipation time
horizons both have the potential to instigate social tipping
processes in our model (Table 1).

4.2.2 Tipping Class II – large total and low
bifurcation-induced tipping potential

Countries in this class are characterized by high levels of
concern and low population shares likely to be affected by
projected SLR. This indicates that the corresponding coun-
tries might be sufficiently close to or already in a criti-
cal state, where relatively small interventions would suffice
to induce transitions towards an alternative state via event-
induced tipping. However, bifurcation-induced tipping path-
ways resulting from expanded anticipation time horizons are
comparatively unlikely due to less SLR-sensitive elevation–
population profiles.
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Figure 5. Social tipping potential for the five highest greenhouse-gas-emitting countries: China, the USA, India, Russia, and Japan (in terms
of CO2 equivalents). (a) Total tipping potential and (b) bifurcation-induced tipping potential for varying shares of concerned population p
and anticipation time horizon T , from zero (blue) to more than 50 % (red). Black lines indicate the estimated country-specific climate change
concern pC, with a shaded interval of ±5 % deviation indicating that variations in the level of concern do not qualitatively alter the results.
(c) Total, utot, and bifurcation-induced tipping potential, ubif, for the estimated levels of country-specific climate change concern. Shaded
areas indicate variations of utot and ubif within the ±5 % band of concern. (d) Size I of necessary interventions to tip a given share X of
simulations once a country’s social system reaches the critical regime. The temporal axis reflects the anticipation time horizon of T years
prior to 2020, i.e. T = 0 implies that individuals do not anticipate any future impacts, while the maximum possible value, T = 280, assumes
individuals to anticipate sea level impacts up to 2300, the penultimate year in the MAGICC projections (see also Fig. 1).

Table 1. Countries tend to cluster regionally with respect to their total and bifurcation tipping potentials in response to anticipated sea level
rise.

Class I Class II Class III

Total tipping potential Large Large Small
Bifurcation tipping potential High Low Low
SLR exposure/anticipation Greater Lower Lower
Climate change concern High High Lower
Regional clusters Western Pacific Rim countries,

China, Indonesia, Japan, Vietnam
South America, Africa,
Indian Ocean rim

North America, Europe
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Figure 6. Cross-national potential for social tipping towards
increased pro-environmental behaviour. (a) Estimated country-
specific potentially active population share. (Total) tipping poten-
tial (utot) (b) and bifurcation-induced tipping potential (ubif) (c) for
the estimated values of climate change concern from social survey
data and the largest possible anticipation time horizons. Countries
are geographically clustered according to Tipping Classes I–III, i.e.
countries with large total and bifurcation-induced tipping poten-
tial (Tipping Class I) in the Indo-Pacific, countries with large total
and low bifurcation-induced tipping potential (Tipping Class II) in
the remaining Southern Hemisphere, and low total and bifurcation-
induced tipping potential (Tipping Class III) in Europe and North
America.

Class II mostly covers countries in South America and
Africa and along the Indian Ocean. Climate change concern
in those countries can often be attributed to more short-term
impacts than those related to SLR, such as water scarcity,
more frequent extreme weather events, or shifts in precipi-
tation variability (Howe et al., 2019). This is also reflected
within the scope of our model, as the total tipping poten-
tial (driven by climate change concern) and the bifurcation-
induced potential (driven by anticipated SLR impacts) are
largely uncorrelated (Fig. 6b and c). We suggest that such
temporally more immediate climate impacts could poten-
tially trigger a rapid short-term mobilization of a large popu-
lation share, thereby acting as a (non-deliberate) social tip-
ping intervention, which can effectively kick the respec-
tive social systems into an alternative state of increased
pro-environmental behaviour via event-induced tipping pro-
cesses.

4.2.3 Tipping Class III – small total and small
bifurcation-induced tipping potential

This class is exemplified by cases where both the eleva-
tion profile and low climate change concern effectively hin-
der social tipping. Accordingly, only large intervention sizes
potentially push the system towards an alternative state of
increased pro-environmental behaviour. Further increasing
concern could lower the baseline of the required interven-
tion sizes, thereby rendering the system more critical (mov-
ing it towards Tipping Class II). However, due to the country-
specific elevation profiles, increased anticipation time hori-
zons are expected to only have minor influences on the in-
tervention sizes required for triggering social tipping, as the
projected impacts of SLR remain comparatively small.

Class III covers North America and parts of Europe. Here,
immediate threats from SLR are comparatively small, since
large population shares live further inland. Likewise, climate
change concern is comparatively lower (see Fig. 6a), po-
tentially due to larger perceived psychological distances to
these risks (Spence et al., 2012). Such psychological dis-
tances can result from comparatively higher economic de-
velopment, larger perceived preparedness for the impacts of
climate change (Spence et al., 2012), and decreased vulner-
ability (Maiella et al., 2020). Thus, according to our model,
social tipping in these counties is fostered largely through el-
evating climate change concern (Singh et al., 2017). Then,
once concern reaches a sufficiently high level, other events
or interventions would have the potential to kick the system
into an alternative state of increased pro-environmental be-
haviour.

Notably, a fourth tipping class with low total tipping po-
tential and a large bifurcation-induced tipping potential can-
not exist since by definition the former exceeds the latter (see
Sect. 3).

5 Conclusions

5.1 Summary and discussion

Here, we adopt a network-based threshold model for so-
cial tipping to explore transformative pathways towards an
alternative state of increased pro-environmental behaviour
resultant from climate change concern and anticipated im-
pacts of projected sea level rise across 66 countries with
access to the sea. We find that in many countries, climate
change concern has reached a point where the system can
be considered critical such that an alternative stable tipped
state exists (where a large population share engages in pro-
environmental behaviours), and sensitive interventions (e.g.
policy regime changes or social movements) or stochastic
events (e.g. storm surges or floods) have the potential to push
the system towards that tipped state.

Our model suggests that climate change concern has
reached sufficiently high levels in many countries such
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that social tipping processes towards increased pro-
environmental behaviour could be instigated. However, con-
cern alone is insufficient to trigger such social tipping pro-
cesses. Rather, concern functions to create critical, enabling
conditions under which a system becomes more susceptible
to social tipping interventions (such as by political or civil
society actors). Expanded anticipation time horizons can di-
rectly lower the required intervention size, thereby increasing
the likelihood that social tipping dynamics will emerge.

As such, the two factors, climate change concern and an-
ticipation time horizons, are of a complementary yet mutu-
ally beneficial nature. Increases in concern make tipping dy-
namics more likely to occur following external influences or
interventions, while the more deterministic process largely
manifests through increased anticipation time horizons. As
the anticipation time horizons necessary to trigger tipping are
often on a centennial timescale, event-induced tipping (Ash-
win et al., 2012) via interventions presents a comparatively
more likely pathway towards instigating social tipping pro-
cesses in the near future.

In this way, in our model social tipping processes largely
differ from those in climate systems (see also Winkelmann
et al., 2022), which often focus on identifying scenarios
where a (single) control parameter crosses a critical thresh-
old, e.g. in global mean surface temperature, as the instiga-
tor of systemic transgression into an alternative stable state
(Lenton et al., 2008). Instead, the notion of sensitive inter-
vention (Farmer et al., 2019) and event-induced tipping be-
comes ever more important for social tipping processes, as
critical thresholds of control parameters might be infeasible
to reach or impossible to predict.

A key finding from our modelled results is the emergence
of three qualitative classes of social tipping. Here we identify
a transformation pathway towards increased potential for so-
cial tipping towards pro-environmental behaviour. While the
tipping potential within a Class III state is comparatively low,
it increases with climate change concern such that the possi-
bility for tipping processes begins to exist (i.e. leading to a
Class II state). Then, extended anticipation time horizons re-
duce the intervention sizes necessary to trigger tipping pro-
cesses (Tipping Class I) such that a comparatively smaller
kick within the system, or its environment, carries the poten-
tial to instigate social tipping processes.

Given the increasing social relevance of anthropogenic cli-
mate change, identifying social systems that are in more crit-
ical states can guide strategic policy entrepreneurs (King-
don, 1995). Targeted interventions can amplify critical con-
ditions or even provide a substantial enough kick to in-
stigate pro-environmental behaviours. For example, climate
change social movements can play a crucial role, providing
a mechanism to develop new political coalitions (Weible and
Sabatier, 2017), thereby increasing the salience of climate
change as a political issue. Such increased salience can ef-
fectively open a policy window, allowing climate policy ad-
vocates to promote their agendas (Kingdon, 1995). Further

large shifts in public opinion can punctuate sticky environ-
mental regulatory regimes (Baumgartner and Jones, 2010)
and political–institutional lock-ins (Cecere et al., 2014), re-
sulting in the adoption of new public policies, such as carbon
taxation (Lemoine and Traeger, 2016) or incentivizing devel-
opment of alternative energy supplies (Patt and Lilliestam,
2018).

In contrast to common behavioural contagion modelling
approaches (Dodds and Watts, 2004; Böttcher et al., 2017),
our country-specific estimations of social tipping potentials
are uniquely based on real-world observations (i.e. projected
SLR impacts, measured elevation–population distributions,
and a comprehensive review of social survey data on climate
change concern). We thereby contribute a novel perspective
to the growing field of social–ecological systems modelling
that aims to specifically account for the dynamic interactions
between biogeophysical Earth and social systems on up to
planetary scales (Müller-Hansen et al., 2017; Beckage et al.,
2018; Donges et al., 2020; Beckage et al., 2022; Moore et al.,
2022).

Additionally, our modelling exercise expands upon pre-
vious studies of threshold dynamics and social tipping that
have largely focused on social systems in isolation, either
theoretically (Granovetter, 1978; Schelling, 1971), in con-
trolled laboratory experiments (Centola et al., 2018; Centola
and Baronchelli, 2015), or via network-based numerical sim-
ulations (Watts, 2002; Singh et al., 2013; Karsai et al., 2016).

Overall, we find that concern for climate change increases
the criticality and likelihood for social tipping processes,
and expanded anticipation time horizons and growing shares
of active population move the system closer to a criti-
cal threshold, effectively reducing the required intervention
size needed to ultimately kick the system into a alternative
state where pro-environmental behaviour becomes the social
norm. Our study highlights the potential that lies in the com-
bination of these factors, pushing social systems closer to
positive tipping points, and is thus a first step towards truly
closing the loop from climate impacts to substantive societal
transformation (Donges et al., 2017).

5.2 Limitations

We acknowledge that social tipping processes can be trig-
gered by a variety of distinct external factors, such as in the
aftermath of extreme events (Demski et al., 2017; Konisky
et al., 2016) or in response to large-scale environmental
changes (Ioris, 2020). However, our model simulates the po-
tential for social tipping solely resulting from anticipation
of projected SLR. We find that, on its own, SLR is com-
paratively unlikely to result in bifurcation-induced tipping.
However, our approach does not yet account for other po-
tential impacts that are directly related to SLR, such as in-
creased flood risks, coastal erosion, or increased vulnerabil-
ity to storm surges (Kulp and Strauss, 2019). These impacts
are comparatively more likely to affect even larger popula-
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tion shares in coastal areas and are likely to occur in the com-
ing years and decades (Muis et al., 2016; Buchanan et al.,
2016; Tebaldi et al., 2012). As such, our modelling approach
can be considered rather conservative in estimating poten-
tials for tipping processes triggered by SLR-related impacts.
As with any simulation, these results should be understood in
line with the level of parsimony and abstraction used in this
model. There is comparatively less research on how percep-
tions of sea level rise affect attitudes and behaviours glob-
ally compared to extreme weather impacts, like floods or
droughts. Even in those cases, the effect of extreme weather
on pro-environmental behaviours is mixed, with outcomes
depending heavily on the design (Quoß and Rudolph, 2022).
Therefore, these results should be viewed cautiously, as they
are based on simplified assumptions and should not be seen
as definitive.

For now, we assume a straightforward conversion of SLR
into certainly active populations as a probable scenario of
subjective risk assessment, in which individuals simply com-
pare official projections with their knowledge of the elevation
profile of their local region. However, SLR is projected to
vary regionally, with coastal areas around the Indian Ocean
and western Pacific being affected more severely than other
locales (Perrette et al., 2013). Since these are also regions
where climate change concern is highest, such regional SLR
differences could result in even greater potential for social
tipping.

Further, we acknowledge that the survey-based measure
of population shares of climate change concern does not in-
dicate the same share of awareness of risks faced by SLR
in each of these countries. This is rather a limitation based
upon data availability – where cross-national measures of
broader concern about climate change are more widely avail-
able, here serving as a “best available data” proxy. Further,
as we adopt country-level shares, we also presume that there
are unaccounted for heterogeneities within countries, partic-
ularly for larger locales with varying elevation profiles. We
suggest that further research explore such dynamics, likely
within a given case study country. For example, within the
United States, a minority of the population may be directly
exposed to SLR, but larger shares of the population are con-
cerned about climate change (exhibiting a substantial po-
tentially active share). Particularly, recent evidence suggests
that anticipation of SLR and climate change concern have
a strong, positive association (r = 0.76) within the United
States (Smith et al., 2022), suggesting that the potentially ac-
tive population does not need to be directly exposed to SLR
to be conceivably motivated towards pro-environmental be-
haviours via networked dynamics.

Observation-based research has noted how social con-
tagion varies by geographic factors, such as the physical
distance an actor has to travel to participate (Traag et al.,
2017), individual propensity for behavioural change (State
and Adamic, 2015), and the complexity of contagion spread-
ing across social network structures (Guilbeault and Centola,

2021) and forms of social interaction (Iacopini et al., 2019).
Given the potentially heterogeneous social network struc-
tures across the 66 countries, we assessed the robustness of
our results using numerical Monte Carlo simulations of cas-
cading dynamics across a diverse set of common network
topologies. We found that in most cases, there is a parame-
terization of the emergent threshold function F that is similar
to what one would expect from certain other non-trivial net-
work topologies. In that sense, our modelling approach can
be interpreted not only as an ensemble of different Erdős–
Rény networks, but also an ensemble of different network
topologies (see the Supplement for further detailed discus-
sion).

Our results exclude lower-lying regions (e.g. Azerbaijan,
Kazakhstan, and the Netherlands) as well as those that are
situated inland (e.g. Mongolia, Austria) as these present more
“extreme” cases outside the likely data distribution of the re-
maining sample, an approach that has also been adopted by
similar modelling exercises (e.g. Marzeion and Levermann,
2014). Particularly in the case of lower-lying countries, we
consider these to be more specific cases that are not likely as
well explained by the model (as the level of the active pop-
ulation would be comparatively high, likely overpredicting
the potential for tipping). Accordingly, we intend to adopt a
more cautious approach, where excluding such cases from
our model potentially presents more “conservative” findings
with regard to the tipping potential.

We ultimately note that, while illustrative, neither the
mechanism we explore here nor the underlying model results
should be interpreted in an overly deterministic manner. For
example, tipping can in fact occur in any of the three iden-
tified classes, as concern is large enough for most countries
so that they might have already entered into a critical regime.
Rather, our findings suggest that as countries transition to-
wards Tipping Class I, the tipping potential increases and the
intervention size necessary to trigger social tipping decreases
correspondingly.

5.3 Outlook

In addition to natural drivers, deliberate interventions by pol-
icymakers and climate actors carry the potential to instigate
social tipping processes (Lenton, 2020), for instance via fi-
nancial disclosure (Farmer et al., 2019), information feed-
backs (Otto et al., 2020a), or climate movements (McAdam,
2017). To assess the potential for deliberately initiated so-
cietal transformations, i.e. positive social tipping (Tàbara
et al., 2018; Hinkel et al., 2020; Lenton et al., 2022; Fesen-
feld et al., 2022), future research should focus on identifying
processes and mechanisms that lower the intervention sizes
needed to kick the system into, or increase the potential to
shift the system closer to, an alternative state of increased
pro-environmental behaviour. Thus, the actual type of event
instigating social tipping processes can emerge from an array
of sources (e.g. natural or social) across varying scales (e.g.
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macro or micro). For now, our model is agnostic to the spe-
cific form of the instigating event but rather aims to identify
factors affecting the tipping potential of systems.

The individual likelihood to engage in pro-environmental
behaviours results from an interplay of internal (i.e. concern,
values, attitudes, and beliefs) and external (contextual, po-
litical, economic) factors, as well as a multitude of poten-
tial barriers (i.e. current behaviours, adaptive capacity, social
norms) (Kollmuss and Agyeman, 2002). Our proposed model
currently assumes that behavioural change is not associated
with costs to the individual. Moreover, there are unique fac-
tors within each context, many of which may even be unob-
servable or unknowable, that affect the capacity for tipping
processes in a given social system. Still, our idealized sce-
nario demonstrates that due to the inherent complexity of
social systems (Schill et al., 2019; Levin et al., 2013) tip-
ping processes arise from multiple intertwined and mutually
co-dependent factors which potentially lead to alternative fu-
ture trajectories, for example in energy, financial, or socio-
political systems (Otto et al., 2020a; Farmer et al., 2019;
Lenton, 2020; Sharpe and Lenton, 2021; Tàbara et al., 2018).

Future research should factor in relevant heterogeneities
within and between countries, such as different forms of
agency (Otto et al., 2020b; Stadelmann-Steffen et al., 2021),
shifting social norms (Nyborg et al., 2016), cultural dimen-
sions (Hofstede and Bond, 1984), the susceptibility of the
country (or region) to a broader range of climate impacts, or
the ability to participate in social movements or civil soci-
ety, notably focusing on the potential inequality in the likeli-
hood of SLR impacts being experienced by populations that
are less likely to have the capacity to proactively mitigate or
retroactively adapt.

Similarly, important future work is necessary to identify
the mechanisms shaping social tipping processes, drawing
upon further modelling work (such as exploring interactions
between natural and social systems; Müller-Hansen et al.,
2017), or utilizing further observed or experimental data.
Such work would need to be well-tailored to the individ-
ual action and setting. There is much existing work that can
be drawn upon from the pro-environmental behaviour litera-
ture (largely enacted by environmental social psychologists,
public policy researchers, and behavioural economists). This
is being complemented by emerging literature on social tip-
ping mechanisms, often drawing upon country-specific case
studies (e.g. Boulton et al., 2023; Smith, 2023). The goal of
this modelling exercise was to develop a level of abstraction
necessary to allow for cross-national comparisons. As such,
these findings should be seen as in complement to the rich lit-
erature exploring the more specific and diverse mechanisms
of environmental change (individually, socially, and politi-
cally).

As recent research has noted, social tipping processes can
present risky assumptions (Milkoreit, 2023), namely that a
system has the potential to be intentionally manipulated and
that this manipulation would have the desired “positive”

outcome. Further, transformations framed as social tipping
points can be overly reductionist and not reflective of multi-
faceted dynamics that ultimately shape social change (Kopp
et al., 2025). We recognize the validity of these concerns and
wish to emphasize them here. We also recognize that this
emerging field of study is still comparatively young and that
recent efforts have been made towards connecting social tip-
ping with longer-standing literature on transformation pro-
cesses (e.g. Olsson and Moore, 2024), as well as develop-
ing social-science-based methodologies (e.g. Hodbod et al.,
2024). Accordingly, as previously noted, our modelling ex-
ercise should be interpreted as an exploratory scenario, pa-
rameterized using country-level factors, and should not be
interpreted as either deterministic or comprehensive of the
diverse set of mechanisms surrounding the instigation and
ultimate direction of pro-climate behaviours shaping societal
transformations.

We explore one mechanism for social tipping processes,
noting a potential transformative pathway resulting from
the interrelation of climate change concern and anticipation
of SLR via adoption of a social activation model. Given
the necessity for rapid societal transformations (Rockström
et al., 2023) and the potential for social tipping processes
to instigate such changes (Otto et al., 2020a; Winkelmann
et al., 2022), we encourage further research in this field.
Future work can explore global conditions instigating so-
cial tipping, highlight unique mechanisms within country- or
region-specific case studies, explore the role of short-term
shocks (such as extreme events or rapid political mobiliza-
tion) as triggers (Ricke and Caldeira, 2014), and identify the
distinct circumstances under which diverse social tipping el-
ements are likely to experience transformative changes.

Data availability. The SRTM30 elevation data are available
from the US Geological Survey (https://dds.cr.usgs.gov/srtm/
version2_1/SRTM30/, NASA Shuttle Radar Topography Mission,
2013). The Gridded Population data of the World (GPW) v2 were
obtained from the Center for International Earth Science Informa-
tion Network (CIESEN; https://doi.org/10.7927/H49C6VHW,
CIESIN, 2018). The MAGICC v2.0 sea-level rise pro-
jections were computed using the model source code
(https://doi.org/10.5281/zenodo.572395, Nauels et al., 2017b) and
supplementary input data (https://doi.org/10.5281/zenodo.572398,
Nauels et al., 2017c). International Social Survey Pro-
gramme (2020, “Environment IV”) data are available at
https://doi.org/10.4232/1.14153 (ISSP Research Group, 2023).
International Public Opinion on Climate Change (2022) data are
available at https://climatecommunication.yale.edu/publications/
international-public-opinion-on-climate-change-2022/ (Leis-
erowitz et al., 2022). European Social Survey (2016, Wave 8)
data are available at https://doi.org/10.21338/NSD-ESS8-2016
(ESS ERIC, 2023). Eurobarometer (2017, 87.1) data are available
at https://doi.org/10.4232/1.13738 (European Commission and
European Parliament, Brussels, 2021). Eurobarometer (2019,
91.3) data are available at https://doi.org/10.4232/1.13372 (Eu-
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ropean Commission, Brussels, 2019). Life in Transition Survey
(2010, Wave II) data are available at https://www.ebrd.com/
what-we-do/economic-research-and-data/data/lits.html (Euro-
pean Bank for Reconstruction and Development, 2025). Pew
Global Attitudes Survey (spring 2015) data are available at https:
//www.pewresearch.org/global/2015/06/23/spring-2015-survey/
(Pew Research Center, 2025).
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