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Supplement

Robustness Checks of Macroscopic Approximation

Within this study, we utilize a macroscropic approximation of the threshold function, F (r(t)), representing the fraction of the
contingent population (with relative size p−a) that takes part in a pro-climate change behaviour. This approximation is derived
analytically (Wiedermann et al., 2020), assuming a Erdős–Rényi model for the unknown underlying social network (Erdős and5
Rényi, 1960).

Given that the true social network structure in any of the 66 countries simulated in this modeling exercise is unknown, we
follow a logic akin to bayesian non-informative priors and use a Monte Carlo simulation approach, choosing a random average
degree (K) and threshold value (ρ) for the macroscopic approximation, which results in an ensemble of sigmoid-shaped curves
for the emergent threshold distribution (F ) varying broadly in both the location and steepness of their inflection points. This10
approach thereby generates an ensemble of different shapes of F utilized in our simulations, including for example: (i) a step
function (for large K and ρ= 1), (ii) an S-shaped curve (for intermediate K and ρ), (iii) a monotonic increase above the main
diagonal for smallρ, and (iv) a monotonic increase below the main diagonal for large ρ. Hence different parameterizations
are already considered when computing the total tipping potentials displayed in Figs. 3 and 5 of the paper. In that way, our
approach is conservative in that it integrates widely across even qualitatively distinct forms of threshold functions as we do not15
make strong assumptions about any specific such form.

Notably, the Erdős–Rényi model is comparatively parsimonious and may not well represent more highly clustered network
structures (Centola et al., 2018; Guilbeault and Centola, 2021). Accordingly, we engaged a series of robustness checks, com-
paring how well the ensemble of threshold functions emergent from our Monte Carlo simulations cover microscopic network
dynamics across a range of network topologies: Barabasi-Albert (BA) (Barabási and Albert, 1999), Watts-Strogatz (WS) with20
rewiring probability β = 0.25 (Watts and Strogatz, 1998), a ring topology (Watts-Strogatz with β = 0), a Random Geometric
Network (RGG) (Dall and Christensen, 2002) and real-world data from Facebook ( 63k nodes, avg. degree 26).

In general, we find that for all random topologies (Fig. S1), the ensemble of macroscopic approximations covers the em-
pirical results from the above-mentioned additional micro-simulation models rather well when the certainly active nodes are
sufficiently dispersed across the network. In other words, in most cases, there is a combination of ρ and K in the Erdős–Rényi25
network that produces an emergent threshold function F that is similar to what one would expect from certain other net-
work topologies. In that sense, our Monte-Carlo approach can not only be interpreted as an ensemble of different Erdős–Rény
networks, but an ensemble of different network topologies itself.

But, of particular note, when the certainly active nodes are closely clustered, we are less likely to observe tipping-like
processes exemplified by this macroscopic approximation (esp. lower panel of Fig. S2). When the certainly active population30
is clustered within a highly modularized network structure, it is unlikely for the network to exhibit cascading processes resulting
in social tipping across a broader population, as tipping would be contained to specific clusters and not penetrate through the
network as a whole.

We suggest that in the case of anticipation of SLR, real-world social networks are less likely to have such highly modu-
larized network structures. For many countries, SLR affects broad sections of coastlines, stretching across diverse social and35
geographic groupings. Furthermore, the effects of SLR are unlikely to be only observed and experienced by those directly
impacted, rather these are likely to spill-over to broader geographic regions and social groups (e.g. through climate induced
migration, mass media coverage) even though these are not specifically considered in the present manuscript. In such cases,
we assume that a high clustering of the certainly active population within a modularized network structure is less likely to be
representative of the actual network structure of the 66 countries simulated in this network-based threshold modelling exercise.40

Further, for our research design, we explicitly chose a common level of complexity across all components. That is, the
emphasis of these findings should not be too heavily on either the individual social, climate or network aspects, but rather the
combined implementation of these factors. And this level of complexity is set at a lower-level to specifically allow for exploring
conceptual scenarios. By keeping the modelling components on a relatively simplified level, we aim to avoid the tendency of
assuming predictive capacity via the increased complexity of the modelling approach. In this case, we chose a macroscopic45
approximation of network topology that is comparatively simple, yet as we find, robust across a number of other potential
structures.
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Figure S1. Robustness checks of macroscopic approximation - random network topologies. Each panel represents results from randomly
chosen certainly active nodes across divergent network topologies. Each dot represents micro-simulations results, while the lines represent
macroscopic approximations for nine exemplary combinations of the two parameters ρ and K – the actual ensemble contains a wider range
of combinations.
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Figure S2. Robustness checks of macroscopic approximation - clustered, segmented and differential degrees in diverse network
topologies.Each panel represents results from clustered, segmented and varied degrees of certainly active nodes across divergent network
topologies. Each dot represents micro-simulations results, while the lines represent macroscopic approximations for nine exemplary combi-
nations of the two parameters threshold rho and average degree K – the actual ensemble contains a wider range of combinations.
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Data Year Question Wording Item Coding Number of Mean Std.
Outcomes ns Dev.

Eurobarometer 2017/ And how serious a problem do you 1 ‘Not at all serious’
10 0.75 0.05

(EB 87.1 / EB 91.3) 2019 think climate change is at this moment? to 10 ‘Extremely serious’

ESS 2016 How worried about climate change?
1 ‘Not worried’ to

5 0.51 0.06
5 ‘Extremely worried’

ISSP 2021
Do you think that a rise in the world’s 1 Not at a;; to

5 0.74 0.04temperature caused by climate change 5 ‘Extremely dangerous’
is dangerous for the environment?

IPOCC 2022
How worried are you 1 ‘Not at all worried’ to

4 0.78 0.07
about climate change? 4 ‘Very worried’

LITSII 2010
How concerned are you 1 ‘Not concerned’ to

5 0.58 0.08
about climate change? 5 ‘Extremely concerned’

PEW2015 2015
In your view, is global 1 ‘Not a problem’ to

4 0.78 0.09
climate change a problem? 4 ‘Very serious problem’

Table S1. Social Survey Data Sources, Question Wording, Items and Descriptive Statistics
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Country EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS Median2017 2019 Attitudes 2015 2021 2010 2016
Albania - - - - 0.49 - 0.49
Argentina - - 0.83 0.76 - - 0.80
Australia - - 0.71 0.58 - - 0.64
Belgium 0.72 0.73 - 0.60 - 0.55 0.66
Brazil - - 0.94 - - - 0.94
Bulgaria 0.77 0.80 - 0.74 0.63 - 0.75
Canada - - 0.76 0.68 - - 0.72
Chile - - 0.92 0.83 - - 0.88
China - - 0.65 - - - 0.65
Croatia 0.73 0.74 - 0.75 0.65 - 0.73
Cyprus 0.78 0.82 - - - - 0.80
Denmark 0.77 0.80 - 0.62 - - 0.77
Estonia 0.59 0.64 - - 0.48 0.41 0.54
Finland 0.71 0.72 - 0.63 - 0.51 0.67
France 0.78 0.80 0.82 0.62 0.50 0.55 0.70
Georgia - - - - 0.67 - 0.67
Germany 0.75 0.79 0.79 0.73 0.52 0.59 0.74
Ghana - - 0.86 - - - 0.86
Greece 0.81 0.84 - - - - 0.83
Iceland - - - 0.57 - 0.53 0.55
India - - 0.91 - - - 0.91
Indonesia - - 0.72 - - - 0.72
Ireland 0.71 0.77 - - - 0.44 0.71
Israel - - 0.63 0.70 - 0.42 0.63
Italy 0.80 0.80 0.82 - 0.68 0.55 0.80
Japan - - 0.76 0.79 - - 0.77
Jordan - - 0.76 - - - 0.76
Kenya - - 0.84 - - - 0.84
Latvia 0.62 0.66 - 0.59 0.51 - 0.60
Lebanon - - 0.85 - - - 0.85
Lithuania 0.74 0.73 - 0.67 0.62 0.47 0.67

Table S2. Estimated shares of potentially acting individuals from weighted averages over all responses in the six survey programs. Dashes
indicate that a country is not covered by the specific survey program. Countries with initial letters K–Z are found in Tab. S3
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Country EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS Median2017 2019 Attitudes 2015 2010 2010 2016
Malaysia - - 0.76 - - - 0.76
Malta 0.77 0.86 - - - - 0.82
Mexico - - 0.86 0.79 - - 0.83
Moldova - - - - 0.74 - 0.74
Montenegro - - - - 0.47 - 0.47
New Zealand - - - 0.60 - - 0.60
Nigeria - - 0.85 - - - 0.85
Norway - - - 0.57 - 0.50 0.53
Pakistan - - 0.71 - - - 0.71
Palestine - - 0.71 - - - 0.71
Peru - - 0.90 - - - 0.90
Philippines - - 0.89 0.75 - - 0.82
Poland 0.68 0.74 0.64 - 0.53 0.43 0.64
Portugal 0.78 0.81 - 0.76 - 0.62 0.77
Romania 0.74 0.74 - - 0.61 - 0.74
Russia - - 0.67 0.72 0.61 0.44 0.64
Senegal - - 0.80 - - - 0.80
Slovenia 0.75 0.77 - 0.69 0.62 0.55 0.69
South Africa - - 0.74 0.72 - - 0.73
South Korea - - 0.79 0.73 - - 0.76
Spain 0.80 0.83 0.80 0.75 - 0.60 0.80
Sweden 0.77 0.78 - 0.63 0.62 0.46 0.63
Taiwan - - - 0.78 - - 0.78
Tanzania - - 0.80 - - - 0.80
Turkey - - 0.73 0.81 0.55 - 0.73
Ukraine - - 0.67 - 0.62 - 0.64
United Kingdom 0.67 0.76 0.70 0.62 0.52 0.48 0.65
United States - - 0.66 0.61 - - 0.64
Venezuela - - 0.89 - - - 0.89
Vietnam - - 0.88 - - - 0.88

Table S3. Same as Tab. S2 for countries with initial letters K–Z.
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