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Abstract. This study investigated the computational benefits of using multi-fidelity statistical estimation
(MFSE) algorithms to quantify uncertainty in the mass change of Humboldt Glacier, Greenland, between 2007
and 2100 using a single climate change scenario. The goal of this study was to determine whether MFSE can
use multiple models of varying cost and accuracy to reduce the computational cost of estimating the mean and
variance of the projected mass change of a glacier. The problem size and complexity were chosen to reflect the
challenges posed by future continental-scale studies while still facilitating a computationally feasible investi-
gation of MFSE methods. When quantifying uncertainty introduced by a high-dimensional parameterization of
the basal friction field, MFSE was able to reduce the mean-squared error in the estimates of the statistics by
well over an order of magnitude when compared to a single-fidelity approach that only used the highest-fidelity
model. This significant reduction in computational cost was achieved despite the low-fidelity models used being
incapable of capturing the local features of the ice-flow fields predicted by the high-fidelity model. The MFSE al-
gorithms were able to effectively leverage the high correlation between each model’s predictions of mass change,
which all responded similarly to perturbations in the model inputs. Consequently, our results suggest that MFSE
could be highly useful for reducing the cost of computing continental-scale probabilistic projections of sea-level
rise due to ice-sheet mass change.
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1 Introduction

The most recent Intergovernmental Panel on Climate Change
(IPCC) report predicts that the melting of ice sheets will
contribute significantly to future rises in sea level (Masson-
Delmotte et al., 2021), but the amount of sea-level rise is
subject to a large degree of uncertainty. For example, esti-
mates of the sea-level rise in 2100, caused by melting of the
Greenland Ice Sheet, range from 0.01 to 0.18 m. Moreover,
projections of the Antarctic Ice Sheet’s contribution to sea-
level rise are subject to even larger uncertainty (Bakker et al.,
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2017; Masson-Delmotte et al., 2021; Edwards et al., 2019).
Consequently, there is a strong need to accompany recent im-
provements in the numerical modeling of ice-sheet dynam-
ics with rigorous methods that quantify uncertainty in model
predictions.

Accurately quantifying uncertainty in ice-sheet predic-
tions requires estimating the impacts of all sources of model
variability. Prediction uncertainty is caused by three main
factors, among others: (1) the inadequacy of the governing
equations used by the model to approximate reality, (2) the
errors introduced by the numerical discretization used to
solve the governing equations, and (3) the uncertainty in
model parameters used to parameterize future climate forc-
ing and the current condition of the ice sheet. Several studies
have demonstrated that model discretization significantly af-
fects model predictions (Cornford et al., 2013; Durand et al.,
2009), but the impact of discretization errors has not been
explicitly considered with other sources of uncertainty. In
addition, while the comparison of model outputs has been
used to estimate uncertainty arising from model inadequacy
(Goelzer et al., 2018), such studies are not guaranteed to es-
timate the true model inadequacy (Knutti et al., 2010). Con-
sequently, several recent efforts have focused solely on quan-
tifying parametric uncertainty (Nias et al., 2023; Edwards
et al., 2021; Ritz et al., 2015; Schlegel et al., 2018; Recinos
et al., 2023), as we do in this study.

Parametric uncertainty is often estimated using Monte
Carlo (MC) statistical estimation methods, which compute
statistics or construct probability densities using a large num-
ber of model simulations evaluated at different random re-
alizations of the uncertain model parameters. However, the
substantial computational cost of evaluating ice-sheet mod-
els limits the number of model simulations that can be run
and thus the precision of uncertainty estimates. For exam-
ple, when estimating the mean of a model with MC, the
mean-squared error (MSE) in the estimated value only de-
creases linearly as the number of model simulations in-
creases. Therefore, recent uncertainty quantification (UQ)
efforts have resulted in the construction of emulators (also
known as surrogates) of the numerical model from a limited
number of simulation data and in sampling of the surrogate
to quantify uncertainty (Berdahl et al., 2021; Bulthuis et al.,
2019; Edwards et al., 2019; Jantre et al., 2024). While surro-
gates can improve the computational tractability of UQ when
uncertainty is parameterized by a small number of param-
eters, their application becomes impractical when there are
more than 10–20 variables. This limitation arises because the
number of simulation data required to build these surrogates
grows exponentially with the number of parameters (Jake-
man, 2023). Consequently, there is a need for methods ca-
pable of quantifying uncertainty in ice-sheet models param-
eterized by a large number of uncertain parameters, such as
those used to characterize a spatially varying basal friction
field.

Most recent studies have focused on estimating uncer-
tainty in the predictions of ice-sheet models with small num-
bers of parameters, (e.g., Nias et al., 2023; Ritz et al., 2015;
Schlegel et al., 2018; Jantre et al., 2024), despite large num-
bers of parameters being necessary to calibrate the ice-sheet
model to observations (Barnes et al., 2021; Johnson et al.,
2023; Perego et al., 2014). However, recently Recinos et al.
(2023) used the adjoint sensitivity method to construct a
linear approximation of the map from a high-dimensional
parameterization of the uncertain basal friction coefficient
and ice stiffness to quantities of interest (QoIs) – specifi-
cally the loss of ice volume above flotation predicted by a
shallow-shelf approximation model at various future times.
The linearized map and the Gaussian characterization of
the distribution of the parameter uncertainty were then ex-
ploited to estimate statistics of the QoIs. While this method
is very computationally efficient, linearizing the parameter-
to-QoI map will introduce errors (bias) into estimates of
uncertainty, which will depend on how accurately the lin-
earized parameter-to-QoI map approximates the true map
(Koziol et al., 2021). Moreover, the approach requires us-
ing adjoints or automatic differentiation to estimate gradi-
ents, which many ice-sheet models do not support. Conse-
quently, in this study we focused on multi-fidelity statistical
estimation (MFSE) methods that do not require gradients.

MFSE methods (Giles, 2015; Peherstorfer et al., 2016;
Gorodetsky et al., 2020; Schaden and Ullmann, 2020) uti-
lize models of varying fidelity, that is models with differ-
ent inadequacy, numerical discretization, and computational
cost, to efficiently and accurately quantify parametric uncer-
tainty. Specifically, MFSE methods produce unbiased statis-
tics of a trusted highest-fidelity model by combining a small
number of simulations of that model with larger volumes of
data from multiple lower-cost models. Note that while low-
fidelity models with different discretization and inadequacy
error are used, MFSE does not quantify the impact of these
two types of errors in the high-fidelity statistics. Furthermore,
provided the low-fidelity models are highly correlated with
the high-fidelity model and are substantially cheaper to simu-
late, the mean-squared error (MSE) of the MFSE statistic will
often be an order-of-magnitude smaller than the estimate ob-
tained using solely high-fidelity evaluations for a fixed com-
putational budget. However, such gains have yet to be real-
ized when quantifying uncertainty in ice-sheet models.

This study investigated the efficacy of using MFSE meth-
ods to reduce the computational cost needed to estimate
statistics summarizing the uncertainty in predictions of sea-
level change obtained using ice-sheet models parameterized
by large numbers of parameters. To facilitate a computation-
ally feasible investigation, we focused on reducing the com-
putational cost of estimating the mean and variance of mass
change in Humboldt Glacier in northern Greenland. This
mass change was driven by uncertainty in the spatially vary-
ing basal friction between the ice sheet and land mass, un-
der a single climate change scenario between 2007 and 2100.

Earth Syst. Dynam., 16, 513–544, 2025 https://doi.org/10.5194/esd-16-513-2025



J. D. Jakeman et al.: Multi-fidelity UQ in projections of ice-sheet mass change 515

Specifically, letting f denote the mass change in 2100 com-
puted by a mono-layer higher-order (MOLHO) (Dias dos
Santos et al., 2022) model M, θ denote the parameters of
the model characterizing the basal friction field, and y de-
note the observational data, we estimated the mean and vari-
ance of the distribution p(f |M,y)= p(f | θ )p(θ |M,y)
in two steps. First, using a piecewise linear discretization
of a log-normal basal friction field, we used Bayesian in-
ference to calibrate the resulting 11 536-dimensional uncer-
tain variable to match available observations of glacier sur-
face velocity. Specifically, we constructed a low-rank Gaus-
sian approximation (Isaac et al., 2015; Recinos et al., 2023;
Barnes et al., 2021; Johnson et al., 2023; Perego et al., 2014)
of the Bayesian posterior distribution of the model param-
eters p(θ |M,y) using a Blatter–Pattyn model (Hoffman
et al., 2018). Second, we estimated the mean and variance
of glacier mass change using 13 different model fidelities
(including the highest-fidelity model), based on different nu-
merical discretizations of the MOLHO physics approxima-
tion and shallow-shelf approximation (SSA; Morland and
Johnson, 1980; Weis et al., 1999).

Our study makes two novel contributions to previously
published glaciology literature. First, it represents the first
application of MFSE methods to quantify the impact of high-
dimensional parameter uncertainty in transient projections of
ice-sheet models defined on a realistic physical domain. Our
results demonstrate that MFSE can reduce the serial compu-
tational time required for a precise UQ study of the ice-sheet
contribution to sea-level rise from years to a month. Note that
Gruber et al. (2023) previously applied MFSE to an ice-sheet
model; however, their study was highly simplified, as it only
quantified uncertainty arising from two uncertain scalar pa-
rameters of an ice-sheet model defined on a simple geomet-
ric domain. Second, our paper provides a comprehensive dis-
cussion of the practical issues that arise when using MFSE,
which are often overlooked in the MFSE literature.

This paper is organized as follows. First, Sect. 2 details the
different ice-sheet models considered by this study and the
parameterization of uncertainty employed. Second, Sect. 3
presents the calibration of the ice-sheet model and how the
posterior samples were generated. Third, Sect. 4 presents
the MFSE methods that were used to quantify uncertainty.
Fourth, Sect. 5 presents the numerical results of the study and
Sect. 6 presents our findings. Finally, conclusions are drawn
in Sect. 7.

2 Methods

This section presents the model formulations (Sect. 2.1) and
the numerical discretization of these models (Sect. 2.2) we
used to model ice-sheet evolution, as well as the sources of
model uncertainty we considered (Sect. 2.3) when quantify-
ing uncertainty in the mass change from Humboldt Glacier
between 2007 and 2100.

2.1 Model formulations

Ice sheets behave as a shear thinning fluid and can be mod-
eled with the nonlinear Stokes equations (Cuffey and Pater-
son, 2010). This section details the Stokes equations and two
computationally less expensive simplifications, MOLHO
(Dias dos Santos et al., 2022) and SSA (Morland and John-
son, 1980; Weis et al., 1999), which were used to quantify
uncertainty in predictions of the contribution of Humboldt
Glacier to sea-level rise.

Let x and y denote the horizontal coordinates and z the
vertical coordinate, chosen such that the sea level, assumed
to remain constant during the period of interest, corresponds
to z= 0. We approximated the ice domain at time t as a ver-
tically extruded domain � defined as

�(t) := {(x,y,z) s.t. (x,y) ∈6 and l(x,y, t)< z < s(x,y, t)},

where s.t. denotes “such that”,6 ⊂ R2 denotes the horizontal
extent of the ice, 0l(t) := {(x,y,z) s.t. z= l(x,y, t), (x,y) ∈
6} denotes the lower surface of the ice at time t , and
0s(t) := {(x,y,z) s.t. z= s(x,y, t), (x,y) ∈6} denotes the
upper surface of the ice.1

The Stokes, MOLHO, and SSA models defined the thick-
ness of the ice H (x,y, t)= s(x,y, t)− l(x,y, t) as the dif-
ference between the ice-sheet surface s(x,y, t) and the bot-
tom of the ice sheet l(x,y, t). The bottom of the ice sheet
was allowed to be either grounded to the bed topography
b(x,y), such that l(x,y, t)= b(x,y), or floating, such that
l(x,y, t)=− ρ

ρw
H (x,y, t), where ρ and ρw are the densities

of ice and ocean water, respectively. Different boundary con-
ditions were then applied to the grounded portion 0g of the
ice bottom and to the floating portion 0f of the ice bottom,
where 0g ∩0f =∅ and the ice bottom is given by 0g ∪0f .
The lateral boundary of � was also partitioned into the ice-
sheet margin (either terrestrial or marine margin) 0m and an
internal (artificial) boundary 0d marking the interior extent
of Humboldt Glacier that was considered. The relevant do-
mains of the ice sheet are depicted in Fig. 1.

The Stokes equations model the horizontal ice velocities
(u(x,y,z, t),v(x,y,z, t)), vertical ice velocity w(x,y,z, t),
and thickness H (x,y, t) of an ice sheet as a function of the
three spatial dimensions (x,y,z). In contrast, the MOLHO
model makes simplifications based on the observation that
ice sheets are typically shallow; i.e., their horizontal extent is
much greater than their thickness. These simplifications lead
to a model that does not explicitly estimate the vertical veloc-
ityw and only simulates the horizontal velocities u(x,y,z, t),
v(x,y,z, t) as functions of the three spatial coordinates. In
contrast again, the SSA model makes the additional assump-
tion that the horizontal components of velocity do not vary

1For simplicity, here we assume that 6 does not change over
time. This implies that the ice sheet cannot extend beyond 6 but it
can become thicker or thinner (to the point of disappearing in some
regions).
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Figure 1. (a) Conceptual model of an ice sheet in the x–z plane. (b) The boundaries (blue lines) of Humboldt Glacier in Greenland.

with thickness (a reasonable approximation in regions where
motion is dominated by basal slip) so that the horizontal ve-
locities u(x,y, t),v(x,y, t) are solved for only as functions
of (x,y).

The Stokes, MOLHO, and SSA models all evolve ice
thickness H (x,y, t) according to

∂tH +∇ · (uH )= fH , H ≥ 0, (1)

where u := 1
H

∫ s
l

udz is the thickness-integrated velocity
and fH is a forcing term that accounts for accumulation
(e.g., snow accumulation) and ablation (e.g., melting) at the
upper (s) and lower (l) surfaces of the ice sheet. However,
each model determines the velocities of the ice sheet differ-
ently. The following three subsections detail how each model
computes the velocity of the ice sheet.

2.1.1 Stokes model

This section introduces the Stokes model, which while not
used in this study due to its impractical computational cost,
forms the basis of the other three models used in this study.
Specifically, the governing equations of the Stokes model are

−∇ · σ = ρg, (2)
∇ ·u= 0, (3)

where these equations are solved for the velocities u=
(u,v,w) and the pressure p. Additionally, g= (0,0,−g) de-
notes the gravitational acceleration pointing downward (g =
9.81 m s−2), ρ denotes the density of ice, σ = 2µD−pI de-
notes the stress tensor of the ice, and Dij (u)= 1

2

(
∂ui
∂xj
+
∂uj
∂xi

)

denotes the strain-rate tensor of the ice; here we used the
shorthand u= (u,v,w)= (u1,u2,u3). The stress tensor is
dependent on the nonlinear viscosity of the ice which sat-
isfies

µ=
1
2
A(T )−qDe(u)q−1, (4)

where A is the ice-flow factor that depends on the ice tem-
perature T and q ≤ 1; in our study we set q = 1

3 , which is a
typical choice (Hillebrand et al., 2022). In addition, the ef-
fective strain rate De(u) satisfies De(u)= 1

√
2
|D(u)|, where

| · | denotes the Frobenius norm.
When used to model ice sheets, the Stokes equation must

be accompanied by the following boundary conditions:



σn= 0 on 0s stress-free,
atmospheric pressure neglected

σn= ρw gmin(z,0)n on 0m boundary condition at
ice margin

u= ud on 0d Dirichlet condition at internal
boundary (ice-flow divide)

u ·n= 0, (σn)‖ = βu‖ on 0g impenetrability
+ sliding condition

σn= ρw g zn on 0f hydrostatic pressure of ocean
under ice shelves.

Here β(x,y) is a linearized sliding (or friction) coefficient
and n the outward-pointing unit normal to the boundary and
the subscript ‖ denotes the component tangential to the bed.
The boundary condition at the margin includes an ocean
back-pressure term when the margin is partially submerged
(z < 0). For a terrestrial margin, z > 0, the boundary condi-
tion becomes a stress-free condition.

Earth Syst. Dynam., 16, 513–544, 2025 https://doi.org/10.5194/esd-16-513-2025
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2.1.2 Mono-layer higher order (MOLHO)

The MOLHO model (Dias dos Santos et al., 2022) is based
on the Blatter–Pattyn approximation (Pattyn, 2003; Dukow-
icz et al., 2010), which can be derived by neglecting the
terms wx and wy (the derivatives of w with respect to x and
y, respectively) in the strain-rate tensor D and using the in-
compressibility condition (∇ ·u= 0) such that wz can be ex-
pressed solely in terms of ux and vy and

D=

 ux
1
2 (uy + vx) 1

2uz
1
2 (uy + vx) vy

1
2vz

1
2uz

1
2vz −(ux + vy)

 . (5)

This leads (Jouvet, 2016) to the following elliptic equations
for the horizontal velocities (u,v):

−∇ · (2µD̂)=−ρg∇xy s, (6)

where ∇xy := [∂x,∂y]>, and

D̂=
[

2ux + vy 1
2 (uy + vx) 1

2uz
1
2 (uy + vx) ux + 2vy 1

2vz

]
(7)

such that the viscosity µ in Eq. (4) has the effective strain
rate

De =

√
u2
x + v

2
y + uxvy +

1
4

(uy + vx)2
+

1
4
u2
z +

1
4
v2
z .

The MOLHO model is derived from the weak form of the
Blatter–Pattyn model (Eq. 6), with the ansatz that the velocity
can be expressed as

u(x,y,z)= ub(x,y)φb+uv(x,y)φv

(
s− z

H

)
,

with φb = 1 and φv(ζ )= 1− ζ
1
q
+1
,

where the functions φb and φv are also used to define the test
functions of the weak formulation of the MOLHO model.
This ansatz allows the Blatter–Pattyn model to be simpli-
fied into a system of two two-dimensional partial differen-
tial equations (PDEs) for ub and uv – Dias dos Santos et al.
(2022) give a detailed derivation – such that the thickness-
averaged velocity satisfies u= ub+

(1+q)
(1+2q) uv, where q is the

same coefficient appearing in the viscosity definition Eq. (4).
We used the following boundary conditions when using

MOLHO to simulate ice flow:

2µD̂n= 0 on 0s stress-free, atmospheric
pressure neglected

2µD̂n= ψn on 0m boundary condition at
ice margin

u= ud on 0d Dirichlet condition at internal
boundary (ice-flow divide)

2µD̂n= βu‖ on 0g sliding condition
2µD̂n= 0 on 0f free slip under ice shelves.

Additionally, we approximated the term ψ = ρg(s− z)+
ρw gmin(z,0) by its thickness-averaged valueψ = 1

2gH (ρ−
r2ρw), where r =max

(
1− s

H
,0
)

is the submerged ratio.

2.1.3 Shallow-shelf approximation (SSA)

The SSA model (Morland and Johnson, 1980) is a simplifica-
tion of the Blatter–Pattyn model that assumes the ice velocity
is uniform in z, so u= u and thus uz = 0,vz = 0. This sim-
plification yields

D=

 ux
1
2 (uy + vx) 0

1
2 (uy + vx) vy 0

0 0 −(ux + vy)

 ,
D̂=

[
2ux + vy 1

2 (uy + vx) 0
1
2 (uy + vx) ux + 2vy 0

]
, (8)

and De =

√
u2
x + v

2
y + uxvy +

1
4 (uy + vx)2. Consequently,

the SSA is a single two-dimensional PDE in 6:

−∇ ·

(
2µH D̂(u)

)
+βu=−ρgH∇xys, in 6,

where µ= 1
2A(T )−qDe(u)q−1 and A is the thickness-

averaged flow factor. This study explored the use of SSA with
the boundary conditions

2µH D̂(u) n=Hψn on 0m boundary condition at
ice margin

u= ud on 0d Dirichlet condition at
internal boundary.

With abuse of notation, here 0m and 0d denote subsets of the
boundary of 6.

2.2 Numerical discretization

The ability to predict ice-sheet evolution accurately is dic-
tated not only by the governing equations used, but also
by the properties of the numerical methods used to solve
the governing equations. In this study, we discretized the
thickness and the velocity equations of the MOLHO and
SSA models using the popular Galerkin-based finite-element
method with piecewise linear elements, which we imple-
mented in FEniCS (Alnæs et al., 2015). The coupled thick-
ness and velocity equations were solved in a semi-implicit
fashion using a backward Euler time discretization for the
thickness and lagging the evaluation of the velocity. The
thickness equation was stabilized using the streamline up-
wind method. Additionally, the advection term was inte-
grated by parts and the thickness was treated implicitly. The
discretized problem was solved using the PETSc (Balay
et al., 1997) scalable nonlinear equation solver (SNES). Us-
ing this time evolution process, we did not observe any nu-
merical instabilities when using the time-step sizes adopted
in this study.

Because the thicknessH obtained from Eq. (1) is not guar-
anteed to be positive due to the forcing term fH and the dis-
cretization used is not positivity preserving, we adopted two
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different approaches to guarantee the positivity of the thick-
ness computed by our finite-element models. The first ap-
proach involved updating the thickness value at each node
so that it was greater than or equal to a minimum thickness
valueHm = 1 m. The second approach used an optimization-
based approach (Bochev et al., 2020) to preserve the thick-
ness constraint (H ≥Hm) and guarantee that the total mass
change is always consistent with the forcing term in regions
where the ice is present and with the boundary fluxes. The
first approach is computationally cheaper than the second,
but unlike the second method, it does not conserve mass.

In addition to mass conservation, the number of finite el-
ements and the time-step size both affect the error in the
finite-element approximation of the governing equations of
the MOLHO and SSA models. In this study we investigated
the impact of the number of finite elements, which we also re-
fer to as the spatial mesh resolution, and time-step size on the
precision of statistical estimates of mass change. Specifically,
the MOLHO and SSA models were both used to simulate
ice-sheet evolution with four different finite-element meshes
and four different time-step sizes. More details on the spa-
tial mesh and time-step sizes used are given in Sect. 5.1.
Figure 2 compares the four different finite-element meshes
used to model Humboldt Glacier. Due to the differences in
the characteristic element size of each mesh, the computa-
tional domain of each mesh is different. However, we will
show that this did not prevent the use of these meshes in our
study.

2.3 Parameterization of uncertainty

Many factors introduce parametric uncertainty into the pre-
dictions of ice-sheet models, including atmospheric forc-
ing, ice rheology, basal friction, ice temperature, calving,
and submarine melting. While all these sources of paramet-
ric uncertainty may significantly impact predictions of mass
change from ice sheets, this study focused on quantifying
uncertainty in modeled ice mass change subject to high-
dimensional parameter uncertainty due to unknown basal
friction, which is considered one of the largest sources of pre-
diction uncertainty after future environmental forcing (Nias
et al., 2018; Joughin et al., 2019; Brondex et al., 2019;
Åkesson et al., 2021; Hillebrand et al., 2022; Nias et al.,
2023). This singular focus was made to improve our ability
to assess whether MFSE is useful for quantifying uncertain
in ice-sheet modeling with high-dimensional parameter un-
certainty, which most existing UQ methods cannot tractably
address. By doing so, we ensured that the conclusions drawn
by our study can be plausibly extended to studies considering
additional sources of uncertainty.

The uncertainty in basal friction β, which impacts the
boundary conditions of the MOLHO and SSA models, can be
parameterized in a number of ways. For example, a lumped
approach would assign a single scalar random variable to the
whole domain or a semi-distributed approach may use dif-

ferent constants in predefined subdomains, e.g., catchments,
of the glacier. In this study, we adopted a fully distributed
approach that treated the friction as a log-Gaussian random
field that is θ = log(β) ∈ RNθ , with a Gaussian prior distri-
bution p(θ )∼N (µ,C) with µ= 0.

Following Isaac et al. (2015), we defined the prior co-
variance operator C to be an infinite-dimensional Laplacian
squared operator. Specifically, we used a finite-dimensional
discretization of the operator 6prior ≈ C with

6−1
prior =KM−1K, (9)

where K ∈ RNθ×Nθ and M ∈ RNθ×Nθ are finite-element ma-
trices for the elliptic and mass operators, defined as

Kij = γ

∫
0l

∇φi(x) · ∇φj (x)dx+ δ
∫
0l

φi(x) ·φj (x)dx

+ ξ

∫
∂0l

φi(x) ·φj (x)dx, (10)

Mij =

∫
0l

φi(x) ·φj (x)dx, (11)

where φi denotes finite-element basis functions and x =

(x,y). The first term in the definition of K is the Laplacian
operator, the second term is a mass operator representing a
source term, and the last term is a boundary mass operator for
Robin boundary conditions. The ratio of the coefficients γ

and δ determines the correlation length l =
√
γ
δ

of the covari-

ance. In our simulations, we set γ = 2000 km, δ = 2 km−1

and ξ = 20; hence l ≈ 31.6 km. These values were found to
balance the smoothness of realizations of the friction field
with the ability to capture the fine-scale friction features
needed to produce an acceptable match between the model
prediction of surface velocity and the observed values. Two
random samples from the prior distribution of the log friction
are depicted in Fig. 3.

The parameterization of the prior in Eq. (9) has two main
advantages. First, computationally efficient linear algebra
can be used to draw samples from the prior distribution. In
this study we drew samples from the prior using

θ = µprior+Ln, n∼N (0,INθ ),

where µprior = 0, INθ is the identity matrix with Nθ rows,

L=K−1M
1
2 such that 6prior = LL>, and we lump the mass

matrix M. The second advantage is that this Gaussian prior
enables an efficient procedure for computing the posterior
distribution of the friction field constrained by the observa-
tions, which we present in Sect. 3.

2.4 Additional model setup

Additional details regarding the model setup are as follows.
First, the glacier’s bed topography, ice surface elevation, and
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Figure 2. Comparison of the four finite-element meshes used to model Humboldt Glacier with characteristic finite-element sizes of 1, 1.5,
2, and 3 km, shown in (a) to (d), respectively.

Figure 3. Two random samples from the prior distribution of the log friction p(θ )∼N (0,6prior), where 6prior is defined in Eq. (9).

ice thickness were obtained from observations (refer to Hille-
brand et al., 2022, for details) and interpolated onto the finite-
element mesh. Second, the MIROC5 climate forcing from
the CMIP5 for the Representative Concentration Pathway 2.6
(RCP2.6) scenario was used to generate the surface mass bal-
ance (difference between ice accumulation and ablation) fH
and drive the ice-sheet evolution from 2007 to 2100. This
surface mass balance was provided by the Ice Sheet Model
Intercomparison Project for CMIP6 (ISMIP6), which down-
scaled output from Earth system models using the state-of-
the-art regional climate model MAR (Nowicki et al., 2020).
Finally, the ice front was kept fixed such that any ice that
moved beyond the calving front was assumed to melt and
any explicit ocean forcing was ignored.

3 Calibration

The goal of this study was to investigate uncertainty in pre-
dictions of the future mass change of Humboldt Glacier.
However, generating realistic predictions with a model re-
quires calibrating that model to available data. Consequently,
in this paper we calibrated the basal friction field of our nu-
merical models to measurements of surface velocity of the
ice sheet. We processed Humboldt Glacier geometry data
and surface velocity observations for year 2007 as detailed
in Hillebrand et al. (2022). The geometry was assumed to be
error-free, and the ice sheet was assumed to be in thermal
equilibrium. Thus, we calibrated the friction field by fitting
the outputs of a high-resolution steady-state thermo-coupled
flow model to the observational data.
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Ice-sheet models are typically calibrated using determin-
istic optimization methods that find the values of the model
parameters that lead to the best match between observations
and the model prediction of the observations, e.g., MacAyeal
(1993), Morlighem et al. (2010), Petra et al. (2012), Perego
et al. (2014), and Goldberg et al. (2015). However, such ap-
proaches produce a single optimized parameter value to rep-
resent the uncertainty in the model parameters that arises
from using a limited number of noisy observational data.

Bayesian inference uses Bayes’ theorem to quantify the
probability of the parameters conditioned on the data p(θ |
y) ∈ R, known as the posterior distribution, as proportional
to the conditional probability of observing the data given the
parameters p(y | θ ) ∈ R, known as the likelihood, multiplied
by the prior probability assigned to the parameters p(θ ) ∈ R:

p(θ | y)∝ p(y | θ )p(θ ).

In this work we assumed that the observational data
(two-dimensional surface velocities y = uobs ∈ R2Nobs ) were
corrupted by centered Gaussian noise η ∼N (0,6noise) ∈
R2Nobs . Specifically, given a Blatter–Pattyn flow model
g(θ ) ∈ R2Nobs that maps the logarithm of the basal friction
to the computed surface velocity, we assumed y = g(θ )+ η
such that the likelihood function was given by

p(y | θ )= (2π |6noise|)−
1
2 exp

(
−

1
2

(y−g(θ ))>6−1
noise(y−g(θ ))

)
.

Here, g(θ ) denotes the output of the steady-state ice-sheet
model at the locations of the observations for a given realiza-
tion of the model parameters. We were able to calibrate the
model using only a steady-state model without time stepping
because we assumed that the velocity data were collected
over a short period of time over which the ice-sheet state was
approximately in steady state. We also assumed that the error
in the observations were uncorrelated and set

6noise =
1
ξ

[
Uerr M−1

s Uerr
Uerr M−1

s Uerr

]
∈ R2Nobs×2Nobs , (12)

where Uerr = Diag(uerr) is the diagonal matrix containing the
root mean square errors uerr ∈ RNobs of the surface velocity
magnitudes, Ms ∈ RNobs is the mass matrix computed on the
upper surface 0s , and ξ is a scaling term. We set ξ = 8 km−2.

Before continuing, we wish to emphasize two important
aspects of the calibration used in this study that mean our re-
sults must be viewed with some caution. First, we assumed
the observational data to be uncorrelated, as assumed in most
ice-sheet inference studies, including Recinos et al. (2023)
and Isaac et al. (2015). Moreover, we also assumed our Gaus-
sian error model to be exact. However, in reality, neither of
these assumptions is likely to be exactly satisfied. For ex-
ample, Koziol et al. (2021) showed that, for an idealized
problem, ignoring spatial correlation in the observational
noise can lead to uncertainty being underestimated. Second,
our optimization of the MAP point was constrained by the

coupled velocity flow equations and steady-state enthalpy
equation, which is equivalent to implicitly assuming that the
ice is in thermal equilibrium. Theoretically, this assumption
could be avoided if the temperature tendencies were known,
but they are not. Alternatively, transient optimization over
long time periods, comparable to the temperature timescales,
could be used (Adalgeirsdottir et al., 2014). However, this
approach would be computationally expensive and would re-
quire including time-varying temperature data (e.g., inferred
by ice cores), which are very sparse.

Quantifying uncertainty in mass-change projections con-
ditioned on observational data requires drawing samples
from the posterior of log(β), evaluating the transient model
for each sample, and computing estimates of statistics sum-
marizing the prediction uncertainty using those evaluations.
Typically, samples are drawn using Markov chain Monte
Carlo methods (Hoffman and Gelman, 2014); however
such methods can be computationally intractable for high-
dimensional uncertain variables (Bui-Thanh et al., 2013),
such as the variable we used to parameterize basal friction.
Consequently, we used the two-step method presented in
Bui-Thanh et al. (2013) and Isaac et al. (2015) to construct
a Laplace approximation of the posterior. Please note that,
recently, variational inference has been used to infer high-
dimensional basal friction (Brinkerhoff, 2022); however we
did not use such methods in our study.

First, we performed a PDE-constrained deterministic opti-
mization to compute the maximum a posteriori (MAP) point
θMAP:

θMAP =
argmin
θ

1
2

(y−g(θ ))>6−1
noise(y−g(θ ))

+
1
2

(θ −µprior)
>6−1

prior(θ −µprior), (13)

which maximizes the posterior p(θ | y). For linear mod-
els and Gaussian priors, the MAP point has close ties with
the optimal solution obtained using Tikhonov regularization
(Stuart, 2010). Specifically, the first term above minimizes
the difference between the model predictions and the obser-
vations and the second term penalizes the deviation of the
optimal point from the prior mean.

Second, we constructed a low-rank quadratic approxima-
tion of the log posterior, centered at the MAP point:

log(p(θ | y))≈ C−
1
2

(θ − θMAP)>6−1
post(θ − θMAP), (14)

where

6−1
post =HMAP+6

−1
prior, (15)

HMAP ∈ RNθ×Nθ is the Hessian of 1
2 (y−g(θ ))>6−1

noise(y−
g(θ )) at θ = θMAP, and C is a constant independent of θ .
This resulted in a Gaussian approximation of the posterior
p(θ | y)≈N (θMAP,6post), also known as a Laplace approx-
imation of the posterior. Naively computing the posterior co-
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variance using the aforementioned formula for 6post is com-
putationally intractable. That approach requires solving 2Nθ
linearized (adjoint) flow models to compute and invert the
large dense matrix HMAP, which requires O(Nθ 3) operations.
For reference, in this study we use Nθ = 11356 variables
to parameterize the basal friction and the adjoints of the
flow model had 227 120 unknowns. Consequently, we used
a low-rank Laplace approximation, which is detailed in Ap-
pendix A, to efficiently draw random samples from the pos-
terior distribution.

The posterior characterizes the balance between the prior
uncertainty in the friction field and the model–observation
mismatch, weighted by the observational noise. In the limit
of infinite observational data, the posterior distribution will
collapse to a single value. However, in practice when using
a finite number of data, the posterior will only change sub-
stantially from the prior in directions of the parameter space
informed by the available data, which were captured by our
low-rank approximation.

4 Uncertainty quantification

This study investigated the efficacy of using MFSE to com-
pute the uncertainty in predictions of future mass change
from Humboldt Glacier. We defined mass change to be the
difference between the final mass2 of the glacier at t = 2100
and its mass at t = 2007. While the mass change is a func-
tional of the ice-sheet thickness H , for simplicity the follow-
ing discussion simply refers to the mass change as a scalar
function of only the model parameters; that is fα(θ ) ∈ R,
where α indexes the model fidelity that was used to sim-
ulate the ice sheet. Previous UQ studies computed statis-
tics summarizing the uncertainty in ice-sheet predictions,
such as mean and variance, using single-fidelity Monte Carlo
(SFMC) quadrature, that is MC quadrature applied to a sin-
gle physics model with a fixed numerical discretization α,
for example Ritz et al. (2015) or Schlegel et al. (2018). How-
ever, in this study we used MFSE to reduce the computational
cost of quantifying uncertainty. Specific details on the MFSE
methods investigated are given in the following subsections.

4.1 Single-fidelity Monte Carlo quadrature

SFMC quadrature is a highly versatile procedure that can be
used to estimate a wide range of statistics for nearly any
function regardless of the number of parameters involved.
SFMC can be used to compute the mean Qµ

∈ R and vari-
ance Qσ 2

∈ R of the Humboldt Glacier mass change pre-
dicted by a single model using a three-step procedure. The
first step randomly samples N realizations of the model pa-
rameters2= {θ (n)

}
N
n=1 from their posterior distribution. The

2In this work, we compute the mass of the glacier considering
only the ice above flotation, which is what contributes to sea-level
change.

Figure 4. The bias–variance trade-off (Eq. 18) of MC estimators
of the same computational cost is depicted in blue and orange. The
blue line represents the true mean of a computationally expensive
model f0, and the orange line represents the mean of a model f1
that is 10 times cheaper but less accurate. The models are only con-
ceptual and not related to the ice-sheet models used in this study and
were designed so that evaluating f0 100 times took the same com-
putational effort as evaluating f1 1000 times. The histograms were
constructed by computing the means of f0 and f1 1000 times using
different realizations of the parameter set2N , where N denotes the
number of parameter samples in 2N .

second step simulates the model at each realization of the
random variable (basal friction field) and computes the mass
change at the final time f (n)

α = fα(θ (n)). The third step ap-
proximates the mean and variance using the following unbi-
ased estimators:

Eπ
[
fα
]
≈Qµ

α (2)=N−1
N∑
n=1

f (n)
α , (16)

Vπ
[
fα
]
≈Qσ 2

α (2)= (N − 1)−1
N∑
n=1

(
f (n)
α −Q

µ
α (2)

)2
, (17)

where we use the script π on the exact expectation Eπ
[
fα
]

and variance Vπ
[
fα
]

to make clear these statistics are al-
ways computed by sampling from the distribution of θ . In
our study, we sampled from the posterior distribution of the
basal friction parameters; i.e., π (θ )= p(θ |M,y).

MC estimators converge to the true mean and variance of
fα as the number of samples tends to infinity, but using a fi-
nite number of samplesN introduces an error into the MC es-
timator that depends on the sample realizations used to com-
pute the estimators. That is, two different realizations of N
parameter samples2 and the associated QoI values will pro-
duce two different mean and variance estimates (see Fig. 4).
Consequently, any MC estimator Qα(2) of an exact statistic
Q, such as Qµ

α (2) and Qσ 2

α (2), is a random variable.
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The mean-squared error (MSE) is typically used to quan-
tify the error in an MC estimate of a statistic and is given
by

E2
[
(Qα(2)−Q)2

]
= E2

[
(Qα(2)−E2 [Qα(2)]

+E2 [Qα(2)]−Q)2
]
= V2 [Qα(2)]︸ ︷︷ ︸

I

+ (E2 [Qα(2)]−Q)2︸ ︷︷ ︸
II

, (18)

where E2 [·] and V2 [·] denote taking the expectation and
the variance, respectively, over different realizations of the
set of parameter realizations 2. The MSE of an MC estima-
tor, Eq. (18), consists of two terms referred to as the estimator
variance (I) and the estimator bias (II). The bias term of the
MSE is caused by using a numerical model, with inadequacy
and discretization errors, to compute the mass change. More
specifically, letting Q∞ denote the exact value of the statis-
tic of a numerical model with zero discretization error but
non-zero model inadequacy error andQ0 denote the highest-
fidelity computationally tractable model approximation of
Q∞, the bias can then be decomposed into three terms:

(E [Qα(2)]−Q)= (E2 [Qα(2)]−Q0+Q0−Q∞

+Q∞−Q)= (E2 [Qα(2)]−Q0)
+ (Q0−Q∞)+ (Q∞−Q) . (19)

The first term is caused by using a model fα with numerical
discretization that is inferior to that employed by the highest-
fidelity model f0. The second term represents the error in
the statistic introduced by the numerical discretization of the
highest-fidelity model. The third term quantifies the model
inadequacy error caused by the numerical model being an
approximation of reality. The variance of an MC estimator
comes from using a finite number of samples and decreases
as the number of samples increases. For example, the vari-
ances of the estimators of mean and variance are

V2
[
Qµ
α (2)

]
=

1
N
Vπ

[
fα
]

and

V2
[
Qσ 2

α (2)
]
=

1
N

(
2

(N − 1)
Vπ
[
fα
]2

+Vπ
[
(fα −Eπ

[
fα
]

)2
])
, (20)

respectively, where the variances involving fα are exact
statistics of the model, which are typically unknown. A de-
tailed derivation of the expression for Vπ

[
Qσ 2

α (2)
]

can be
found in Dixon et al. (2023).

Constructing an SFMC estimator of statistics, such as the
mean (Eq. 16) or variance (Eq. 17), with a small MSE en-
sures that the value of the estimator will likely be close to
the true value for any set of model parameter samples. How-
ever, when using numerical models approximating a physical
system, constructing an unbiased estimator of Q is not pos-
sible. All models are approximations of reality, and thus the
model inadequacy contribution Q∞−Q to the bias decom-
position in Eq. (19) can never be driven to zero. Additionally,

it is impractical to quantify the discretization errorQ0−Q∞.
Consequently, SFMC methods focus on producing unbiased
estimators of Q0 such that E2 [Qα(2)]=Q0.

Unfortunately, even when ignoring inadequacy and dis-
cretization errors, constructing an SFMC estimator with a
small MSE (Eq. 18) using a computationally expensive high-
fidelity model is computationally demanding. The cost is
high because the variance term of the MSE of an estimator
(Eq. 18) only decreases linearly with the number of samples.
In contrast, N can be significantly increased if a cheaper,
lower-fidelity model is used, but the corresponding decrease
in the estimator variance will be offset by an increase in its
bias. Consequently, the bias and variance of any estimator
(see Fig. 4) should be balanced, but most SFMC analyses do
not consider this trade-off explicitly when choosing the fi-
delity of the model used. In the following section we detail
how to use MFSE to substantially improve the precision of
estimated statistics for a fixed computational cost.

4.2 Two-model multi-fidelity uncertainty quantification

MFSE leverages the correlation between models of vary-
ing cost and fidelity to reduce the computational cost of
constructing MC estimators with a desired MSE. While
various multi-fidelity estimators have been developed, this
study used approximate control variate (ACV) estimators
(implemented in PyApprox; Jakeman, 2023), which in-
clude most existing estimators, including multi-level Monte
Carlo (MLMC) (Giles, 2015) and multi-fidelity Monte Carlo
(MFMC) (Peherstorfer et al., 2016), as special cases.3 In this
section, we describe how to construct an ACV estimate of the
mean of a model using two models. We then introduce the
ACV procedure we used to compute the mean and variance
of our highest-fidelity ice-sheet model using an ensemble of
13 models.

Using only high-fidelity model simulations to estimate a
statistic with single-fidelity MC produces an unbiased esti-
mator of Q0. However, when the computational cost of run-
ning a high-fidelity model limits the number of model sim-
ulations that can be used, the variance and thus the MSE of
the MC estimator will be large. Fortunately, the MSE of the
estimator can be reduced by correcting the high-fidelity es-
timator with statistics computed using lower-fidelity models.
For example, given a high-fidelity model f0(θ ) and a single
low-fidelity model f1(θ ), an MFMC ACV estimator approx-

3Recently, multilevel best linear unbiased estimators (ML-
BLUEs; Schaden and Ullmann, 2020) were developed as an alterna-
tive to ACV estimators to estimate the expectation of a high-fidelity
model using an ensemble of models of varying cost and fidelity.
However, we did not use MLBLUEs in this study because they can
only be used to estimate the mass-change mean and not its variance.
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imates the mean of the high-fidelity model using

Q
µ
ACV(20,21)=N−1

0

N0∑
n=1

f0(θ (n)
0 )

+ η

(
N−1

0

N0∑
n=1

f1(θ (n)
0 )−N−1

1

N1∑
j=1

f1(θ (j )
1 )

)
=Q

µ
0 (20)+ η(Qµ

1 (20)−Qµ
1 (21))

≈ E2
[
f0
]
. (21)

The two-model ACV estimator in Eq. (21) uses a
weighted combination of a high-fidelity MC estimator and
two low-fidelity estimators. The high-fidelity model eval-
uations are used to ensure the ACV estimator is unbiased;
i.e., E2

[
Q
µ
ACV(20,21)

]
= Eπ

[
f0
]
, while the low-fidelity

evaluations are used to reduce the variance of the estimator.
The estimator of the low-fidelity mean Qµ

1 (20) is referred
to as a control variate because it is a random variable, which
is correlated with the random estimator Qµ

0 (20), and can be
used to control the variance of that high-fidelity estimator.
The term Q

µ
1 (21)≈Qµ

1 is an approximation of the true
low-fidelity statistic Q1 that is used to ensure that the
ACV estimator is unbiased, i.e., E2

[
Q
µ
ACV(20,21)

]
=

E2
[
Q
µ
0 (2)

]
+ η

(
E2

[
Q
µ
1 (20)

]
−E2

[
Q
µ
1 (21)

])
=

Q
µ
0 + η

(
Q
µ
1 −Q

µ
1
)
=Q

µ
0 . The weight η can be either

fixed, e.g., MLMC sets η =−1, or optimized to minimize
the MSE of the estimator. However, an ACV estimator will
always be unbiased with respect to Q0 regardless of the
value of η because the expected values of the second and
third terms will always cancel each other out.

Computing the ACV estimate of the high-fidelity mean
in Eq. (21) requires two different sets of model evaluations.
These evaluations must be obtained by first drawing two sets
of samples 20 = {θ

(n)
0 }

N0
n=1,21 = {θ

(n)
1 }

N1
n=1 from the distri-

bution of the random variables. In our study, we draw random
samples from the posterior distribution of the log basal fric-
tion, i.e., p(θ |M,†). The high-fidelity model must be eval-
uated on all the samples in 20, and the low-fidelity model
must be evaluated on both the sets 20 and 21. Typically
N0 <N1. In most practical applications, such as this study,
the model f0 used with an ACV estimate is chosen to be
the highest-fidelity model that can be simulatedO(10) times.
However, when a model utilizes a numerical discretization
that can be refined indefinitely, MLMC can be used to adap-
tively set Q0 such that the discretization error Q0−Q∞, in
Eq. (19), is equal to the variance V2 [QACV] of the MLMC
estimator. Balancing these two errors ensures that compu-
tational effort is not wasted on resolving one source of er-
ror more than the other. However, in practice, the geomet-
ric complexity of many spatial domains makes generating
large numbers of meshes impractical, and estimating the dis-
cretization error using techniques like posterior error estima-
tion can be challenging.

The ACV estimator is an unbiased estimator of the mean
high-fidelity model. Therefore the MSE (Eq. 18), ignoring

the model inadequacy and model discretization errors, is
equal to the variance of the estimator, which, when20 ⊂21,
is

V2
[
Q
µ
ACV(20,21)

]
=N−1

0 Vπ
[
f0
](

1−
N1−N0

N1
Corrπ [f0,f1]

2
)
. (22)

Thus, for fixed N0 and N1, if the high- and low-fidelity mod-
els are highly correlated, the ACV estimator will be much
more accurate than the SFMC estimator; see Eq. (20). More-
over, the values of N0,N1 can be optimized to minimize the
error in an ACV estimator given a fixed computational bud-
get. In the following section, we provide more details on how
to construct an ACV estimator using more than one low-
fidelity model, including information on how to optimize η
and the number of samples used to evaluate each model.

4.3 Many-model multi-fidelity uncertainty quantification

Given an ensemble ofM+1 models {fα(θ )}Mα=0, an ACV MC
estimator can be used to compute a vector-valued estimator
Q0 = [Q0,1, · · ·,Q0,K ]

>
∈ RK of statistics of the highest-

fidelity model f0; the specific instances of the ice-sheet mod-
els used by this study are presented in Sect. 5.1. The vector
Q0 may be comprised of a single type of statistic computed
for multiple quantities of interest (QoIs), multiple statistics
of a single QoI, or a combination of both. For example, in
this study we computed the ACV estimator of the mean and
variance of the mass change; that isQ0 = [Q

µ
0 ,Q

σ 2

0 ]
>
∈ R2.

Any ACV estimators QACV = [Q
µ
ACV,Q

σ 2

ACV]
>
∈ R2 of

the vector-valued high-fidelity statistic Q0 can be expressed
as

QACV(20,2
∗

1,21, . . .,2
∗

M ,2M )=
[
Q
µ
0

Qσ 2

0

]

+

[
η1,1 · · · η1,2M
η2,1 · · · η2,2M

]


Q
µ
1 (2∗1)−Qµ

1 (21)
Qσ 2

1 (2∗1)−Qσ 2

1 (21)
...

Q
µ
M (2∗M )−Qµ

M (2M )
Qσ 2

M (2∗M )−Qσ 2

M (2M )

 ,

whereQµ
m(2∗m) andQµ

m(2m) are single-model MC estimates
of the mean, E2

[
fm
]

(Eq. 16), computed using the mth
model, m= 0, . . .,M , and different sample sets 2∗m and 2m.
Similarly,Qσ 2

m (2∗m) andQσ 2

m (2m) are estimates of the model
variance, V2

[
fm
]

(Eq. 17), computed using the mth model.
In more compact notation,

QACV(2ACV)=Q0(20)+ η1(21), (23)

where 21 = {2∗1,21, . . .,2
∗

M ,2M}, 2ACV = {20,21},

1(21)=

 11(2∗1,21)
...

1M (2∗M ,2M )

 ∈ R2M ,
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1m(2∗m,2m)=
[
Q
µ
m(2∗m)−Qµ

m(2m)
Qσ 2

m (2∗M )−Qσ 2

m (2m)

]
∈ R2,

m= 1, . . .,M, (24)

and the entries of η ∈ R2×2M are called control variate
weights. Formulating the control variate weights as a matrix
enables the ACV estimator to exploit the correlation between
the statisticsQµ andQσ 2

, producing estimates of these indi-
vidual statistics with lower mean-squared error (MSE) than
would be possible if the two statistics were estimated inde-
pendently.

A multi-model ACV estimator is constructed by evaluat-
ing the highest-fidelity model for a single set of samples 20
and evaluating each low-fidelity model for two sets of sam-
ples 2∗α = {θ

(n)
}
Nα∗

n=1 and 2α = {θ (n)
}
Nα
n=1. Different ACV es-

timators can be produced by changing the way each sam-
ple set is structured. For example, MFMC estimators sample
the uncertain parameters such that2∗α ⊂2α and2∗α =2α−1
and MLMC estimators sample such that 2∗α ∩2α =∅ and
2∗α =2α−1.

By construction, any ACV estimator is an unbiased es-
timator of Q0 because E2 [1α]= 0, with α > 0. Conse-
quently, the MSE of the ACV estimator (Eq. 18) can be min-
imized by optimizing the determinant of the estimator co-
variance matrix. When estimating a single statistic (K = 1),
this is equivalent to minimizing the variance of the estimator.
Given sample sets 2ACV, the determinant of the covariance
of an ACV estimator, Cov2

[
QACV,QACV

]
in Eq. (26), can

be minimized using the optimal weights

η(2ACV)=−Cov2
[
Q0,1

]
Cov2[1,1]−1,

Cov2
[
Q0,1

]
∈ R2×2M , and

Cov2 [1,1] ∈ R2M×2M , (25)

which produces an ACV estimator with covariance

Cov2
[
QACV,QACV

]
(2ACV)= Cov2

[
Q0,Q0

]
−Cov2

[
Q0,1

]
Cov2[1,1]−1Cov2

[
Q0,1

]>
∈ R2×2, (26)

where the dependence of 1 and Q0 on the sample sets 21
and 20 was dropped to improve readability. Note that, in
Eqs. (25) and (26) and the remainder of this paper, we use
Cov[v,v] as longhand for V [v] to emphasize that the co-
variance is a matrix when the random variable v is a vector.

4.4 Computational considerations for multi-fidelity
uncertainty quantification

The approximation of model statistics using ACV estimators
is broken down into two steps. The first step, referred to as
the pilot study or exploration phase, involves collecting eval-
uations of each model on a common set of samples. These
evaluations are used to compute the so-called pilot statistics
that are needed to evaluate Eqs. (25) and (26). Subsequently,

these pilot statistics are used to find the optimal sample al-
location of the best estimator (see Algorithm 1). The sec-
ond step, known as the exploitation phase, involves evaluat-
ing each model according to the optimal sample allocation
and then computing the model statistics using Eq. (23). We
will discuss the important computational aspects of these two
phases in the following subsections.

4.4.1 Estimating pilot statistics

Computing the covariance of an ACV estimator,
Cov2

[
QACV,QACV

]
in Eq. (26), requires estimates of the

covariance between the estimator discrepancies 1 (Eq. 24)
with each other and the high-fidelity estimator and the
covariance of the high-fidelity estimator, i.e., Cov2 [1,1]
and Cov2 [Q0,1]. In practice, these quantities, which we
call pilot statistics, are unknown and must be estimated
with a pilot study. Specifically, following standard practice
(Peherstorfer and Willcox, 2016), we used MC quadrature
with P , so-called pilot samples 2pilot = {θ

(p)
}
P
p=1, to

compute the pilot statistics. This involves computing the
high-fidelity model and all the low-fidelity models for the
same set of samples 2pilot. For example, we approximated
Covπ

[
fα,fβ

]
, which is needed to compute the quantities in

Eq. (26), by

Covπ
[
fα,fβ

]
≈ P−1

P∑
p=1

(
fα(θ (p))−Qµ

α (2pilot)
)

×

(
fβ (θ (p))−Qµ

β (2pilot)
)
∈ R2×2. (27)

Please refer to Dixon et al. (2023) to see the additional
quantities needed to compute the covariance blocks of
Cov2

[
1α,1β

]
and Cov2

[
Q0,1α

]
, which are required to

compute the estimator covariance Cov2
[
QACV,QACV

]
of

a vector-valued statistic that consists of both the mean and
the variance of a model. Finally, we recorded the CPU time
needed to simulate each model at all pilot samples and set the
model costs w> = [w0,w1, . . .,wM ] ∈ RM+1 to be the me-
dian simulation time of each model.

Unfortunately, using a finite P introduces sampling errors
into Cov2 [1,1] and Cov2

[
Q0,1

]
, which in turn induces

error in the ACV estimator covariance (Eq. 26). This error
can be decreased using a large P , but this would require ad-
ditional evaluations of expensive numerical models, which
we were trying to avoid. Consequently, in this study we in-
vestigated the sensitivity of the error in ACV MC estimators
to the number of pilot samples. Results of this study are pre-
sented in Sect. 5.

4.4.2 Optimal computational resource allocation

The covariance of an ACV estimator, Cov2
[
QACV,QACV

]
in Eq. (26), is dependent on how samples are allocated to the
sets 2α and 2∗α , which we call the sample allocation A. A
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uniquely defines the allocation strategy by listing the number
of samples of each set 2α and 2∗α and their pairwise inter-
sections. Namely, A= {N0,Nα∩β ,Nα∗∩β ,Nα∩β∗ ,Nα∗∩β∗ |

α,β = 1, . . .,M}, where Nα∩β = |2α ∩2β |, Nα∗∩β = |2∗α ∩
2β |, Nα∩β∗ = |2α ∩2∗β |, and Nα∗∩β∗ = |2∗α ∩2

∗
β | denote

the number of samples in the intersections of pairs of sets,
andNα∪β = |2α∪2β |,Nα∗∪β = |2∗α∪2β |,Nα∪β∗ = |2α∪
2∗β |, and Nα∗∪β∗ = |2∗α∪2

∗
β | denote the number of samples

in the union of pairs of sets. Thus, the best ACV estimator
can be theoretically found by solving the constrained nonlin-
ear optimization problem:

min
A∈A

Det
[
Cov2

[
QACV,QACV

]
(A)

]
s.t. W (w,A)≤Wmax. (28)

In the above equation, A is the set of all possible sample allo-
cations and the constraint ensures that the computational cost
of computing the ACV estimator,

W (w,A)=
M∑
α=0

Nα∗∪αwα,

is smaller than a computational budget Wmax ∈ R. The solu-
tion to this optimization problem is often called the optimal
sample allocation.

Unfortunately, a tractable algorithm for solving Eq. (28)
has not yet been developed, largely due to the extremely high
number of possible sample allocations in the set A. Conse-
quently, various ACV estimators have been derived in the
literature that simplify the optimization problem by speci-
fying what we call the sample structure T , which restricts
how samples are shared between the sets 2α and 2∗α . For
example, optimizing the estimator variance (Eq. 22) of a
two-model MFMC (Peherstorfer et al., 2016) mean estimator
(Eq. 21) requires solving

min
N0,N1

N−1
0 V

[
f0
](

1−
N1−N0

N1
Corr[f0,f1]

2
)

s.t. N0w0+N1w1 ≤Wmax,

T = {N0∩1∗ =N0,N0∪1∗ =N0,N0∩1 =N0,

N0∪1 =N1,N1∗∩1 =N0,N1∗∪1 =N1}.

Alternatively, minimizing the estimator variance of the two-
model MLMC (Giles, 2015)4 mean estimator requires solv-
ing

min
N0,N1

N−1
0 V

[
f1− f0

]
+ (N1−N0)−1V

[
f1
]

s.t. N0w0+N1w1 ≤Wmax,

T = {N0∩1∗ =N0,N0∪1∗ =N0,N0∩1 = 0,
N0∪1 =N1,N1∗∩1 = 0,N1∗∪1 =N1}.

4MLMC estimators set all the control variate weights in Eq. (23)
to η =−1. Refer to Gorodetsky et al. (2020) for more details on the
connections between ACV and MLMC estimators.

MLMC and MFMC employ sample structures T that
simplify the general expression for the estimator covari-
ance Cov2

[
QACV,QACV

]
in Eq. (26). These simplifications

were used to analytically derive solutions of the sample allo-
cation optimization problem in Eq. (28) when estimating the
mean, E2

[
f0
]

in Eq. (16), for a scalar-valued model. How-
ever, the optimal sample allocation of MLMC and MFMC
must be computed numerically when estimating other statis-
tics, such as variance V2

[
f0
]

in Eq. (17). Similarly, nu-
merical optimization must be used to optimize the estima-
tor covariance, Cov2

[
QACV,QACV

]
in Eq. (26), of most

other ACV estimators, including the ACVMF and ACVIS
(Gorodetsky et al., 2020), as well as their tunable generaliza-
tions (Bomarito et al., 2022).

Each existing ACV estimator was developed to exploit al-
ternative sample structures T to improve the performance
of ACV estimators in different settings. For example, a
three-model ACVMF estimator performs well when the low-
fidelity models are conditionally independent of the high-
fidelity model. Imposing this conditional independence is
useful when knowing one low-fidelity model does not pro-
vide any additional information about the second low-fidelity
model, given enough samples of the high-fidelity model. This
situation can arise when the low-fidelity models use different
physics simplifications of the high-fidelity model. In con-
trast, MLMC assumes that each model in the hierarchy is
conditionally independent of all other models given the next
higher-fidelity model. This allows MLMC to perform well
with a set of models ordered in a hierarchy by bias relative to
the exact solution of the governing equations.

The performance of different ACV estimators is prob-
lem dependent. Consequently, in this paper we investigated
the use of a large number of different ACV estimators
from the literature. For each estimator we used the general-
purpose numerical optimization algorithm proposed in Bo-
marito et al. (2022) to find the optimal sample allocations
that minimize the determinant of the estimator covariance.5

4.4.3 Model and estimator selection

Using data from all available models may produce an estima-
tor with larger MSE than an estimator that is only constructed
using a subset of the available models. This occurs when a
subset of the low-fidelity models correlate much better with
the high-fidelity model than the rest of the low-fidelity mod-
els. For instance, some low-fidelity models may fail to cap-
ture physical behaviors that are important to estimating the
QoI. Consequently, it is difficult to determine the best esti-
mator a priori. However, we can accurately predict the rela-
tive performance of any ACV estimator using only the model
simulations run during the pilot study. Thus, in this study we

5The presentation of the optimization algorithms in Bomarito
et al. (2022) focuses on the estimation of a single statistic but can
trivially be extended to the vector-valued QoIs considered here.
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enumerated a large set of estimator types encoded by the dif-
ferent sample structures T and model subsets.

Algorithm 1 summarizes the procedure we use to choose
the best ACV estimator. Line 8 loops over all model sub-
sets S. In this study, we enumerated all permutations of
the sets of models that contained the high-fidelity model
and at most three low-fidelity models. Line 10 enumerates
each parametrically defined estimator E. We enumerated the
large sets of parametrically defined generalized multi-fidelity
(GMF), generalized independent sample (GIS), and general-
ized recursive difference (GRD) ACV estimators introduced
by Bomarito et al. (2022). These sets of estimators include
ACVMF, MFMC, and MLMC (with optimized control vari-
ate weights) as special cases. For each estimatorE and model
subset S, line 12 was used to find the optimal sample alloca-
tion AE , using the pilot values {fα(2pilot)}α∈S when mini-
mizing Eq. (28). Lines 13–16 were used to record the best
estimator found at each iteration of the outer loops.

Algorithm 1 Estimator selection.

1: Input
2: {fα(2pilot)}Mα=0 Pilot evaluations of each model
3: Output
4: Abest Best estimator sample allocation
5: Jbest Best estimator objective
6: Jbest←∞
7: F Loop over all low-fidelity model subsets
8: for S ⊆ {1, . . .,M} do
9: F Loop over all MF estimators, e.g., MLMC, MFMF,

ACVMF.
10: for E ∈ E do
11: F Compute the optimal estimator objective JE and sam-

ple allocation AE for the current estimator and subset of
models

12: JE,AE← Solve Eq. (28) using AE,S and
{fα(2pilot)}α∈S

13: if JE < Jbest then
14: F Update the best estimator
15: Abest←AE
16: Jbest← JE
17: end if
18: end for
19: end for

Whether a model is useful for reducing the MSE of
a multi-fidelity estimator depends on the correlations be-
tween that model, the high-fidelity model, and the other low-
fidelity models. For toy parameterized PDE problems, such
as the diffusion equation with an uncertain diffusion co-
efficient, theoretical convergence rates and theoretical esti-
mates of computational costs can be used to rank models.
However, for the models we used in this study, and likely
many other ice-sheet studies, ordering models hierarchically,
that is, by bias or correlation relative to the highest-fidelity
model, before evaluating them is challenging. Indeed, the
best model ensemble for multi-fidelity UQ may not be hier-

archical (see Gorodetsky et al., 2020). However, estimators
such as MLMC and MFMC only work well on model hierar-
chies. Consequently, having a practical approach for learning
the best model ensemble is needed. Yet to date this issue has
received little attention in the multi-fidelity literature. Sec-
tion 5 provides a discussion of the impact of the pilot study
on model selection and the MSE of multi-fidelity estimators.

5 Results

This section presents the results of our MFSE study. First,
we describe the ensemble of numerical models we used to
solve the governing equations presented in Sect. 5.1. Sec-
ond, we summarize the results of our Bayesian model cali-
bration. Third, in Sect. 5.3 we present the results of our pilot
study. Specifically, we compare the computational costs of
each model and their SFMC-based estimates of the mean and
variance of the mass change computed using the pilot sam-
ples. We also report the MSE of ACV estimators predicted
using the pilot and note the subset of models they employed.
Fourth, we detail the impact of increasing the number of pi-
lot samples on the predicted MSE of the ACV estimators in
Sect. 5.4. Finally, we quantify the improvement in the pre-
cision of MFSE estimates of mass-change statistics relative
to SFMC in Sect. 5.5. All results were generated with the
PyApprox software package (Jakeman, 2023).

5.1 Multi-fidelity model ensemble

In this study we investigated the use of 13 different mod-
els of varying computational cost and fidelity to compute
glacier mass change. Specifically, we used MFSE to estimate
the mean and variance of a highly resolved finite-element
model using an ensemble of 12 low-fidelity models. We com-
pactly denote the fidelity of each model using the notation
PHYSICSNAMEdx,dt, where PHYSICSNAME refers to the
governing equations solved, dx denotes the size of the repre-
sentative spatial element, and dt denotes the size of the time
step. The four different meshes we used are shown in Fig. 2.

The highest-fidelity model we considered in this study
was a MOLHO-based model denoted by MOLHO∗1 km,9 d,
where the star indicates that the model was modified to con-
serve mass. The low-fidelity model ensemble consisted of
four MOLHO-based low-fidelity models, MOLHO1 km,36 d,
MOLHO1.5 km,36 d,MOLHO2 km,36 d, and MOLHO3 km,36 d,
and eight SSA-based low-fidelity models, SSA1 km,36 d,
SSA1.5 km,36 d, SSA2 km,36 d, SSA3 km,36 d, SSA1 km,365 d,
SSA1.5 km,365 d, SSA2 km,365 d, and SSA3 km,365 d. The num-
ber of elements associated with the four meshes with
characteristic element sizes 1, 1.5, 2, and 3 km were 22 334,
13 744, 9238, 2611, and 13 744, respectively. The number
of nodes for the same four meshes were 1422, 4846, 7154,
and 11 536. Note that no low-fidelity model enforced the
conservation of mass.
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The models we used were all different numerical dis-
cretizations of two distinct physics models. However, in the
future we could also use alternative classes of low-fidelity
models if they become available. For example, we could use
linearizations of the parameter-to-QoI map, proposed by Re-
cinos et al. (2023), if our MOLHO and/or SSA codes be-
come capable of efficiently computing the gradient of the
map. Such an approach would require only one nonlinear
forward transient solve of the governing equations followed
by a linear solve of the corresponding backward adjoint.
Once constructed, the linearized map could then be eval-
uated very cheaply and used to reduce the estimator vari-
ance, Cov2

[
QACV,QACV

]
in Eq. (26), of the MFSE esti-

mators, provided the error introduced by the linearization is
not substantial. Other types of surrogates could also be used
in principle; however, the large number of parameters used
poses significant challenges to traditional methods such as
the Gaussian processes used in Jantre et al. (2024). Recently
developed machine-learning surrogates (Jouvet et al., 2021;
Brinkerhoff et al., 2021; He et al., 2023) could be competi-
tive alternatives to the low-fidelity models considered in this
work.

Lastly, note that we used a different model to the 13 de-
scribed above for the Bayesian calibration of the basal fric-
tion parameters. Specifically, we used the C++ code MALI
(Hoffman et al., 2018), which can solve the Blatter–Pattyn
equations (Pattyn, 2003; Dukowicz et al., 2010) and compute
the action of the Hessian on a vector. MALI efficiently com-
puted these Hessian-vector products, needed to compute our
Laplace approximation of the posterior in Eq. (14), by solv-
ing the adjoint equations for the steady-state Blatter–Pattyn
equations. However, SSA equations (Sect. 2.1.3) are not cur-
rently implemented in MALI and the MOLHO (Sect. 2.1.2)
equations have only recently been implemented (after the
simulations for this work were performed). Consequently,
we used FEniCS (Alnæs et al., 2015) to implement both
MOLHO and SSA to ensure that the relative computational
timings of these models would be consistent. Solving the
MOLHO model using the C++-based MALI code and solv-
ing the SSA using the Python-based FEniCS would have
corrupted the MFSE results. Moreover, implementing SSA in
MALI would be time-consuming because it is currently only
used to solve 3D models and not 2D models, such as SSA.
Indeed, motivation for this study was partially to determine
the utility of implementing the SSA equations in MALI.

5.2 Bayesian model calibration

In this study we used the MALI ice-sheet code (Hoffman
et al., 2018; Tezaur et al., 2021) to calibrate the basal fric-
tion field on the finest mesh, as described in Sect. 3. The
MAP point of the posterior, determined using Eq. (13), is de-
picted in the left panel of Fig. 5. The pointwise variance of
the Laplace approximation of the posterior of the log friction
(i.e., the diagonal of Eq. 15) is depicted in the right panel of

Fig. 5. When this figure is compared to the pointwise vari-
ance of the prior (i.e., the diagonal of Eq. 9) depicted in the
center panel of Fig. 5, it is clear that conditioning the prior
uncertainty in the surface velocity significantly reduced the
uncertainty in the basal friction field. This conclusion is fur-
ther corroborated by Fig. 6, which compares a random sam-
ple from the prior and a random sample from the posterior.
The minimum and maximum values of the posterior sample
of the log friction are much smaller than the same bounds
of the prior sample. However, the posterior sample has much
higher frequency content because the data only informed the
lower-frequency modes of the friction field.

To demonstrate a projection to 2100 using a calibrated
model, Fig. 7 depicts the difference between the final (year
2100) and initial (year 2007) ice thickness and the final sur-
face velocity of Humboldt Glacier computed by the highest-
fidelity model (MOLHO∗1 km,9 d) for a random posterior re-
alization of the basal friction field. The final ice thickness
shown differs substantially from the initial thickness, with
thickness decreasing substantially at lower elevations of the
glacier in the ablation zone where increasingly negative
surface mass balance occurs through 2100. In general, the
glacier speeds up as negative surface mass balance causes
the surface to steepen near the terminus. The largest speedup
occurs in the region of fast flow in the north where basal fric-
tion is small. Also note that the high-frequency differences
present in the thickness difference were due to the high-
frequency oscillations in the posterior sample; see Fig. 6.

Prior sensitivity

In this study we used our domain experience to determine
the best values of the prior hyper-parameters γ , δ, and η re-
ported in Sect. 2.3 and the likelihood hyper-parameter ξ in
Eq. (12). However, varying these hyper-parameters would
likely change the estimates of uncertainty in ice-sheet pre-
dictions produced by this study. Similarly to previous stud-
ies (Isaac et al., 2015), we did not investigate these sensi-
tivities extensively. We heuristically chose the prior hyper-
parameters so that the prior samples would have a variance
and spatial variability that we deemed in line with our do-
main experience. Further, we found that reducing ξ substan-
tially from the value we ultimately used while keeping the
prior hyper-parameters fixed prevented the MAP point from
capturing the high-frequency content of the basal friction
field needed to accurately match the observed surface veloc-
ities. Future studies should investigate the sensitivity of mass
change to the values of the hyper-parameters more rigorously
using an approach such as the one developed by Recinos et al.
(2023).

Interpolating basal friction

In this study we drew samples from the posterior distribu-
tion of the friction parameters defined on the finest spatial
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Figure 5. (a) Log of the basal friction MAP point, θMAP, computed using Eq. (13). (b) Pointwise prior variance, i.e., the diagonal entries of
6prior, defined in Eq. (9). (c) Pointwise posterior variance, i.e., the diagonal entries of 6post, defined in Eq. (15). Note that the color scales
of each plot span different ranges so that the variability in the quantities plotted is visible.

Figure 6. (a) A random sample from the prior distribution of the log friction p(θ )∼N (0,6prior), where 6prior is defined in Eq. (9). (b)
A random sample from the Laplace approximation of the posterior p(θ |M,y)∼N (θMAP,6post), defined in Eq. (14). Note that the color
scales of each plot span different ranges so that the variability in the quantities plotted is visible.

mesh. However, a posterior sample defined on the fine mesh
cannot be used to predict mass change with a low-fidelity
model defined on a coarser mesh. Consequently, before us-
ing a low-fidelity model with a coarse mesh to predict mass
change, we first interpolated each sample of the posterior dis-
tribution of the basal friction field defined on the finest mesh
onto the mesh used by the low-fidelity model. Specifically,
we used the linear finite-element basis of the fine mesh to
interpolate onto the coarser meshes. This procedure ensured
that varying the basal friction field (the random parameters
of the model) would affect each model similarly, regardless
of the mesh discretization employed. However, the linear in-
terpolation we used may have overly smoothed the friction
on coarse meshes relative to alternative higher-order inter-
polation methods. Consequently, using alternative interpola-
tion methods may increase the correlation between the mass
loss predicted by the coarse meshes and that predicted us-
ing the finest mesh. However, we did not explore the use of

alternative interpolation schemes because our results demon-
strate that linear interpolation still produces models that can
be used to produce a computationally efficient MFSE.

5.3 Initial pilot study

This section details the results of the pilot study that we
used to obtain the computational cost, w, of each model
and the pilot statistics, e.g., Eq. (27), needed to construct
ACV estimators. First, we evaluated each of our 13 mod-
els for the same 20 random pilot samples of the model pa-
rameters 2pilot, i.e., 20 different basal friction fields drawn
from the Laplace approximation of the posterior distribution
p(θ |M,y) (Eq. 14). Second we computed the median com-
putational cost (wall time), w, required to solve each model
for one pilot sample. The median computational costs are
plotted in the top panel of Fig. 8, and the total cost of eval-
uating all 13 models was approximately 144 h. Third, using
the pilot samples, we computed the SFMC estimators of the
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Figure 7. (a) The difference between the final and initial ice thickness in meters and (b) the surface velocity of Humboldt Glacier. The
black inset at the bottom of panel (b) is a zoomed-in picture of the top-right tip of the glacier. The black line in the inset was used to plot
cross-sections of the thickness and friction profiles in 2100 in a region with high velocities (see Fig. 14). Both (a) and (b) were generated
using the highest-fidelity model MOLHO∗1 km,9 d evaluated for one random realization of the posterior of the basal friction field.

mean, Eq. (16), and standard deviation, using the square root
of Eq. (17), of the mass change predicted by each of the 13
models. The middle and lower panels of Fig. 8 show that the
means and standard deviations of each model differ. However
in the next section, we show that despite the differences be-
tween the statistics computed using each model and the dif-
ferences between the ice evolution predicted by each model
(see Fig. 14), MFSE was able to effectively increase the pre-
cision of the mean and variance of the mass change relative
to SFMC.

The exact gain in performance achieved by MFSE is de-
pendent on the correlations between each model and the
other pilot quantities needed to compute Cov2 [1,1] and
Cov2 [Q0,1] in Eq. (26). Consequently, in Fig. 9 we plot
the entries of the correlation matrix, Corrπ [f ,f ] with f =
[f0, . . .,fM ]

>. This figure shows that, despite the differences
between each model’s prediction of ice thickness and veloci-
ties at the final time (see Fig. 14), as well as the variations in
the SFMC estimate of the mean and variance computed using
each model, the correlation between each model’s prediction
of the mass change is high.6 However, inspecting the corre-
lation between models can only qualitatively suggest the rel-
ative utility of each model for reducing the error in an MFSE
estimator. Thus, to be more precise, we used Eq. (28) and our
pilot statistics to predict the determinant of the ACV estima-
tor covariance, Det

[
Cov2

[
QACV,QACV

]]
. Specifically, we

made these predictions assuming that a budget of 160 high-
fidelity model evaluations would be allocated to the high-

6The correlation between MOLHO∗1 km,9 d and
MOLHO1 km,36 d, reported in Fig. 9, was not exactly 1. Each
correlation was rounded to four significant digits.

and low-fidelity models. Moreover, this cost was assumed to
be additional to the computational cost of simulating each
model at the pilot samples. We then computed the so-called
variance reductions of the ACV estimator,

R2[Q
µ
ACV] = V2

[
Q
µ
0
]
/V2

[
Q
µ
ACV

]
and

R2[Q
σ 2

ACV] = V2
[
Qσ 2

0

]
/V2

[
Qσ 2

ACV

]
, (29)

by extracting the diagonal elements of the estimator covari-
ance, Cov2

[
QACV,QACV

]
in Eq. (26). To ensure a fair com-

parison, we compared the ACV estimator variance to the
SFMC estimator variance obtained using a computational
budget equivalent to 160 high-fidelity evaluations plus the
computational cost of collecting the pilot model evaluations.

The existing literature assumes that the pilot statistics used
with Eq. (28) are exact; however using a small number of pi-
lot samples can introduce error into the estimator covariance
Cov2

[
QACV,QACV

]
. Moreover, we found that the error in-

troduced by using a small number of pilot samples can be
substantial, yet it is typically ignored in the existing liter-
ature. Consequently, in Fig. 10a we plot the variance reduc-
tion of the ACV estimators of the mean,Qµ

ACV, and variance,
Qσ 2

ACV, of mass loss for 21 different bootstraps of the 20 pi-
lot samples (1 bootstrap was just the original pilot data, and
each bootstrap set contained 20 samples). The plot is cre-
ated by randomly sampling the model evaluations with re-
placement, computing the pilot statistics with those samples,
and solving Eq. (28). Please note that, while we enumerate
over numerous estimators, each with a different variance re-
duction, the variability in the plots is induced entirely by the
bootstrapping procedure we employed. The box plots report
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Figure 8. (a) The median computational cost w (wall time in hours) of simulating each model used in this study for one realization of the
random parameters. (b) The mean mass loss – negative expected mass change (metric gigatons) – in 2100. (c) The standard deviation of the
mass change (metric gigatons) in 2100. Each quantity was computed using 20 pilot samples.

Figure 9. The correlations, Corrπ [f ,f ] with f = [f0, . . .,fM ]
>, between the 13 ice-sheet models considered by this study using 20 pilot

samples.

the largest variance reduction, across all estimators, for each
bootstrapped sample.

The median variance reduction was over 40 for the ACV
estimators of both the mean and the variance of the mass
change. In other words, our initial pilot study predicted that
using ACV estimators would reduce the cost of estimating
uncertainty in projections of the mass change by over a factor
of 40 when compared to SFMC estimators, which only use
the highest-fidelity model. However, the box plots in Fig. 10a
highlight that using only 20 samples introduces a large de-
gree of uncertainty into the estimated variance reduction. The
10 % quantile of the variance reduction for both the mean and
the variance estimators was close to 30.

The estimators obtained by bootstrapping the initial 20 pi-
lot samples not only had different estimator variances (see
Fig. 10a), but also predicted that different model subsets

(combinations of models) are needed to minimize the esti-
mator variance. Figure 10b plots the model subsets chosen
by the bootstrapped estimators and the number of times (fre-
quency) each subset was chosen; the set (0, 9, 10, 12) was
chosen when the original 20 pilot samples were used (boot-
strapping was not used). Moreover, bootstrapping the esti-
mators also revealed that not all models are equally use-
ful when reducing the variance of the ACV estimator. In
some cases, using three models was more effective than us-
ing four models. Specifically, only 8 out of the 13 mod-
els considered were chosen at least once by a bootstrapped
estimator. The models MOLHO1.5 km,36 d, MOLHO2 km,36 d,

SSA1 km,36 d, SSA1.5 km,36 d, and SSA2 km,36 d were never se-
lected by any of the bootstrapped estimators. Moreover, in
some cases only two low-fidelity models were chosen and
in other cases three low-fidelity models were chosen. Lastly,
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Figure 10. (a) The predicted variance reductions R2[Q
µ
ACV] (mean) and R2[Q

σ 2

ACV] (variance) (see Eq. 29), obtained using bootstrapping
of the initial 20 pilot samples. The red lines represent the median estimator variance reductions. The lower and upper whiskers represent the
10 % and 90 % quantiles. Note that two outliers, with values 73 and 125, do not appear on the plot for R[Qσ 2

ACV]. (b) The model subsets
chosen by the bootstrapped estimators using the initial 20 pilot samples.

not only did the chosen model subsets vary between boot-
strapped estimators, but also the type of estimator chosen
varied. In 7 cases, a hierarchical relationship was identified,
and in the other 14 cases, a non-hierarchical relationship was
identified; a non-hierarchical estimator was chosen using the
original 20 pilot samples (the 21st estimator). Recall that a
model ensemble is hierarchical if it can be ordered by bias
or correlation relative to the highest-fidelity model and each
low-fidelity is only used to reduce the variance of the estima-
tor of the next higher-fidelity model in a recursive fashion.

5.4 Secondary pilot study

Upon quantifying the impact of only using 20 pilot samples
on the estimator covariance, Cov2

[
QACV,QACV

]
, and the

model subsets, S, chosen by Algorithm 1, we increased the
number of pilot samples we used to compute the performance
of the ACV estimators. To avoid wasting computational re-
sources in our secondary pilot study, we only evaluated the
eight models selected by at least one bootstrapped estima-
tor on an additional 10 pilot samples. The combined cost
of the initial and secondary pilot study was approximately
197 h, which equated to the equivalent of approximately 47
simulations of the highest-fidelity model. Note that only the
models included in the second pilot were simulated 30 times.
The models only included in the first pilot were simulated 20
times.

Figure 11c plots the variance reductions in the mean and
variance of mass loss, given by R[Qµ

ACV] and R[Qσ 2

ACV], re-
spectively, as the maximum number of models used by the
ACV estimators is increased. Note that an estimator allowed

to choose four models may still choose fewer than four mod-
els, which will happen when some of those models are not
highly informative. Of the final 30 pilot samples, 21 differ-
ent bootstraps were used to quantify the error in the variance
reductions caused by only using a small number of pilot sam-
ples. Comparing Fig. 11c with Fig. 10a, which plots variance
reductions using only 20 pilot samples, we observed that in-
creasing the number of pilot samples decreased the variabil-
ity in the estimator variances. However, increasing the num-
ber of pilot samples also increased the computational cost of
the pilot study, which in turn reduced the reported median
variance reduction. That is, the median variance reductions
obtained using 30 pilot samples (Fig. 11c) were lower than
the median variance reductions reported using 20 pilot sam-
ples (Fig. 10a). This fact can be explained by recalling that
the SFMC estimator variance, e.g., V2

[
Q
µ
0
]
, was obtained

using a computational budget equivalent to 160 high-fidelity
evaluations plus the computational cost of collecting the pi-
lot model evaluations. In contrast, the ACV estimator vari-
ance, e.g., V2

[
Q
µ
ACV

]
, does not depend on the number of pi-

lot samples. Therefore, while increasing the number of pilot
samples decreases the SFMC estimator variance, it does not
decrease the ACV estimator variance. Consequently, increas-
ing the pilot cost reduces the variance reduction achieved by
the ACV estimator.

The median variance reduction decreased because ACV
estimators utilize the pilot samples solely to compute pilot
statistics, such as variance, and do not reuse these samples
for calculating the final statistics. In contrast, an equivalent
SFMC estimator can leverage both the pilot and the exploita-
tion budgets to estimate the final statistics. In other words, the
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Figure 11. The predicted variance reductions, R[QµACV] (mean) and R[Qσ 2

ACV] (variance) (see Eq. 29), of the best ACV estimators obtained
by bootstrapping the final 30 pilot samples while enforcing a limit on the number of models an estimator can use, including the highest-fidelity
model. The red lines indicate the median estimator variance reductions. The lower and upper whiskers represent the 10 % and 90% quantiles.

variance of an SFMC estimator decreases linearly with the
number of pilot samples, whereas the variance of an ACV
estimator does not exhibit the same behavior. Specifically,
the variance of an ACV estimator is only marginally affected
by an increase in the number of pilot samples, as the sample
allocation becomes more optimal.

While increasing the number of pilot samples decreased
variability, we believed that the benefit of further increas-
ing the number of pilot samples would be outweighed by
the resulting drop in the variance reduction. Despite the re-
maining variability in the variance reduction, we were able
to confidently conclude that the MSE of the final ACV esti-
mator we would construct would be much smaller than the
MSE of an SFMC estimator of the same cost because even
the smallest variance reduction was greater than 14. Conse-
quently, we used the 30 unaltered pilot samples to determine
the ACV estimator and its optimal sample allocation, which
we used to construct our final estimates of the mean and vari-
ance of the mass change. The best estimator chosen was an
MFMC estimator that used the three models MOLHO∗1 km,9 d,
MOLHO1 km,36 d, and SSA1.5 km,365 d.

5.5 Multi-fidelity sea-level rise projections

The cost of constructing our final estimator, QACV in
Eq. (23), was equal to the sum of the pilot cost (197.13 h)
and the exploitation cost (160× 4.18) h, which was approxi-
mately 36 d on a single CPU. The pilot cost was the sum of
evaluating all 13 models on the initial 20 pilot samples and 8
models on an additional 10 pilot samples (see Sect. 5.4). The
exploitation cost was fixed at the beginning of the study to the
computational cost equivalent to evaluating the high-fidelity
model 160 times and the median time taken to run a sin-
gle simulation of the glacier for a single realization of basal
friction, being 4.18 h. The number of samples allocated to
evaluating each model by the ACV estimator during the ex-
ploitation phase is shown in Fig. 12. Only two samples of the
high-fidelity model were used. Yet, while running these sim-

ulations only accounted for approximately 1.25% of the total
computational cost budget, these samples ensured the estima-
tors were unbiased with respect to the highest-fidelity model.
In contrast, many more evaluations of the lower-fidelity mod-
els were used. The lower computational costs of these models
and their high-correlation with each other and the highest-
fidelity model were effectively exploited to significantly re-
duce the MSE of the ACV estimator relative to the SFMC
estimator.

We constructed our final estimator of the mean, Qµ
ACV,

and variance, Qσ 2

ACV, of the mass change by evaluating each
model at the number of samples determined by Fig. 12. All
models were evaluated on the same two samples, the two
low-fidelity models were both evaluated on another 351 sam-
ples, and the SSA1.5 km,365 d model was evaluated on another
10 130 samples. The small number of samples allocated to
the highest-fidelity model was due to the extremely high cor-
relation between that model and the model MOLHO1 km,36 d.
This high correlation suggests that the temporal discretiza-
tion error in the highest-fidelity model is smaller than the
spatial discretization error for the ranges of discretizations
used in this study.

Note that the exact number of samples allocated to each
model that we reported is determined by the properties of
the MFMC estimator chosen. However, if another estimator,
for example MLMC, was chosen to use the same models,
the way samples are shared between models would likely
change.7

The mean and standard deviation computed using the best
ACV estimator were −639.06± 0.23 and 17.68± 6.67 Gt,
respectively. It is clear that with our budget, we were able
to confidently estimate the expected mass change in the year
2100. However, our estimates of the standard deviation in
the mass change were less precise. We could improve the

7Of the 10 130 SSA1.5 km,365 d model simulations, 37 failed, so
an additional 37 simulations at new random realizations of the fric-
tion field were run.
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Figure 12. The optimal number of samples (number inside rectangles), computed using Eq. (28), required by the best ACV estimator to
simulate each model.

precision of both estimated statistics by further increasing
the exploitation budget; however, we choose not to do so,
as our results emphasize that estimating high-order statistics,
such as variance, is more computationally demanding than
estimating a mean. Moreover, the precision requirements of
a UQ study should be determined by the stakeholders, who
will use the uncertainty estimates to make decisions.

The left panel of Fig. 13 plots the time evolution of mass
loss predicted by the three models selected by our final ACV
estimator. The right panel plots the distribution of mass loss
in the final year, 2100, computed using the SSA1.5 km,365 d
model. The bias in the SSA1.5 km,365 d is clear in both plots;
for example, in the right panel the mean of the blue dis-
tribution is not close to the mean computed by the ACV
estimator. However, we must emphasize that, by construc-
tion, the ACV estimate of the mean mass loss, as well as
its variance, is unbiased with respect to the highest-fidelity
model MOLHO1 km,9 d. We also point out that while our
Laplace approximation of the posterior is a Gaussian distri-
bution that is obtained by linearizing the steady-state obser-
vational model, the push forward of this distribution through
the SSA1.5 km,365 d model is not a Gaussian distribution; the
right tail of the push-forward density is longer than the left
tail. This indicates that the QOIs are nonlinearly dependent
on the model parameters. We were unable to compute rea-
sonable push-forward densities with the simulations obtained
from the other two models used to construct the ACV estima-
tor due to an insufficient number of simulations. However,
we believe it is reasonable to assume that the parameter-to-
QoI map of these models is also nonlinear.

6 Discussion

The cost of constructing our final estimator was equal to
the pilot cost and the exploitation cost, totaling 197.13+

(160× 4.18) h, or approximately 36 d. Additionally, the me-
dian variance reduction obtained by the bootstrapped estima-
tors was V2

[
Q
µ
0
]
/V2

[
Q
µ
ACV

]
= 38.24 for estimating the

mean and V2
[
Q
µ
0
]
/V2

[
Qσ 2

ACV

]
= 28.91 for estimating the

variance of the mass change. Achieving the same precision
with SFMC estimators using only the highest-fidelity model
would require approximately 28.91× 160× 4.18h= 805 d.
This calculation used the smallest variance reduction moti-
vated by the observation that high-fidelity simulation data
can be used to compute both the mean and the variance. Thus,
MFSE reduced the cost of estimating uncertainty from over
2.5 years of CPU time to just over a month, assuming the
models are evaluated in serial order. Note that while apply-
ing MFSE to Humboldt Glacier took over a month of serial
computations, the clock time needed for MFSE can be sub-
stantially reduced because MFSE is embarrassingly parallel.
Each simulation run in the pilot stage can be executed in par-
allel without communication between them. Similarly, in the
exploitation phase, each simulation can also be computed in
parallel. Consequently, while using MFSE for continental-
scale UQ studies may require years of serial CPU time, dis-
tributed computing could substantially reduce this cost, po-
tentially by 1 to 2 orders of magnitude. The exact reduction
would depend on the number of CPUs used and the scalabil-
ity of the computational models.

While the highest-fidelity model, MOLHO, was capable
of capturing ice-sheet dynamics that the SSA model was not
– that is vertical changes in the horizontal velocities (Fig. 14
shows the different ice thicknesses predicted at the final time
by the MOLHO and SSA model) – the best ACV estima-
tor was still able to use the simplified physics of SSA to re-
duce the MSE of the best ACV estimator. Moreover, the best
ACV estimator also used evaluations of the SSA model on
a coarse mesh, which failed to resolve all the local features
of the friction and ice-sheet flow field (see Fig. 14) and did
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Figure 13. (a) The evolution of mass loss predicted by the three models we used in our final ACV estimator, corresponding to each of the
simulations used to construct the estimator. (b) The probability of mass loss computed using the SSA1.5 km,365 d model. The vertical black
line represents the ACV estimate of the mean, while the gray-shaded region represents plus and minus 2 standard deviations, again computed
by the ACV estimator.

not conserve mass, unlike the highest-fidelity model. This
result demonstrates that, provided there is high correlation
between the model predictions of a QoI, MFSE can be effec-
tive when there is high correlation between the model predic-
tions of a QoI, even when the model states vary differently
across time and space for a single realization of the random
model parameters. Moreover, future MFSE studies may ben-
efit from using not only low-fidelity models derived from dif-
ferent physics assumptions and numerical discretizations but
also those based on data-driven models, such as machine-
learning operators (He et al., 2023; Lowery et al., 2024) or
adjoint-based linearizations (Recinos et al., 2023). However,
if such models are used, the computational cost of construct-
ing them must also be considered (Peherstorfer, 2019), just
as we accounted for the pilot cost in this study.

Our study used a high-dimensional representation of the
basal friction field capable of capturing high-frequency
modes. However, previous studies have commonly used
lower-dimensional parameterizations (Nias et al., 2023; Ritz
et al., 2015; Schlegel et al., 2018; Jantre et al., 2024). Conse-
quently, we investigated the impact of using a low-frequency,
low-dimensional representation of the friction field on the
efficiency of ACV estimators applied to ice-sheet models.
Specifically, we estimated the mean and variance of the mass
change using a 10-dimensional Karhunen–Loève expansion
(KLE) to represent the posterior uncertainty in the basal fric-
tion field (complete details are presented in Appendix B). We
found that using the low-dimensional KLE smoothed realiza-
tions of the basal friction, which in turn drastically improved
the variance reduction in MFSE to over a factor of 200. How-
ever, only using 10 modes to represent the basal friction
caused the variance of the mass change to be substantially
underestimated. Recinos et al. (2023) also demonstrated that

lower-dimensional parameterizations can result in mislead-
ing estimates. Consequently, while low-dimensional repre-
sentations of friction enable faster UQ, the results may be
misleading. Thus, future research is needed to balance the
increased bias introduced by the low-dimensional parame-
terization with the improved variance reduction properties of
an ACV estimator.

This study emphasizes that the relative effectiveness of
ACV estimators – such as MLMC, MFMC, and ACVMF
– is problem dependent. Although each MFSE algorithm in
the literature has its own theoretical advantages and disad-
vantages, it is often difficult to determine which will be the
most effective at the onset of a study. Indeed, several types
of estimators enumerated by this study yielded estimates of
the mean and variance of the mass change with similar pre-
cision. For example, Fig. 11a, b, and c show that while using
three models is clearly better than using two, there is little,
if any, marginal benefit in moving from three to four mod-
els, as indicated by the size of the box plots. Moreover, it is
difficult to determine a priori the numerical discretizations
and model physics needed by a model ensemble to produce
an ACV estimator with the smallest MSE. Consequently, we
used a small pilot sample to compute the correlation between
model outputs and then used the analytical properties of ACV
estimators to predict the MSE of each estimator produced by
popular MFSE algorithms.

While pilot studies are required for ACV methods, our re-
sults suggest that using a small number of pilot samples can
introduce non-trivial variability into the optimal sample al-
location used by ACV estimators. Consequently, we intro-
duced a novel two-step bootstrapping procedure to quantify
the impact of a small number of pilot samples. While our
two-step procedure was able to down-select from a large set

Earth Syst. Dynam., 16, 513–544, 2025 https://doi.org/10.5194/esd-16-513-2025



J. D. Jakeman et al.: Multi-fidelity UQ in projections of ice-sheet mass change 535

Figure 14. (a) The basal friction, β, along the cross-section (black line) depicted in the right panel of Fig. 7. (b) The difference between the
thickness fields simulated by the MOLHO∗1 km,9 d model and the SSA1.5 km,365 d along the same cross-section.

of possible models, further research is needed to develop al-
gorithms that can efficiently conduct pilot studies involving
a large numbers of models. Furthermore, it is essential that
new algorithms balance the computational cost of computing
the correlation between models with the impact of the error
in the estimated correlations when determining the optimal
MSE of an ACV estimator.

Our study predicted the mean and standard deviation of
mass change (in metric gigatons) from Humboldt Glacier
to be −639.06 and 17.68, respectively. However, the ex-
act values of these statistics were impacted by our mod-
eling choices. First, we only quantified uncertainty due to
unknown basal friction, which ignores other contributions
to mass-loss variability arising from uncertain climate and
ice-sheet processes such as iceberg calving, subglacial hy-
drology, and submarine melting. Including these processes
would have likely affected both the mean and the variance of
the mass change. Indeed, our predicted mass loss is signif-
icantly less than in two recent studies of Humboldt Glacier
(Hillebrand et al., 2022; Carr et al., 2024) due to our use of
a low-emissions climate scenario and our neglect of ocean
forcing. Moreover, introducing more complicated physics in
the highest-fidelity model, such as calving, could degrade the
performance of MFSE. For example, ice melt at the bound-
ary can induce strong dynamical responses in a marine-
terminating glacier, which could potentially reduce the cor-
relation with models that do not capture this phenomenon.
However, despite our imperfect description of uncertainty,
we believe our study reflects the challenges of a more com-
prehensive study while still facilitating a computationally
feasible investigation of MFSE methods.

This study focused on investigating the efficacy of using
MFSE to accelerate the quantification of parametric uncer-
tainty using deterministic ice-sheet models. We did not quan-
tify the uncertainty arising from model inadequacy. Recently

Verjans et al. (2022) attempted to quantify model uncertainty
by developing stochastic ice-sheet models designed to sim-
ulate the impact of glaciological processes, such as calving
and subglacial hydrology, that exhibit variability that cannot
be captured by the spatiotemporal resolution typically em-
ployed by ice-sheet models. The MFSE algorithms presented
in this paper can be applied to such stochastic models by
sampling the model parameters and treating the stochasticity
of models as noise. However, the noise typically reduces the
correlation between models and thus the efficiency of MFSE
(Reuter et al., 2024). Moreover, this study only focused on
estimating the mean and variance of mass change. Conse-
quently, the efficacy of MFSE may change when estimating
statistics – such as probability of failure, entropic risk, and
average value at risk (Rockafellar and Uryasev, 2013; Jake-
man et al., 2022) – to quantify the impact of rare instabilities
and feedback mechanisms in the system. We anticipate that
larger numbers of pilot samples than the number used in this
study will be needed to estimate such tail statistics, poten-
tially reducing the efficiency of MFSE.

Many recent studies have conducted formal uncertainty
quantification of projections of ice-sheet change consider-
ing numerous sources of uncertainty, such as climate forc-
ing, iceberg calving, basal friction parameters, and ice vis-
cosity, although these generally deal with scalar parame-
ters, such as a single calving threshold stress (Aschwanden
and Brinkerhoff, 2022; Jantre et al., 2024) or scalar adjust-
ment factors to basal friction and ice viscosity fields (Nias
et al., 2023; Felikson et al., 2023; Jantre et al., 2024). How-
ever, recently, automatic differentiation has been used to lin-
earize the parameter-to-QoI map of an SSA model, facili-
tating the computationally efficient quantification of uncer-
tainty caused by high-dimensional parameterizations of basal
friction and ice stiffness (Recinos et al., 2023), Additionally,
other UQ studies have primarily relied on a large number
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of simulations from a single low-fidelity model (e.g., Nias
et al., 2019; Bevan et al., 2023), sometimes with informal
validation using a small number of higher-fidelity simula-
tions (e.g., Nias et al., 2023), or on the construction of surro-
gate models to sufficiently sample the parameter space (e.g.,
Bulthuis et al., 2019; Berdahl et al., 2021; DeConto et al.,
2021; Hill et al., 2021; Aschwanden and Brinkerhoff, 2022;
Jantre et al., 2024). Furthermore, another set of studies quan-
tified the uncertainty associated with the use of many dif-
ferent numerical models – termed an “ensemble of oppor-
tunity” – which includes a wide range of modeling choices
that sample parameter values and model fidelity in an unsys-
tematic manner (Edwards et al., 2021; Seroussi et al., 2023;
Van Katwyk et al., 2023; Yoo et al., 2024). While this study
is limited in scope because it focuses on solely estimating
parametric uncertainty induced by basal friction variability,
our results demonstrate that even when low-fidelity ice-sheet
models do not capture the flow features predicted by higher-
fidelity models, they can still be effectively utilized by MFSE
methods to reduce the cost of quantifying high-dimensional
parametric uncertainty in ice-sheet model predictions. Con-
sequently, low-fidelity models, when used with MFSE meth-
ods, may be able to substantially reduce the computational
cost of future efforts to quantify uncertainty in the projection
of the mass change from the entire Greenland Ice Sheet and
entire Antarctic Ice Sheet.

7 Conclusions

Mass loss from ice sheets is anticipated to contribute
O(10) cm to sea-level rise in the next century under all
but the lowest-emission scenarios (Edwards et al., 2021).
However, projections of sea-level rise due to ice-sheet mass
change are inherently uncertain, and quantifying the impact
of this uncertainty is essential for making these projections
useful to policymakers and planners. Unfortunately, accu-
rately estimating uncertainty is challenging because it re-
quires numerous simulations of a computationally expensive
numerical model. Consequently, we evaluated the efficacy of
MFSE for reducing the computational cost of quantifying un-
certainty in projections of mass loss from Humboldt Glacier,
Greenland.

This study used MFSE to estimate the mean and the vari-
ance of uncertain mass-change projections caused by un-
certainty in glacier basal friction using 13 different models
of varying computational cost and fidelity. While ice sheets
are subject to other sources of uncertainty, focus was given
to basal friction because its inherently high dimensionality
typically makes quantifying its impact on the uncertainty in
model predictions challenging. Yet, despite this challenge,
we found that for a fixed computational budget, MFSE was
able to reduce the MSE in our estimates of the mean and
variance of the mass change by over an order of magnitude

compared to an SFMC-based approach that just used simula-
tions from the highest-fidelity model.

In our study, we were able to use MFSE to substantially re-
duce the MSE error in the statistics by exploiting the correla-
tion between the predictions of the mass change produced by
each model. However, it was not necessary to use simulations
from all of the models to reduce the MSE. Indeed, the MFSE
algorithm determined that only three models (including the
highest-fidelity model) were needed to minimize the MSE
in the statistics given our computational budget. The low-
fidelity models selected (1) used simplifications of the high-
fidelity model physics, (2) were solved on coarser-resolution
spatial and temporal meshes, and (3) were solved without the
requirement of mass conservation. These simplifications re-
sult in significant computational cost savings relative to use
of the high-fidelity model alone. This result demonstrated
that MFSE can be effective even when the lower-fidelity
models are incapable of capturing the local features of the
ice-flow fields predicted by the high-fidelity model. More-
over, while the utility of the lower-fidelity models ultimately
chosen for MFSE was not clear at the onset of the study, we
were still able to estimate uncertainty at a fraction of the cost
of single-fidelity MC approaches. This was achieved despite
the need to conduct a pilot study that evaluated all models a
small number of times.

Finally, this study demonstrated that MFSE can be used
to reduce the computational cost of quantifying parametric
uncertainty in projections of a single glacier, which sug-
gests that MFSE could plausibly be used for continental-
scale studies of ice-sheet evolution in Greenland and Antarc-
tica. However, the predicted mean mass loss from Humboldt
Glacier that we reported should be viewed with caution, as
the length scales of the prior distribution we employed for
the uncertain basal friction field were not finely tuned, e.g., as
done by Recinos et al. (2023), due to the computational ex-
pense of such a procedure. Since the length scales of basal
friction are very difficult to determine a priori, the poten-
tially over-informative length scales used in this paper could
substantially impact the posterior mass loss estimates. Future
research should address this issue and increase the complex-
ity of this study in two further directions. First, future studies
should include additional sources of ice-sheet uncertainty be-
yond the basal friction field studied here, for example uncer-
tain surface mass balance and ocean forcing. Second, future
studies should include the use of model fidelities that cap-
ture additional physical processes such as calving, fracture,
and ocean-forced melting. Consequently, while our findings
should be interpreted with caution given the aforementioned
limitations, they encourage future studies to utilize MFSE
for reducing the cost of computing probabilistic projections
of sea-level rise due to ice-sheet mass change.
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Appendix A: Low-rank Laplace approximation

Following Bui-Thanh et al. (2013) and Isaac et al. (2015),
we computed the covariance of the Laplace approximation of
the posterior distribution of the friction parameters (Eq. 14)
using

6post =
(

HMAP+6
−1
prior

)−1
= L

(
L>HMAPL+ I

)−1
L>,

where HMAP is the Hessian of 1
2 (y−g(θ ))>6−1

noise(y−g(θ ))

at θ = θMAP; L=K−1M
1
2 ; and the entries of K and M are

defined in Eqs. (10) and (11), respectively.
Drawing samples from this Gaussian posterior is compu-

tationally challenging because the posterior covariance 6post
depends on the Hessian HMAP, which is a high-dimensional
dense matrix. Consequently, following Bui-Thanh et al.
(2013) and Isaac et al. (2015), we constructed a low-rank ap-
proximation of the prior-preconditioned Hessian L>HMAPL
using matrix-free randomized methods that require only mul-
tiplications of the Hessian with random vectors. Specifically,
computing a spectral decomposition of

L>HMAPL= U3U>, (A1)

with U orthogonal and 3 diagonal matrices and noting

6post = L
(

U3U>+ I
)−1

L>

= L
(

U(3+ I)U>
)−1

L> = LU(3+ I)−1U>L>,

we factorized 6post as

6post = TT>,

T= LU(3+ I)−
1
2 U> = LU

(
(3+ I)−

1
2 − I

)
U>+L.

In order to perform a low-rank approximation of the ma-
trix T, we truncated the spectral decomposition of W=
U
(

(3+ I)−
1
2 − I

)
U> by discarding the eigenvalues λi such

that
∣∣∣1− 1

√
λi+1

∣∣∣� 1. This ensured that the low-rank approx-
imation of T approximated T well in the spectral-norm sense.
The eigenvalues and two eigenvectors of the spectral decom-
position we computed are depicted in Fig. A1.

We computed the truncated spectral decomposition us-
ing randomized algorithms (see Hartland et al., 2023; Halko
et al., 2011) implemented in PyAlbany; see Liegeois et al.
(2023). The algorithms used were matrix-free and only re-
quired the multiplication of L>HMAPL with vectors. More-
over, as described in Hartland et al. (2023) and Isaac et al.
(2015), the multiplication of the Hessian with a vector re-
quired solving two adjoint systems of the flow model. Sim-
ilarly, the multiplication of the matrix L with a vector re-
quired the solution of the two-dimensional linear elliptic sys-
tem with matrix K , defined in Eq. (10). Consequently, we

were able to efficiently draw samples from the posterior dis-
tribution of the friction parameters using

θpost = θMAP+Tn, n∼N (0,I).
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Figure A1. (a) Eigenvalues λi of the prior-preconditioned Hessian, computed by solving Eq. (A1) and (b, c) its eigenvectors associated
with the (b) largest and (c) third-largest eigenvalue. Note that similarly to Isaac et al. (2015), we plot the eigenvectors Vi = LUi that are
orthonormal with respect to the prior-induced dot product; that is, V>

i
6−1

priorVj = δij .

Appendix B: Low-dimensional representation of
basal friction using a Karhunen–Loève expansion

In our main study we found that when using a high-
dimensional representation of the uncertainty in the basal
friction field, bootstrapped ACV estimators rarely chose to
use models that had coarse spatial meshes relative to the
mesh used by the high-fidelity model. This was likely due to
the fact that our high-dimensional representation of the fric-
tion uncertainty was constructed on the high-fidelity mesh
and interpolated onto coarser meshes. To verify this hypoth-
esis, we investigated using a lower-dimensional representa-
tion of the friction field based on a Karhunen–Loève expan-
sion (KLE) of the friction field that smoothed out the high-
frequency variations in the posterior samples of the friction
field we used in our main study.

B1 Construction of the KLE

In our investigations we used a KLE,

θ = θMAP+

D∑
i=1

√
λiψi ηi, ηi ∼N (0,1), (B1)

to provide a low-dimension representation of the Laplace ap-
proximation of the posterior of the log basal friction field.
We computed the eigenvalues λi and the orthonormal eigen-
vectors ψi by solving the eigenvalue problem,

6postψi = λiψi, (B2)

using the randomized matrix-free methods of Hartland et al.
(2023) and Halko et al. (2011).

While a KLE basis could have been constructed on any of
the four meshes we considered, in this study we solved the
discretized eigenvalue problem using the finest mesh. The
1st, 2nd, and 10th modes of the KLE used in this study are
depicted in Fig. B1. Note that unlike what is typically seen
when constructing a KLE of a field with a pointwise variance
that is constant across the domain, the low-frequency KLE
modes constructed here are localized where the posterior un-
certainty is highest. The finite-element basis on the finest
mesh was then used to interpolate the KLE basis from the
fine mesh onto the coarser meshes. This procedure ensured
that varying the coefficients of the KLE basis (the random
parameters of the model) would affect each model similarly
regardless of the mesh discretization employed. Similarly to
the KLE basis, the mean of the log KLE field (taken to be the
mean of the Laplace approximation) was computed on the
finest mesh.

Figure B2 compares a realization of the log of the basal
friction perturbation (mean zero) drawn from the Laplace
approximation of the posterior and a random realization of
the log of the basal friction perturbation computed using the
KLE. It is clear that the KLE smooths out much of the high-
frequency content present in the realization drawn from the
Laplace approximation of the posterior.
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.

Figure B1. From (a) to (c), the 1st, 2nd, and 10th modes of the KLE (Eq. B1) used in this study, computed using Eq. (B2)

Figure B2. (a) The mean of the log of the basal friction, θMAP in Eq. (13). (b) A random realization of the log of the basal friction drawn
from the Laplace approximation of the posterior p(θ |M,y)∼N (θMAP,6post). (c) A random realization of the log of the 10-dimensional
basal friction computed using the KLE approximation (Eq. B1) of the posterior.

B2 Pilot study

In this section, we detail the pilot study we undertook to
investigate the impact of using a low-dimensional KLE to
represent friction when using MFSE to estimate statistics of
mass change. We did not move beyond the pilot study to
compute the values of the statistics to limit the computational
cost of this supplementary study.

First, we evaluated each of our 13 models at 20 random
pilot samples of the KLE. Second we computed the pilot
statistics needed to find the best ACV estimator. Third we
bootstrapped the pilot samples to estimate the median and
confidence intervals on the variance reduction obtained by
the best ACV estimator.

The mean and variance bootstrapped variance reduction
are depicted in Fig. B4. The variance reductions reported are
almost an order-of-magnitude larger than those reported for
MFSE based on the Laplace approximation of the posterior.
This improved performance is because correlations between
the models (Fig. B3) are significantly higher than the corre-
lations obtained when sampling from the Laplace approxi-
mation of the posterior (Fig. 9). However, the KLE represen-
tation underestimates the uncertainty in the predicted mass
change at 2100. Specifically, the standard deviation of the
mass change computed using 20 pilot samples of the highest-
fidelity model using the Laplace approximation of the poste-
rior is significantly higher than the standard deviation com-
puted using the KLE (see Fig. B5).
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Figure B3. The correlations, Corrπ [f ,f ] with f = [f0, . . .,fM ]
>, between the 13 ice-sheet models considered by this study using 20 pilot

samples of the KLE and Eq. (B1).

Figure B4. The predicted variance reductions R2[Q
µ
ACV] (mean) and R2[Q

σ 2

ACV] (variance) (see Eq. 29), obtained using bootstrapping of
the 20 pilot samples of the KLE (Eq. B1). The red lines represent the median estimator variance reductions. The lower and upper whiskers
represent the 10 % and 90 % quantiles.

Figure B5. (a) The mean, Qµ0 (2pilot), and (b) standard deviation,
√
Qσ

2
0 (2pilot), computed using 20 pilot samples from the Laplace

approximation of the posterior and the KLE.
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