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Abstract. The eventual planetary warming in response to elevated atmospheric carbon dioxide concentrations
is not precisely known. The uncertainty in climate sensitivity (S) primarily results from uncertainties in net phys-
ical climate feedback, usually denoted as λ. Multiple lines of evidence can constrain this feedback parameter:
proxy-based and model evidence from past equilibrium climates; process-based understanding of the physics un-
derlying changes; and recent observations of temperature change, top-of-the-atmosphere energy imbalance, and
ocean heat content. However, despite recent advances in combining these lines of evidence, the estimated range
of S remains large. Here, using a Bayesian framework, we discuss three sources of uncertainty – uncertainty
in the evidence, structural uncertainty in the model used to interpret this evidence, and differing prior knowl-
edge and/or beliefs – and show how these affect the conclusions we may draw from a single line of evidence.
We then propose strategies to combine multiple lines of evidence. We end with three recommendations. First,
we suggest that a Bayesian random-effects meta-analysis be used to estimate the evidence and its uncertainty
from the published literature. Second, we advocate that the organizers of future assessments clearly specify an
interpretive model or a group of candidate models and, in the latter case, use Bayesian model averaging to more
heavily weight models that best fit the evidence. Third, we recommend that expert judgment be incorporated via
solicitations of priors on model parameters.

1 Introduction

When radiative forcing (1F ) is applied to the climate sys-
tem, it induces a radiative imbalance (1N ) at the top of the
atmosphere and a response (1R) of the system itself. To
first order, 1R = λ1T , where 1T is the change in global
mean surface temperature. The feedback parameter (λ) thus
measures the additional radiative flux density exported to
space per unit of temperature change. On sufficiently long
timescales, the climate comes into equilibrium (1N = 0),
internal variability is negligible, and we can write a simple
energy balance model (denoted M0) for the climate system.
M0 is expressed as follows:

1N =1F + λ1T . (1)

In the special case where radiative forcing results from a dou-
bling of atmospheric CO2 relative to its preindustrial concen-

tration of 280 ppm (1F = F2×CO2 ), the resulting tempera-
ture change defines the equilibrium climate sensitivity (S),
expressed as

S ≡−
F2×CO2

λ
. (2)

S is often used as a metric to quantify expected warming in
response to radiative forcing but has remained stubbornly
uncertain, even as climate models have improved and be-
come more sophisticated. A 2020 community assessment
(Sherwood et al., 2020, hereafter referred to as S20) reduced
this range using multiple lines of evidence, but the recent
Intergovernmental Panel on Climate Change (IPCC) report
(Forster, 2021) assessed only “medium confidence” in the
upper bound. Is it possible to further narrow the estimated
range of S, and can we increase our confidence in this result?
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S is determined by the net feedback (λ) at equilibrium and
in response to doubled CO2. While this is unobservable in
the current system, in which CO2 has not yet doubled and is
out of equilibrium, several lines of evidence exist that might
constrain λ. We have some process-based understanding of
individual feedback processes and their correlations, derived
from observations and basic physics. We also have evidence
from the planet itself, which has been steadily warming in
response to net anthropogenic forcing, including emissions
of not just CO2 but also other greenhouse gases and aerosols.
Finally, we have proxies that provide evidence about equilib-
rium climates of the past. S20 attempted to synthesize these
three lines of evidence, arriving at constraints on climate sen-
sitivity that narrowed the former range.

In S20, the spread in S arose from reported and assessed
uncertainty in historical observations and paleoclimate re-
constructions, expert judgment about the uncertainty in phys-
ical processes, and the use of different priors on λ and/or S.
The IPCC’s Sixth Assessment Report (AR6) assessed con-
fidence in the range of S based on support from individual
lines of evidence, and the medium confidence assessed was
in large part due to the fact that not all lines of evidence
supported the same upper bound. By contrast, S20 sought
to provide a robust estimate by combining lines of evidence
in a coherent Bayesian framework. However, S20 used base-
line priors and estimates of the evidence and investigated the
impact of alternate choices as sensitivity tests, rather than at-
tempting to combine multiple priors, estimates, and expert
judgments into a single posterior probability distribution. In
both the IPCC’s AR6 and S20, as in almost all previous as-
sessments, the means by which disagreements among experts
were resolved or handled were not necessarily made trans-
parent. This paper presents some lessons learned by two au-
thors of S20 and attempts to chart a way forward.

Our goal is to understand where unavoidable subjective
decisions enter into the analysis and to present a frame-
work for systematically and fairly incorporating the subjec-
tive judgments of multiple experts. Ultimately, we seek to
create a framework in which expert judgment is incorporated
in the form of clearly specified priors.

The paper is organized as follows. In Sect. 2, we review
the basic Bayesian analysis framework. Sections 3, 4, and
5 discuss uncertainty in the evidence, structural uncertainty,
and prior uncertainty, respectively. In these sections, we use
a single line of evidence – paleoclimate estimates from the
Last Glacial Maximum – to illustrate how these sources of
uncertainty shape estimates of climate feedbacks and sensi-
tivity. In Sect. 6, we show how these sources of uncertainty
affect constraints derived from multiple lines of evidence. In
Sect. 7, we propose a new method for combining multiple
published studies and multiple models, which may be used
in the future to arrive at a robust community assessment of
climate sensitivity. Finally, we discuss possible generaliza-
tions and extensions.

2 Analysis framework

Bayes’ theorem can be written as

P (2|Y,M)=
P (Y |2,M)P (2|M)

P (Y |M)
. (3)

Here, we will define these terms as they apply to the problem
of estimating climate sensitivity.

Evidence. The evidence (Y ) used to constrain climate sen-
sitivity consists of the global mean temperature change
(1T ) in response to forcing (1F ), as well as, in non-
equilibrium states, the net energy imbalance (1N ). We
have estimates of these quantities for the historical pe-
riod (derived from observations and models) and for
past climate states (derived from paleoclimate prox-
ies and models); therefore, Y consists of multiple lines
(Y1. . .Yn). For example, S20 used process-based under-
standing of underlying physics, recent observations, and
proxy-based reconstructions of past climates to assess
S.

Model. The model (M) codifies how we interpret the evi-
dence (Y ). It specifies the set of parameters (2) whose
posterior distributions we estimate. For example, in the
simple energy balance model, denoted by M0, there is
only one parameter, 2= λ. The model determines the
likelihood P (Y |2,M) of observing the data given a par-
ticular set of parameter values (2). We discuss methods
for calculating this likelihood in Sect. 3.1.

Prior. The prior probability distribution P (2|M) reflects
prior beliefs or knowledge about the set of model pa-
rameters (2). For example, in the simple modelM0, the
S20 community assessment adopted a uniform prior on
λ as a baseline choice, choosing not to rule out net pos-
itive feedbacks (and, therefore, an unstable climate) a
priori. Both the geological evidence and the process un-
derstanding presented in Sect. 3 of S20 effectively rule
out both positive and extremely negative feedbacks, and
thus an alternate prior reflecting this physical knowl-
edge might be a normal distribution, denoted N (µ,σ ),
with a mean of µ=−1.30 and a standard deviation of
σ = 0.44.

This framework allows us to use our prior understanding
of the parameter values to calculate the posterior probability
P (2|Y,M) of the model parameters given the evidence. This
posterior can be updated as new evidence becomes available.

Bayesian statistics are both praised and criticized for their
inherent subjectivity (see, e.g., Gelman et al., 1995). But
all statistical analyses depend on prior knowledge and in-
terpretive models, whether they are implicit or explicit. The
Bayesian framework merely makes clear where unavoidable
subjective decisions enter the analysis.
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Figure 1. Schematic of unavoidable subjective decisions in an analysis of climate feedbacks.

Figure 1 summarizes the decisions that must be made in
any Bayesian analysis of climate feedbacks. First, the an-
alyst must decide what constitutes evidence. This requires
an assessment of the literature evaluating 1T , 1F , and 1N
for each line of evidence. Second, the analyst must specify
a model (and its set of parameters, 2) in order to interpret
that evidence. For example, the model M0 assumes that the
feedback parameter is time- and state-independent, and thus
estimating the parameter from the past provides a reliable
guide to the hypothetical future under doubled CO2. Finally,
the analyst must clearly specify their priors on the model pa-
rameters.

In the following sections, we show how different reason-
able choices about evidence, models, and priors can lead to
very different posterior distributions for λ (and hence for cli-
mate sensitivity, S) given a single line of evidence.

3 Evidence uncertainty

The strongest constraints on equilibrium climate sensitivity
in S20 were derived from paleoclimate evidence, with the
closest equilibrium climate to that of the present being the
Last Glacial Maximum (LGM), approximately 21 000 years
ago. Reconstructions (Annan and Hargreaves, 2013; Bere-
iter et al., 2018; Friedrich et al., 2016; Holden et al., 2009;
von Deimling et al., 2006; Shakun et al., 2012; Snyder, 2016)
or model-based estimates (Braconnot et al., 2012; Kageyama
et al., 2021) of the global mean temperature change (1T ) and
radiative forcing (1F ) have been used to calculate the global
mean feedback (λ) inferred from this period. Neither of these
observed quantities is precisely known. For example, mul-
tiple seemingly incompatible estimates of the LGM global
mean cooling (1T ) are available in the published literature
(Annan and Hargreaves, 2013; Holden et al., 2009; Shakun
et al., 2012; von Deimling et al., 2006; Friedrich et al., 2016;
Hansen et al., 2023; Annan et al., 2022; Bereiter et al., 2018;
Snyder, 2016; Kageyama et al., 2021). These estimates are
derived from climate models participating in the Paleocli-
mate Modelling Intercomparison Project (PMIP; Kageyama
et al., 2021), as well as from combinations of models and
various proxies, and are often in conflict with one another.

We will illustrate the impact of this uncertainty by com-
paring the evidence used in two recent studies. S20 used ex-
pert judgment applied to a literature review to estimate1T =

−5 K, with a 95 % confidence interval of −3.0 to −7.0 K.
However, a contemporaneous study using a new temperature
reconstruction (Tierney et al., 2020, hereafter referred to as
T20) estimated both colder values (with a mean of −6.1 K)
and less uncertain values (with a 95 % highest posterior den-
sity interval of −6.5 to −5.7 K) for LGM cooling. We note
that the two studies are not exactly comparable: S20 repre-
sents a community assessment of evidence that took into ac-
count a broad range of evidence and uncertainties, whereas
T20 was a single study. The temperature estimates in T20
may also be cold biased and overconfident due to the reliance
on a prior derived from a single climate model (Annan et al.,
2022). However, in order to illustrate evidence uncertainty,
we here treat S20 and T20 as different reasonable estimates
of 1T and 1F over the LGM. We discuss methods for in-
corporating estimates, such as those from T20, into expert
assessments in Sect. 7.1.

The two studies, S20 and T20, also differ in their esti-
mates of the radiative forcing that led to this temperature
change. Both agree that it was colder 21 000 years ago be-
cause a change in orbital forcing, while negligible with re-
spect to the global mean, led to the development of large,
reflective ice sheets in the Northern Hemisphere and lower
levels of atmospheric greenhouse gases. The forcings associ-
ated with orbital changes (Kageyama et al., 2021) and CO2
(Siegenthaler et al., 2005) are relatively well constrained; the
forcings from other well-mixed greenhouse gases (Louler-
gue et al., 2008) and ice sheets are less so, but they are still
informed by proxy and model evidence. The forcings from
dust (Mahowald et al., 2006; Albani and Mahowald, 2019),
other aerosols, and vegetation (Köhler et al., 2010) are highly
uncertain. While S20 estimated total radiative forcing at the
LGM to be N (−8.43, 2) W m−2, T20 uses a best estimate
of −46.8 W m−2, with a 95 % confidence interval of −9.6 to
−5.2 W m−2.

The contour lines in Fig. 2a show the joint probability dis-
tribution ρ(1T,1F ) (assuming uncorrelated errors) as re-
ported by S20 (black) and T20 (red). Rather than comprising
exact measurements of the temperature change and radiative
forcing, our evidence (Y ) consists of estimates of the joint
probability density ρ(1T,1F ).
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3.1 Calculating the likelihood

The likelihood of observing this probability density for any
given value of the feedback parameter (λ) is determined by
the model, which dictates the relationship between λ, 1T ,
and 1F . For example, the simple energy balance model M0
constrains all possible pairs of 1T and 1F to lie along a
line with a slope of −λ. Intuitively, the value of −λ that
maximizes the likelihood is the slope of the line that passes
through the greatest probability density. These maximum
likelihood estimates are indicated by straight lines in Fig. 2a.

We therefore define the likelihood of ρ(1T,1F ) for any
λ value as the probability mass along the curve (C), as de-
scribed by the energy balance model with a fixed λ value.
This definition is written as follows:

P (Y |λ)∝
∫
C

ρ(1T,1F )ds,

where C is the curve defined by 1F + λ1T = 0. If the
joint evidence is a multivariate normal distribution (as it is
in S20), this leads to an exact analytic expression for P (Y |λ)
(Appendix A). Otherwise, the integral can be computed nu-
merically. The resulting likelihood functions are indicated by
thick lines in Fig. 2b.

3.2 Climate sensitivity estimates depend on the
evidence

Clearly, the constraints placed on the climate feedback by
the Last Glacial Maximum depend on our estimates of the
temperature difference and radiative forcing that caused it.
Using S20 evidence, this energy balance model, and a uni-
form prior (P (λ)= U (−10,10)), we find that the most likely
value of the feedback parameter is λ=−1.7 W m−2 K−1

(thick black line in Fig. 2b), with a 5 %–95 % range of−3.37
to −1.09 W m−2 K−1. Using T20 evidence, the most likely
value is λ=−1.1 W m−2 K−1 (thick red line in Fig. 2b),
where the 5 %–95 % range is −1.49 to −0.87 W m−2 K−1.

For simplicity, here we calculate the likelihood P (Y |λ)
and use the resulting posterior, P (λ|Y )∝ P (Y |λ)P (λ), to
calculate S (Appendix B). This neglects the small correla-
tion between 1F and the forcing with doubled CO2, but this
simplification does not substantially affect our results (Ap-
pendix C).

Using S20 evidence from the LGM, we find a 5 %–95 %
range of 1.17 to 3.69 K for the climate sensitivity (S), as-
suming, as in S20, that F2×CO2 ∼N (4.0,0.3). Using T20 ev-
idence, the 5 %–95 % range for S is 2.61 to 4.72 K.

4 Structural uncertainty

Thus far, we have relied on the simple energy balance model
to interpret the LGM evidence. However, many recent stud-
ies (e.g., Rohling et al., 2018; Stap et al., 2019; Friedrich

et al., 2016; Renoult et al., 2023) have suggested that M0
might not be appropriate for past climates due to the depen-
dence of the feedbacks on the background climate state. If
the relationship between temperature change and radiative
forcing is nonlinear, then the feedbacks in a past cold climate
should not be treated as identical to those in a future warm
climate. To model this background temperature dependence,
we might use an alternate model that includes a second-order
term in the radiative response. This model (Mα) is given by

0=1F + λ1T +
α

2
1T 2, (4)

where α = ∂λ/∂(1T ) is an additional parameter reflecting
the background state dependence (Sellers, 1969; Caballero
and Huber, 2013; Budyko, 1969; Sherwood et al., 2020).
Intuitively, nonzero values of α change the relationship be-
tween the paleoclimate evidence and the feedback parame-
ter (λ). This, in turn, makes the evidence more or less likely
given a value of λ. For example, if α =+0.1 (which trans-
lates to a change in feedback of −0.5 W m−2 K−1 at a cool-
ing of −5 K), the most likely value of λ is not the same as
the most likely value of λ when assuming α = 0 (dotted and
solid lines in Fig. 2a). In this case, the likelihoods (Fig. 2b)
are calculated by integrating the joint probability distribution
for 1T and 1F along the curve defined by Eq. (4), and they
depend on the value of the state dependence parameter (α).

If α is not a fixed value but an unknown parameter, then
the evidence can constrain only the joint distribution of 2=
(λ,α). Obviously, in order for the climate of the past to tell us
anything about the climate of the future, we must have some
information about how they relate to one another.

There is no limit to the complexity of models we might
use to interpret the evidence from the LGM. We might allow
for both non-unit forcing efficacy and state dependence. We
might assign different efficacies to different forcing agents or
allow the parameter α to bifurcate at lower temperatures. We
might also include an additive pattern effect (1λ) that reflects
differences in the spatial pattern of temperature change at the
LGM and the pattern of warming expected at elevated CO2
concentrations (e.g., Cooper et al., 2024).

Regardless of the interpretive model used, the model is
both required for analysis and subjectively chosen by the
analyst. Different reasonable analysts might make different
choices about the model that should be used. This means that
the choice of model is an important source of uncertainty
that must be clearly specified or quantified. There is, how-
ever, one more source of uncertainty to discuss. Even with
a single model, such as Mα , our degree of confidence in the
constraints placed by paleoclimate evidence on the feedback
parameter (λ) necessarily reflects our prior knowledge of the
state dependence of climate feedbacks. It is to this prior un-
certainty that we turn in Sect. 5.
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Figure 2. (a) Joint-evidence distributions for 1T and 1F used in Sherwood et al. (2020) (black contours) and Tierney et al. (2020) (red
contours). Structural uncertainty is illustrated using solid lines (corresponding to fixed values of λ using the model M0) and dashed lines
(corresponding to fixed values of λ and α using the model Mα). (b) Likelihoods as a function of λ given evidence from S20 (black lines) or
T20 (red lines) and different values of the state dependence parameter (α). (b) Resulting likelihoods for λ given evidence from S20 (black)
or T20 (red) and different values of the state dependence parameter (α). Likelihoods derived using the simple energy balance model (α = 0)
are highlighted by thick lines.

5 Prior uncertainty

Once a model is specified, we aim to use the evidence to gain
insights into its set of parameters (2). Bayes’ theorem states
that the posterior distributions of the parameters are simply
obtained by multiplying the likelihood by the prior proba-
bility distributions, reflecting our preexisting beliefs and/or
knowledge. These priors incorporate expert judgment, the re-
sults of other analyses, and knowledge of physical processes.
Posterior distributions of individual parameters can depend
strongly on prior knowledge of all parameters. For example,
Fig. 3a shows the joint posteriors for the feedback param-
eter (λ) and the state dependence parameter (α), assuming
the model Mα , the temperature and radiative-forcing values
reported in S20, and uniform priors on both parameters.

In the absence of any physical knowledge about these pa-
rameters, the joint posterior is not very informative. In fact,
considerable posterior weight is placed on extremely large
positive values of α and positive values of λ, which would
make negative climate sensitivity appear more likely than
most scientists would consider credible. A well-informed sci-
entist, however, is unlikely to think that α = 1 (which implies
an enormous mean change in feedback of −5 W m−2 K−1

for 5 K of glacial cooling) is just as likely as α = 0 (imply-
ing no change in feedback). In S20, a prior of N (+0.1,0.1)
was assigned to the state dependence parameter (α), reflect-
ing the current state of the literature. This prior substantially
constrains the resulting joint posterior distribution (Fig. 3b).
Conversely, imposing a more informative prior on the feed-

back parameter (λ) – for example, by using the process con-
straints in S20 that result in λ∼N (−1.30,0.44) – also con-
strains the joint distribution: positive values of α (i.e., values
which imply a lower sensitivity at the LGM than for doubled
CO2) receive more posterior weight. Combining the infor-
mative priors on both λ and α further constrains the joint
posterior (Fig. 3d).

6 Combining multiple lines of evidence

The examples we have presented thus far have all used a
single line of evidence – paleoclimate reconstructions of
the Last Glacial Maximum – to constrain λ. However, it
is not necessary to look back over 20 000 years to gauge
the planet’s response to external influences. More recently, a
large increase in radiative forcing has resulted in significant
global warming and a large radiative imbalance at the top of
the atmosphere. To constrain λ with transient historical ob-
servations, we use the evidence Y = (1T,1F,1N ), where
1N is estimated from observed changes in ocean heat up-
take and/or satellite observations constrained by ocean heat
content (Forster, 2016).

6.1 Historical likelihood

In this three-dimensional joint probability space, the simple
energy balance model M0 defines a plane, rather than a line,
in the evidence space (Fig. 4), and the likelihood of the evi-
dence given λ is proportional to the integral over this surface.
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Figure 3. Joint posteriors for the feedback parameter (λ) and the state dependence parameter (α) under the influence of different priors: (a)
uniform priors on both parameters; (b) a uniform prior on λ and a Gaussian prior, based on expert judgment from the published literature
(used in S20), on α; (c) a Gaussian prior, based on process evidence (used in S20), on λ and a uniform prior on α; (d) and Gaussian priors
(from S20) on both parameters. PDF: probability density function.

Figure 4 shows the historical evidence reported in S20, in
which

1T ∼N (1.03,0.085), (5)
1N ∼N (0.6,0.18), (6)

and 1F is calculated using unconstrained aerosol effective
radiative forcings (ERFs) from Bellouin et al. (2020), with
a median of 1.83 W m−2 and a 5 %–95 % range of −0.03 to
2.71 W m−2. The gray line in Fig. 4 shows the resulting like-
lihood as a function of λ. The maximum likelihood value is
λ=−1.53 W m−2 K−1.

However, the simple energy balance model M0 assumes
that the feedback parameter is the same for climate changes
in the deep past, the transient historical period, and the future.
Many studies (e.g., Marvel et al., 2016; Andrews et al., 2018;

Dong et al., 2020; Rose et al., 2014; Armour et al., 2013;
Gregory and Andrews, 2016; Marvel et al., 2018; Modak and
Mauritsen, 2023) now argue that a more appropriate model
should include a pattern effect (1λ) that reflects the differ-
ences between feedbacks triggered by the observed spatial
pattern of transient warming and feedbacks expected in re-
sponse to the long-term equilibrium warming pattern. This
model (M1λ) is given by

1N = (λ−1λ)1T +1F.

S20 placed a Gaussian prior on this pattern effect, with
1λ=N (0.5,0.3) W m−2 K−1. This corresponds to a mod-
ification of the tilt of the plane shown in Fig. 4a. Because
this model assumes that the pattern effect is linearly additive,
no further curvature is introduced. By multiplying the joint
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Figure 4. (a) Calculating the likelihood of observing the historical evidence used in S20 for a putative value of λ. Each value of λ defines a
plane; shown are λ=−1 W m−2 K−1 (blue), λ=−1.5 W m−2 K−1 (orange), and λ=−2 W m−2 K−1 (green). The likelihood is the surface
integral of the joint PDF along the plane. (b) The likelihood of the feedback parameter (λ) given a simple energy balance model with no
pattern effect (gray line) and the marginal likelihood of λ given an additive pattern effect with the prior 1λ∼N (0.5,0.3).

likelihood (P (1Q,1T,1F |λ,1λ)) by the prior (P (1λ))
and integrating over all values of 1λ, we obtain a marginal
likelihood for the historical evidence as a function of the
feedback parameter (λ). This is shown by the black line in
Fig. 4b. The inclusion of the additive pattern effect and our
physics-informed intuition that said effect is likely to be pos-
itive shifts the most likely value of the feedback parameter to
λ=−1.0 W m−2 K−1.

The pattern effect estimate used in S20 was based on the
Atmospheric Model Intercomparison Project II (AMIP-II)
dataset, which produces the largest estimate of the pattern
effect (Modak and Mauritsen, 2023), and therefore the priors
on 1λ used in S20 may be both overconfident and weighted
too strongly toward high values. However, while noting this
important caveat, for illustrative purposes we will use the S20
historical likelihood marginalized over the pattern effect es-
timate as the historical likelihood for the rest of this paper.

6.2 The “Twin Peaks” problem

Assuming conditional independence between lines of evi-
dence, the posterior distribution of the feedback parameter
(λ) is expressed as

P (λ|Y )∝ P (Yhist|λ)P (YLGM|λ)P (λ). (7)

That is, the posterior estimate of λ given two lines of evi-
dence is proportional to the product of the individual likeli-
hoods. But what if the likelihoods have a small (or no) region
of overlap? Can we really be confident that the posterior es-
timate is well constrained in this case? Figure 5a highlights

this potential pitfall. The black line shows the marginal like-
lihood of the historical evidence as a function of λ. The light-
blue line shows the likelihood of the S20 LGM evidence
as a function of λ, assuming no state dependence (α = 0).
The product of these likelihoods is indicated by the dashed
green line. The less the historical and paleoclimate likeli-
hoods overlap, the narrower the posterior will be. We refer to
this conundrum as the Twin Peaks problem: should greater
incompatibility between multiple lines of evidence really re-
duce the uncertainty in λ? Or could it be that the two lines of
evidence are not, in fact, measuring the same thing?

We can take the latter possibility into account using an al-
ternate model for the paleo-evidence. Note that the poste-
rior for λ shown in Fig. 5a is conditional on the model M0
for the paleoclimate evidence, which contains only one pa-
rameter, λ. The model assumes that the equilibrium feed-
backs in a warmer climate are exactly the same as those in
a colder climate, that the response to pure CO2 forcing is
equivalent to the response to LGM forcings, and that the pat-
tern effect is zero over the LGM. An alternate model, say
Mα , allows for state dependence via an additional parame-
ter (α). The marginal likelihood for the paleodata, given Mα

and Gaussian priors on α, is indicated by a dark-blue line in
Fig. 5b. While the overlap between these two distributions is
far from exact, it is substantially larger than that for the no-
state-dependence case, illustrated in Fig. 5a. Simply put, the
historical evidence and the LGM evidence appear to be more
compatible when we correct for the state dependence of the
past cold period.
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Figure 5. Likelihoods from multiple lines of evidence. In all four panels, the black line shows the likelihood of the historical evidence
given λ, assuming the pattern effect 1λ∼N (0.5,0.3). (a) The likelihood of S20 evidence given λ, assuming no state dependence during
the LGM (light-blue line) and overlap (dashed green line). (b) The likelihood of S20 evidence given λ, assuming state dependence and
α ∼N (0.1,0.1) (dark-blue line), as well as overlap (dashed green line). (c) The likelihood of T20 evidence given λ, assuming no state
dependence during the LGM (orange line) and overlap (dashed green line). (d) The likelihood of T20 evidence given λ, assuming state
dependence and α ∼N (0.1,0.1) (dark-red line), as well as overlap (dashed green line).

When using T20 evidence, however, there is considerable
overlap between the historical likelihood (with a pattern ef-
fect) and the paleoclimate likelihood (with no state depen-
dence). As in Fig. 5a and b, the black lines in Fig. 5c and d
show the historical likelihood. The likelihood for λ obtained
from T20 evidence, assuming no state dependence (orange
line in Fig. 5c), closely overlaps with the historical likeli-
hood, as does the likelihood assuming state dependence with
a prior on α, as in S20 (red line in Fig. 5d). The latter model,
however, yields a broader likelihood for λ, and therefore the
region of overlap with the historical evidence is smaller.

Combining multiple lines of evidence, therefore, intro-
duces another source of unavoidable subjectivity: how can
we be sure that, in doing so, we are comparing “apples to
apples”?

6.3 Model odds

The question of how to compare separate lines of evidence
is a question of models: namely, how do we interpret these
separate lines? Fortunately, Bayesian methods allow us to
compare and criticize models based on the evidence. Con-
sider, for example, two models for the LGM: M0 and Mα .
The model odds are defined as

odds=
P
(
Mα|Yhist,Ypaleo

)
P
(
M0|Yhist,Ypaleo

)
=
P
(
Yhist,Ypaleo|Mα

)
P (Mα)

P
(
Yhist,Ypaleo|M0

)
P (M0)

≡ BF×
P (Mα)
P (M0)

,
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where the Bayes factor (BF) is the ratio of the evidence for
each model.

The model evidence for any given model (M`) is defined
as the integrated likelihood over the entire set of parameter
values (2`), expressed as follows:

P (Y |M`)=
∫
P (Y |2,M`)P (2`|M`)d2`. (8)

This reflects the probability that the model M` could have
generated the observed evidence under a given set of priors
on its parameters (θ`).

For example, the model evidence for the model M0 is
given by

P
(
Yhist,Ypaleo|M0

)
∝

∫
P
(
Ypaleo|λ

)
P1λ (Yhist|λ)P (λ)dλ,

where P1λ(Yhist|λ) is the marginal historical likelihood
(black line in Fig. 5a). When combined with a uniform prior
on λ, the model evidence for M0 is therefore the area under
the green curve in Fig. 5a.

By contrast, the model evidence for the modelMα is given
by

P
(
Yhist,Ypaleo|Mα

)
∝

∫
P
(
Ypaleo|λ,α

)
P1λ (Yhist|λ)P (α)P (λ)dαdλ.

When combined with a uniform prior on λ, the model evi-
dence for Mα is the area under the green curve in Fig. 5b.

Using S20 evidence and these priors, we find that the
Bayes factor is 1.33. This means that if our prior assumes
both models are equally likely, the evidence shifts these odds:
the model depicted in Fig. 5b is about 33 % more likely to
have generated the observed paleo-evidence and historical
evidence.

However, using T20 evidence, the Bayes factor is 0.93.
This suggests that the better model to use, given T20 ev-
idence, is one without state dependence. Clearly, the best
model depends on the evidence used; the prior knowledge
of whether we are comparing apples to apples; and the priors
we place on λ, 1λ, and α.

We note that whether the Twin Peaks problem is in-
deed a problem is largely dependent on the prior odds
(P (Mα)/P (M0)), which must be specified. If we have prior
knowledge that the two lines of evidence are measuring the
same thing, then we will give more prior weight to the sim-
ple model M0, and the Bayes factor will do little to shift the
odds. This will result in a narrower posterior estimate: if two
lines of evidence are compatible only for a small range of
values, and we are confident in what the evidence is telling
us, then we may be more confident in its posterior value.

7 A way forward

Thus far, we have established that there are three points at
which unavoidable subjective decisions must be made: when

collecting evidence, when choosing the interpretive model,
and when assessing prior knowledge of that model’s parame-
ters. We have also established that multiple lines of evidence
appear more or less compatible, depending on the models
used. Here, we present a suggested framework for making
these decisions in a community assessment framework.

7.1 Handling evidence uncertainty

Whether and how much a newly published estimate of a
particular quantity (for example, 1T or 1F from the Last
Glacial Maximum) affects the evidence base depends on
prior knowledge of that quantity. It also depends on expert
assessment of how the new study relates to the existing litera-
ture. A single, highly certain, high-quality study can strongly
shift previously uncertain estimates, while low-quality or un-
certain published estimates may not change previously firm
understandings.

We suggest formalizing these intuitions using a Bayesian
random-effects meta-analysis (Smith et al., 1995), frequently
used in fields as diverse as psychology (Gronau et al., 2021),
medicine (Sutton and Abrams, 2001), and ecology (Ko-
richeva et al., 2013). This model can be written as

ŷj ∼N (yj ,σj ), (9)
yj ∼N (Y,τ ), (10)

where ŷj and σj are the reported mean and standard devia-
tion of each study (j ). We assume that the true (latent) mean
(yj ) of each study is normally distributed about an overall
mean (Y ), with τ representing the expected inter-study stan-
dard deviation.

The priors we place on the quantities of interest – the over-
all mean (Y ) and the between-study spread (τ ) – quantify
our previous knowledge of and views about the literature.
A τ value very close to zero suggests homogeneity across
the studies (and, in fact, choosing to set τ = 0 reduces the
random-effects model to the fixed-effects model). By con-
trast, if we have reason to believe that multiple studies should
vary in their reported values due to structural and design fac-
tors, then we might place a broad prior on τ . For example, a
fixed-effects model might be appropriate for calculating the
ensemble mean of a quantity within a single Coupled Model
Intercomparison Project (CMIP) model, whereas a random-
effects model might be more appropriate for combining en-
sembles of multiple CMIP models, which we know differ
structurally.

As a specific example relevant to calculating the feedback
parameter (λ), we can consider the multiple published val-
ues of LGM global mean temperature change (1T ) derived
from proxies and models, as well as from PMIP3 and PMIP4
models (Table 1).

Figure 6 illustrates how the posterior distribution of 1T
depends on prior beliefs about the nature and quality of the
published literature assessing it.
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Table 1. Estimates of global cooling (1T ) during the Last Glacial Maximum. SST: sea surface temperature. CESM: Community Earth Sys-
tem Model. CNRM: Centre National de Recherches Météorologiques. IPSL: Institute Pierre-Simon Laplace. MRI: Meteorological Research
Institute.

Mean (K) Standard deviation Reference Source Generation

−4.00 0.41 Annan and Hargreaves (2013) Proxies and models –
−5.80 0.77 von Deimling et al. (2006) Proxies and models –
−6.20 0.46 Holden et al. (2009) GENIE-1 –
−3.58 0.12 Shakun et al. (2012) Proxies –
−6.20 0.92 Snyder (2016) Proxies and models –
−6.30 0.61 Bereiter et al. (2018) Proxies (e.g., ocean temperature) and models –
−5.70 0.20 Friedrich and Timmermann (2020) – –
−5.75 0.38 Friedrich et al. (2016) SST proxies and a model simulation –
−6.10 0.20 Tierney et al. (2020) Proxies and an isotope-enabled climate model –
−5.00 1.00 Sherwood et al. (2020) Synthesis –
−4.85 – Kageyama et al. (2021) CESM PMIP3
−2.70 – Kageyama et al. (2021) CNRM PMIP3
−4.63 – Kageyama et al. (2021) FGOALS-g2 PMIP3
−4.92 – Kageyama et al. (2021) GISS-E2-p1 PMIP3
−5.19 – Kageyama et al. (2021) GISS-E2-p2 PMIP3
−4.64 – Kageyama et al. (2021) IPSL PMIP3
−5.40 – Kageyama et al. (2021) MIROC PMIP3
−4.41 – Kageyama et al. (2021) MPI-p1 PMIP3
−4.67 – Kageyama et al. (2021) MPI-p2 PMIP3
−4.71 – Kageyama et al. (2021) MRI PMIP3
−3.75 – Kageyama et al. (2021) AWI-ESM-1 PMIP4
−3.81 – Kageyama et al. (2021) AWI-ESM-2 PMIP4
−6.80 – Kageyama et al. (2021) CESM1.2 PMIP4
−7.16 – Kageyama et al. (2021) HadCM3-PMIP3 PMIP4
−5.92 – Kageyama et al. (2021) HadCM3-ICE6GC PMIP4
−6.46 – Kageyama et al. (2021) HadCM3-GLAC1D PMIP4
−3.28 – Kageyama et al. (2021) iLOVECLIM-ICE-6G PMIP4
−3.26 – Kageyama et al. (2021) iLOVECLIM-GLAC1D PMIP4
−3.73 – Kageyama et al. (2021) INM-CM4-8 PMIP4
−4.63 – Kageyama et al. (2021) IPSLCM5A2 PMIP4
−4.02 – Kageyama et al. (2021) MIROC-ES2L PMIP4
−3.90 – Kageyama et al. (2021) MPI-PMIP4 PMIP4
−5.27 – Kageyama et al. (2021) UT-CCSM4 PMIP4

Consider, for example, a random-effects model in which
we place broad priors on the mean µ∼N (0,100) and the
inter-study standard deviation τ ∼ U (0,100). With these
prior assumptions, 90 % of the resulting posterior density for
µ (the true value of 1T ) lies between −5.9 and −4.8 K. As-
suming that there is no inter-study spread (i.e., assuming that
τ is zero with zero uncertainty, corresponding to a fixed-
effects model) would yield an estimate of 1T that is 90 %
likely to be between −4.8 and −4.5 K. This much narrower
(and warmer) estimate results from the extremely restrictive
prior belief that every study, regardless of method, targets
the same underlying 1T value and would yield the same
results if performed perfectly and with adequate data. Sim-
ilarly, we might set the prior on µ using the result of a sin-
gle published study (for example, 1T from T20). Combined
with a broad uniform prior on the inter-study spread, this re-
sults in an 90 % posterior density estimate ranging from−6.2

to −5.6 K. If, however, we adopt the restrictive fixed-effects
model, the T20 study is merely treated as an outlier and fails
to substantially move the posterior distribution toward cooler
values of 1T (red line), even when using the T20 prior.

7.1.1 Recommendations

Unavoidable subjective decisions about the evidence can be
made explicit by adopting a random-effects meta-analysis.
This requires the specification of priors on the inter-study
spread (τ ) and the overall mean (Y ). Our recommendation
is that the organizers of community assessments choose and
clearly specify these priors, rather than allowing individual
experts to choose their own.
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Figure 6. How cold was the Last Glacial Maximum? The answer
depends on your prior beliefs about the cooling and the literature.
Shown are posterior distributions for the LGM cooling (1T ), as-
suming a random-effects model with a broad prior (blue line) or a
T20 prior (green) on the mean or assuming a fixed-effects model
with a broad prior (orange line) or a T20 prior (red line) on the
mean.

7.2 Handling model uncertainty

As shown in Sect. 4, the constraints placed on climate sensi-
tivity by multiple lines of evidence depend on the model(s)
used to interpret that evidence. This means that the design
of each expert assessment must be explicit regarding its in-
terpretive models. As the assessment is planned, it is cru-
cial to arrive at a consensus on credible interpretive models
for the evidence. For example, one possible model for the
Last Glacial Maximum might incorporate the parameters α
(representing state dependence), ξ (representing the differ-
ence between long-term equilibrium feedbacks for the LGM
and target quasi-equilibrium feedbacks for doubled CO2),
and 1λLGM (representing sea surface pattern differences be-
tween the LGM and doubled CO2), resulting in the following
equation:

1T =
−1F

λ+1λLGM
1+ξ +

α
21T

.

Given a model, experts may then be asked to specify their
prior beliefs about each parameter. If an expert disagrees with
the inclusion of a parameter in the model, they would be free
to set a prior that is very narrowly clustered around zero.

If consensus cannot be reached on a particular model, then
we suggest that the planners for any assessment arrive at a list
of candidate models (M1. . .MK ). The aggregate posterior can
then be taken as a weighted average over different models as
follows:

P (2|Y )=
K∑
k=1

wkP (2|Mk,Y ). (11)

Here, (2|Mk,Y ) is the posterior obtained using the model
Mk to interpret the evidence (Y ).

The weights reflect how well the model fits the data and
are given by

wk = P (Mk|Y )=
P (Y |Mk)P (Mk)∑K
k=1P (Y |Mk)P (Mk)

. (12)

The term P (Mk|Y ) is the model evidence (Eq. 8), as dis-
cussed in Sect. 6.2. These weights, and hence the combined
posterior, depend on the set of priors (P (Mk)) we place on
the correctness of each model. If an assessment allows for ex-
perts to use one of multiple models, it is imperative to specify
assessment-wide priors for these models upfront.

7.2.1 Recommendations

We recommend that organizers of community assessments
clearly specify a single interpretive model for the evidence
used. If this is not possible, organizers should specify a list
of possible candidate models (Mk) and a prior (P (Mk)) for
each candidate model. The resulting estimate will then be a
weighted average over the models.

7.3 Expert elicitation via priors

Finally, it is necessary to quantify the degree of preexisting
knowledge and/or beliefs through the use of prior distribu-
tions. This is where a wide variety of expert opinions may be
usefully incorporated into an assessment.

However, we require consistent ways to aggregate the
judgments of multiple experts. In theory, sufficient evidence
should lead to a high degree of agreement, even if different
experts begin the analysis with very different priors. Figure
7a shows the priors placed on the parameter λ by two hy-
pothetical experts. Expert A (solid red line) believes that the
feedback parameter is less negative than Expert B (solid blue
line) thinks it is and is even open to the idea that it might
be positive. The dashed red and blue lines show both ex-
perts’ posteriors, updated using the evidence presented in
S20. While the experts began their analysis with differing
opinions, the weight of the evidence has updated their under-
standings, and they now agree about the feedback parameter
(λ).

However, some experts may not be as open-minded as Ex-
perts A and B. Expert C (blue line in Fig. 7b believes that
the feedback parameter is strongly negative. Moreover, they
are extremely confident in this: their prior distribution is very
narrowly peaked around a value of λ=−3 W m−2 K−1. Ex-
pert C’s confidence remains unshaken by the evidence pre-
sented in S20, and their posterior remains nearly identical to
their prior beliefs. How should an assessment handle such
excessively confident experts, whose beliefs appear to be un-
shaken by any reasonable amount of evidence?

Consider an assessment in which N experts each specify
a set of priors (Pi(θ )), where i = 1. . .N . A reasonable aggre-
gate prior might then be a linear combination of the individ-
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Figure 7. (a) Experts A (solid red line) and B (solid blue line) begin with different priors on λ. The evidence presented in S20 updates
these priors, and the resulting posteriors are nearly identical (dotted red and blue lines). The purple line shows the weighted posterior. (b)
Experts A (solid red line) and C (solid blue line) begin with different priors on λ, but Expert C’s prior is very narrowly peaked. The evidence
presented in S20 updates these priors, but the posteriors remain very different (dotted red and blue lines). The purple line shows the weighted
posterior, which is almost identical to Expert A’s posterior.

ual expert priors, expressed as

P (θ )=
N∑
i=1

aiPi(θ ). (13)

The aggregate posterior is therefore a weighted average of
the individual expert posteriors, given by

P (θ,Y )=
∑
i

ãiPi(θ |i,Y ), (14)

where

ãi =
ai
∫
P (Y |θ )Pi(θ )dθ∑N

i=1ai
∫
P (Y |θ )Pi(θ )dθ

. (15)

This method introduces N new parameters, representing the
prior weight (ai) we assign to each expert’s judgment. This
is a far easier task than setting priors on models (as dis-
cussed in Sect. 7.2) because it requires no physical under-
standing but rather a belief about the quality of each expert’s
initial beliefs. We recommend weighting each expert equally
by setting a1 = a2 = . . .aN =

1
N

, in which case the posterior
weight becomes

ãi =

∫
P (Y |θ )Pi(θ )dθ∑N

i=1
∫
P (Y |θ )Pi(θ )dθ

. (16)

The purple line in Fig. 7a shows the resulting aggregate pos-
terior given Expert A and Expert B’s priors. Because these
experts are similarly able to update their priors, the weighting
process has no effect on the outcome. However, the weighted

average of Expert A and Expert C’s posteriors, indicated by
the purple line in Fig. 7b, is similar to Expert A’s posterior
distribution. The narrowness of Expert C’s prior causes their
posterior distribution to be down-weighted in the weighted
average. We suggest this as an effective strategy for handling
inflexible or extremely anomalous expert opinions.

7.3.1 Recommendations

We recommend eliciting expert judgment in a systematic
way by allowing experts to specify priors on predetermined
model parameters. The analysis can then be performed us-
ing a single aggregate posterior, calculated as the weighted
average of individual expert posteriors.

8 Conclusions

Here, we have presented three sources of uncertainty that en-
ter into estimates of climate sensitivity, which can be sum-
marized as three sets of questions as follows. First, what ev-
idence should we use to constrain climate sensitivity, how
do we decide what counts as evidence, and how should we
handle estimates that disagree or conflict with each other?
Second, what interpretive model should we use to relate the
evidence to climate sensitivity, and what parameters are re-
quired? Third, what prior knowledge of these parameters is
appropriate and should be included? We then propose a strat-
egy to make the role of expert judgment in subsequent as-
sessments fairer and more transparent. The advantage of this
strategy, combining Bayesian meta-analysis and Bayesian
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model averaging, is that it can incorporate newly published
data and is easily expanded to handle uncertainties at multi-
ple levels.

There is no limit to the number of nested levels we could
theoretically use within a Bayesian hierarchical model: the
prior for radiative forcing from ice sheets, for example, can
be updated using a global ice sheet reconstruction, which it-
self is constrained by individual geological measurements.
Similarly, a prior on ocean heat uptake (1N ) or historical
warming (1T ) can be updated as new measurements become
available. However, to remain tractable, every project must
truncate the hierarchy at some finite level. In practice, this
means treating the posteriors that arise from observational,
general-circulation-model (GCM), or paleoclimate studies as
evidence; where we draw the line between evidence and pa-
rameters sets the bounds of our analysis.

As a result, we propose a framework in which experts are
required to specify their choices at clearly defined decision
points. Once priors are specified, the model and evidence
will update them accordingly, arriving at a new, aggregate
consensus posterior. We review this framework here.

Somewhat obviously, experts’ beliefs about the data are
based on their prior beliefs, updated by the evidence. But how
experts interpret and use that evidence depends on the sub-
jective choices they make – i.e., what counts as a study or ev-
idence? How should we best compare estimates derived from
proxies or observations with estimates from GCMs? Should
some studies receive more weight than others? In our frame-
work, experts must make judgments about the evidence by
asking the following questions:

1. What is your informed belief about the evidence? (For
example, what is your prior on µ?)

2. What is your belief about the published literature?
(What is your prior on τ?)

Second, we suggest taking the choice of model out of in-
dividual participants’ hands to the greatest extent possible.
Ideally, assessment planners should arrive at a single model
and set of parameters on which experts may specify their pri-
ors. If not, they should arrive at a list of candidate models,
specify firm prior beliefs about these models, and perform
Bayesian model averaging over the posteriors of individual
experts, which will depend on the model they use.

Third, once a model is specified, experts should specify
their prior beliefs about the parameters of that model.

The results presented here are meant to begin, rather than
end, a conversation. The beauty of Bayesian methods is that
we can allow new evidence to update our existing knowl-
edge. As climate researchers gear up for the next generation
of model intercomparison projects and assessments, it is im-
portant to consider how these new results will be integrated
with existing knowledge. Our methods presented here allow
for new discoveries to advance our understanding, ultimately

narrowing the bounds of climate sensitivity and informing
future research and decision-making.

Appendix A: Exact forms of integrals

To estimate the likelihood of the evidence (1T and 1F )
given the simple energy balance model, we integrate the joint
probability distribution (J (1T,1F )) over the curve (C) us-
ing the following model:

P (Y |λ,M0)=
∫
C

J (1T,1F )ds. (A1)

C can be parameterized as

r(t)= t î+−λtĵ, (A2)

and the integral is then given by

P (Y |λ,M0)=

∞∫
−∞

J (r(t)) ||r′(t)||dt

=

∞∫
−∞

J (t,−λt)
√

1+ λ2 dt. (A3)

In the case where1T and1F are Gaussian and independent
(with the means µT and µF and the standard deviations σT
and σF , respectively), the likelihood has an exact analytic
form, substantially speeding up its computation. This form is
expressed as

P (Y |λ,M0)= C
(

2π
A

)1/2

exp
(
B2

2A

)
, (A4)

where

C =

√
1+ λ2

2πσT σF
exp

(
µ2
T

σ 2
T

+
µ2
F

σ 2
F

)
,

A=
1
σ 2
T

+
λ2

σ 2
F

,

B =
µT

σ 2
T

−
λµF

σ 2
F

.

In the case of a three-dimensional space (as with the histori-
cal evidence), the curve (C) defines a plane rather than a line,
and we have

P (Y |λ)∝
∫
C

J (1T,1F,1N )dS

=

∫ ∫
J (r(u,v)) ||ru× rv||dudv, (A5)

where

r = uî+ vĵ + (λu+ v)k̂. (A6)
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Appendix B: Likelihood vs. probability

We note that this method is distinct from estimating λ as the
ratio of the distributions 1F and 1T . This is due to a con-
ceptual difference between probability and likelihood. Con-
structing the likelihood answers the following question: (1)
how likely is a particular hypothesis (in this simple case, a
particular value of λ) given the evidence? This is a fundamen-
tally different question from the following: (2) what is the
probability density function of the ratio−1F/1T ? The first
question involves fixing a putative value of λ, which is not
treated as a random variable. The second question treats λ as
a random variable. Mathematically, this is reflected in the dif-
ference between (1) a line integral over the curve y =−λx,

P (x,y|λ)=
∫
C

Pxy(x,y)ds =

∞∫
−∞

Pxy(x,−λx)
√

1+ λ2 dx,

and (2) the ratio distribution of the random variable λ=
−y/x,

Pλ(λ)=

∞∫
−∞

Pxy(x,−λx)|x|dx.

We use the ratio distribution (b) to estimate S once we have
the posterior probability density function (PDF) for λ. This
is because we treat S as the ratio of two random variables,
F2×CO2 and λ.

Appendix C: Correlations between F2×CO2 and ∆F

CO2 emissions are the primary contributor to present-day
radiative-forcing change relative to preindustrial concentra-
tions. Atmospheric concentrations of CO2 were lower in the
Last Glacial Maximum. This means that the forcing term
(1F ) used as evidence in the LGM and historical periods
is correlated with the forcing corresponding to doubled CO2.
For visual clarity, we neglect this correlation in this paper. To
take it into account, we can write the simple energy balance
model as

1N =1F ′+βF2×CO2 + λ1T .

In this case, the likelihood P (E|λ,F2×CO2 ) is defined as the
integral of the joint probability distribution of the evidence
(E) over the curve defined by the model. Following S20, we
can then calculate S by changing the variables and marginal-
izing over F2×CO2 as follows:

P (S|E)=
∫
P
(
λ′,F ′2×CO2

|E
)

δ
(
S−F ′2×CO2

/λ′
)(
∂S/∂λ′

)−1(
∂S/∂F ′2×CO2

)−1dF ′2×CO2dλ′.

Practically, we can draw samples of λ and F ′2×CO2 from the
joint posterior distribution and use these to calculate a poste-
rior distribution for S. This correlation contributes very little
to the results; when taking it into account, we obtain similar
ranges for S as when we neglect it.
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