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Abstract. Global hydrological models are one of the key tools that can help meet the needs of stakeholders
and policy makers when water management strategies and policies are developed. The primary objective of this
paper is therefore to establish a first-of-its-kind, truly global hyper-resolution hydrological model that spans a
multiple-decade period (1985-2019). To achieve this, two key limitations are addressed, namely the lack of high-
resolution meteorological data and insufficient representation of lateral movement of snow and ice. Thus, a novel
meteorological downscaling procedure that better incorporates fine-scale topographic climate drivers is incorpo-
rated, and a snow module capable of lateral movement of frozen water resembling glaciers, avalanches, and wind
movement is included. We compare this global 30 arcsec version of PCR-GLOBWB (PCR - Global Water Bal-
ance) to previously published 5 and 30 arcmin versions by evaluating simulated river discharge, snow cover, soil
moisture, land surface evaporation, and total water storage against observations. We show that hyper-resolution
provides a more accurate simulation of river discharge, in particular for smaller catchments. We highlight that
global hyper-resolution modeling is possible with current computational resources and that hyper-resolution
modeling results in more realistic representations of the hydrological cycle. However, our results also suggest
that global hydrological modeling still needs to incorporate land cover heterogeneity and relevant hydrological
processes at the sub-kilometer scale to provide more accurate estimates of soil moisture and evaporation fluxes.

Water is a vital and crosscutting element needed to achieve a
number of sustainable development goals (Vorosmarty et al.,
2015; Alcamo, 2019). Accurately simulating, predicting, and
forecasting the distribution, abundance, and shortage of wa-
ter is therefore a crucial challenge for the hydrological com-
munity. By providing information on water resources, global
hydrological models are one of the key tools that can help
meet the needs of stakeholders and policy makers when water
management strategies and policies are developed (Bierkens,

2015; Bierkens et al., 2015; Wood et al., 2011). Despite their
usefulness, an ongoing critique is that the resolution of these
models is unable to provide relevant information at scales at
which adaptation strategies are implemented by stakehold-
ers (Wada et al., 2017). In response to this criticism, there
has been an effort to increase the spatial resolution of current
state-of-the-art global hydrological models, and this push to-
wards hyper-resolution hydrological models has previously
been described as one of hydrology’s “grand challenges”
(Bierkens et al., 2015).
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The drive to develop hyper-resolution models is based on
the assumption that increased resolution will realize bene-
fits coarse-resolution counterparts cannot. Hyper-resolution
global hydrological models are expected to better capture
the relevant physical processes that govern the distribution
and quantity of global water resources and, therefore, pro-
vide a more detailed and accurate view of the hydrological
cycle (Bierkens et al., 2015; Wood et al., 2011; Beven and
Cloke, 2012). An improved and more detailed understand-
ing of the global hydrological cycle can provide a number of
important benefits to the broader scientific community and
society. From a scientific point of view, hyper-resolution hy-
drological models can facilitate progress and innovation in
the fields of water quality, sediment transport, floods, and
drought risk by providing much needed detailed information
on the movement of water in soils, rivers, lakes, and ponds
(Bierkens et al., 2015). Hyper-resolution hydrological mod-
els also promise benefits that will aid society as a whole;
for instance, high-resolution hydrological data can provide
stakeholders and policy makers with information on scales
that are more logical and actionable (Bierkens et al., 2015;
Wood et al., 2011; Beven et al., 2015).

To date, there has been noticeable progress towards a truly
global hyper-resolution hydrological model; however, given
the complexity of such an undertaking and the associated
computational burden, hyper-resolution models have, so far,
been confined to continental-scale applications (e.g., Beven
et al., 2015; Hoch et al., 2023; O’Neill et al., 2021; Ver-
gopolan et al., 2021; Chaney et al., 2021). For example, the
ParFlow model has been used to simulate groundwater and
surface water for the contiguous United States at a spatial
resolution of approximately 1km (Yang et al., 2023). Also
for the contiguous United States, Aerts et al. (2022) ana-
lyzed how increasing the resolution from 3 km to 200 m in
wflow_sbm affects predictions of river discharge. There has
also been an attempt to model the European continent at
1 km resolution; Hoch et al. (2023) present a 1 km version of
PCR-GLOBWB (PCR — Global Water Balance) which was
used to simulate hydrological states and fluxes over a multi-
decadal period. These studies have provided much needed
headway towards truly global hyper-resolution modeling, but
they have also brought to the fore a number of challenges that
need to be overcome first.

Challenges surrounding global hyper-resolution models
are related to epistemic uncertainties in input data and
whether or not models at these finer resolutions can effec-
tively capture and reproduce processes that govern water dy-
namics (Hoch et al., 2023; Aerts et al., 2022; Yang et al.,
2023). Previous studies on continental-scale hyper-resolution
models have raised the question of whether an increased
resolution actually results in a more accurate representation
of the water cycle; there is mixed support for this notion.
For example, when modeling at spatial resolutions approach-
ing 1 km and comparing their accuracy to more coarse-scale
counterparts, river discharge is more accurately simulated in
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some locations, while other locations show a reduced accu-
racy (Hoch et al., 2023; Aerts et al., 2022). Furthermore,
there are discrepancies between how different components
of the water cycle respond to an increase in the model reso-
lution. Hoch et al. (2023) determined that, as resolution in-
creases, the fidelity of soil moisture and total evaporation
as simulated with the global hydrological model decreases,
even though river discharge shows an increase in accuracy
when moving to finer resolutions (Hoch et al., 2023). How-
ever valuable the identification of such an inconsistency may
be, perhaps more importantly, it provides for an opportunity
to further understand how and why the different components
of the water cycle respond to an increase in model resolution.
Increases in model resolution have also highlighted the need
for the inclusion of fine-scale processes that are neglected at
coarser resolutions. For example, Hoch et al. (2023) report
that in the absence of processes that represent the transport
of frozen water through glaciers, avalanches and wind lead
to unrealistic accumulations of frozen water accumulating in
snow towers. Despite these challenges, continental-scale hy-
drological models have shown that it is possible to accurately
simulate at least some components of the hydrological cycle
at resolutions approaching = 1 km (Hoch et al., 2023; Yang
et al., 2023), albeit not yet at the global scale.

One source of uncertainty is the mismatch between model
resolution and that of meteorological data used as forcing
(Hoch et al., 2023). The lack of meteorological data at the
appropriate resolution is a major limitation for both coarse-
and fine-scale models (Wilby et al., 2000; Benedict et al.,
2019; Hoch et al., 2023; Yang et al., 2023; Doll et al., 2016;
Miiller Schmied et al., 2014). Available reanalysis products
are created at a much coarser resolution than global hydro-
logical models and fail to represent sub-grid climate dynam-
ics that are important in defining local hydrological patterns.
As a result, downscaling climate forcing becomes necessary
for global hyper-resolution hydrological models, and their
accuracy is heavily dependent on how such downscaled prod-
ucts reflect reality. To date, the production of global climate
models at resolutions discussed here is constrained by techni-
cal limitations around the storage of the large volumes of out-
put data and computational resources required to complete
such simulations (Schir et al., 2020; Karger et al., 2017).
However, recently 1km meteorological data have become
available in the form of climatologies as in the case of Word-
Clim (Fick and Hijmans, 2017) and CHELSA (Karger et al.,
2017; Brun et al., 2022), which could feasibly be used to
downscale coarse daily meteorological forcing data from re-
analyses to the required hyper-resolution.

Given these considerations, there is a need to assess the
feasibility of a truly global hyper-resolution hydrological
model that relies on improved spatial representation of me-
teorological data and fine-scale hydrological processes. The
primary objective of this paper is therefore to establish a first-
of-its-kind, truly global hyper-resolution hydrological model
that spans a multiple-decade period (1985-2019), thereby ex-
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tending the scope of current hyper-resolution hydrological
models beyond the continental scale (Hoch et al., 2023). In
this novel implementation of PCR-GLOBWB, a new down-
scaling procedure that better incorporates fine-scale topo-
graphic climate drivers is included. In addition, this imple-
mentation incorporates a snow module capable of lateral
movement of frozen water resembling glaciers, which is per-
tinent at higher resolutions. We compare this global 30 arcsec
simulation to previously published 5 and 30 arcmin versions
of PCR-GLOBWB by evaluating simulated river discharge,
snow cover, soil moisture, land surface evaporation, and
groundwater storage against observations. We focus on how
the model represents the hydrological cycle across scales and
aim to highlight where we need to focus future efforts to im-
prove hyper-resolution hydrological modeling.

2 Methods

2.1 30arcsec PCR-GLOBWB setup and
parameterization

PCR-GLOBWB (PCR - Global Water Balance) is a global
hydrological and water resource model that estimates global
water stores at various resolutions. It considers both natu-
ral and human-induced factors when estimating global water
stores and fluxes. The 30 arcsec PCR-GLOBWB implemen-
tation presented here is built upon a schematization that has
previously been applied to continental Europe (Hoch et al.,
2023). The model presented here largely follows that pre-
sented by Hoch et al. (2023), but with a significant increase
in spatial expansion so that it now represents the entire globe.

The model parameterization and inputs used in the
30arcsec implementation represent high-resolution hydro-
logical processes where possible, and in the following sec-
tions, we provide a summary of these. For extensive details
on the setup of the 30 arcsec PCR-GLOBWB implementa-
tion, we refer the reader to the original European implemen-
tation by Hoch et al. (2023).

Land surface: soil, and cover, and topography

Soil information at the 30 arcsec resolution was derived from
the SoilGrids250 dataset (Hengl et al., 2017), which is orig-
inally available at the 0.002° resolution. General soil at-
tributes from SoilGrids250 were transformed into soil hy-
draulic properties, such as water-holding capacity, field ca-
pacity, and wilting point using the pedotransfer functions
from Balland and Arp (2005). These properties were de-
rived at 0.002 arcdeg and upscaled to 30 arcsec by averag-
ing and using cell area as weights. For land cover param-
eterization the Global Land Cover Characteristics (GLCC)
database version 2.0 (Loveland et al., 2000), with the land
cover classification following Olson (1994a, b) and the pa-
rameter sets from Hagemann et al. (1999) and Hagemann
(2002), was used. In addition, the map of Global Food Se-
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curity Support Analysis Data (GFSAD) version 1.0 (Telu-
guntla et al.,, 2016) was used to define irrigation areas at
the 30 arcsec resolution. GLCC and GFSAD data are avail-
able at 30arcsec resolution, and thus one dominant land
cover type was used for the 30 arcsec resolution. This dif-
fers in the 30 and 5arcmin versions of PCR-GLOBWB,
where each grid cell was divided into fractional constituents
for four land cover types consisting of tall natural vege-
tation, short natural vegetation, non-paddy-irrigated crops,
and paddy-irrigated crops (i.e., wet rice). The state-of-the-
art Multi-Error-Removed Improved-Terrain Hydro digital el-
evation model (MERIT Hydro DEM; Yamazaki et al., 2019)
that is available at 3 arcsec resolution was used to derive
topography-related information. The 3 arcsec MERIT Hydro
DEM was upscaled to 30 arcsec by averaging and using cell
area as weights. It is important to note that various sub-grid
variability parameters, such as runoff-infiltration partition-
ing, interflow, groundwater recharge, and capillary rise, as
well as evaporation processes (van Beek and Bierkens, 2008;
van Beek, 2008; Hagemann and Gates, 2003; Todini, 1996),
were derived at the 3 arcsec resolution and upscaled to the
30 arcsec, 5 arcmin, and 30 arcmin resolution.

Surface water routing: lakes, reservoirs, and drainage
and river network

Lake and reservoir information was taken from the Global
Lakes and Wetlands Database (GLWD) of Lehner and
Doll (2004) and the Global Reservoir and Dam Database
(GRanD) of Lehner et al. (2011). The drainage networks
were adopted from the HydroSHEDS product (Lehner et al.,
2008).

In brief, the model setup used here differs from the previ-
ous PCR-GLOBWB versions as follows: (i) the paralleliza-
tion approach used by the model is updated, (ii) a novel
method of downscaling coarse-scale meteorological forcing
to the required 30 arcsec resolution is incorporated, (iii) the
model now allows for lateral transport of snow and ice at
high elevations, and (iv) an offline spin-up strategy is im-
plemented. Together, these four changes to the model al-
lowed us to complete a 30 arcsec PCR-GLOBWB simulation
with a global extent by overcoming the computational hurdle
whilst still maintaining enough similarity to the previously
published versions that model outputs can be compared and
evaluated in a pragmatic way.

2.1.1 Climate Forcing Downscaling Procedure

Previously published 5arcmin and 30arcsec versions of
PCR-GLOBWB relied on a lapse-rate-centric approach to
downscale meteorological forcing to the appropriate spatial
resolution (Hoch et al., 2023; Sutanudjaja et al., 2011, 2018).
In contrast, the current implementation relies on an alterna-
tive approach by making use of high-resolution climatolo-
gies (Karger et al., 2017). The new downscaling methodol-
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ogy involved bilinearly interpolating the coarse-scale mete-
orological forcing data to the 30 arcsec resolution, followed
by the calculation of monthly climatologies from the interpo-
lated fields. Interpolated climatologies were then compared
to monthly high-resolution reference CHELSA climatologies
(1981-2010; Karger et al., 2017, and Brun et al., 2022) to
produce a set of Julian day-of-year correction factors that in-
corporated high-resolution topographic information (Fig. 1).
The high-resolution climatologies represent the years 1981—
2010; as such, the correction factors were calculated for this
time period.

Downscaling temperature

As afirst step, the coarse-scale daily temperature data (1981-
2010) were interpolated to the 30 arcsec resolution using a
bilinear interpolation (Tasq). Thereafter, the interpolated val-
ues were used to calculate monthly climatologies (Tasy) for
the years 1981-2010 (Eq. 1), where N is the total number of
years, m is the month, and i is the day of month.

1 &N
Tasy = — Tas; . 1
M= ;1 i (D

The interpolated monthly climatologies were then com-
pared to the high-resolution CHELSA reference climatolo-
gies (Taschelsa, M), using Eq. (2), to obtain a set of monthly
correction factors (CFrys,m).

CFTas,M = Taschelsa,M — Taspm 2)

Then, to obtain a correction factor for each Julian day of
the year (CFrus,doy), Where “doy” is day of year, we em-
ployed a linear interpolation on CFry M.

Downscaling evaporation

Downscaling evaporation follows the same procedure as
described above for temperature; coarse-scale daily data
(1981-2010) were interpolated to the 30 arcsec resolution
using a bilinear interpolation (ETref4) and monthly clima-
tologies (ETef, M) calculated for 1981-2010 (Eq. 3). There-
after, interpolated monthly climatologies were then com-
pared to the high-resolution reference CHELSA climatolo-
gies (ETchelsa M) using Eq. (4) to obtain a set of monthly
correction factors (CFgr,; ,,)- The final set of correction fac-
tors for each Julian day of the year (CFgr,qoy) Was obtained
through the linear interpolation of CFgr,,,,. The use of a
multiplicative correction factor here was in order to handle
variance conservation and to obtain strictly positive values.

1 N
ETI’Cf,M - N Z ETref,d,,,,- (3)
j=m
CFETrefwM = ETchelsa,M/ ETref,M @)
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Downscaling precipitation

As a first step, coarse-scale daily data (1981-2010) were in-
terpolated to the 30 arcsec resolution using a bilinear interpo-
lation (Tpq). For the precipitation downscaling, an additional
step was necessary to correct for drizzle days. Drizzle days
are erroneous by-products from interpolating precipitation,
which result in very light precipitation where precipitation
should be zero. To account for this and remove excess precip-
itation, we calculated the proportion of days in each month of
the year that are dry days (dryDays) and set that proportion
of bottom values in the interpolated precipitation product to
0 (Eq. 5).

Tp {Tpd if Tpy percentile rank is > dryDays
d =

0 if Tpy percentile rank is < dryDays )

Thereafter, the interpolated values were used to calculate
climatologies (Tpm) from 1981-2010 (Eq. 6). The interpo-
lated monthly climatologies were then compared to the high-
resolution reference climatologies (Tpchelsa,m) using Eq. (7)
to obtain a set of monthly correction factors (CFrp,,).

| N
Tpy = v Z Tpy,, (6)

j=m

CFTPM = Tpchelsa,M/TpM @)

Then, to get a correction factor for each Julian day of
the year (CFrp doy) We employed a linear interpolation on
CFrp,,- Again, as with evaporation, the use of a multiplica-
tive correction factor here was in order to handle variance
conservation and to ensure that precipitation is positive.

2.1.2 Snow and ice transport to mimic glaciers,
avalanches, and wind transport

A limitation of PCR-GLOBWB highlighted by Hoch et al.
(2023) relates to how the model handles snow and ice at high
elevations. Downscaled temperatures are rarely above the
freezing point at higher elevations, and given that snowmelt
is calculated using the degree day model, this results in
unrealistic accumulations of frozen water. In reality excess
snow and ice would be transported downslope by glaciers,
avalanches, and wind; however, these processes are not cap-
tured in the previous versions of PCR-GLOBWB. To solve
this, we included a mechanism that allows the lateral move-
ment of frozen water to mimic the lateral and downslope
transport of snow and ice by glaciers, avalanches, and wind.
The snow and ice distribution component implemented here
largely follows that described by Frey and Holzmann (2015).
If the snow water equivalent exceeds a threshold of Hv =
0.625 m, lateral transport is activated. When transport is ac-
tivated, the excess (i.e., transportable) volume of frozen wa-
ter in a donor cell, snowy, is calculated from Eq. (8) and is
then distributed to neighboring downslope acceptor cells as
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Interpolate 30 arc-minute
to 30 arc-seconds

Calculate Monthy
Climatologies

Calculate Correction
Factors

Interpolate monthly correction factors
to daily correction factors

Figure 1. Procedure for downscaling meteorological forcing input date based on high-resolution climatologies.

a function of slope steepness (Eq. 9). A similar approach has
previously been implemented in the community water model
(Burek et al., 2020).

snowq = max(SWE — Hv, 0) - cellArea ®)
tan(slope)
SNOW( - —on—2
Snowa = — - %0 ©)]
N, acceptorCells

2.1.3 Spin-up strategy

Traditionally, to get an initial estimate of the water storage
and fluxes, PCR-GLOBWB requires a mandatory spin-up pe-
riod, during which the model is simulated for the first time
step repetitively until the hydrological storage values (e.g.,
unsaturated and saturated zone) have converged to long-term
steady states. However, when considering the computational
resources required for a global 30 arcsec simulation, this ap-
proach becomes unfeasible, as times to reach equilibrium
values would be very large, which is especially true for states
that evolve slowly (i.e., groundwater storage). To overcome
this obstacle, a three-phase spin-up process is implemented
in the 30arcsec schematization. In the first phase, PCR-
GLOBWSRB is run for a 3-year period to obtain a represen-
tative annual groundwater recharge rate (Gwyech). Ground-
water storage is then calculated in the same way as is done
by the complete model using Eq. (10) for 1000 iterations,
starting with values of 1 x —10 where the base flow is driven
by the response time of the groundwater aquifer (j) and y is
set to a value of 1. In the third and final phase, the model is
run for an additional period of 6 years with the precalculated
groundwater storage values as initial conditions to obtain the
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final set of initial conditions.

Gwstor,i = Gwstor,i—l + GWrechi

- GWsiori—1\”
—[ijwsmrx (—‘ 1) ] (10)
GWSIOI‘

2.1.4 Parallelization approach

Maintaining pragmatic and feasible simulation times is a sig-
nificant challenge when considering hyper-resolution sim-
ulations. A simple yet effective parallelization technique
used in the previous PCR-GLOBWB implementation is to
spatially partition the modeling domain into independent
hydrological units and assign separate processors to each
unit, which are then completed concurrently. In the previous
5 arcmin PCR-GLOBWRB, 53 independent spatial hydrolog-
ical units were completed in parallel (Fig. 2a). This is pos-
sible because each basin’s outlet ends up in a reservoir, en-
dorheic lake, or ocean. This approach was followed in the
current 30 arcsec implementation, where the modeling do-
main is split into 215 independent hydrological units, which
can be completed in parallel (Fig 2b). However, at 30 arcsec,
for some of the larger basins in the domain, this approach
still leads to extremely long simulation times if not subdi-
vided further — predominantly because of computationally
expensive calculations associated with surface water routing.
For basins exceeding an 800 000 km? threshold, a hierarchi-
cal method of parallelization was therefore used. This thresh-
old was selected to balance efficient input/output operations
and the number of point operations done by an individual
processor. First, the basin is divided according to stream or-
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der so that each sub-basin is smaller than the 800000 km?>
threshold. The upper reaches of the basin are completed first
and then followed by the next downstream sub-basin until the
last sub-basin has all the necessary information (Fig. 2¢).

2.2 Global 30 arcsec PCR-GLOBWB simulation and
evaluation

2.2.1 Simulation

The global 30 arcsec parameterization described above was
simulated for a multi-decadal period (1985-2019) and forced
with downscaled 30 arcmin W5ES5 temperature, precipita-
tion, and reference potential evaporation (Lange et al., 2021).
The reference potential evaporation was calculated from the
Penman—Monteith formulation, following the FAO guide-
lines (Allen and Food and Agriculture Organization of the
United Nations, 1998), using the Python package pyEt (Vre-
mec et al., 2021); input data for the calculation of the refer-
ence potential evaporation were also taken from WS5ES. The
initial conditions for this simulation were calculated follow-
ing the three-part spin-up approach described above. As the
first phase, PCR-GLOBWB was run from 1979-1981 with
hydrological states set at an initial value of 0.001 m for wa-
ter, and 1981 was taken as the representative groundwater
recharge year to calculate groundwater storage offline. The
model was then put through an additional spin-up period
of 6 years (1979-1985) to get stable estimates of the other
fluxes and storages. For final production, the initial condi-
tions were used to run PCR-GLOBWB from 1985-2019. All
simulations in this paper were run on Snellius, the Dutch Na-
tional Supercomputer. We note that no calibration was per-
formed for any of the simulations reported in this study.

To assess how capable this 30 arcsec PCR-GLOBWRB is
at reproducing the global hydrological cycle compared to
coarser versions, two additional simulations were performed:
one at 5 arcmin and the other at 30 arcmin. The same forcing
and, where applicable, the same model settings were used.
A spin-up period of 40 years was used. For a more thor-
ough explanation of these two models, we refer the reader
to the original publications for the 30arcmin (van Beek,
2008; van Beek and Bierkens, 2008; Van Beek et al., 2011)
and 5 arcmin variants of PCR-GLOBWB (Sutanudjaja et al.,
2018). All three models were simulated for the same time
period, 1985-2019, and used the same meteorological forc-
ing; however, key differences between the model versions are
highlighted in Table 1.

2.2.2 Evaluation

To provide a more comprehensive evaluation of the global
simulations, multiple hydrological variables were used for
evaluation, namely total water storage, total evaporation, soil
moisture, snow cover, and river discharge. To compare simu-
lations of different resolution to one another and observation
data in a fair way, we opted to evaluate the simulations at
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scales that matched those of the observational data. Doing so
allowed for an assessment of the simulated values, regard-
less of simulation resolution, whilst still allowing for com-
parisons between scales.

Global water balance and total water storage

As a first comparison between the different resolutions, we
also calculated the global water balance and its respective
components. In order to determine to what degree the mod-
els are able to partition water into different components of
the water cycle, the global water budgets (Eq. 11) were cal-
culated for 1985-2019:

P=E+ Q+AS, (11)

where P is precipitation, E is evaporation, R is runoff, and
AS is delta storage.

This allowed us to compare mean annual fluxes of pre-
cipitation, evaporation, runoff, and change in storage for the
different resolutions. In addition, runoff to precipitation and
evaporation to precipitation ratios were calculated for sim-
ulations at the three different resolutions. Monthly simu-
lated total water storage was evaluated against JPL TELLUS
GRACE/GRACE-FO data for 2002-2019 (Kornfeld et al.,
2019). Given the large difference in spatial resolution be-
tween the GRACE data and the simulated data, this evalu-
ation was conducted at the basin level. GRACE data used
here are at the 30 arcmin resolution, which is close to the
Mascon solution provided in Kornfeld et al. (2019); however,
the original resolution of GRACE is 3 arcdeg. Therefore we
aimed to produce a global map of basins so that each basin
contains at least four grid cells at the original 3 arcdeg reso-
lution (i.e., the footprint of the original 3 arcdeg GRACE ob-
servations). Basin outlines were obtained from HydroBasins
(Lehner and Grill, 2013), aggregation level 3, and all basins
smaller than 400000 km? were merged to neighbor basins
exceeding 400000 km?. Basins that could not be merged,
such as small islands, were removed. For each basin, the rel-
ative root mean sum of squares (RRMSE; Eq. 12 and Spear-
man’s rank correlation coefficient; Eq. 13) was calculated as
an indication of how well the model was able to reproduce
the temporal patterns and magnitude of total water storage
anomalies, respectively:

RRMSE = w7 (12)
o (obs)

where RMSE is the root mean square error between observa-

tions (obs) and simulations (sim), and o (obs) is the standard

deviation of the observations.

6> d?

Cam2—1) (13)

p=1
Here, p is Spearman’s rank correlation coefficient, d; is the

difference between the two ranks of each observation, and n
is the number of observations.
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Sub Run 1[J
Sub Run 2@
Sub Run 3@

Figure 2. (a) Spatial domains used for parallelization in the previously published 5 arcmin PCR-GLOBWB version and (b) the domains used
for the parallelization approach used in this 30 arcsec PCR-GLOBWB, which (c¢) requires additional dividing and hierarchical parallelization
for basins exceeding 800 000 km? (displayed in gray in b). Using the Amazon as an example, hierarchical parallelization involves simulating
the upper sub-basins (sub-run 1) first, followed by the intermediate sub-basins (sub-run 2) and finally the penultimate sub-basin (sub-run 3).

Total evaporation and soil moisture

Total evaporation and soil moisture were evaluated against
station-based observation data. Soil moisture data were ob-
tained from the International Soil Moisture Network (Dorigo
et al., 2021). In cases where multiple soil moisture measure-
ments were present within a single day, the daily mean was
calculated and used for evaluation. In addition, to ensure a
good match between the modeled soil moisture depths and
the observations, only data that coincided with the depth of
the first soil layer were used. To match the location of ob-
servation stations with the appropriate grid cells, we located
the nearest grid cell relative to the coordinates of the obser-
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vation station. Observed total evaporation was obtained from
the FLUXNET dataset (Pastorello et al., 2020). As with soil
moisture, the observed values were matched to the simulated
data by locating the nearest grid cell.

The Kling—Gupta efficiency (KGE; Eq. 14) was used to
assess the accuracy of the simulated variables, and for both
total evaporation and soil moisture, evaluation was restricted
to stations with at least 1095 d of observation data. KGE val-
ues range from —oo to 1.0, with values greater than —0.41
implying that the model is a better predictor than the mean
of the data (Knoben et al., 2019).

KGE=1-/(p— 12+ (@— 12 +(B—1? (14)
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In addition, we analyzed how the different components of
the KGE score differed between resolutions. Correlation co-
efficients (p) provide an overview of how well the model
reproduces temporal changes in the observed data, the bias
ratio () indicates differences between the means of the sim-
ulated and observed values, and the variability ratio («) in-
dicates how well the model replicates the variability of the
observed data. A perfect KGE score is 1, which arises when
all components of the score (p, o, and B) equal 1 (i.e., the
observed and modeled values are identical). It is important
to note that both observed evaporation and soil moisture are
not uniformly represented across the modeling domain. Ob-
servations are denser over North America and the European
continent compared to the rest of the world (Figs. Al and
A2).

Snow cover

To establish to what degree the simulations were able to re-
produce snow dynamics, we evaluated daily snow cover at
the 30 arcsec resolution using the MODIS daily snow cover
product as observation data (Nagler et al., 2021). For this,
simulated snow water equivalent was converted into snow
cover, where values greater than zero were classified as hav-
ing snow present and assigned a value of 1, while values
equal to zero were classified as having no snow and as-
signed a value of zero. Given the mismatch in spatial res-
olution between the observation data (30 arcsec) and the 5
and 30 arcmin simulations, the 5 and 30 arcmin simulated
snow cover was re-gridded to the 30 arcsec resolution using
the nearest-neighbor algorithm. As an estimate of accuracy,
we calculated the false alarm rate (FAR; Eq. 15), probabil-
ity of detection (POD; Eq. 16), success ratio (SR; Eq. 17),
and Brier score (Eq. 18). POD (perfect score = 1) indicates
the probability of the observed snow events being correctly
forecasted, whereas FAR (perfect score = 0) indicates which
fractions of the simulated snow events incorrectly simulated
the presence of snow when there was no snow in observed
data. The SR (perfect score = 1) gives information on the
fraction of the observed snow events that were correctly fore-
casted. The Brier score (perfect score = 0) was calculated for
an overall assessment of the magnitude of error. These scores
could conceivably be calculated for each grid cell over the
entire domain; however, this would then include large re-
gions that never experience snow and ultimately skew vali-
dation scores. Therefore, we limited the validation to regions
that actually experience snowfall in reality. To do this objec-
tively, we created a mask where snowfall was present in the
simulation or the MODIS observation data and constrained
the validation within the mask.

false alarms
FAR = - 15
correct negatives + false alarms
hits
POD= ———— (16)
hits + misses
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. hits
success ratio = — (17
hits 4 false alarms

. 1 <h .
brier score = N Z (sim; — obs,)2 (18)

=1

Here, sim; is the presence or absence of snow cover in the
simulation, and obs; is the presence or absence of snow cover
in the observed data for time step ¢.

River discharge

River discharge from the Global Runoff Data Center
(GRDC) was used to evaluate river discharge simulated by
PCR-GLOBWRB for the three resolutions. The stations used
for evaluation met the following criteria: (i) 1095 d of daily
data were available, and (ii) the catchment area was greater
than 5 km?. Also, to make sure that the observation locations
were coupled to the right tributary, we selected the relevant
grid cell by matching the catchment area reported in GRDC
with that of the catchment area used in the model. The grid
cell within a 5km window of the station coordinate which
had a catchment area closest to that reported by GRDC was
selected as the representative point. To enable comparisons
between different resolutions, stations were selected based
on the catchment area of the of 30 arcsec modeling domain.
As the evaluation statistic, we calculated the KGE (Eq. 14)
and used the value of —0.41 as the boundary value to deter-
mine whether the model improves upon the mean variable
benchmark. A perfect KGE score is 1.0, and values greater
than —0.41 indicate that the model is a better predictor that
using the variable mean value (Knoben et al., 2019).

In addition, to obtain information on how the 30 arcsec
simulation compared in relation to the 5 and 30 arcmin coun-
terparts, we calculated the KGE skill score (Eq. 19). This al-
lows for inferences on whether a simulation improved com-
pared to a benchmark simulation (Towner et al., 2019). Here
we assessed how the 30arcsec simulations potentially im-
proved upon the 30 and 5 arcmin simulations as benchmarks;
a positive value indicates an improvement, and a negative
value indicates a regression. To facilitate visualization and a
more intuitive comparison, the bounded variant of the KGE
was used so that evaluation scores range from —1 to 1 (Hal-
louin, 2021). In addition, this bounded variant was used to
explore the relationship between elevation and catchment
area; elevation was obtained from the digital elevation model
within PCR-GLOBWB, and catchment area was as reported
in the GRDC database.

KGE, — KGEf

KGEy = ———— 19
s | —KGEnf 19)
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Table 1. Table of key differences between the 30 arcmin, 5 arcmin, and 30 arcsec PCR-GLOBWB implementations.

30arcmin 5 arcmin 30 arcsec
Downscaling procedure No Lapserate  Climatologies
Land cover sub-grid variability ~ Yes Yes No
Lateral snow transport No No Yes
Parallelization No Basin level  Basin and sub-basin level

3 Results

3.1 Increased resolution: computational load and
insights

Increased model resolution is associated with significant
increases in computational load and storage requirements
(Table 2). Without parallelization a global 5arcmin and
30arcsec simulation would be impractical, with simula-
tion times taking months. However, with the inclusion of
a previously implemented basin-level (Sutanudjaja et al.,
2018) and sub-basin-level parallelization scheme developed
in this study, simulation times are now of the order of days
(A~ 2.5d) for the 5 arcmin resolution and weeks (* 17 d) for
the 30arcsec resolution. We also find that, unsurprisingly,
storage requirements increase rapidly with increased spatial
resolution. For instance, writing a single variable to disk at
the daily frequency results in a 2000-fold increase in storage
requirements when moving from 30 arcmin to 30 arcsec (Ta-
ble 2). Storing all possible variables will equate to 365 GB
for 30 arcmin, while the 30 arcsec resolution storage require-
ments approach the petabyte scale.

Increased model resolution does, however, provide a
unique and improved representation of the hydrological cycle
(Fig. 3). For instance, compared to the 5 arcmin and 30 arcsec
resolution, the 30 arcsec resolution better resolves spatial pat-
terns in soil saturation related to elevation and land cover
type. In the 30 arcsec simulation, variations in soil saturation
degree related to drainage networks become visible. When
comparing the resolutions over the Himalayas, the 30 arcsec
simulation represents a continuous field and does not display
the footprint of the original coarse-scale meteorological forc-
ing as is present at 5 and 30 arcmin resolutions (Fig. 3). In ad-
dition, when shifting focus to the Taihang mountains in main-
land China, the difference between the arid Gobi towards the
west and humid forests towards the east is most evident in
the 30 arcsec simulation (Fig. 3).

3.2 Global water balance and total water storage

To evaluate the impact of increasing the spatial resolution on
the representation of the global water cycle, we compared the
long-term averages in the global water balance components.
In terms of absolute values, the 30 and 5 arcmin resolutions
have comparable long-term averages for the components of
the water balance (Table 3); differences are attributable to
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variation in the total land area being simulated. In contrast,
the 30 arcsec resolution shows higher precipitation and evap-
oration and lower runoff (Table 3).

To allow for easier comparison, we focus on relative dif-
ferences. For 30 and 5arcmin the results are comparable;
however, when considering the 30 arcsec simulation, the rel-
ative evaporation rates are significantly higher and runoft sig-
nificantly lower compared to the other two simulations (Ta-
ble 3). As resolution increases, there is a decrease in the rela-
tive amount of precipitated water that accumulates as runoff,
which is due to the increase in the relative rates of evapora-
tion (Fig. 4).

Spatial patterns in the models ability to reproduce total wa-
ter storage anomalies are similar in the fact that for all three
resolutions continental arid and high-elevation regions are
less well represented in comparison to low-lying temperate,
more mesic continental regions and islands (Fig. 5a). Over-
all, we find that, in terms of temporal dynamics, the 5 arcmin
resolution best resembles the GRACE data, followed by the
30arcsec and 30 arcmin resolution (Fig. 5b). Regarding the
magnitudes of errors, the 5 arcmin resolution best resembles
the GRACE data, followed by the 30 arcmin and 30 arcsec
resolution (Fig. 5¢).

3.3 Soil moisture and total evaporation

The cumulative frequency curves of KGE of simulated
soil moisture are largely indistinguishable between the
30 arcmin, 5 arcmin, and 30 arcsec resolutions. Of the 1676
stations used for validation (Fig. Al), 50 % display a KGE
greater than —0.41 (Fig. 6a) — this is true for all three sim-
ulations. Yet, when considering the different components of
KGE, differences between model resolutions are evident. As
resolution increases the correlation increases (Fig. 6b) and
variability decreases (Fig. 6d); yet this is offset by an in-
crease in bias (Fig. 6¢). In contrast, total evaporation displays
significant differences of the 30 arcsec simulation in compar-
ison to the 5 and 30 arcmin simulation, whereas evaporation
for 30 and 5 arcmin is similar. Only 85 % of the 143 stations
(Fig. A2) display a KGE greater than —0.41 for the 30 arcsec
resolution, whereas almost all of the stations in the 30 and
5 arcmin simulation exceed this threshold (Fig. 6e). This dif-
ference is attributable to an overestimation of the mean bias
(Fig. 6g) and variance (Fig. 6h) of the simulated evaporation
compared to observations.
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Table 2. Overview of the computational and storage requirements for a multi-decadal (1985-2019) global PCR-GLOBWB simulation at
different resolutions of 30 arcmin, 5 arcmin, and 30 arcsec. Simulations were run on the Dutch National Supercomputer — Snellius.

Resolution  Serial simulation time (h)  Parallel simulation time (h)  Storage (GB; min-max) Max CPU cores
30 arcmin 43 n/a 3.3-365 1
5 arcmin 2465 66 182-20748 1696
30 arcsec 39245 401 8200-934 800 6528

n/a: not applicable.

Figure 3. Mean (1985-2019) upper soil saturation (—) simulated by PCR-GLOBWB at the 30 arcsec resolution. Zoomed insets show how
the highlighted regions differ between the 30 arcsec, 5 arcmin, and 30 arcmin resolution PCR-GLOBWB simulations.

3.4 Snow cover

The inclusion of the lateral movement of frozen water, rep-
resentative of movement by glaciers, avalanches, or wind,
resulted in a more accurate accumulation and redistribution
of frozen water at high elevation and prevented the erro-
neous accumulation of frozen water in snow towers. When
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evaluated against observed snow cover, all three resolutions
tended to overestimate the frequency of snow cover. The
30 arcmin simulation displays the highest false alarm rate
and shows an increased tendency to simulate snow on oc-
casions where there is no snow present (Fig. 7a). As reso-
lution increases, the false alarm rate decreases so that the
simulations at 30 arcsec display the lowest false alarm rate
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Table 3. Global water balance components (km? yr_l) for 1985-2019 at 30 arcmin, 5 arcmin, and 30 arcsec resolution simulated by PCR-
GLOBWRB. Values in parentheses indicate the relative amounts in relation to precipitation as a percentage.

Simulation  Precipitation Evaporation Runoff  Storage
30arcmin 112140 64091 (57 %) 47089 (42 %) 960
5 arcmin 112159 63277 (56 %) 49223 (44 %) —341
30arcsec 121798 84275 (69%) 39605(33%) —2082

0.0 0.30 0.60

0.3 0.7 1.0

Figure 4. Annual mean (a) runoff / precipitation and (b) evaporation / precipitation ratios for 30 arcmin, 5 arcmin, and 30 arcsec simulated

by PCR-GLOBWB from 1985-2019.

(Fig. 7a). The success rate follows the inverse pattern of the
false alarm rate, where increasing resolution results in de-
creased success rates (Fig. 7b). With the highest probability
of detection, the 5 arcmin simulation shows the best ability to
correctly simulate occasions where snow is present, followed
by the 30arcsec and 30 arcmin simulation (Fig. 7c). As an
overall assessment of the resolutions in correctly simulating
the presence and absence of snow, the Brier score reveals that
the 30 arcsec resolutions are the most accurate, followed by
the 5 and 30 arcmin resolutions (Fig. 7d).

The global distributions in the Brier score reveal that
the performance varies substantially depending on location
(Fig. 8). For all three resolutions, the models show the poor-
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est performance in arid regions and regions of high elevation
and complex topography. In terms of differences between
resolutions, the performance increase with resolution is high-
est for higher elevations. However, for drier regions the per-
formance degrades (Fig. 8).

3.5 River discharge

Simulated river discharge more closely resembles the ob-
servations at the 30arcsec resolution, with close to 80 %
of the 7086 stations showing skillful discharge simulations
when compared to 5arcmin (70 %) and 30 arcmin (30 %,
Fig. 9a). The improvement in the 30arcsec simulations is
mainly brought about by increases in the correlation values
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Figure 5. (a) Spatial variation of the Spearman correlation and RRMSE for simulated total water storage validated against GRACE data from
2002-2019 for basins with areas exceeding 400 000 km?2. Empirical distribution functions for (b) Spearman correlations and (¢) RRMSE.

and reductions in the bias and variance errors (Fig. 9b, c, d).
The 30 arcsec simulation improves upon the 30 and 5 arcmin
simulation in the majority of locations, and this improve-
ment is more pronounced for smaller catchments compared
to larger catchments (Fig. 10a, b). The increase in perfor-
mance related to resolution increase is applicable to all ele-
vations and basins sizes, but the magnitude of performance
increase is greatest for basins that are characterized by high
elevations (Fig. 10c) and small catchment areas (Fig. 10d).
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4 Discussion

4.1 Computational and storage demands

‘We show here that truly global hyper-resolution modeling is
indeed possible with today’s computational resources. How-
ever, long simulation times and excessive storage require-
ments for such simulations will hinder the reproducibility
and accessibility for the wider hydrological community. Fu-
ture attempts should consider how newer technologies may
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Figure 7. (a) False alarm rate, (b) success rate, (c) probability of detection, and (d) Brier score for daily snow cover for a 30 arcmin, 5 arcmin,
and 30 arcsec global PCR-GLOBWB simulation from 1985-2019.
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Figure 8. Brier score of snow cover (-) simulated by PCR-GLOBWB at 30 arcsec resolution. Zoomed insets compare how the highlighted
regions differ between the 30 arcsec, 5 arcmin, and 30 arcmin resolution PCR-GLOBWB simulations.

serve to reduce simulation times. For instance, relying on
graphical processing units for computations has been shown
to reduce simulation times (Freitas et al., 2022). Another op-
portunity lies in being able to enhance the parallelization
strategies used in global hydrological models. The simula-
tions presented here employ a common method of paral-
lelization, termed “embarrassingly parallel”, where the mod-
eling domain is subset into independent units (in this case
basins) which are executed in parallel over multiple pro-
cesses. Adopting alternative methods of parallelization may
further improve simulation times, and a promising candidate
called “asynchronous many tasks” (AMT) may be especially
useful to the hydrological community (de Jong et al., 2022).
The use of an AMT-based framework could not only improve

Earth Syst. Dynam., 16, 29-54, 2025

simulation times but also reduce the ever increasing work-
load associated with post-simulation data management. As
an illustrative example, the simulation presented here pro-
duced ~ 46000 files spread across 645 folders, whereas an
AMT-based simulation could result in as few as 72 files out-
put files for the same simulation.

An important motivation for the development of global
hyper-resolution models is that they should be used in cli-
mate change studies (Wada et al., 2017), yet the storage and
computational requirements for such an endeavor are still a
limiting factor. To illustrate, here we evaluate four variables
at a daily frequency and one variable at the monthly fre-
quency, which requires approximately 27 TB of storage. To
obtain a more comprehensive view of the hydrological cycle,

https://doi.org/10.5194/esd-16-29-2025



B. van Jaarsveld et al.: A first attempt to model global hydrology at hyper-resolution

Il 30min 5min N 30sec

43
(©) /ﬁ () /’f’_

(a)

0.8

0.6 1 /

Proportion

0.4

0.2 -/ | _/
0.0 T T T T T T T T T T T
-1.0 —0.5 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 10 0.1 1 2 3 4 0.1 1 2 3
Kling-Gupta Efficiency I B a

S

Figure 9. (a) KGE, (b) correlation component, (¢) beta component, and (d) alpha component calculated for daily river discharge from a
30 arcmin, 5 arcmin, and 30 arcsec global PCR-GLOBWB simulation from 1985-2019. Values greater than —0.41 (red line) indicate the
value at which stations improve upon the mean flow benchmark (Knoben et al., 2019).

it would be preferable to have daily-frequency data for more 4.2 Increasing resolution and model accuracy
of the available model outputs. When considering all possi-
ble model outputs (114 variables), this would yield a storage
load of approximately 1 PB for a 35-year simulation. Extend-
ing this approach for a multi-model future simulation using
the CMIP6 ensemble (approximately 130 models) storage re-
quirements is estimated at 780 PB. Petascale storage require-
ments are inaccessible — or at the very least impractical —
for most of the hydrological community. However, expected Global water budget and total water storage
simulation times are less daunting, and total simulation time
would approach 3 months on the Dutch National Supercom-
puter. Although this would provide valuable information, it
also means that hydrology is now faced with the same is-
sues current general circulation models (GCMs) face, namely
that, while such simulations are possible, data storage be-
comes a limitation (Schar et al., 2020). While solutions to the
computational and storage limitations remain elusive, lever-
aging the recent trend towards cloud technologies for stor-
ing and disseminating Earth science data is promising, yet
the costs of these services remain high (Beven et al., 2015).
To this end, the hyper-resolution hydrology community can
benefit by emulating and drawing from the experiences of the
remote sensing community, who routinely depend on cloud
computing and storage facilities to effectively distribute large
volumes of data to end users (Xu et al., 2022). Moreover,
hyper-resolution physically based models may also benefit
from adopting similar model deployment and dissemination
strategies which are common amongst the machine learning
community. For example, making intermediary states (i.e.,
yearly states) available to the public could allow more of the
community to reproduce their required model outputs on the
hardware available to them.

By increasing the model resolution we should expect to have
a better representation of hydrological systems. However, we
report mixed success when looking at the reproductions of
different variables; below we discuss each of the evaluated
variables.

Total water storage anomalies did not respond drastically
to increasing model resolution, yet there were small reduc-
tions in the magnitude of error as modeling resolution is in-
creased. This may be related to a more realistic distribution
of water across the landscape at finer resolutions. Yet cor-
relations were worse for the 30 arcmin simulation, followed
by the 30 arcsec resolution, and best for the 5 arcmin simula-
tion. However, it is also important to note that the benefits of
higher resolutions may not be captured when using GRACE
data to evaluate since the original resolution is 30 arcmin and
thus might by itself also capture a different signature than
produced by the high-resolution simulations (Hoch et al.,
2023). Partitioning between the major water reserves dif-
fered in response to increasing model resolution, with a
markedly larger value of evaporation and lower discharge at
the highest resolution. In comparison to other global mod-
els the 30arcsec PCR-GLOBWB rates of evaporation are
within previously reported ranges (60 000-85 000 km? yr—1),
whereas runoff is slightly lower than previously reported
(42 000-66 000 km?® yr—!; Haddeland et al., 2011). Interest-
ingly, runoff is in line with a machine-learning-based es-
timate based on station-based river discharge data (Ghiggi
et al., 2019). Expected evaporation to precipitation ratios are
around 60 % (Miralles et al., 2011), and for the 30 arcmin
(57 %) and 5 arcmin (56 %) simulations this is the case. How-
ever, for the 30 arcsec resolution the evaporation to precipi-
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Figure 10. Spatial distribution of improvements in the KGE skill score calculated for river discharge simulated using PCR-GLOBWB at the
30 arcmin, 5 arcmin, and 30 arcsec resolution. (a) 30 arcsec vs. 30 arcmin and (b) 30 arcsec vs. 5 arcmin. KGE cumulative distribution plots
for catchments binned according to elevation (c¢) and catchment area (d).
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tation ratios is 69 %, thus exceeding the expected value by
approximately 9 percentage points.

Soil moisture and evaporation

Overall, predictions of soil moisture did not show much
improvement as resolution increased, when considering the
KGE scores. Differences do arise when the different compo-
nents of the KGE scores are compared between the resolu-
tions. The correlation and variability between observed and
modeled soil moisture values show improvements, whilst the
magnitude of negative bias increases with increasing resolu-
tion. It is important to note that the bias and variability are
largely dependent on the accuracy of forcing data, and dif-
ferences between simulations across resolutions could be a
result of forcing and not necessarily due to differences in the
model. Nonetheless, the observation that the correlation and
variability are better predicted and the bias is less well pre-
dicted as resolution increases could be explained by a sce-
nario where the model overestimates evaporation, which in
turn results in soils that are too dry. In congruence, the evap-
oration estimates at 30 arcsec are significantly worse than
those at the lower resolutions and tend toward an overesti-
mation at 30 arcsec when compared to 5 and 30 arcmin reso-
lution. It is feasible that this could be due to a difference in
how the meteorological forcing is scaled between the reso-
lutions or the parameterization of the model that determines
the rates of evaporation. As shown hereafter in Sect. 4.3, it is
likely due to the combination of parameterization and forcing
effects.

Snow cover

Increasing resolution resulted in better spatial representation
of snow cover, with the highest resolution presenting the
highest accuracy. Increased accuracy is brought about by the
reduction in instances where snow is simulated in the absence
of snow in observations, a result directly related to increased
resolution. Although differences are small when consider-
ing the global picture, improvements are most prominent in
high-elevation regions. These improvements are related to
both increasing modeling resolution and the introduction of
lateral snow transport, which prevents the formation of er-
roneous snow towers. Although not the direct focus of this
work, future studies should look at how snow can be bet-
ter represented in global hydrological models by including
processes that are important in determining the water dy-
namics in ice and snow, especially when modeling at fine
spatial resolutions. For instance, the current PCR-GLOBWB
does not have unique glacier implementations. Yet, glaciers
have been shown to be locally and regionally important, and
including such processes does result in better predictions at
larger scales (Hanus et al., 2024; Wiersma et al., 2022). Sim-
ilarly, work needs to be done to improve snow dynamics and
move beyond the simple snowmelt model currently present in
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the model by including additional processes which have also
been shown to increase the accuracy of predictions (Freudi-
ger et al., 2017).

River discharge

Predictions of river discharge improved markedly as model-
ing resolution increased. 30 arcsec displayed the most accu-
rate predictions of river discharge. The improvement in KGE
values at higher resolution is mostly the result of a better
timing of the discharge peaks and troughs, resulting in larger
correlation coefficients (Fig. 10). Reductions in bias as reso-
lution increases also contribute to improvement of river dis-
charge; for the 30 and 5 arcmin resolution the model tends to
overestimate river discharge, whilst the 30 arcsec results are
underestimated. When considering that, for the 30 arcsec res-
olution, discharge values are underestimated in conjunction
with the observation that evaporation is overestimated, the
question arises of whether this increased evaporation leads to
better estimates of river discharge by correcting for overesti-
mation at the coarser resolution. Indeed, from the soil mois-
ture and evaporation validations, we can conclude that an
overestimation of evaporation may result in a better estima-
tion of river discharge bias. A positive result from these eval-
uations is that smaller catchments and catchments at higher
elevations are now better represented by the model, a result
directly related to increased model resolution. Increased res-
olutions are known to better represent smaller catchments
(Hoch et al., 2023; O’Neill et al., 2021; Aerts et al., 2022).

In a broader sense a direct comparison with other global
hydrological models is challenging given differences in vali-
dation approaches. Heinicke et al. (2024) report that for nine
global hydrological models, the median KGE for daily river
discharge ranges from —0.43 to 0.46. The KGE scores pre-
sented by Heinicke et al. (2024) were based on 644 sta-
tions in comparison to the 7086 stations used in this study,
so a direct comparison should be done with care; nonethe-
less, it is encouraging to see that even with the differences
in validation approaches, the 5 arcmin (median KGE =0.1)
and 30 arcsec (median KGE =0.1) values are within range,
even with a wider set of validation stations. Regarding other
hyper-resolution hydrological models, the scores reported
here are similar to that of wflow_sbm implemented over the
contiguous United States (median KGE = 0.0) (Aerts et al.,
2022).

4.3 Untangling model scaling and forcing downscaling
affects

The results above suggest the possibility that the changes in
forcing, downscaling, or parameterization in the 30 arcsec
model may be responsible for the patterns we observe.
Namely, overestimation in evaporation leads to more accu-
rate estimates of river discharge by correcting for an overes-
timation of river discharge in the 5 and 30 arcmin simulation.
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Table 4. Water balance components (km3 yr— 1) for 1985-2019 at 30 arcmin, 5 arcmin, and 30 arcsec resolution simulated by PCR-GLOBWB
over the European continent. Values in parentheses indicate the relative amounts in relation to precipitation as a percentage.

Resolution  Downscaling  Precipitation ~ Evaporation Runoff  Storage
S aremin Old 6532 3601 (55%) 2804 (43 %) 127
New 6937 4002 (58 %) 2807 (40 %) 127
30 arcsec Old 6377 4468 (70%) 1860 (30 %) 49
New 6779 4947 (73%) 1787 (26 %) 44

In order to differentiate between the effects of the down-
scaling methodology and those related to model parameter-
ization as resolution increases, the 5arcmin and 30 arcsec
simulations, using the old and new downscaling method,
were compared over continental Europe and evaluated as
above (Table 4 and Fig. 11). The fact that the new downscal-
ing method provides comparable results when comparing it
to the old downscaling method at the same resolution sug-
gests that the differences in the model results are most likely
attributable to model parameterization. One likely candidate
is the way in which land cover is handled within the model
at the 30 arcsec resolution. For the 30 and 5 arcmin models,
PCR-GLOBWRB allows for sub-grid variability in land cover
type, whereas at 30 arcsec only the dominant land cover type
is assumed per grid cell (Table 1). This was done to reduce
computation time by avoiding having to loop over land cover
classes for each time step. Since forests are often the predom-
inant type, even in agricultural landscapes, and forests gener-
ally have higher evaporation than crops, evaporation is likely
overestimated through an inflated representation of forests in
the model. To corroborate this claim we conducted a post
hoc analysis, which was aimed at understanding which pro-
portion of the model domain consists of forests when using
dominant land cover types compared to a fractional cover-
age. This analysis revealed that expressing land cover as a
single dominant class per grid cell leads to a 13 percentage
point (Appendix B1) inflation in the total area covered by
forests (~ 50 %) compared to when using the fractional cover
(~ 37 %).

To further evaluate the sensitivity of the water budget
terms to changes in land cover parameterization, for a small
test region, we changed the land cover representation so that
the entire region consisted of either forest, grasslands, or
crops and compared the water budget terms to a 5 arcmin
simulation with unchanged land cover representation (see
Appendix B2). These simulations show that decreasing the
relative abundance of forests within a domain will result in
decreased rates of evaporation and increased rates of runoff.
However, although the results for this region are quite sensi-
tive to land cover, it is unlikely that any combination of land
cover types will result in relative rates of evaporation and
runoff similar to those of the coarser resolutions. This sug-
gests that there are further factors, besides land cover repre-
sentation, responsible for the difference in water budgets be-
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tween resolutions. For instance, it may be that neither down-
scaling approach is capable of reproducing meteorology ac-
curately at the 30 arcsec resolution.

Our results suggest that global hydrological models need
to incorporate land cover heterogeneity even at the sub-
kilometer scale in search of better predictive capacity. In
congruence with this observation, land cover representation
has previously been shown to be important in providing
accurate predictions of hydrological states at the kilometer
and even sub-kilometer resolution (Singh et al., 2015; Lazin
et al., 2020). It is important to note that although needed
for improving the accuracy of predictions, incorporating sub-
kilometer land cover heterogeneity would further increase
computation times. In addition, it is evident that the per-
formance of high-resolution horological models is hindered
by the availability of accurate high-resolution meteorological
forcing, an observation that has previously been highlighted
by more localized studies (Malle et al., 2024).

4.4 Global hyper-resolution hydrological modeling:
status and recommendations

Our work advances global hyper-resolution modeling and its
application beyond the continental scale (Hoch et al., 2023;
O’Neill et al., 2021; Vergopolan et al., 2021; Chaney et al.,
2021). We show that a hyper-resolution global hydrological
model is feasible given the computational limits currently in
place. However, it also highlights that storage is expected to
become a significant challenge as global hydrological mod-
eling advances. This will create additional challenges when
output data are used for further analysis and when extracting
point location time series in a computationally effective way.

The introduction of the climatology-centered downscaling
method and ability to move frozen water stores laterally re-
sult in more continuous and ultimately more realistic repre-
sentations of the hydrological cycle. Hoch et al. (2023) pro-
posed that enhancing the representation of additional phys-
ical processes at the kilometer scale could enhance the pre-
dictions. The findings presented in this study indicate that
this is indeed true, although further efforts are required to
further enhance the predictive capabilities. The importance
of high-resolution forcing data is well understood, and it
has been shown that hydrological predictions become bet-
ter when more high-resolution data are used to force such
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Figure 11. (a) KGE, (b) correlation component, (¢) beta component, and (d) alpha component calculated for daily river discharge from
a 30 arcmin, 5 arcmin, and 30 arcsec PCR-GLOBWB simulation from 1985-2019 for the European region. Values greater than —0.41 (red
line) indicate the value at which stations improve upon the mean flow benchmark (Knoben et al., 2019).

models (Evin et al., 2024; Alfieri et al., 2022). Such data are 5 Conclusions
only available for limited regions of the world, and obtaining
global and spatially coherent high-resolution forcing dataisa ~ The main goal of this study was to develop a unique global

challenge that needs to be addressed if we are to have higher- hyper-resolution hydrological model that covers a period of
quality hydrological predictions at the global scale. several decades (1985-2019), expanding the current hyper-

Furthermore, as also shown by Hoch et al. (2023), there resolution hydrological models beyond continental bound-
are a number of epistemic uncertainty issues related to global aries. We incorporated a novel downscaling approach and
hydrological modeling that still need to be addressed. Forin- ~lateral movement of frozen water that ultimately yields more
stance, we need a better representation of land surface, snow, realistic representations of the hydrological cycle. Yet, as
and ice processes as these processes play a dominant role at resolution increased, the model tended to overestimate rates
fine spatial resolution and can no longer be neglected or cap- of total evaporation, which resulted in reductions in runoff.
tured in existing conceptual parameterization. At finer spatial ~ This suggests that additional processes that are relevant at the
resolution altitude effects start to play a key role in precipi- hyper resolution need further attention. Overall, the pursuit
tation totals, snow and ice formation, melt, and evaporation of hyper-resolution hydrological models is driven by the as-
and thus require fine-resolution meteorological information sumption that they will be able to provide stakeholders with
if possible at the global scale. more local estimates of water resources; one promising re-

On the other hand, moving to a higher resolution allows sult reported in this study is that increased resolution leads to
for a better match to in situ observations and more recently ~ more accurate estimates of river discharge.

released high-resolution remote sensing products; the impor-
tance of scale commensurability between model outputs and
in situ observations has been highlighted by Beven et al.
(2022). For instance, the caravan dataset, which has 6830 sta-
tions for small river catchments (Kratzert et al., 2023), could
be used to better underpin the accuracy of simulated river
discharge values at higher resolution — as has been done for
smaller-scale studies (Aerts et al., 2023). Resolutions coarser
than 30 arcsec would not allow for the inclusion of these river
catchments, given the disconnect between modeling reso-
lution and observed data station sizes. In addition, recent
advances in remotely sensed high-resolution soil moisture
data will also be a valuable resource for evaluating hyper-
resolution simulations once their time series are sufficiently
long (Brocca et al., 2024).
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Appendix A: Spatial distribution of validation
stations

Figure A1. Map showing locations of stations used for validation of simulated soil moisture.
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Figure A2. Map showing locations of stations used for validation of simulated total evaporation.
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Appendix B: Land cover representation analysis

B1 Dominant vs. fractional

The model evaluation shows that relative rates of land evap-
oration are higher in the 30 arcsec simulation in comparison
with the 5 and 30 arcmin simulations. We postulate that this
is due to the way that the model represents land cover in
the 30 arcsec simulation (Sects. 2.1 and 4.3). Given that the
model we present here relies on the Global Land Cover Char-
acteristics (GLCC) database version 2.0 (Loveland et al.,
2000), which is at the 30arcsec resolution, we cannot di-
rectly test this assumption using the model input datasets.
However, higher-resolution land cover datasets are available
and as such we leveraged these to test our hypothesis that us-
ing dominant land cover types leads to a higher proportion of
the model domain being represented by forests than if frac-
tional land cover types were used.

Here we rely on the Dynamic Land Cover map (100 m res-
olution) from the Copernicus Global Land Service (Buch-
horn et al., 2020), which provides both dominant land cover
types and fractional land cover types at the 100 m resolution.
To test the difference between dominant and fractional, we
compared to percentage of total land cover represented by
forest when using the dominant land cover type compared
to the fractional representation for the year 2019 (Buchhorn
et al., 2020). When using the dominant land cover the total
land area covered by forests amounts to 50 %; when using
fractional land cover this number is much lower at 37 %, a
difference of 13 percentage points.

Table B1. Water balance components (km? yrfl), evaporation to
precipitation ratio, and runoff to precipitation ratio for 1985-2019
at 5 arcmin and 30 arcsec, with varying land cover parameterization,
simulated by PCR-GLOBWB.

B2 Water budget sensitivity

In addition to the above analysis, we have also looked at how
sensitive evaporation in the 30 arcsec simulation is to land
cover changes for a small test region (Southern Alps). We
assumed that the entire domain is covered by either forest,
grassland, or croplands. These three simulations were com-
pared to the original configuration 30 arcsec and 5 arcmin (as
presented in the main text).

From this sensitivity test, we conclude that evaporation
rates are indeed sensitive to changes in land cover repre-
sentation; however, no changes will allow us to reach the
same evaporation rates as for the 5arcmin or the ratio be-
tween evaporation and precipitation. In addition, the evap-
oration estimates we present are at the higher end of what
can be expected (94-130km? yr—!). It also shows that no
land cover configuration at the 30 arcsec resolution will re-
produce the values at 5 arcmin, since the maximum possible
runoff values at 30 arcsec (125 km? yr~!) are still lower than
what is simulated by the 5 arcmin resolution (126 km? yr—1).
This also means that even by changing all land cover to crops
we cannot achieve the same values as for the 5 arcmin model
simulations.

Simulation  Land cover Precipitation  Evaporation Runoff Evaporation / precipitation  Runoff / precipitation
5 arcmin n/a 208 76 126 0.36 0.60
n/a 228 120 99 0.53 0.43
30 arcsec Only forest 228 130 89 0.57 0.39
Only grassland 228 124 96 0.54 0.42
Only crops 228 94 125 0.41 0.55

n/a: not applicable.
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Data availability. To facilitate the use of data produced in this
study we have archived monthly and annual aggregations of river
discharge on YODA, a research data management service of Utrecht
University; data can be found at https://doi.org/10.24416/UUO01-
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tact the corresponding author for additional model output.
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