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Abstract. Forests are an important component in the framework of nature-based solutions for mitigating climate
change. However, there are still uncertainties about the biogeophysical effects of forest cover changes affecting
heat and water fluxes as captured by Earth System Models (ESMs) simulations and observations. In this study,
we investigate the differences in the surface temperature response to idealized, complete deforestation and the
temperature sensitivity to percentage change in forest cover in ESMs and observations. In this comparison, the
separation between local (at the place of deforestation) and non-local (nearby or distant locations) effects is
crucial as observations capture only the former. Here, we propose a modified methodology to separate local and
non-local effects in climate models suitable for simulations with linear rate of deforestation. The local sensitivity
of a climate variable per unit deforested area is represented by the slope of the linear regression, where tree
cover is an explanatory variable. The non-local effect is defined as the difference between the overall change
in the respective climate variable and the local effect. Our analysis of eleven ESMs of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) that participated in the idealized global deforestation experiment
deforest-glob, reveals a coherent local temperature response among climate models characterized by warming in
the tropics and cooling in the northern higher latitudes. The temperature response however varies in magnitude,
space and time with ESMs showing distinctive seasonal and spatial patterns. A closer look at the albedo response
to deforestation across northern latitudes shows an overestimation in the ESMs in comparison to observations
that translates via an emergent constraint (i.e. resulting from the linear relationships between local albedo and

Published by Copernicus Publications on behalf of the European Geosciences Union.



2138 N. Mileva et al.: Evaluating biogeophysical sensitivities to idealized deforestation in CMIP6 models

surface temperature within the model ensemble) into an overestimation of the overall simulated cooling effect.
The overestimation of the local albedo sensitivity cannot be explained solely by the higher percentage of snow
cover in ESMs. In terms of local latent heat flux sensitivity, the ESMs ensemble mean is overestimated for
the boreal region, but it is in good agreement with the observational constraint in the temperate forests and
the tropics. However, the inter-model spread and the internal model variation in these regions are considerable.
ESMs having higher local albedo and latent heat flux sensitivities than the current observational constraints can
still exhibit a realistic temperature response due to compensatory effects between the two sensitivities. Non-local
effects contribute to consistent cooling throughout the globe, which persists also during the summer when the
influence of the overestimated albedo sensitivity over snow is weaker. Having a deeper understanding of how
local and non-local biogeophysical effects are represented in ESMs can give us insights into the net climate
impact of deforestation and help us improve next generation ESMs.

1 Introduction

Forests are essential for our adaptation to a warmer world as
they cool the climate during the hottest months of the year,
contributing to the resilience of urban, agricultural, and natu-
ral landscapes (Lawrence et al., 2022). Through their climate
benefits, forests can also serve as one of the most promising
natural climate solutions – a set of measures aimed at mitigat-
ing climate change without limiting the supply of food and
fiber and putting natural habitats under pressure (Griscom
et al., 2017). Whether through afforestation, reforestation,
avoided forest conversion, improved forest management, for-
est restoration or agroforestry, forests have a large potential
for capturing and retaining CO2 (Griscom et al., 2017). In
addition to acting as a carbon sink, forests also influence
the climate by altering key biogeophysical properties such
as albedo, evapotranspiration efficiency and surface rough-
ness (Bonan, 2008). Unlike the biogeochemical effects of
deforestation, which encompass an increase in CO2 concen-
tration in the atmosphere with a clear link to warming, the
biogeophysical effects of changes in forest cover can have
opposite impacts on temperature depending on the location
and season (Bonan, 2008) and the type of forest in ques-
tion (Bright et al., 2017; Naudts et al., 2016). For example,
boreal forests can have a warming effect (relative to non-
forested boreal regions) because of their significantly lower
albedo compared to snow-covered short vegetation, while
tropical forests can cool the climate through higher rates of
evapotranspiration and enhanced cloud cover (Betts, 2000;
Claussen et al., 2001; Wang et al., 2009). Correspondingly,
deforestation has a cooling effect in the boreal region driven
mainly by the higher albedo due to the reduction in the snow-
masking effect of trees, thus limiting the amount of available
energy at the surface. In tropical forests, the albedo effect is
not as strong and is overpowered by the increase in incoming
shortwave radiation due to lower cloud cover. The increase
in incoming solar radiation leads to a rise in net surface ra-
diation and consequently of surface temperature as evapora-
tive cooling over grasslands is not as efficient (Boysen et al.,
2020).

To gain more insight into the biogeophysical effects on
climate resulting from large-scale changes in forest cover, a
number of Earth System Models (ESMs) and regional cli-
mate models experiments have been performed using ei-
ther plausible deforestation patterns derived from historic
or future land use and land cover changes (e.g., Pongratz
et al., 2010; Boisier et al., 2012; Lejeune et al., 2018; Li
et al., 2023), or idealized extensive deforestation scenar-
ios (e.g.,Durbidge et al., 1993; Werth and Avissar, 2002,
and more recently Devaraju et al., 2018; Strandberg and
Kjellström, 2019; Boysen et al., 2020). Previous deforesta-
tion studies (e.g., Bala et al., 2007; Davin and de Noblet-
Ducoudré, 2010; Bright et al., 2017; Winckler et al., 2019b)
have identified the competing effects of decreasing evapo-
transpiration efficiency and surface roughness, which typ-
ically lead to warming, and increasing albedo, which is
considered to be the dominant of the three factors driving
global mean cooling (Davin and de Noblet-Ducoudré, 2010;
Laguë et al., 2019). In such model simulations, deforesta-
tion causes strong changes in surface temperatures locally (at
the place of deforestation) through changes in biogeophysi-
cal land surface properties (termed “the local effect”). But
large-scale deforestation in these experiments also triggers
strong changes in advection of heat and moisture, as well
as in atmospheric and ocean circulation, which influence re-
gions that have not undergone deforestation (Winckler et al.,
2017b; Portmann et al., 2022). These biogeophysical “non-
local effects” may be even more important than local effects
in terms of their influence on the patterns of temperatures
(Winckler et al., 2019a, c). By considering only local effects
in models, the global mean cooling observed in complete de-
forestation experiments could be to a large extent reconciled
with the warming pattern in observations (Winckler et al.,
2019a; Chen and Dirmeyer, 2020).

More recently, substantial strides in our understanding of
the impact of changes in forest cover on near-surface climate
could be achieved also from an observational perspective
through the availability of high-quality satellite-based data
products of key climate variables (e.g., surface temperature)
and tree cover (e.g., Alkama and Cescatti, 2016). Similarly to
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models, observation-based studies recognized the competing
effects of evapotranspiration and albedo in forests (e.g., Li
et al., 2015). Deforestation in the arid, tropical and temperate
regions leads to an increase in the mean surface and air sur-
face temperature (Alkama and Cescatti, 2016; Bright et al.,
2017; Duveiller et al., 2018b). In the boreal region, a clear
seasonal pattern is observed showing warming during the
snow free months and cooling during the rest of the year with
mean annual effect ranging from mild warming to signifi-
cant cooling (Alkama and Cescatti, 2016; Li et al., 2016b).
In these studies, the climate impact of deforestation is usu-
ally estimated between neighboring pixels with contrasting
forest cover – the so called space-for-time substitution, using
the difference in temperature before and after deforestation
(e.g., Alkama and Cescatti, 2016; Li et al., 2016b; Baker and
Spracklen, 2019; Prevedello et al., 2019), or between clima-
tology averages (e.g., Li et al., 2015; Duveiller et al., 2018b)
to account for natural climate variability. Importantly, both
approaches only capture the local biogeophysical effects of
deforestation as non-local effects are either canceled out or
indistinguishable from natural climate variability. Another
limitation of satellite observations is that they are collected
during mostly cloud-free days, which can bias estimates of
surface temperature changes (Chen and Dirmeyer, 2020). A
new method proposed by Bright et al. (2017) overcomes this
limitation by deriving empirical estimates of the local surface
temperature change using flux tower measurements, which
are collected continuously also during overcast conditions.

Comparing only the local biogeophysical effects of de-
forestation in ESMs and observations has reconciled many
of the earlier discrepancies in the findings based on these
two approaches, particularly for northern latitudes (Pongratz
et al., 2021). Yet, substantial differences in the magnitude
of the local temperature response remain in models and
satellite-based studies, especially in certain areas such as the
boreal region and southern tropics (Winckler et al., 2019a).
In addition, when considering the combined (local and non-
local) effects of deforestation, ESMs show substantial differ-
ences in temperature sensitivities to deforestation, sometimes
even with opposite sign (Boysen et al., 2020). Land surface
models, an integral part of ESMs, still have limitations in
simulating turbulent heat fluxes, leading to discrepancies and
even disagreement between models in the sign of change trig-
gered by land cover transitions (Duveiller et al., 2018a). Un-
certainties exist also in the satellite-based temperature sen-
sitivities, which can come from differences in the resolution
and sensor accuracy or the underlying parametrization (Chen
and Dirmeyer, 2020).

One of the key goals of this study is to provide
observational-based emergent constraints (Hall and Qu,
2006) for the ESM responses to deforestation by compar-
ing local surface temperature and key biogeophysical sen-
sitivities to changes in forest cover in observations and mod-
els. Observations cannot be directly compared against ESMs
because the spatial extent, location and background climate

conditions determine the biogeophysical response to defor-
estation and differ between the observations and simulations.
However, local sensitivities are largely independent of these
effects, allowing us to apply the emergent constraints ap-
proach. The emergent constraints concept states that a rela-
tionship between two variables can emerge across simula-
tions with different background climate (i.e. current climate
and future climate projection) in a sufficiently large ensem-
ble of ESMs. By knowing the local effects from observations
and the emerging relationship between local and total effects
from model experiments, we could use these relationships to
constrain the total effects of deforestation on the near-surface
climate.

In this study, we address therefore specifically the ques-
tion whether the local effects of deforestation are consistent
across a range of ESMs and how well these agree with ob-
served in-situ and satellite-based local responses. We inves-
tigate the differences in the local temperature response to
deforestation (i.e. temperature sensitivity) in ESMs and ob-
servations and relate them to biogeophysical properties con-
trolling the interactions between forests and near-surface cli-
mate. The objective is to provide observationally based emer-
gent constraints for local surface temperature, albedo and
latent heat flux sensitivities to deforestation, against which
both the local and total (local and non-local) ESM based sen-
sitivities can be compared. This evaluation of the simulated
local climate effects of large-scale deforestation is a first step
toward more robust simulations of the total biogeophysical
climate impact of large-scale afforestation and reforestation
efforts.

2 Methods

2.1 ESM deforestation experiment

Idealized deforestation experiments have a higher signal-
to-noise ratio compared to realistic deforestation scenarios,
which allows the deforestation signal to exceed model in-
ternal variability (Davin et al., 2010). The Land Use Model
Intercomparison Project (LUMIP), endorsed by CMIP6, pro-
vides a set of experiments aiming to quantify the effects of
land use and land cover change on climate (Lawrence et al.,
2016). In this study, we focus on the idealized global defor-
estation experiment deforest-glob conducted as part of LU-
MIP. In this simulation, roughly 20 million km2 of forest are
converted to natural grassland over a period of 50 years, fol-
lowed by 30 years with stable forest cover. The deforestation
is performed in grid cells having the highest percentage of
tree cover area, thus creating a similar pattern of deforesta-
tion across the ESMs, limited mostly to the boreal and tropi-
cal regions (Fig. 1). The climate and anthropogenic forcings
are kept at pre-industrial level by branching off the deforesta-
tion experiment from an 1850 control simulation (piControl)
as defined by CMIP (Eyring et al., 2016). Dynamic vege-
tation changes within deforested areas are disabled to pre-
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Figure 1. Forest cover change in the deforest-glob simulation.

vent the regrowth of trees. A more detailed description of
the simulations is available in Lawrence et al. (2016). The
ESMs that provided results for the deforest-glob experiment
included: MPI-ESM-1.2.0 (MPI) (Wieners et al., 2019; Pon-
gratz et al., 2019), IPSL-CM6A-LR (IPSL) (Boucher et al.,
2018, 2019), CESM2 (CESM) (Danabasoglu et al., 2019;
Danabasoglu, 2019), CanESM5 (CanESM) (Swart et al.,
2019a, b), CNRM-ESM2-1 (CNRM) (Séférian, 2018, 2019),
BCC-CSM2-MR (BCC) (Wu et al., 2018; Zhang et al.,
2019), MIROC-ES2L (MIROC) (Hajima et al., 2019; Ito
and Hajima, 2020), UKESM1-0-LL (UKESM) (Tang et al.,
2019; Wiltshire, 2020), EC-Earth3-Veg (EC-Earth) (Döscher
et al., 2022; EC-Earth Consortium, 2019, 2020), CMCC-
ESM2 (CMCC) (Lovato et al., 2021; Peano et al., 2021),
and GISS-E2-1-G (GISS) (NASA Goddard Institute for
Space Studies, 2018, 2020). All models couple land, atmo-

sphere and ocean in terms of momentum, matter and energy
(Lawrence et al., 2016).

The ESM simulations provide all required variables – sur-
face temperature , albedo, latent heat flux, snow cover and
forest cover changes – from the same simulations. Because
the albedos retrieved by the ESMs were not available from
the model output, the albedo used in this study was calcu-
lated as the ratio between surface upwelling shortwave radi-
ation and incoming shortwave radiation. The corresponding
names conforming to the climate and forecast model con-
ventions and CMIP standards are provided in Table A1. All
analyses were performed at the original grid resolution ex-
cept for Fig. 9, where the models’ outputs were resampled
to a common 1.25°× 0.94° grid using the nearest neighbor
algorithm.
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2.2 Observational datasets

Bright et al. (2017) combine remote sensing and in-situ
measurements (from FLUXNET) to derive the local surface
temperature response to different land use and land cover
changes. In their dataset, nine common land cover and land
management transitions are studied. Here, we consider only
three of them – grassland to evergreen needleleaved forest
(ENF), grassland to deciduous broadleaved forest (DBF),
and grassland to evergreen broadleaved forest (EBF) con-
version. As the ESMs simulations document deforestation,
we changed the signs of the observations prior to compar-
ing them against the simulations and thus assumed that the
effects of reforestation and deforestation are symmetric. Pre-
vious studies (Alkama and Cescatti, 2016; Prevedello et al.,
2019) have shown that the local biogeophysical effects of af-
forestation and deforestation on temperature are to first or-
der similar in magnitude but with opposite sign. While the
assumption of proportionality is commonly adopted (e.g.,
Winckler et al., 2019a), a new study has suggested a cer-
tain degree of asymmetry in that response (Su et al., 2023).
The grassland to ENF conversion is used when comparing
the surface temperature response to boreal deforestation, as
needleleaf trees are the predominant tree type in this region.
Similarly, the grassland to DBF transition is applied for de-
forestation in the temperate region, and the grassland to EBF
transition for deforestation in the tropics.

We also utilized a compilation of satellite-derived MODIS
data products of key climate and biogeophysical vari-
ables. These include daytime land surface temperature
(MYD11A2) (Wan et al., 2021), albedo together with snow
cover (MCD43C3) (Schaaf and Wang, 2021) to account for
the differences in background climate between ESMs and ob-
servations, and latent heat flux (MOD16A2) (Running et al.,
2017). Except for the latent heat flux, for which only an older
version (v006) of the MODIS data products is available, the
most recent collection v061 was used (LP DAAC, 2023).
Monthly data were retrieved for all years between 2003 and
2012. Similarly to other studies (e.g., Li et al., 2015), the
blue-sky albedo that was used in our analysis and considered
to be representative of mean conditions, was calculated as
the average of the black-sky and white-sky shortwave broad-
band albedo. The albedo is instantaneous, provided at local
solar noon time and averaged over 16 d. For albedo and snow
cover, only observations with “relative good quality” (Schaaf
and Wang, 2021) or higher were considered. All MODIS-
based datasets were reprojected to the WGS84 coordinate
system and resampled to 0.05°.

In addition, the Landsat-based Global Forest Change prod-
uct developed by Hansen et al. (2013) was used to estimate
the differences in forest cover. For the period 2003–2012, the
Hansen et al. (2013) dataset only reports the presence or ab-
sence of forest cover loss and gain and, therefore, does not
give a direct estimate of the percentage of forest cover. To re-
trieve the percentage of forest cover change, the pixels at the

original resolution of 30 m were resampled to 0.05° using av-
eraging, thus giving us a percentage estimate of the gain/loss
for each 0.05° grid cell. Because the gain in forest cover is
not reported for each year but as a binary mask for the period
from 2000 to 2012, a linear change was assumed to retrieve
yearly values (Alkama and Cescatti, 2016). The difference
between the loss and gain layers represents the forest cover
change. The dataset was processed in Python using the raste-
rio, xarray and rioxarray packages (Gillies, 2013; Hoyer and
Hamman, 2017; Corteva Agriscience, 2019).

2.3 Extracting the deforestation climate signal

In the deforest-glob ESM experiment, the deforestation sig-
nal in land surface temperature, albedo and latent heat flux
is derived by calculating the difference between the mean of
the first 30 years of the pre-industrial control simulation (pi-
Control), from which deforest-glob is branched off, and the
mean of the last 30 years of the deforestation simulation as
in Boysen et al. (2020). The change in forest fraction is cal-
culated as the difference in tree cover before and after the
deforestation took place.

In MODIS-based data products, a multi-year mean is cal-
culated in order to diminish the effect of interannual climate
variability (Baker and Spracklen, 2019). The deforestation
response of the climate variables is calculated as the dif-
ference between the mean in the period 2003–2007 and the
mean in the period 2008–2012. This approach is different
from the one in Alkama and Cescatti (2016), which consid-
ers only pairs of single year means for the climate variables
and thus does not implicitly account for interannual climate
variability. The change in forest fraction is represented by the
net change in forest cover in the period 2003–2012.

In the FLUXNET-based dataset, the land cover and land
use change signals are calculated by adding the surface tem-
perature responses triggered by changes in albedo, heat con-
ducted by the surface medium, and turbulent energy redis-
tribution, which are based on monthly mean climatologies
from 2001–2011 (Bright et al., 2017). The change in forest
fraction is 100 % and is considered only for pixels where the
respective vegetation cover types are actually present and/or
could potentially occur as defined by MODIS-derived land
cover maps for 2005 and Köppen–Geiger climate zone maps
for the 20th century.

The differences between the various datasets in terms of
temporal resolution and continuity, consideration of cloud
coverage, aggregation methods and consideration of land/o-
cean/atmosphere interactions are summarized in Table A2.

2.4 Separating local and non-local effects

The separation of local and non-local climate effects of de-
forestation in the ESM simulations is necessary in order to be
able to compare deforestation signals in the simulations and
observations, as the latter only captures local effects (Pon-
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Figure 2. Separation of local and non-local effects in ESMs. (a) shows the list of predictors and predictands used as inputs in the multiple
linear regression; (b) the regression is trained for each pair of 5× 5 grid cells moving windows; (c) the methodology is applied for all three
predictands; the regression coefficients β0,1,2,3,4 and the error term ε are specific for each pair of moving windows; β1 represents the local
sensitivity to tree cover change.

gratz et al., 2021). In this study, we separated local and non-
local effects in ESMs in a similar fashion as in the mov-
ing window approach by Lejeune et al. (2018). Alternative
approaches of using information from different vegetation
types at sub-grid level (Malyshev et al., 2015) or a separation
through additional simulations alternating grid cells with for-
est cover change with unaltered vegetation cover (Winckler
et al., 2017b) are not applicable to the CMIP6 output.

The method by Lejeune et al. (2018) entails fitting a lin-
ear regression between the temporal changes in the climate
variables and the changes in forest cover in neighboring pix-
els. However, instead of temporal changes, we use the cli-
matological monthly mean values as a dependent variable
from both the piControl and the deforest-glob simulations
(Fig. 2a). This modification is necessary because with the
linear rate of deforestation (as performed in the deforest-glob
experiments) the change pattern in neighboring grid cells is
too similar to determine a linear relationship between forest
cover change and the variable of interest (e.g., surface tem-
perature). With our proposed modified method, the linear re-
gression is trained by using simultaneously the higher values
of forest cover from the piControl simulation and the lower
values of forest cover from the deforest-glob simulation to-
gether with the corresponding surface temperature, albedo
or latent heat flux represented as a function of forest cover,
thus increasing the variation in the respective climate vari-
ables and improving the robustness of the linear regression
(Fig. 2b-c).

The exact method consists of the following steps: a mov-
ing window corresponding to 5× 5 model grid cells is ap-
plied over the variable of interest; for each window pair, a
linear regression is trained using four predictor variables: tree
cover, latitude, longitude and elevation. Hereby, the linear re-
gression is calculated only for pixels with more than 10 %
forest cover change similarly to Chen and Dirmeyer (2020)

and only for windows where at least eight pixels are available
(for consideration of signal-to-noise ratios). The slope of the
tree cover variable represents the local sensitivity of a vari-
able of interest (predictand) to deforestation. This approach
is adopted for all predictand variables (land surface temper-
ature, albedo and latent heat flux). The size of the moving
window remains the same independently of the resolution of
the ESM. The only exception is the IPSL model, for which
the window size was adjusted to 3 grid cells in longitude and
5 grid cells in latitude to account for the higher latitudinal
resolution.

The FLUXNET-based dataset provides only the local sur-
face temperature response to land cover changes (Bright
et al., 2017). For MODIS-based datasets, local effects are
extracted using the spatial gradient method by Alkama and
Cescatti (2016). Pixels with stable forest cover are identified,
which are defined as having less than 2 % difference in tree
cover in the period 2003–2012, and the change in the respec-
tive climate variable at these locations is interpolated, so that
the background climate signal can be retrieved and removed
from the overall climate response. It should be noted that the
background climate signal is not equivalent to the biogeo-
physical non-local effects in models as the former encom-
passes also natural interannual climate variability and green-
house gas forcings. The local sensitivity to deforestation is
determined by training a linear regression with zero intercept
in a moving 12° by 12° window, where tree cover is the pre-
dictor variable and its slope is the sensitivity. The sensitivity
represents the change in surface temperature, albedo, or la-
tent heat flux corresponding to 1 % change in tree cover.

2.5 Constraining local sensitivities to deforestation –
emergent constraints

By showing the linear relationship between local and total
surface temperature change due to deforestation, we are able
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to constrain the overall response of ESMs to deforestation,
for which no observations are available, as the range of plau-
sible local surface temperature sensitivities is narrowed down
by observations and total surface temperature responses are
related to those by statistically and physically meaningful re-
lationship. By using the local sensitivities derived from in-
situ and satellite-based data, we are potentially able to pro-
vide emergent constraints for surface temperature, albedo
and latent heat flux. The sensitivities of these climate vari-
ables to deforestation are studied both temporally and spa-
tially to account for the fact that some climate models might
perform better under certain climatic conditions and/or for
certain regions.

In order to evaluate the consistency of seasonal sur-
face temperature responses between the ESMs and the
observation-based estimates, we extracted the mean values
of local surface temperature responses to deforestation also at
monthly timescale for broad latitudinal regions: boreal (from
50 to 90° N), temperate (from 23 to 50° N) and tropical (from
23° S to 23° N). We repeated this analysis step for albedo and
latent heat responses to aid the interpretation of the surface
temperature effects.

When comparing the sensitivities of ESMs and satellite
observations, a scaling to 100 % deforestation is applied to
account for the different levels of tree cover change and to
improve comparability with existing studies (Wang et al.,
2023). Here, we assume a linear response of the climate vari-
ables to tree cover change, although a recent study suggests
that afforestation and deforestation have effects with differ-
ing magnitudes (Su et al., 2023). This assumption affects
mostly satellite-based data, where the tree cover changes in
both directions. Thus, depending on whether a pixel has un-
dergone more afforestation or deforestation, the strength of
the sensitivities might be underestimated or overestimated,
respectively. If estimated separately for tree cover gain and
loss, the difference in surface temperature sensitivity can
reach 0.15 °C in absolute value (Su et al., 2023).

We refer to “observational constraints” as a broader term,
encompassing emergent constraints. When non-local or total
effects are referred to, we use specifically the term (observa-
tional) emergent constraints, as these effects can be evaluated
only by considering the emergent linear relationship between
the different models.

3 Results

3.1 Spatial pattern in local responses to deforestation in
observations and ESMs

Averaged over the globe, the local response to complete de-
forestation is mostly dominated by cooling in the northern
latitudes, which overwhelms warming in the tropics. The
magnitude and spatial pattern of local responses, however,
vary across the ESMs with some showing weaker cooling in
the northern latitudes (e.g., MPI, IPSL and BCC) compared

to the rest of the models (Fig. 3). In the tropics, all models
except MIROC show local warming with varying magnitude
and spatial patterns (Fig. 3). The weaker cooling in some cli-
mate models (e.g., MPI, IPSL, BCC) in the boreal region is
more consistent with the MODIS-based local responses to
deforestation in comparison to the models showing strong
non-local cooling effects (Fig. 3). A closer look into trop-
ical regions indicates complex and partially diverging local
responses to deforestation. For example, CESM and IPSL
show stronger warming in the southern part of the tropical
region both in the Amazon and Congo basins.

3.2 Seasonal local responses to deforestation in
observations and ESMs

Our results show that in the boreal region, observation-based
local surface temperature responses exhibit cooling during
boreal winter and warming in boreal summer (Fig. 4a). Al-
though this seasonal pattern is confirmed by observational
and model studies (Alkama and Cescatti, 2016; Strandberg
and Kjellström, 2019; Winckler et al., 2019b), it is only re-
produced by a subset of ESMs (MPI, IPSL and BCC), while
the majority of the other models shows a cooling response
throughout the year (albeit with substantially more cooling
in the colder season) (Fig. A2a). Compared to observations,
the ESMs also show a considerably stronger increase in sur-
face albedo following deforestation, especially in the colder
season, which may explain the stronger cooling in the ESMs
(Fig. 4a and b). Satellite observations also show a decline
in latent heat flux due to deforestation, which is centered in
the growing season and may overwhelm the relatively weak
albedo effect giving rise to warming during this time of the
year (Fig. 4a–c). The ESMs’ latent heat flux reductions due
to deforestation tend to be larger compared to observations
(albeit with considerable spread), but in this case the strong
albedo response in the ESMs seems more important in terms
of changes in the surface energy balance leading to the cool-
ing pattern (Fig. 4a–c).

In the temperate region, the observational datasets show
predominantly warming, which peaks during the boreal sum-
mer months, with the MODIS dataset exhibiting warm-
ing during the entire year, while the FLUXNET-based
dataset displays weak cooling during winter (Fig. 4d). The
FLUXNET-based dataset has almost constant warming dur-
ing spring and summer, while the MODIS surface temper-
ature response spikes in June. While broadleaved forests in
Europe were replaced by coniferous forests throughout the
last centuries and may not be the dominant forest type in Eu-
rope anymore (Naudts et al., 2016), the local surface temper-
ature response of the two types of forest conversion is almost
identical (Bright et al., 2017) and therefore the choice of a
specific forest transition does not influence the observational
constraint (Fig. A3). The ESMs, on average, show less cool-
ing during June, July and August compared to the rest of
the year, with only MPI, IPSL and BCC exhibiting warm-

https://doi.org/10.5194/esd-16-2137-2025 Earth Syst. Dynam., 16, 2137–2160, 2025



2144 N. Mileva et al.: Evaluating biogeophysical sensitivities to idealized deforestation in CMIP6 models

Figure 3. Local annual surface temperature response to complete deforestation for eleven ESMs, which have conducted the deforest-glob
simulation (a–k). Stippling indicates non-statistically significant changes between a control and the deforestation scenario at the 5 % signif-
icance level. (l) shows the local annual surface temperature response based on MODIS data. For this, the change in surface temperature is
calculated as the difference between two reference periods: 2003–2007 and 2008–2012. The change in forest cover (based on Landsat data)
is calculated as the cumulative change (gain minus loss) from 2003 to 2012.

ing during the boreal summer (Fig. A2d). The albedo shows
a pattern similar to that of the boreal forest but attenuated
during the colder months (Fig. 4e). As in the boreal region,
the ESMs’ albedo response is considerably stronger than the
MODIS one. The latent heat flux response of ESMs is also
stronger compared to observations (Fig. 4f). However, not all
models are able to reproduce the anticipated overall annual
decrease in latent heat. In those ESMs, which do simulate
the decline, and also in observations, the decrease of latent
heat flux is more pronounced during spring and summer co-
inciding with vegetation growth.

In the tropics, most models show warming (Fig. 4g). The
MODIS surface temperature signal lies considerably above

the FLUXNET-based dataset and the model ensemble mean,
while the latter two agree closely. The only model that shows
consistent cooling over the tropics is GISS (Fig. A2g). In the
tropics, the albedo plays a secondary role in explaining the
surface temperature response (Fig. 4h). The differences be-
fore and after deforestation are much smaller in magnitude
and consistent throughout the year. The ESMs mean albedo
is slightly higher than the observational estimate. The latent
heat flux response of ESMs is stronger compared to observa-
tions and does not have seasonal fluctuations (Fig. 4i). Some
models show an increase in latent heat flux as a result of de-
forestation. Such anomalous behavior is observed also when
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Figure 4. Monthly local surface temperature (first row), albedo (second row) and latent heat flux (third row) responses to complete de-
forestation for the boreal (a–c), temperate (d–f), and tropical region (g–i). Only models showing statistically significant changes at the
5 % significance level for all months are included (following this criterion MIROC is excluded).

considering the combined effects of deforestation (Boysen
et al., 2020).

3.3 Comparison of local sensitivities to deforestation
between observations and ESMs – emergent
constraints

The largely consistent behavior (among the ESMs, among
the observations, and between the ESMs and the observa-
tions) in regard to local responses to deforestation in albedo
and latent heat flux and the corresponding local surface tem-
perature open up the possibility of providing observation-
based emergent constraints. A key result is that across the
ESMs the local surface temperature response to deforesta-
tion exhibits a strong linear relationship with the local albedo
sensitivity, so that models that have a strong albedo sensi-
tivity show stronger cooling (Fig. 5a–c). This is particularly
evident in the boreal and temperate regions with robust lin-
ear relationships between these metrics as shown by the per-
centage of variance explained in the model simulations (0.59
and 0.76 for the boreal and temperate regions, respectively).
Importantly, for the boreal and temperate regions, the local

surface temperature and albedo sensitivities based on obser-
vations are considerably smaller in magnitudes compared to
the ESMs and in the case of surface temperature exhibit even
opposite signs (Fig. 5a and b). In the tropics, the albedo sen-
sitivities to deforestation in the ESMs also tend to be slightly
overestimated, however, still rest close to the observational
constraint (with most models falling within the boundaries
defined by the standard deviation of the MODIS observa-
tions) (Fig. 5c).

The discrepancy in local albedo and surface tempera-
ture sensitivities to deforestation in observations and climate
models in the northern latitudes may be partially explained
by different levels of observed and simulated snow cover.
That is because the deforestation-induced albedo increases
are thought to be largest in regions with extensive snow cover
(due to the loss of effective masking of the snow albedo by
darker trees (Bonan, 2008)). A complementary analysis for
the boreal region during spring showed differences in snow
cover extent between the ESMs and observations (Fig. 6a
and b), which can in part be explained by the colder back-
ground climates in the ESMs that are more representative of
preindustrial conditions (see Methods). Separating the effect
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Figure 5. Emergent constraints for local annual surface temperature and albedo for the boreal (a), temperate (b) and tropical (c) regions.
The dashed line with green uncertainty range shows the FLUXNET-based surface temperature sensitivity to complete deforestation (Bright
et al., 2017). All sensitivities are scaled to 100 % deforestation, so that the sensitivity represents the change in surface temperature/albedo
corresponding to 100 % change in tree cover. The error bars show the standard deviation based on annual mean values. The percentage
variance explained is denoted by R2.

Figure 6. Monthly mean boreal snow cover for models and observations (a). Distribution of boreal snow cover extent in models and
observations for the spring season (March and April) (b). Emergent constraints for the boreal spring for different levels of snow cover (c–e).
Only March and April are considered due to substantial snow cover differences between models and observation in May. The FLUXNET-
based dataset (depicted with dashed line with green uncertainty range) (Bright et al., 2017) does not contain information about snow cover,
so a spring average is displayed.

of different levels of snow cover reveals that for pixels with
higher snow cover in the boreal region during spring, the dif-
ference in albedo sensitivity to deforestation between climate
models and observations is largest, whereas over regions with
less snow cover, these differences become smaller (Fig. 6c–
e). This relationship persists also when accounting for the
different geographic distribution of the pixels (Fig. A4).

Taken together, these results do suggest that in comparison
to observations the subset of CMIP6 ESMs investigated here
substantially overestimate albedo increases resulting from
deforestation in northern latitudes (especially in boreal re-
gions with extensive snow cover) and as a result produce

considerable local cooling response, whereas the observa-
tions show only little changes in local surface temperature re-
sponse (in part due to compensating effects of local cooling
and warming responses during the colder and warmer sea-
sons, respectively).

Unlike for albedo, no clear linear relationship between lo-
cal surface temperature and latent heat flux sensitivities to
deforestation could be identified in ESMs (Fig. 7). Across the
ESMs, the local latent heat flux sensitivities to deforestation
show a wider spread in the tropics compared to the north-
ern regions, but many of the simulated responses are within
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Figure 7. Emergent constraints for local annual surface temperature and latent heat flux sensitivities for the boreal (a), temperate (b) and
tropical (c) regions. The dashed line with green uncertainty range shows the FLUXNET-based surface temperature sensitivity to complete
deforestation (Bright et al., 2017). All sensitivities are scaled to 100 % deforestation, so that the sensitivity represents the change in surface
temperature/latent heat flux corresponding to 100 % change in tree cover. The error bars show the standard deviation based on annual mean
values.

Figure 8. Emergent constraints for local and total annual surface temperature for the boreal (a), temperate (b) and tropical (c) regions. The
dashed line with green uncertainty range shows the FLUXNET-based surface temperature sensitivity to complete deforestation (Bright et al.,
2017). The dashed line with orange uncertainty range shows the MODIS-based surface temperature sensitivity to complete deforestation. The
local sensitivities (x-axis) are scaled to 100 % deforestation, so that the sensitivity represents the change in surface temperature corresponding
to 100 % change in tree cover. The y-axis shows the total (local and non-local) surface temperature response to deforestation, no scaling is
applied. The error bars show the standard deviation based on annual mean values.

(or not far from) the corresponding satellite-based constraints
(Fig. 7).

In the tropics, local surface temperature sensitivities to de-
forestation differ markedly in the satellite-based and in-situ
estimates. The majority of the ESMs shows a positive local
surface temperature sensitivity to deforestation well within
observational constraints, but two models also show an (un-
expected) negative local surface temperature sensitivity that
may be explained by an overestimation of the albedo increase
following deforestation (e.g., GISS, UKESM) (Figs. 5c
and 7c). In other cases, models that are close to the ob-
servational constraints for surface temperature sensitivity
may compensate their high albedo sensitivity with an even
stronger latent heat flux sensitivity (e.g., MPI) leading to a
realistic temperature response (Figs. 5c, 7c and A5c).

3.4 Local, non-local and total surface temperature
effects of large-scale deforestation

While a necessary requirement for a good model is that local
surface temperature sensitivities to deforestation agree with
observations, an intriguing question is if deviations at local
levels also translate into deviations in the total surface tem-
perature response. A corresponding analysis comparing lo-
cal and total surface temperature sensitivities to deforestation
does reveal a linear relationship between these two variables
giving rise to another set of emergent constraints (Fig. 8).
The interpretation of these emergent constraints, however, is
not straightforward as some models that agree well with ob-
servations in regard to local surface temperature sensitivities
may achieve this only because of compensatory effects of
high sensitivities to albedo and latent heat (see Sect. 3.3). For
the boreal and temperate regions specifically, these results
show that models that overestimate the local cooling effect
of deforestation also tend to overestimate the total cooling ef-
fect. As the local cooling effect of deforestation is strongest
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Figure 9. Surface temperature differences due to deforestation during boreal summer (June, July, August) in land grid cells (a); the local
and non-local effects are calculated as an average of all models having local albedo and latent heat flux sensitivities within two standard
deviations of the model ensemble mean (thus, excluding CanESM, CNRM, MIROC and UKESM); here, only the actual deforestation in
the deforest-glob experiment is considered. All lines are smoothed using a 10° moving average. (b–d) show the total, local and non-local
effects of deforestation during boreal summer. The non-local effects are calculated as the difference between the total and local effects. Only
statistically significant changes at the 5 % significance level are shown. All datasets are resampled to approx. 1°.

in the colder months, it is important to consider whether
the overestimation can be observed also during the warmer
months, when the albedo effects are not that pronounced.

In order to isolate the strong albedo effects on surface tem-
perature in the Northern Hemisphere, a separate analysis is
performed concentrating on boreal summer (June, July, Au-
gust) (Fig. 9). In this analysis, we focus on models having
plausible local albedo and latent heat flux sensitivities, de-
fined here as being within two standard deviations of the
model ensemble mean (as presented in Fig. 4), which leads
to the exclusion of four out of the eleven ESMs.

In the summer, a strong local warming effect can be ob-
served, however, this effect is not spatially homogeneous. For
the boreal region and part of the Northern Hemisphere tem-

perate region (up to 34° N) a local cooling is seen (Fig. 9c). A
summer non-local cooling, although not as strong compared
to the annual non-local effects, can be observed through-
out the globe despite the albedo effect of snow being ex-
cluded (Fig. 9a), confirming that the overestimation of cool-
ing (Fig. 8a and b) persists also during summer. The summer
non-local effects are strongest in the high latitudes (above
50° N). However, strong variation exists among ESMs, with
some models showing non-local warming in the boreal re-
gion, specifically at the place of deforestation (Fig. A1). In
the tropics, there is also non-local warming at the place of
deforestation, most prominent in the Amazon, though it is
not strong enough to overpower the non-local cooling from
neighboring grid cells (Fig. 9a and d). The compound re-
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sponse of summer local and non-local effects (i.e. total ef-
fect) is dominated by cooling, except for the tropics, where
an overall warming can be observed (Fig. 9b). This warm-
ing is strongest in the southern part of the Amazon. The
total summer surface temperature response over land aver-
ages to −0.23 K globally, comprised by 0.02 K local warm-
ing and −0.25 K non-local cooling.

4 Discussion

4.1 Identification of observational constraints for surface
temperature

Our study shows that climate models largely agree on the
sign and the general spatial pattern of surface temperature
change as a result of deforestation; nevertheless, the mag-
nitude of these changes differs across models and obser-
vations. The overall pattern of warming in the tropics and
cooling in the northern latitudes is in line with previous
studies on the local effects of deforestation (e.g., Winckler
et al., 2017b). However, a more detailed look at the trop-
ics reveals differences in the surface temperature response
in the Amazon, Congo basin and Southeast Asia, which are
not that pronounced in observational datasets (Fig. 3). Some
of these discrepancies are thought to be triggered by differ-
ences in the spatial distribution of the initial tree cover in
the ESMs, while other stem from differences in the strength
of vegetation–atmosphere feedbacks. The stronger warming
that is observed in the southern part of the Amazon may be
linked to the deforestation-induced strong decrease in evapo-
transpiration during the dry season (Zemp et al., 2017; Baker
and Spracklen, 2019), which is longer and more pronounced
in the southeastern part of the basin (Davidson et al., 2012).
MIROC shows no significant effects on surface temperature
from deforestation, likely as a result of the fast regrowth of
forest, which is immediately merged into existing vegetation
with developed canopy (Boysen et al., 2020).

Throughout the year, most models show a consistent over-
estimation of the cooling response in the boreal and temper-
ate regions. Because of the emergent constraints relationship
between the local and total surface temperature effects, this
overestimation is valid also for the overall response to defor-
estation, thus showing that most models exhibit too strong
cooling in comparison to observations (Fig. 8). For the trop-
ics, however, approximately half of the ESMs show realistic
total surface temperature response, as defined by the emer-
gent constraint based on MODIS data, with fewer models
being within the realistic margins defined by the FLUXNET-
based dataset (Fig. 8). In the tropics, there is a better agree-
ment between the ESMs ensemble mean and the FLUXNET-
based estimate. The MODIS estimate in all regions and par-
ticularly in the tropics lies considerably above the model
mean (Fig. 4). This disparity can be explained by the bias
of optical remote sensing products towards cloud free days
and the resulting overestimation of land surface temperature

(Li et al., 2015). While this bias occurs globally, it is most
notable in the tropics because of the high cloud cover frac-
tion there. The overpass time of the Aqua satellite (on board
of which is the MODIS sensor) is at 1:30 pm and thus closer
to the daytime maximum surface temperature rather than the
daily surface temperature average used in the model compar-
ison. Using the daytime maximum surface temperature in the
comparison with MODIS data has shown more consistent re-
sults (Chen and Dirmeyer, 2020). Accounting for cloud cover
in ESMs can also make them more comparable with observa-
tions (Chen and Dirmeyer, 2020). The level at which temper-
ature is measured (i.e. surface temperature, temperature at
the lowest atmospheric layer, near-surface air temperature)
also influences the strength of local effects (Winckler et al.,
2019c).

4.2 Identification of observational constraints for albedo

Similarly to Boisier et al. (2012), all models showed a con-
sistent increase in albedo after deforestation with varying
magnitude. In the boreal region and to a lesser extent in
the temperate region, discrepancies in the albedo response
in models and observations (based on MODIS) were found.
These discrepancies only partially stem from the differences
in snow cover conditioned by the reference climate settings.
An additional analysis accounting for the different levels of
snow revealed that albedo sensitivities over snow are over-
estimated (Fig. 6), which has been confirmed also by Leje-
une et al. (2020) and Luo et al. (2023). Based on the emer-
gent constraints (Fig. 8), the overestimated local sensitivi-
ties of albedo suggest that the overall albedo response and
the corresponding cooling are also overestimated. In the bo-
real region, the overestimation is possibly related to the cold
bias in Siberia still observed in many CMIP6 models (Por-
tal et al., 2023). Our results revealed that some models (e.g.,
MPI) closer to the observational constraint for surface tem-
perature (i.e. global mean local warming) tend to compensate
their high latent heat flux sensitivity with high albedo sensi-
tivity (Fig. A5). Thus, models having overestimated albedo
and turbulent heat flux sensitivities can be close to the ob-
servational surface temperature constraint as compensating
effects occur. Luo et al. (2023) have also reported that mod-
els representing better surface temperature after deforestation
do not necessarily have realistic albedo and turbulent heat
flux estimates. The slope of the linear relationship between
surface temperature and albedo sensitivity decreases with in-
creasing snow cover, indicating a non-linear behavior of the
sensitivities. Gottlieb and Mankin (2024) point out that snow
cover in spring is less affected by warming if climatological
winter temperatures are below −8 °C. Thus, colder regions
with more snow cover are expected to have a weaker rela-
tionship between temperature and albedo sensitivities.
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4.3 No emergent constraints for latent heat flux

No clear linear relationship could be observed between sur-
face temperature and latent heat flux sensitivities to defor-
estation (Fig. 7). While the absence of such an emergent
constraints relationship may not be too surprising for the bo-
real and temperate regions (since latent heat changes may
not yield a first-order influence on annual surface tempera-
ture responses), the apparent lack of such a relationship also
for the tropical regions is surprising given the strong influ-
ence of the latent heat flux on temperature responses (Bo-
nan, 2008). Indeed, ESMs still cannot reliably estimate the
change in latent heat flux, as evidenced by the wide spread
of sensitivities and the disagreement in the sign of the change
reported also in earlier studies (de Noblet-Ducoudré et al.,
2012; Boisier et al., 2012; Devaraju et al., 2018; Duveiller
et al., 2018a). Recent research (Winckler et al., 2019b; De-
varaju et al., 2018) has explored the effects of surface rough-
ness and the consequent changes in turbulent heat fluxes, ar-
guing that surface roughness could be the main factor mod-
ulating the local surface temperature response even in the
boreal forest during the spring season, when albedo effects
are strongest. Our analysis showed that this effect reported
on the basis of simulations with MPI and IPSL might be re-
lated to the strong latent heat flux sensitivity of these models
(Fig. 7a–c).

The albedo and latent heat flux sensitivities shown here are
in line with Devaraju et al. (2018), who report that IPSL has
stronger turbulent heat flux sensitivity compared to CESM,
which, on the other hand, exhibits stronger albedo sensitiv-
ity. Two of the models (EC-Earth and CMCC) show a mean
increase in latent heat flux, which in the case of EC-Earth
might be partly due to the replacement of trees with very
productive grasses with high Leaf Area Index in wetter ar-
eas. The difficulties of ESMs in reproducing turbulent heat
fluxes are well known and have also been confirmed in the
newest generation of CMIP6 models (Luo et al., 2023).

4.4 Non-local effects in comparison with other studies

In our analysis of the local and non-local effects during bo-
real summer, we show that there is non-local cooling asso-
ciated with deforestation throughout the globe, which com-
pensates for most of the local warming except for the trop-
ics (Fig. 9). The non-local cooling could be explained with
the increase of albedo and consequently the decrease of net
surface radiation. While higher albedo causes cooling both
locally and non-locally, local albedo-induced cooling is off-
set by decreases in latent and sensible heat fluxes (Winckler
et al., 2019a). The resulting cool and dry air is moved away
from the place of deforestation through advection (Winck-
ler et al., 2019a). The non-local cooling reported here only
partially agrees with Chen and Dirmeyer (2020), who also
observe non-local cooling in the temperate and boreal re-
gions, and however reveal stronger non-local warming in the

tropics. This discrepancy might be explained by the fact that
Chen and Dirmeyer (2020) consider daily maximum surface
temperature during cloud-free days, while the non-local ef-
fects reported here refer to mean surface temperature without
being limited to cloud-free days and only account for par-
tial deforestation. The globally averaged non-local cooling,
in general, agrees with other studies (e.g., Devaraju et al.,
2018; Winckler et al., 2019a). It is stronger in the mid and
high latitudes, while in the tropics the local effects dominate
the temperature response in line with Devaraju et al. (2018)
and Winckler et al. (2019a). However, the magnitude of non-
local effects is largely dependent on the extent of deforesta-
tion (Winckler et al., 2017b), thus making a comparison with
other deforestation experiments difficult.

5 Limitations

In comparing the biogeophysical effects of deforestation be-
tween models and observations, there are a number of limita-
tions to be considered. The method used for the separation of
local and non-local effects could influence the magnitude of
the effects. A comparison of a spatial interpolation method
commonly used in chessboard pattern deforestation experi-
ments (Winckler et al., 2017b) with the moving window ap-
proach by Lejeune et al. (2018) revealed that the latter could
lead to an underestimation of local effects up to a factor of
two. An additional analysis comparing temperature sensitiv-
ities to deforestation based on the linear regression method
applied in this study and the chessboard pattern deforesta-
tion experiments of Winckler et al. (2019a) did reveal some
differences in corresponding patterns but did not provide ev-
idence of systematic under- or overestimation of local effects
(Fig. A6). However, comparisons of the local biogeophys-
ical effects among different deforestation scenarios – even
within the same model framework – are challenging as local
effects, in their impact on global climate, are influenced by
the degree of deforestation (e.g., partial or complete), and the
initial forest cover (Li et al., 2016a; Winckler et al., 2017a).

It should be noted that in our study the local effects repre-
sent responses due to incomplete deforestation as defined in
the deforest-glob experiment. An additional scaling to 100 %
was applied in order to compare these ESM-based local ef-
fects to observations, which only capture complete defor-
estation. Thus, it is expected that the modeled effects with-
out the scaling applied (Fig. 9) are attenuated in compari-
son to the observational datasets. When evaluating non-local
effects, scaling to 100 % deforestation is not appropriate as
non-local effects cannot be directly attributed to the percent-
age of tree cover, although some authors suggest a linear rela-
tionship between non-local effects and the number of defor-
ested grid cells (Winckler et al., 2019a). However, scaling to
100 % (as applied here often) could lead to overestimation of
local effects, possibly because the relationship between sur-
face temperature and tree cover change is not strictly linear
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since albedo and evapotranspiration effects vary as a func-
tion of initial tree cover and across biomes (Bonan, 2008;
Alibakhshi et al., 2020). Importantly, potential uncertainties
associated with scaling or method of separating local and
non-local effects do not alter the relationship between ESM-
based total and local temperature sensitivities (Fig. 8) – as all
models experience the same “bias” – and therefore the slope
of the linear relationship central to the emergent constraint
concept is not affected. However, a possible under- or over-
estimation of the ESM-based local effects could lead to shifts
in the proximity to observational constraints.

Another important factor are the background climate con-
ditions. Here, we study only the biogeophysical effects of
deforestation ignoring that the observations were collected in
the last decades under a warmer climate compared to the pre-
industrial conditions used as a reference in climate models.
While we control for differences in snow cover, we cannot
account for the changes in plant physiology resulting from
adaptation to a warmer climate with higher concentration of
CO2 and the consequent effects on sensitivities. Tradition-
ally, plant functional types, which capture the physiological
traits of vegetation in ESMs, have been fixed (Wullschleger
et al., 2014). However, the inclusion of trait variation in plant
functional types as a response to environmental changes can
significantly alter ESMs’ outputs (Verheijen et al., 2015). Pit-
man et al. (2011) have also elaborated on the effects of back-
ground climate on deforestation induced changes in surface
and near-surface variables, arguing that changes in rainfall
and snow induced from increased CO2 levels control biogeo-
physical effects and can even reverse their sign. It is not clear
how the hydrometeorological state under increased green-
house gases conditions affects local and non-local biogeo-
physical changes separately. A simulation similar to deforest-
glob but under fixed present-day climate conditions could
improve our understanding of how background climate in-
fluences deforestation effects.

In many deforestation simulations, forested areas are con-
verted to grasslands, which do not necessarily represent the
major land use and land cover change in observations. Sim-
ilarly to Devaraju et al. (2018), we assume that the differ-
ent resolution of the models does not affect the separation
of local and non-local effects, which does not hold true for
satellite-based observations. Coarse resolution satellite mea-
surements of surface temperature reveal a cooling in response
to deforestation that is not visible in fine resolution datasets
such as MODIS, which can be attributed to the fact that cloud
effects are present in coarse resolution datasets (Chen and
Dirmeyer, 2020). Here, we calculate the sensitivities as lat-
itudinal means, however, a more complete constraint analy-
sis would include regional sensitivities as local biogeophysi-
cal effects of deforestation have distinctive regional patterns
(Fig. 3).

Instantaneous observational measurements of albedo are
often used in the modeling community (e.g., Duveiller et al.,
2018a; Chen and Dirmeyer, 2020). However, these mea-

surements do not fully correspond to the true daily mean
albedo, which accounts for differences in the sun zenith an-
gle. Daily mean albedo can be up to 8.8 % higher than local
noon albedo on an annual basis, and the difference can reach
more than 10 % under snow free conditions (Wang et al.,
2015). It should also be noted that the MODIS product has
a limited number of pixels in the boreal region fulfilling the
quality criteria during the winter months, making the albedo
monthly average values less representative compared to the
other seasons. The low count of quality pixels explains the
lower albedo in January compared to December and Febru-
ary. An additional analysis concentrating only on grid cells,
where valid MODIS pixels exist, did not reveal considerable
changes in the ESMs’ response (Fig. A7).

Lastly, testing the emergent constraints in different ex-
periments and multi-model ensembles is an important next
step towards confirming its robustness. The overestimation of
albedo sensitivities over snow and the difficulties of models
in representing turbulent heat fluxes, as found in our study,
have also been documented in the study of Luo et al. (2023),
which is based on historical land use and land cover changes
and therefore represents more realistic patterns of deforesta-
tion. Therefore, one can expect that the surface temperature
emergent constraint would hold true also under more realis-
tic conditions; however, more studies applying the emergent
constraint concept in land use and land cover change scenar-
ios are needed.

6 Conclusions

In this study, we investigate the biogeophysical response to
deforestation in eleven state-of-the-art ESMs, part of the lat-
est CMIP6. Climate models mostly agree on the sign of the
local surface temperature change after deforestation: cool-
ing in the boreal region and warming in the tropics. In con-
trast, in observations, the local cooling effect is weaker and
warming dominates the annual surface temperature response.
For the boreal and temperate regions, the difference in sur-
face temperature response is stronger during the winter and
spring months, mostly due to differences in albedo. These
differences can be partially attributed to the higher percent-
age of snow cover in climate models compared to observa-
tions. Even when accounting for the different levels of snow
cover, ESMs still show stronger albedo sensitivity than obser-
vations. The robust linear relationships of local surface tem-
perature sensitivity with total surface temperature response,
and with local albedo sensitivity point towards emergent con-
straints for albedo and surface temperature. Thus, the over-
estimation of the local albedo sensitivity and the correspond-
ing strong local cooling are indicative of overestimation of
both local and total effects in the ESMs in northern latitudes.
The sensitivity of latent heat flux to deforestation does not
show a clear relationship to surface temperature sensitivity
across the different latitudes and not all ESMs reproduce the
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expected decrease of latent heat flux. Despite the good over-
lap between the ensemble mean and the observational con-
straint for latent heat flux, considerable variation exists be-
tween models. In some models, overestimated albedo and la-
tent heat flux sensitivities are mutually compensated, leading
to realistic surface temperature sensitivities. In the summer,
strong non-local effects dominate the surface temperature re-
sponse in the Northern Hemisphere temperate and high lat-
itudes. The non-local cooling varies regionally and persists
also during summer when the effects of albedo are weaker.

The observational constraints presented here contribute
further to understanding how climate models represent de-
forestation and where biases exist. As models are usually
evaluated based on how well they reproduce a subset of past
observations, their ability to predict future climate is more
uncertain (Flato et al., 2014). By using emergent constraints,
modeling centers are potentially able to improve the parame-
terization and tuning of ESMs, so that they are better adapted
to simulate future climate without being overfitted to histor-
ical data. Being aware of the limitations of ESMs can help
both modelers in initiating improvements and practitioners
using models to measure and maximize the efficiency of
re-/afforestation efforts in mitigating anthropogenic climate
change impacts.

Appendix A

Table A1. Climate variables and their respective “cmorized” names in accordance with the Climate Model Output Rewriter (CMOR) stan-
dards. The forest cover in MIROC is labeled as “forestfrac”, and in GISS – as “total_forest_frac”. All other models use the standard “treeFrac”
to denote the percentage of tree cover.

Variable name CMOR name Frequency

Surface temperature ts monthly
Surface upwelling shortwave radiation rsus monthly
Incoming shortwave radiation rsds monthly
Latent heat flux hfls monthly
Forest cover treeFrac/ forestfrac/ total_forest_frac yearly
Snow cover snc monthly
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Table A2. Overview of climate variables datasets. “True” values are those that account for differences in the sun zenith angle.

Timestamp Temporal and spatial
coverage

Temporal
aggregation

Land–atmosphere
interactions

ESMs 3-hourly Complete True 3-hourly
mean

Coupled

FLUXNET-based Monthly Complete True monthly
mean

Uncoupled

MODIS Daily at 13:30 ECT (surface
temperature); Daily mean from the
acquisitions at 10:30 and 13:30 ECT
(albedo); 8 d composite from daily
acquisitions at 10:30 ECT (latent heat
flux)

Clear sky conditions
only

Snapshot
monthly/sea-
sonal/ annual
clear-sky
means

Coupled

Figure A1. Same as Fig. 3 in main text but for summer non-local effects. Non-local effects are calculated as the difference between total and
local effects, where the local effects are statistically significant (see Methods). The local effects of the individual models are shown in Fig. 3.
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Figure A2. Same as Fig. 4 in main text but with individual models highlighted.

Figure A3. Same as Fig. 4d in main text but including also the grassland to ENF transition for the temperate region (Bright et al., 2017).
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Figure A4. Same as Fig. 6c, d, and e in main text but only for model grid cells, where MODIS pixels fulfill the quality criteria (see Sect. 2.2),
thus comparing only spatially overlapping pixels in models and observations.

Figure A5. Albedo and latent heat flux sensitivities for the boreal (a), temperate (b) and tropical (c) regions. All sensitivities are scaled to
100 % deforestation, so that the sensitivity represents the change in albedo/latent heat flux corresponding to 100 % change in tree cover. The
error bars show the standard deviation based on annual mean values.

Figure A6. Comparison between the local effects in the deforest-glob simulation with scaling to 100 % applied from this study (a) and the
chessboard pattern simulations of Winckler et al. (2019a), where one out of four grid cells (b) or two out of four grid cells (c) are deforested.
Here, all simulations are performed with MPI-ESM.
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Figure A7. Same as Fig. 4b, e, and h in main text but only for model grid cells, where MODIS pixels fulfill the quality criteria (see Sect. 2.2).

Code and data availability. The climate model outputs are freely
available from the Earth System Grid Federation (ESGF; https:
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based dataset was provided by Bright et al. (2017). The tree
cover dataset is retrieved from https://storage.googleapis.com/
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