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Abstract. Recently, a collapse of the Atlantic Meridional Overturning Circulation (AMOC) was found in the
Community Earth System Model (CESM) under constant pre-industrial greenhouse gas forcing conditions. To
determine the stability changes of the AMOC with changing (freshwater) parameters in models, it is important
to determine the origin of the collapse behavior. In this paper, we argue that the classical picture of a saddle-node
bifurcation holds for the AMOC collapse in the CESM. We provide specific supporting arguments by showing
results of additional pre-industrial CESM simulations. The CESM results are compared with those of a five-box
AMOC model, which is known to have saddle-node bifurcations, and with which many sensitivity experiments
can be performed. Theoretical arguments are also provided showing that the essential dynamics of the CESM
can be reduced to a low-dimensional model in which a saddle-node bifurcation causes the AMOC collapse.
The underlying physical reason is that the AMOC behaviour in CESM is controlled by a small set of dominant
feedback processes. This has important consequences for the value of conceptual AMOC models, for assessing
the effect of model biases on the AMOC stability, and for the interpretation of AMOC behaviour under climate

change scenarios.

1 Introduction

A hot issue in current climate research is the Atlantic Merid-
ional Overturning Circulation (AMOC) response under fu-
ture climate change. Climate models participating in the
Coupled Model Inter-comparison Project Phase 6 (CMIP6,
Eyring et al., 2016) indicate a substantial AMOC weaken-
ing during the 21st century (Weijer et al., 2020). Beyond
2100 there is much more uncertainty as the AMOC may
(partially) recover or fully collapse (Liu et al., 2017; Bonan
et al., 2022; Drijthout et al., 2025). Transient temperature
responses are effective in causing the 21st century AMOC
weakening but salinity responses are crucial in further desta-
bilizing the AMOC (Gérard and Crucifix, 2024; van Westen
et al.,, 2025b). The dominant destabilizing AMOC tipping
mechanism is the salt-advection feedback, where an AMOC
weakening leads to a smaller northward salinity transport
amplifying the initial AMOC weakening (e.g., Marotzke,
2000). The existence of the salt-advection feedback is why

the AMOC is labelled as a tipping point in the climate sys-
tem (Lenton et al., 2008; Armstrong McKay et al., 2022).
Stommel (1961) was the first to identify the salt-advection
feedback in a simple two-box model and demonstrated that
this feedback induces transitions between two stable AMOC
steady states. The multi-stable AMOC regime is bounded
by two saddle-node bifurcations in this model. Since then,
studies using more detailed conceptual (box) models (Cessi,
1994; Cimatoribus et al., 2014; Wood et al., 2019) and nu-
merically fully-implicit ocean-climate models (De Niet et al.,
2007; Toom et al., 2012; Mulder et al., 2021) have shown
that saddle-node bifurcations bound the multi-stable regime
of the AMOC in these models. Rahmstorf (1996) showed that
the saddle-node bifurcation associated with the AMOC col-
lapse is linked to a critical value of the freshwater transport
carried by the AMOC at 34°S, represented by the quantity
Foys. When including the stabilizing gyre responses (Sijp,
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2012), a Foys minimum is found close to this saddle-node
bifurcation (Dijkstra, 2007).

In numerically explicit ocean-climate models it is much
harder (or not feasible) to determine the steady states ver-
sus (freshwater forcing) parameters and the boundaries
of the AMOC multi-stable regime. An impression of the
multi-stable regime can be obtained by performing quasi-
equilibrium simulations, where a freshwater flux forcing is
changed very slowly back-and-forth such that the model state
stays close to the (slowly changing) statistical equilibrium.
Such quasi-equilibrium simulations have been performed
with many ocean-only models (Rahmstorf, 1995; Lohmann
et al., 2024), Earth System Models of Intermediate Com-
plexity (EMICs) (Rahmstorf et al., 2005; Cini et al., 2024),
the FAMOUS model (Hawkins et al., 2011), the Community
Climate System Model (CCSM3) (Hu et al., 2012), and re-
cently in the Community Earth System Model (CESM) (van
Westen and Dijkstra, 2023; van Westen et al., 2024a).

When the salt-advection feedback is the dominant feed-
back, as is the case for the Stommel (1961) model, it can
be shown that the stable “AMOC on” state has a square-root
(or quadratic) solution against varying freshwater flux forc-
ing (see Appendix A) with the normal (most simple) form of
dx/dtr = r —x? with r > 0 (see Appendix B). This square-
root relation in the Stommel model can be understood from
the fact that the AMOC strength is proportional to the salinity
gradient, whereas the salinity gradient is also proportional to
the AMOC strength. In more complex (climate) models that
resolve more processes and climate feedbacks, a near square-
root dependency is also found for the AMOC strength against
forcing (Dijkstra, 2007; van Westen et al., 2024b; Vander-
borght et al., 2025). Finding indications of a square-root re-
lation in quasi-equilibrium simulations is challenging as it
requires very slow rates to follow the steady states of the sys-
tem (Rahmstorf, 1996). Even if the rate is sufficiently slow,
this relation can be masked by relatively large (stochastic)
noise (Berglund and Gentz, 2006). An alternative approach is
by obtaining statistical equilibria for fixed forcing values, but
this is computationally too costly for CESM. Nevertheless, as
long as the salt-advection feedback remains dominant amid
other AMOC-related feedbacks (Vanderborght et al., 2025),
a square-root dependency can be expected when the system
is relatively close to its saddle-node bifurcation and hence to
tipping.

Here, we focus on the CESM results and address the issue
whether its AMOC tipping behavior is also caused by the
presence of a saddle-node bifurcation, similar to that in the
fully-implicit ocean-climate models (Dijkstra, 2007). This is
certainly a non-trivial issue as the CESM is an extremely
high-dimensional dynamical system and the atmospheric
fluxes create a high frequency forcing on the ocean com-
ponent of the model. In addition, in the quasi-equilibrium
CESM simulation (van Westen et al., 2024a) the forcing rate
is rather large compared to the equilibration time scale of
the AMOC (van Westen et al., 2024b) and hence the (non-
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autonomous) dynamical system is not a fast-slow system
(Kuehn, 2011). The existence of a saddle-node bifurcation
in the CESM is important for assessing the role of model
biases on the stability of the AMOC and for understanding
the response of the model to transient climate change forcing
(Ritchie et al., 2021).

The aim of this paper is to provide a convincing case that a
saddle-node bifurcation is causing the AMOC collapse in the
CESM, as presented in van Westen et al. (2024a). Thereto,
we have performed several additional CESM simulations
which were branched from the quasi-equilibrium CESM sim-
ulation, we will compare the CESM behavior with that of a
five-box AMOC model for which a saddle-node bifurcation
is known to exist (van Westen et al., 2024b). The advantage
of this five-box model is that we can easily conduct multi-
ple sensitivity experiments to better understand the CESM
behaviour. Section 2 describes the model set-up and simula-
tions for the CESM and five-box model. Next, in Sect. 3, the
results on the (statistical) steady states and quasi-equilibrium
results of both the CESM and five-box model are presented.
Section 4 provides detailed arguments for the existence of a
saddle-node bifurcation in the CESM, followed by Sect. 5,
where the importance of this result for the behavior of the
AMOC under climate change is shown. Finally, in Sect. 6,
the results are summarized and discussed.

2 Models and Methods

2.1 CESM simulations

The CESM (version 1.0.5) is a fully-coupled climate model
and the simulations here have a 1° horizontal resolution for
the ocean/sea-ice components and a 2° horizontal resolution
for the atmosphere/land components. For more details on the
precise CESM set-up, we refer to van Westen and Dijkstra
(2023) and van Westen et al. (2024a). In those studies, the
pre-industrial forcing is used and in addition a freshwater
flux forcing (Fp) is applied between 20° N and 50° N in the
Atlantic Ocean and is compensated elsewhere (at the ocean
surface) to conserve salinity. This is the same hosing region
as in Hu et al. (2012) and Rahmstorf (1996), which has the
advantage that the North Atlantic deep convection sites are
not directly impacted under the hosing. The sensitivity of the
hosing location will be thoroughly analysed below for the
five-box AMOC model.

The quasi-equilibrium AMOC hysteresis simulation (van
Westen and Dijkstra, 2023) is obtained by slowly increas-
ing Fg from O to 0.66Sv and back to 0Sv, at a rate of
3x 107* Svyr~!, resulting in a 4400-year long simulation.
This simulation remains close to the statistical equilibria, but
the deviations become larger near the AMOC collapse and
recovery (van Westen et al., 2024b). To determine statistical
equilibria (i.e., steady states), two 500-year long CESM sim-
ulations were performed (van Westen et al., 2024b) at con-
stant Fp, the steady states are indicated as Fy. This was
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already done for F = 0.18 Sv (starting at model year 600
of the quasi-equilibrium simulation) and at Fy = 0.45Sv
forcing (starting at model year 1500). The last 100 years of
these steady states show hardly any model drift, meaning that
the AMOC and global climate are dominated by natural cli-
mate variability (van Westen and Baatsen, 2025). Below, we
will show results of new CESM simulations performed under
constant Fy forcing or with a slower rate of Fpy, and closer
to the values where the AMOC collapse occurs in the quasi-
equilibrium simulation (around Fy = 0.525 Sv, van Westen
et al. (2024a)).

We will (in Sect. 5) also use results from two climate
change simulations that were initialized from the end of
the steady state with Fr =0.18Sv and Fyy = 0.45Sv (van
Westen et al., 2025b). These climate change simulations
were first forced under the historical forcing (1850-2005)
and followed by either RCP4.5 or RCP8.5 scenario forcing
(2006-2100, Representative Concentration Pathway). Subse-
quently, they were further integrated for 400 years under their
2100 radiative forcing conditions to study the equilibrium be-
haviour.

An overview of all the different CESM simulations are
presented below in Table 1. In total, we present 11 670 model
years of model output. Ideally, one would determine even
more steady states or lower the varying Fy rate in the quasi-
equilibrium simulation, but this is computationally not feasi-
ble. These additional simulations, however, can be done with
the five-box AMOC model.

2.2 The five-box AMOC model

The five-box AMOC model (Fig. 1) was developed by Cima-
toribus et al. (2014), extended by Castellana et al. (2019), and
was recently further extended (hereafter the E-CCM, the Ex-
tended Cimatoribus-Castellana Model) by including oceanic
temperatures (van Westen et al., 2024b). The E-CCM has
four surface boxes, where the Atlantic Ocean is represented
by boxes t and n, the Southern Ocean channel by box s, and
the Southern Ocean Atlantic sector by box ts. There is one
deep ocean box d, hence this model does not include the
Indo-Pacific Ocean nor Arctic Ocean. The Atlantic Ocean
pycnocline depth, indicated by the D, may vary in the E-
CCM. The temperature and salinity are volume averaged
over each box and heat and salinity are exchanged between
the boxes, and also heat between the surface boxes and over-
head atmosphere. Salinity is conserved in the E-CCM.

The AMOC strength in the northern box (gn) in the E-
CCM is given by:

Pn — Prs
00

D?, ey

4gN = 1h

where ny, is a hydraulic constant, p, — oy is the meridional
density difference between box n and box ts, pg is a refer-
ence density, and D the pycnocline depth. The densities are
determined from a linear equation of state. For full details
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Figure 1. Schematic representation of the five-box AMOC model
(the E-CCM), adapted from van Westen et al. (2024b). The red ar-
rows represent volume transports, whereas the dashed and dotted
arrows indicate the AMOC on and AMOC off states, respectively.
The cyan and blue arrows represent the gyre transport and fresh-
water fluxes, respectively. The freshwater from box s is distributed
linearly over box n and box t using a parameter &, where § E 5 is
added to box ¢ and (1 — &)E A to box n. The original E-CCM con-
figuration van Westen et al. (2024b) is obtained when & = 0. The
brown arrows are the heat fluxes with the overhead atmosphere for
each surface box (i.e., box s, ts, t and n).

and sensitivity experiments conducted with the E-CCM, we
refer to van Westen et al. (2024b), where there is also a link
to the publicly-available E-CCM code. We will show results
for the version where sea-ice insulation effects are omitted
and use the standard values of the parameters given in van
Westen et al. (2024b), unless otherwise mentioned.

The E-CCM is forced through the asymmetric freshwater
flux forcing (Ea) from box s to box n. Under varying Ea,
the E-CCM has an “AMOC on” state (clockwise circulation,
red solid and dashed arrows) and an “AMOC off” state (anti-
clockwise circulation, red solid and dotted arrows). There is
a multi-stable AMOC regime and this regime is bounded by
two saddle-node bifurcations (van Westen et al., 2024b). To
determine the sensitivity of the AMOC behavior to the hos-
ing location (Rahmstorf, 1996; Ma et al., 2024), we make
a modification to the E-CCM by distributing the freshwater
flux forcing linearly over box n and box t using a parameter
& €10, 1]. When & = 0, the freshwater flux forcing is only ap-
plied to box n and this is the original E-CCM configuration.
The freshwater flux forcing is only over box t when & = 1.

The steady states of the E-CCM against varying parame-
ters (i.e., bifurcation diagram), such as freshwater flux forc-
ing, are determined using the continuation software AUTO-
07p (Doedel et al., 2007, 2021). This code solves steady
states using a pseudo-arclength continuation combined with
a Newton-Raphson method (Wubs and Dijkstra, 2023). It is
also able to detect Hopf bifurcations and saddle-node bifur-
cations. We used a value of 107 for the absolute and rela-
tive accuracy of each steady-state solution, and for the accu-
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Table 1. Overview of the different simulations conducted with the CESM, which includes: simulation name, freshwater flux forcing (varying
or fixed), radiative forcing, branched from simulation, duration, and the AMOC status at the end of simulation (on, transient or off). Note
that the forward QE was branched from the 2800-year long pre-industrial control simulation from Baatsen et al. (2020). The simulations are
sorted in order of appearance. Abbreviations: QE, quasi-equilibrium; PI, pre-industrial; RCP, Representative Concentration Pathway; E-RCP,
Extended Representative Concentration Pathway.

Simulation name  Freshwater flux forcing Radiative forcing Branched from simulation Duration  AMOC status at
Varying (8; Fy) or fixed (Fg) (years) end of simulation

Forward QE 0 Fg =43 x 1074 Sy yr_1 PI at 1850 levels 2800 year PI control 2200 Off
Backward QE oFg =-3x 1074 Sy yr_1 PI at 1850 levels Forward QE, Fg = 0.66 Sv 2200 On
Steady state #1 Fg =0.18Sv PI at 1850 levels Forward QE, F =0.18 Sv 500 On
Steady state #2 Fg =0.458v PI at 1850 levels Forward QE, F = 0.45Sv 500 On
Steady state #3 Fg =0.465Sv PI at 1850 levels Forward QE, Fy = 0.465 Sv 500 On
Steady state #4 Fg =0.48Sv PI at 1850 levels Forward QE, Fy = 0.48 Sv 500 Off
Steady state #5 Fg =0.488Sv PI at 1850 levels End of steady state #3 500 On
Steady state #6 Fg =0.4958Sv PI at 1850 levels Forward QE, Fy = 0.495 Sv 231  Transient
Steady state #7 Fg =0.495Sv PI at 1850 levels End of steady state #5 500 On
Steady state #8 Fy =0.518v PI at 1850 levels Forward QE, Fy = 0.51Sv 197  Transient
Steady state #9 Fp =0518v PI at 1850 levels End of steady state #7 500 Off

Half QE orFyg =+15x% 1074 Sv yr—!  PIat 1850 levels End of steady state #2 1,050 Off
Historical #1 Fg =0.18Sv Historical (1850-2005)  End of steady state #1 156  On
RCP4.5 #1 Fy =0.18Sv RCP4.5 (2006-2100) End of historical #1 95  Transient
E-RCP4.5 #1 Fy =0.18Sv RCP4.5 at 2100 levels ~ End of RCP4.5 #1 400 On
RCP8.5 #1 Fp =0.18Sv RCP8.5 (2006-2100) End of historical #1 95  Transient
E-RCP8.5 #1 Fy =0.18Sv RCP8.5 at 2100 levels ~ End of RCP8.5 #1 400 Off
Historical #2 Fy =0.458v Historical (1850-2005)  End of steady state #2 156  On
RCP4.5 #2 Fy =0.458Sv RCP4.5 (2006-2100) End of historical #2 95  Transient
E-RCP4.5 #2 Fy =0.458v RCP4.5 at 2100 levels ~ End of RCP4.5 #2 400 Off
RCP8.5 #2 Fy =0.458Sv RCP8.5 (2006-2100) End of historical #2 95  Transient
E-RCP8.5 #2 Fy =0.458v RCP8.5 at 2100 levels ~ End of RCP8.5 #2 400 Off

racy for locating special points, similar to van Westen et al.
(2024b).

3 Results

3.1 Statistical equilibria in the CESM

The AMOC strength (at 1000 m and 26°N) and the fresh-
water transport carried by the AMOC at 34°S (Fyys) of
the quasi-equilibrium CESM simulation (van Westen et al.,
2024a) are shown in Fig. 2a, b. The branched simulations
from the quasi-equilibrium simulation at a constant forc-
ing F; = 0.18 Sv (Fig. 2c, i), Fy = 0.45Sv (Fig. 2d, j) and
Fr = 0.465 Sv (Fig. 2e, k) equilibrate after about 300 years.
The branched simulation at Fyy = 0.48 Sv (Fig. 2f, 1) col-
lapses and suggests that the upper bound of the multi-
stable regime is around this Fj value. The branches ini-
tiated from Fy = 0.495Sv (Fig. 2g, m) and Fy =0.51Sv
(Fig. 2h, n) also collapse; these simulations were terminated
before the 500-year mark because of computational costs.
However, when the equilibrated F = 0.465 Sv simulation
is subjected to an instantaneous increase in freshwater flux
to Fy =0.48Sv (AFy =0.015Sv), we still find a statis-
tical equilibrium in the northward overturning regime (red
curves in Fig. 2f, I). We iteratively repeated the same pro-
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cedure for Fyy = 0.495Sv and Fy = 0.51 Sv. The AMOC
eventually collapses under a constant freshwater flux forc-
ing of Fi = 0.51 Sv. This means that the upper bound of the
multi-stable regime is found for 0.495 Sv < Fy <0.51Sv.
To obtain an even higher precision for this upper bound, we
would need to increase F with even smaller increments, but
is not done here because of computational limitations.

The AMOC in the quasi-equilibrium simulation starts
to tip around Fgy = 0.525Sv (0.522 to 0.533 Sv, 10th and
90th percentiles, van Westen et al. (2024a)) and is at larger
Fy values than the upper bound found from the statisti-
cal equilibria simulation (0.495Sv < Fy < 0.51 Sv). To de-
termine the overshoot of the quasi-equilibrium simulation,
we use a reference value of Fy =0.5Sv, but any other
Fp value within the interval Fy €[0.495,0.51] can be
used as a reference (giving slightly different numerical re-
sults). Using this reference, the quasi-equilibrium AMOC
overshoots by AFg = 0.025Sv (= 80 years). Do note that
the AMOC collapses for the simulations branched from
the quasi-equilibrium simulation for Fy > 0.48Sv (blue
curves in Fig. 2c—n). In other words, the branched simu-
lations for Fp > 0.48 Sv already surpassed a critical forc-
ing value upon branching, which means that the standard
quasi-equilibrium also surpassed its critical value and actu-
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Figure 2. (a) The AMOC strength at 1000 m and 26° N and (b) the freshwater transport by the AMOC at 34° S, F,yg, for varying freshwater
flux forcing Fg (i.e., the quasi-equilibrium simulation). Inset: The hosing experiment where fresh water is added to the ocean surface between
20-50°N in the Atlantic Ocean (+Fg) and is compensated over the remaining ocean surface (—Fp). The statistical equilibria for various
constant values of Fy (i.e., F, steady states) in the northward overturning regime are also shown, where the marker indicates the mean and
the error bars show the minimum and maximum over the last 50 years of the 500-year long branched simulations. The black sections indicate
the 26° N and 34° S latitudes over which the AMOC strength and F,yg are determined, respectively. The yellow shading in the two panels
indicates observed ranges for the presented quantity (Smeed et al., 2018; Arumi-Planas et al., 2024). (c-n) Similar to panels a,b, but now the
entire branched simulations for different Ff; values. The branches are initiated from the quasi-equilibrium simulation (blue curves) or from

the end of the previous statistical equilibria (red curves).

ally undershoots the upper bound of the multi-stable regime.
This critical value for the quasi-equilibrium is located for
0.465Sv < Fy <0.48 Sv. The apparent overshoot with the
reference value of Fg = 0.5Sv is then the result of iner-
tia and the growth rate of AMOC feedbacks, in particular
the destabilising salt-advection feedback. Indeed, these feed-
backs develop on centennial timescales (Vanderborght et al.,
2025), which we will make more explicit below. The un-
dershooting AMOC can already be seen when comparing
the quasi-equilibrium with five different statistical equilibria
(last 50 model years are used). The quasi-equilibrium simu-
lation is about 1 Sv weaker than the statistical equilibria, but
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still reasonably agree. For Fyys, on the other hand, the quasi-
equilibrium is larger and (mostly) outside the ranges of the
different statistical equilibria (Fig. 2b).

When we lower the freshwater flux forcing rate, we ex-
pect that the system stays closer to the statistical equilib-
ria (Hawkins et al., 2011). To test this, we branched off
a quasi-equilibrium simulation with only half the hosing
rate (i.e., 1.5 x 1074 Sv yr_l) from the end of the statistical
equilibrium at F; = 0.45 Sv. This simulation was integrated
for 1,050 model years, where Fg varied from 0.45Sv to
0.608 Sv (red curves in Fig. 3a, b). In the ideal case, the half-
forcing quasi-equilibrium simulation should have been initi-
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ated from the same initial conditions as the standard quasi-
equilibrium simulation for direct comparison, which would
also allow to address the sensitivity in the overshoot/under-
shoot with the reference value of E = (.5 Sv. Nevertheless,
this half-forcing simulation can be used to check whether the
AMOC collapse happens faster in Fg space. The faster tran-
sition (in Fg) is a characteristic of a saddle-node bifurcation
(see Appendix B), but this is also the case for other bifurca-
tion types (e.g., Hopf) (Berglund and Gentz, 2006).

The half-rate simulation remains (very) close to the differ-
ent statistical equilibria for both AMOC strength and Foys.
Following van Westen et al. (2024a), we used a break re-
gression analysis (Mudelsee et al., 2014) to find the AMOC
tipping event at Fyg = 0.534 Sv, with the 10th and 90th per-
centiles at Fy = 0.533 Sv and Fy = 0.536 Sv, respectively.
There is an overshoot of A Fg = 0.034 Sv (227 years) com-
pared to our reference value of F; = 0.5 Sv, but keep in mind
that AMOC feedbacks take a considerable time to develop.
These feedbacks can be quantified by following the proce-
dure outlined in Vanderborght et al. (2025), see also Sect. 4
below. We decompose the different AMOC feedbacks for the
Fy = 0.51 Sv simulation (branched from the previous statis-
tical equilibrium of Fg = 0.495 Sv) and the half-rate forcing
simulation, where the most important feedbacks are shown
in Fig. 4; the standard quasi-equilibrium simulation decom-
position is presented in Vanderborght et al. (2025).

First the Fi = 0.51 Sv simulation (Fig. 4a), in which the
AMOC weakens by about 1.5 Sv during the first 100 model
years. This weakening is attributed to the slightly larger
freshwater forcing (4-0.015Sv) compared to the starting
equilibrium solution at Fy =0.495Sv. The destabilizing
salt-advection feedback (linked to Fyys) and surface (mainly
sea-ice melt) feedback slowly grow over the following
250 years. Over the same period (model years 100-350), the
gyres and overturning component at 65°N partly stabilize
the AMOC. The combined effect results in an AMOC weak-
ening of only 1.5 Sv over these 250 years and after model
year 350 the AMOC fully collapses. The salt-advection feed-
back eventually becomes dominant and this destabilising
feedback fully develops over centennial timescales (under
constant freshwater flux forcing).

Next the half-rate forcing simulation (Fig. 4b), where
we find a similar centennial timescale for the destabilizing
AMOC feedbacks. The AMOC feedbacks remain relatively
small up to model year 350 (Fy = 0.503 Sv), then slowly in-
crease in the following 200 years (model years 350-550) and
thereafter the AMOC fully collapses. This gradual increase
of the destabilizing feedbacks between model year 350 to
500, suggests that the AMOC will eventually tip and hence
branching simulations with fixed Fg for Fg > 0.503 Sv will
also result in an AMOC collapse, similarly as the standard
quasi-equilibrium simulation. However, additional simula-
tions are needed to find this critical value, which were not
done here.
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In other words, there is a certain critical value of forcing
and, once crossed, the AMOC will eventually tip over cen-
tennial timescales (& 200 model years). This critical value
is dependent on the initial condition and rate of forcing,
which we will make more explicit with the E-CCM below.
As argued above, for the half-forcing quasi-equilibrium sim-
ulation this critical value is likely around Fg = 0.503 Sv,
which is well within the interval 0.495Sv < Fy <0.51Sv.
The AMOC collapse starts at Fy = 0.525Sv in the stan-
dard quasi-equilibrium simulation, meaning that the desta-
bilizing feedbacks were growing during the 200 model years
(AFg =0.06 Sv) prior to the collapse (Vanderborght et al.,
2025). This suggests that Fy; = 0.525 — 0.06 = 0.465 Sv is
the latest statistical equilibrium which can be found when
directly branching from the quasi-equilibrium simulation,
which is indeed the case here (Fig. 2e, k). This confirms again
that the standard quasi-equilibrium simulation undershoots
the upper bound of the multi-stable regime. The implication
is that an overshooting (or undershooting) AMOC cannot be
assessed by only analysing the onset of the AMOC tipping
event. In fact, the onset of the AMOC tipping event only in-
dicates where the destabilising feedbacks become dominant
and it is much more useful to analyse the changes in AMOC
feedback strengths.

What is important here, is that the half-rate forcing’s
transition to the collapsed state is twice as fast (in Fy
space), which is a typical characteristic of transitions near
a saddle-node bifurcation (Berglund and Gentz, 2006) (see
also Appendix B). The duration of AMOC transitions in both
quasi-equilibria and in the statistical equilibrium simulations
(Fig. 2) is about 100 years and the full equilibration to the
collapsed AMOC state requires more than 500 years (van
Westen et al., 2024a). Another characteristic of a saddle-node
bifurcation is the loss of resilience (i.e., critical slow down)
near the tipping point (van Westen et al., 2024b). This can be
quantified by determining the variance and (lag-1) autocor-
relation of specific observables. For the AMOC strength, we
find no indications of critical slow down (not shown) which
is consistent with the results in van Westen et al. (2024a).
There is also no increase in the variance for the AMOC
strength for both the quasi-equilibria and the statistical equi-
libria (Fig. 3c). However, for the physics-based quantity Foys
we find indications of critical slowdown (van Westen et al.,
2024a; Smolders et al., 2025). Indeed, the F,ys variance in-
creases for larger Fy up to the tipping event (Fig. 3d). This
increase in variability indicates that the AMOC loses re-
silience and makes it more prone to transitions.

3.2 Equilibria in the E-CCM

The AMOC behaviour in the CESM can be reproduced with
the E-CCM under varying freshwater flux forcing (now Ex).
For the E-CCM, the steady states obtained using continu-
ation techniques (cf. Sect. 2.2) are presented in Fig. 5a, b
for the AMOC strength and Fgys, respectively. The con-
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Figure 3. (a, b) The AMOC strength and F,yg of the quasi-equilibrium simulations, one similar to Fig. 2a, b, and including the simulation
with varying 1.5 x 1074 Sv yr_1 hosing rate (red curves). This quasi-equilibrium hosing with 1.5 x 1074 Sv yr_1 was branched from the end
of the statistical equilibria at Fg = 0.45 Sv. (¢, d) The variance in AMOC strength and Fyyg, using a sliding window of 50 years. For each
50-year window, a linear trend was removed and then the variance was determined.

tinuation indicates two saddle-node bifurcations at E [1\ =
0.4861 Sv (AMOC on) and at Ei =0.1857 Sv (AMOC off).
The AMOC on and unstable steady states clearly show the
square-root behaviour between AMOC strength and Ea,
which arises from the dominant salt-advection feedback
close to E}x. The probabilities under (stochastic) noise for the
transition from an AMOC on to an AMOC off state approach
1 when moving closer to E,l‘ (van Westen et al., 2024b), in-
dicative of the loss of resilience. Here, we performed deter-
ministic quasi-equilibrium and equilibrium simulations with
the E-CCM, which are shown in Fig. 5. Note that we used
slightly different freshwater flux forcing (Ea) values in the
E-CCM than in the CESM.

The quasi-equilibrium hysteresis simulation in the E-CCM
is (qualitatively) comparable to that of the CESM (com-
pare Figs. 2 and 5); the large overshoot (> 35Sv) in the
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E-CCM upon AMOC recovery is a model artefact (van
Westen et al., 2024b). In the forward quasi-equilibrium sim-
ulation the AMOC strength is lower compared to the value
at the steady states, while the Foys values are higher. The
branches from the quasi-equilibrium eventually collapse for
Ean=0.477Sv and E5 = 0.486Sv, meaning that a critical
E value was surpassed, which is then also the case for the
quasi-equilibrium simulation.

In contrast to the CESM, it is computationally feasible to
quantify this critical value in the E-CCM. Here, we define
the critical branch as the branch from the quasi-equilibrium
that collapses at the lowest possible E5 value. We use an
accuracy of AEx = 0.001 Sv (but can be even higher when
needed). Ultimately, the AMOC collapses when branching
from the quasi-equilibrium simulation for Ex > 0.474 Sv
(Fig. 6a). As was argued in the previous section, this criti-
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cal value is also dependent on the initial condition and rate
of forcing. For example, when we use the steady state at
Ea =0.45Sv as initial condition, we can increase Ea up
to 0.479Sv (with 3 x 107*Svyr~!) and then keeping the
freshwater flux forcing constant. In this case, the AMOC
eventually equilibrates to the AMOC on state (not shown),
meaning that the critical value is found for Ea > 0.480Sv.
When we initiate from Ea = 0Sv while using a ten times
smaller forcing rate (3x 107 Sv yr~1), the AMOC also equi-
librates to the AMOC on state when increasing Ea up to
0.483 Sv and then keeping the freshwater flux forcing con-
stant (not shown). The critical value for this other case is for
Ex > 0.484 Sv. Depending on the initialisation and forcing
rate, the saddle-node bifurcation can only be reached with a
limited accuracy.

Since the AMOC collapses at critical values lower than
(i.e., undershooting) the saddle-node bifurcation (blue curve
in Fig. 6a), the system must cross the basin boundary of
attraction between the AMOC on and AMOC off states.
The continuation allows us to explore which variable (tem-
perature, salinity, and pycnocline depth), or which specific
combination of variables (e.g., AMOC strength, see Eq. 1),
crosses this boundary of attraction. Notably, the critical
branch at E5 = 0.474 Sv does not cross the basin boundary
with respect to AMOC strength and one expects AMOC re-
covery to the AMOC on state, and yet the AMOC collapses
(left inset in Fig. 6a). This means that the AMOC strength
is no good predictor for the future evolution of the system
for the critical branch. When we analyse a different quantity,
such as the salinity of box n (right inset in Fig. 6a), it does
cross the basin boundary. The salinity in box n is important
here as it (partly) sets the AMOC strength (relation 1) and is
influenced under the destabilizing salt-advection feedback,
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which gives rise to the quadratic relation between AMOC
strength and freshwater flux forcing.

When we equally distribute the hosing over box n and
box t (£ =0.5, Fig. 6b), the saddle-node bifurcations shift
to higher values of E4. The quasi-equilibrium for this case
has weaker AMOC strengths than the stable AMOC on
state and close to the saddle-node bifurcation it has stronger
strengths than the AMOC on state (left inset in Fig. 6b).
The critical branch (at Ex = 0.609 Sv) has a stronger AMOC
strength than the steady AMOC on state upon branching, but
it still collapses. The salinity in box n does cross the basin
boundary (right inset in Fig. 6b), demonstrating again that
AMOC strength is no good indicator for predicting the fu-
ture AMOC trajectory. Only when the hosing is applied over
box t (¢ = 1.0, Fig. 6¢), the AMOC collapses when increas-
ing the freshwater flux forcing beyond the saddle-node bifur-
cation of E A = 0.83495 Sv. When we branch from the quasi-
equilibrium for lower E4 than the saddle-node bifurcation
(e.g., Ea = 0.8348 Sv, not shown), the solution equilibrates
to the stable AMOC on state.

The AMOC dynamics and the under- and overshooting be-
haviour can be understood from these three different cases.
When a hosing perturbation is (partly) applied over box n,
the AMOC strength directly reduces as the meridional salin-
ity difference between box n and box ts increases. The largest
part of the freshwater perturbation is carried away by the
AMOC to box d, but a small part of the perturbation remains
in box n (due to a weaker AMOC) and causes freshwater
accumulation over box n. This freshwater accumulation re-
sults in a slightly weaker AMOC strengths compared to the
steady states. Once the system has a sufficient amount of time
to adjust to the imposed freshwater perturbation, the entire
freshwater perturbation is redistributed over the boxes and
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Figure 5. Similar to Fig. 2, but now for the E-CCM. Note that in panels (a) and (b) the steady and unstable states (from the continuation)

are also shown.

the AMOC strength eventually increases (e.g., blue curves
in Fig. 5S¢, d, e, f). In other words, the advective (‘“flush-
ing”) timescale is slower than the hosing timescale, result-
ing in an enhanced AMOC strength decline. This makes the
AMOC more prone to freshwater perturbations and explains
why there is hardly any overshoot in the quasi-equilibrium
simulation with the saddle-node bifurcation (for & = 0). This
is qualitatively different than the quasi-equilibrium CESM,
meaning that £ = 0 is not very likely for the CESM.

The direct AMOC weakening effect is smaller when
adding (part of) the hosing over box t and there are two ef-
fects contributing to this different behaviour. First, the hos-
ing is now distributed over the (much) larger box t than box n
and making the salinity anomalies (averaged over box t) ef-
fectively smaller. Second, only a part of the salinity pertur-
bations from box t is carried by the AMOC into box n and
most of it is directly carried to box d (see also Fig. 1). This
implies that the role of the overturning contribution in re-
distributing salinity anomalies between box t and box n is
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getting smaller, while the (northern) gyre contribution is get-
ting more important. These combined effects explain why the
saddle-node bifurcations shift to larger E 4 values for increas-
ing & (Fig. 6d). The larger gyre contribution is also reflected
in a greater AE between the E} and Foys minimum, which
also modifies the hysteresis width which is measured as the
distance between the two saddle-node bifurcations (Fig. 6d).

In the standard quasi-equilibrium CESM simulation (rate
3x107*Sv yr’l), the AMOC strength is also smaller than
that of the statistical equilibria. Thereafter, the AMOC ap-
pears to overshoot the upper bound of the multi-stable
regime. The CESM trajectory shares similar characteristics
as the E-CCM in the £ = 0.5 configuration, which is con-
sistent with the applied hosing region in the CESM (20° N-
50°N), though the CESM is much more complex than the E-
CCM. Depending on the hosing region, one can change the
relative contributions of important AMOC feedbacks and this
results in differences in AMOC sensitivity, the onset of the
AMOC tipping event and width of the multi-stable regime.
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It is therefore important to use a fixed hosing region, as was
done for our CESM simulations or in the outlined procedure
of the North Atlantic Hosing Model Intercomparison Project
(NAHosMIP, Jackson et al., 2023). Sensitivity experiments
indicate that the northern portion of the North Atlantic (e.g.,
the Irminger basin) is most sensitive under hosing (Rahm-
storf, 1996; Ma et al., 2024). Nevertheless, the destabilising
salt-advection feedback becomes more dominant under in-
creasing hosing strengths and causes the square-root depen-
dency near the saddle-node bifurcation.

4 Feedback analysis in the CESM

The results from Sect. 3.2 demonstrate that as long as the
salt-advection feedback dominates, one may expect a square
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root dependence in the AMOC on state under increasing
freshwater flux forcing, similar to the Stommel model (see
Appendix A). Although the AMOC is (highly) idealised in
the E-CCM, it is qualitatively able to reproduce almost all
AMOC characteristics of that in a much more complex and
fully-coupled climate model (i.e., the CESM). This makes
the existence of a saddle-node bifurcation in the CESM plau-
sible, but this can not easily be demonstrated using only a
limited number of equilibrium simulations. However, it turns
out that from performing a feedback analysis as in Vander-
borght et al. (2025), we can (under reasonable assumptions)
derive a reduced model explicitly showing the dependence of
AMOC strength on Fpg.
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4.1 Reduced model derivation

We start from the total Atlantic (34°S to 65° N) freshwater
budget as governed by (Vanderborght et al., 2025):

d;i_‘iv:FazS_FazN+FovS_FovN+Fsurf+ Fies, 2
where W is the total freshwater content. The Atlantic fresh-
water content can be modified through azonal (gyre) contri-
butions (i.e., Fa,s and Fy,N), overturning contributions (i.e.,
Foys and FyyN), surface contribution (i.e., Fgyf) and resid-
ual contribution (i.e., Fis). The quantities Fy,5 and Foys
are evaluated at 34°S, hence indicated with subscript “S”,
and we follow a similar notation for the northern boundary
(65°N) by using a subscript “N”.

Upon a freshwater perturbation, the evolution of the dif-
ferent contributions depends on the background state and
the AMOC strength (Vanderborght et al., 2025). The AMOC
strength is fairly homogeneous over the Atlantic basin (van
Westen et al., 2024a) and we assume a northward volume
transport in the upper AMOC limb which we indicate here
as W; the lower AMOC limb then carries ¥ southward. The
velocity-weighted average salinity over the upper AMOC
limb is indicated with S_, , and similarly for the lower AMOC
limb we use S . The vertical salinity difference between the
upper AMOC limb and lower AMOC limb is then indicated
by S= = S_, —S. Under this idealization it directly follows
that:

Se

Foys = ——VY, 3
ovS SO ( )

where Sy =35 gkg™!. Because the salinity transport in the
lower AMOC limb is approximately adiabatic, the vertical
salinity contrast at 34°S is closely related to a meridional
salinity contrast between 34° S and the North Atlantic sink-
ing region. This meridional salinity contrast is related to
the AMOC strength via thermal wind balance (Butler et al.,
2016). Therefore, the vertical salinity contrast scales with the
AMOC strength as (Vanderborght et al., 2025):

W =W+cr(1—c1)(S=20) - S=), “

where c; represents the stabilizing thermal-advective feed-
back and c; is a scaling factor. Both ¢; and ¢, are positive
constants and, for the CESM, their values are about 0.52 and
20Svkgg~! (Vanderborght et al., 2025). The terms W, and
S=(0) are the AMOC strength and vertical salinity difference
for Fg = 0Sv (no hosing), respectively.

Under the applied hosing (indicated by § Fy in the CESM)
the value of Fy,t increases and is primarily (i.e., to first or-
der) balanced by a declining F,,s (van Westen et al., 2024a).
On the other hand, the gyres flush freshwater anomalies out
of the Atlantic Ocean and stabilize the AMOC (Vanderborght
et al., 2025). Sijp (2012) argued that S linearly scales with
the integrated Atlantic freshwater content. This integrated
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freshwater content in turn scales with the anomalous fresh-
water transport by the gyres (Huisman et al., 2010), i.e.:

ngrezFazS_FazNZ_glsﬁ + g2. )

This linear relation is also applicable for the CESM, where
g1 =0.032Svkgg™! and g =0.49Sv (Fig. 7a). The last
contribution which we consider is the overturning compo-
nent at the northern boundary, Foyn. The AMOC strength
almost vanishes at the northern boundary and the expression
for FyyN is different than that of the F,y (relation 3). The
FoyN scales linearly with S and can be approximated by:

Fosn =n18= +n; (6)

with n; =0.025Svkgg™! and ny =—0.021Sv for the
CESM as shown in Fig. 7b. The contributions by the gyres
and F,,N scale linearly with increasing S= (or decreasing
W), whereas the F,ys has a non-linear contribution. To be
more precise, the Fyys is determined by the product of the
vertical salinity difference and the AMOC strength, where
the latter scales linearly with the vertical salinity difference
(i.e., relation 4). The F,ys scales quadratically with AMOC
strength, and conversely AMOC strength scales with the
square root dependence on Fyys. As the imposed freshwater
flux forcing is primarily balance by Fyys in the CESM (van
Westen et al., 2024a), one expects a square root dependence
in AMOC strength under increasing freshwater flux forcing.

A perturbation in the Atlantic freshwater content (cf. 2)
around an equilibrium state then gives:

_SFOVS+8FOVN_8ngre = § Fyurf, (7N

and using the expressions for Foys, Feyre and FoyN, this
yields:

UiSe + S=0V¥ + 1150852 + 8150882 = Soé6 Fu (8)

Using the relation between ¥ and S= (from 4) we find:

_ )\ w <_ v Yy
c2(1—cy) c2(l—c1)  c(1l—cy)
(n1+g1)S0
Ses(0) — L8120
5= 62(1—01))
= SodFy, &)

which can be rewritten as:

(=2¥ + Yy +c2(1 — ¢1)S=2(0) — (n1 + g1)S0)d W
=c2(1 —¢1)Sod Fy, (10)

and integrating both sides gives:

W2 — (Wo + 2(1 — ¢1)S=(0) — (11 + g1)So)W
+c(1 —c)SoFg+C =0, (11
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where the linear fit is determined over the 20-year averages up to model year 1700

(Fpg = 0.51 Sv) of the standard quasi-equilibrium simulation. (b) Similar to panel a, but now for the FoyN and So.

with integration constant C. The solution with W(Fy = 0) =
Wy is:

(1 —¢e)S=2(0)  (n1+81)So

‘IJ(FH)— > 04 > >
Yy —ca(l —¢1)S=(0)\ 2
+ +n1 + 8050 e —epSoFy (12)

2

Rather using S=(0), we express it as the initial Fyys using
Eq. (3), i.e., S=(0) = —SOF&,—VOS(O). The final expression be-

comes:
v, 1—c1)SoFovs(0 S
wEy = 20 _ c2(l—c1)SoFovs(0)  (n1+g1)S0
2 ALY 2
W3+ o (1 — 1) So Fovs (0)
" +(n1 +81)S0 %o —er(l—e)SoFy (13)

22U

Do note that several assumptions are required to arrive at
this final expression. For example, various residual (F;es) and
climate feedbacks were not considered, such as ocean-sea ice
interactions (destabilizing), ocean-atmosphere fluxes (desta-
bilizing), pycnocline deepening (stabilising), open Bering
strait (stabilizing) and the effect of ocean eddies (stabi-
lizing) (Vanderborght et al., 2025). The linear relation in
Foyre and Foyn with So is less accurate and ¢y is less con-
stant close to the tipping point. Freshwater anomalies may
be stored in the Atlantic Ocean and hence we assumed
that changes in the freshwater content are much smaller
than changes in the freshwater balance terms (i.e., ‘L—‘;V <
A (Fazs — FazN + Fovs — FoyN + Fourf + Fres)). These addi-
tional feedbacks and processes modify the idealized AMOC

Earth Syst. Dynam., 16, 2063-2085, 2025

response and make it more difficult to derive an analytical
solution for the northward overturning regime, as these pro-
cesses (ideally) need to be expressed as a function of S=
(if it exists). We stress that this idealized AMOC response
under hosing should be interpreted with care and one needs
to consider the appropriate feedback contributions for each
(climate) model set-up. The key point is that the AMOC
strength exhibits a square-root dependence on the freshwa-
ter flux forcing, leading to a saddle-node bifurcation when
the dominant balance is between the applied freshwater flux
forcing and the overturning component. As long as other
contributions remain sufficiently small, their effect will not
change the structure (and therefore the type) of the bifurca-
tion diagram. Indeed, the Fgyre and FoyN remain fairly linear
up to Fg = 0.51Sv (Fig. 7) and this is beyond the critical
forcing (0.465 Sv < Fr <0.488Sv, Fig. 2) for which the salt-
advection feedback becomes dominant. Once the AMOC
starts to collapse, the different AMOC contributions become
much larger (e.g., Fig. 4) and their responses are attributed to
large-scale adjustments under a collapsing AMOC.

For the Stommel 2-box model, we can demonstrate that a
similar AMOC response holds (see Appendix A). Under no
freshwater flux forcing (n = 0) in this model, the salinity dif-
ference between the two boxes is zero. This constraint gives
the initial AMOC strength of Wy = kaAT? and Foys(n =
0) = 0, where & is a hydraulic pumping coefficient, « the (di-
mensionless) thermal expansion coefficient, and AT? the (di-
mensionless) atmospheric temperature difference. The north-
ern boundary is closed (n; = 0) and gyres are not represented
(g1 =0) in the Stommel model. The oceanic temperatures
in the Stommel model are fixed (under steady state assump-
tion), and in this case ¢; = 0. Relation (13) for the Stommel
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model reduces to:

ka AT? ka AT®\?
V(Fy) = > =+ > —c80Fn (14)

and is similar to relation (A9), apart from some scaling coef-
ficients.

4.2 Application of the reduced model

Using the reduced model, the critical value of Fy for an
AMOC collapse in the CESM can be estimated by assuming
that the freshwater flux forcing is (in its first order) balanced
by the overturning and azonal (gyre) components, which is
the case for the CESM (van Westen et al., 2024a). The crit-
ical freshwater flux forcing is obtained by setting the terms
under the square root in Eq. (13) equal to zero. Solving this
yields:

\I/g +c2(1 —c1) SoFovs(0)
P 1 +m1 +g1)So%o
H c(1—c1)So 29y

s5)

The Fj, is dependent on the initial AMOC strength and
initial Foys value. In the CESM, the Atlantic Ocean sur-
face area outside 20-50° N receives a negative freshwater
flux as part of the global compensation (see inset Fig. 2a).
This makes the applied hosing 86 % effective when consid-
ering the total Atlantic Ocean surface area (34° S—65° N) and
F}; needs to be adjusted by a factor r§6. The time-means
(first 50 model years) in the CESM quasi-equilibrium sim-
ulation are Wy = 16Sv and Foys(0) =0.22 Sv, which give:
Fp = 0_1%0.38 = 0.44 Sv (Fig. 8a, b). When using the maxi-
mum and minimum values (over the first 50 model years) for

AMOC strength and Foys, we find F§; = 5:0.44 =0.52Sv

and Fj, = ﬁ0.33 = 0.38 Sv, respectively (Fig. 8a, b).

The Fj, determined from the reduced model is some-
what smaller (0.06 Sv for the mean) than our reference of
Fy =0.5Sv. By increasing the gyre (or northern overturn-
ing) responses, we can reduce this difference (Fig. 8d). The
gyre contributions also control the distance between Fy, and
value of Fy at the Foys minimum (Dijkstra, 2007; Huisman
et al., 2010; Dijkstra and van Westen, 2024). For the reduced
model and with standard values of the parameters n and g,
this difference is about A Fg = 0.34 x 10728y (Fig. 8d), and
decreasing with smaller g1 (or ny).

The actual Fyys minimum in CESM is found for the sta-
tistical equilibrium of Fy = 0.48 Sv (Fig. 9a), whereas the
Foys minimum in the quasi-equilibrium was found around
Frp =0.52Sv (van Westen et al., 2024a). There is substan-
tial overlap in the statistical properties of the four statisti-
cal equilibria closest to the tipping point, which complicates
the Foys minimum assessment. Alternatively, van Westen
et al. (2024a) used cubic splines to determine the Fyys min-
imum, in which cubic polynomials are interpolated between
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so-called knots. For these knots, the Fyys values from the
four statistical equilibria can be used, but this results in spu-
rious fits (thin curves in Fig. 9a) due to the limited number
of knots. To obtain an unbiased estimate of the F,,s mini-
mum, all Fyys combinations of the four statistical equilibria
(i.e., 6250 000 combinations) are considered, from which the
frequency of the F,ys minimum per statistical equilibrium
is determined. These frequencies are: 1.1 % (Fy = 0.45 Sv),
21.7% (Fy = 0.465Sv), 43.2% (Fy = 0.48 Sv) and 34.0 %
(E = 0.495 Sv), with the weighted F,ys minimum at Fg =
0.482 Sv. This indeed confirms that the F,ys minimum is
most likely found for Fr = 0.48 Sv, where 66 % of the com-
binations has the minimum for Fz < 0.48 Sv. The former is
also reflected in the cumulative distribution function of Fyyg
for the four statistical equilibria (upper panel in Fig. 9b),
where F = 0.48 Sv (black curve) has the largest cumulative
frequency for most Fyys values. This result is robust when
using a different 50-year window or the last 150 years of the
equilibrium simulations (lower panel in Fig. 9b). For the lat-
ter case, the Fyys minimum frequencies are: 1.2 % (Fy =
0.45Sv), 21.4% (Fg = 0.465Sv), 42.6% (Fg = 0.48Sv)
and 34.8 % (Fy = 0.495 Sv) over all the combinations (i.e.,
506250 000), with the weighted F,ys minimum also at Fg =
0.482 Sv. What is important here, is that the Fyys minimum
is found AFy = 0.013 to 0.028 Sv before the upper bound
of the multi-stable regime. A similar freshwater flux forc-
ing difference is found in a fully-implicit global ocean model
(Dijkstra and van Westen, 2024), where it was shown that the
Foys minimum is connected to a saddle-node bifurcation.

The overlap in the statistical properties of the four sta-
tistical equilibria closest to the tipping point also compli-
cates the shape (i.e., square-root) estimate between AMOC
strength and Fg. These four equilibria are clearly insuffi-
cient and one needs more equilibria to obtain a better esti-
mate of the shape. This is computationally expensive for the
CESM, but can easily be done for the E-CCM and also under
stochastic noise. Even if more equilibria were available for
the CESM, there is a possibility that the structure of multiple
equilibria is much more complicated (Lohmann et al., 2024).
The latter may explain the relatively strong AMOC strength
for F = 0.48 Sv, but this can not be verified from the re-
sults presented here. It is therefore more relevant to analyse
the different AMOC feedback strengths over large Fy in-
tervals, which clearly indicate a square root dependence be-
tween AMOC strength and Fy (Vanderborght et al., 2025)
and this is also supported by the reduced model here.

Using the reduced model (with the c1, ¢2, g1 and n1 from
the CESM), one can make a rough estimate of the criti-
cal freshwater flux forcing needed to collapse the present-
day AMOC. For observed values, we used 17 Sv (Smeed
et al., 2018) and —0.15 Sv (Arumi-Planas et al., 2024) for
AMOC strength and Fyys, respectively. We assume that all
the Greenland Ice Sheet melt is added to the Atlantic Ocean
surface, making the hosing 100 % effective, and we find
Fj; =0.19 Sv (Fig. 8). Although this critical freshwater flux
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Figure 8. (a, b) The AMOC and F,,g responses of the reduced model under the freshwater flux forcing (cf. Eqs. 13 and 3, respectively),
where the solid curves indicate the steady AMOC on state and dotted curves the unstable branch. The initial values for both the AMOC
strength and F,,g were obtained from the first 50 model years of the quasi-equilibrium. The AMOC strength values are 16.0 Sv (mean),
17.8 Sv (maximum) and 14.3 Sv (minimum), and F,yg values are 0.22 Sv (mean), 0.24 Sv (maximum) and 0.20 Sv (minimum). For the
“Observed model”, we use the reduced model in combination with observed values of 17 Sv (Smeed et al., 2018) and —0.15 Sv (Arumi-Planas
et al., 2024) for the AMOC strength and Fg, respectively. (¢) The critical freshwater flux forcing (FICJ) for varying initial AMOC strength
and initial F,yg. The ranges for the CESM (first 50 model years of quasi-equilibrium) are indicated. The critical freshwater flux forcing was
not determined for relatively weak AMOC strengths (< 5 Sv). (d) Values of FI?I (solid curves) and difference to Fyyg minimum (dashed
curves) for varying gyre sensitivity (g1) and two cases for the northern overturning sensitivity (n1), using the time-mean (first 50 model
years) AMOC strength and Fyg. The standard CESM values are g; = 0.032 Svkg g71 (blue dotted line) and n1 = 0.025 Svkg gf1 (black
curves). For all CESM results, we consider the hosing over 20-50° N (with global surface compensation), making the applied hosing 86 %
effective (see main text).

forcing is substantially smaller than the CESM, it still boils (quasi-)equilibrium conditions, making this analysis less use-

down to 25 times the present-day melt rate of the Greenland ful under transient climate change (van Westen et al., 2025b).

Ice Sheet (Sasgen et al., 2020). Nevertheless, what is most

relevant here is that the present-day AMOC is more sensitive

(i.e., relatively large 24%19€) compared to CESM and typical 5 Transient AMOC behavior under climate change

CMIP6 models, as most climate models are positively biased

in their Foys (van Westen and Dijkstra, 2024; van Westen The existence of a saddle-node bifurcation in the E-CCM

et al., 2025b). In other words, the AMOC is overly stable helps to understand how AMOC stability in CESM is influ-

when having positive Foys biases and underestimate the risk ~ enced under climate change. Changes in the background cli-

of AMOC tipping (Liu et al., 2017). As was argued in Van- mate conditions can be interpreted as a shift in the position

derborght et al. (2025), the reduced model only holds under of the saddle-node bifurcation. This can already be demon-
strated in the Stommel model where the saddle-node bifur-
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cation shifts to lower freshwater flux forcing values under a
smaller atmospheric temperature gradient (Fig. A2).

We first analyse the CESM simulations under the
Hist/RCP4.5 and Hist/RCP8.5 scenarios. The AMOC col-
lapses in three out of the four CESM simulation under cli-
mate change (Fig. 10a, b). The simulation under the higher
freshwater flux forcing of Fy; = 0.45 Sv are closer to the tip-
ping point (under PI conditions) and hence are more prone
to undergo transitions, which is indeed the case. For E =
0.18 Sv, only the Hist/RCP8.5 scenario shows an AMOC col-
lapse while in the Hist/RCP4.5 scenario the AMOC eventu-
ally recovers. In the latter scenario, the AMOC shows distinct
centennial variability and this is associated with the typical
overturning time scale (Winton and Sarachik, 1993).

The imposed transient climate change forcing induces
above average surface temperature trends (compared to the
global mean) at the higher latitudes (i.e., polar amplification,
Fig. 10c, d). This temperature response reduces the merid-
ional (equator-to-pole) temperature gradient and may influ-
ence the multi-stable AMOC regime, as is the case for the
Stommel model (Fig. A2). We can test this in the E-CCM
by reducing the atmospheric meridional temperature gradient
by imposing a (positive) atmospheric temperature anomaly
(AT?) over box n (and also over atmospheric box s as they
are coupled (van Westen et al., 2024b)). We keep the atmo-
spheric temperatures the same for boxes t and ts to limit the
degrees of freedom.

The steady states (with & =0) for the reference case
(AT2=0°C) and climate change case (AT?=5°C) are
shown in Fig. 11a. Both saddle-node bifurcations shift to
lower E5 values and the hysteresis width decreases from
0.30 Sv (reference) to 0.22 Sv (climate change). This shift
can be understood from the smaller meridional density dif-
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ference between box n and box ts (Eq. 1) due to higher tem-
peratures and this requires a smaller freshwater flux forcing
to reach the critical AMOC strength corresponding to the tip-
ping point. The reduced meridional temperature gradient also
weakens the AMOC on strength by a few Sv when compar-
ing the two cases. The shift of the upper saddle-node bifur-
cation to lower E 5 values indicates that the AMOC on state
loses stability under climate change.

To study the transient climate change forcing in the E-
CCM, we linearly increase 72 by 1°C per century up to
model year 500 and then keep the temperature anomaly con-
stant at AT? =5°C. The AMOC strength (black curve in
Fig. 11b) under climate change is shown for constant E5 =
0.335 Sv, a similar set-up as in the CESM. For each temper-
ature anomaly AT? we determined the steady states (with an
accuracy of 0.1 °C) and the values for the AMOC on, unsta-
ble branch and AMOC off states for E = 0.335 Sv are also
shown in Fig. 11b. These steady states represent the “frozen”
bifurcation diagrams for a given temperature anomaly (in-
sets in Fig. 11b). The transient AMOC is clearly deviating
from the AMOC on state. Up to model year 500, the AMOC
gradually weakens and after a few oscillations eventually col-
lapses in model year 900. These oscillations are related to a
(sub-critical) Hopf bifurcation close to the saddle-node bifur-
cation. When lowering the 7} trend to 0.726 °C per century
and then keeping AT;! =5 °C fixed, the AMOC strength also
displays substantial oscillatory behaviour but does recover
(not shown). This means that rate-induced effects are present
and the AMOC collapses for T;? trends larger than 0.726 °C
per century for E5 = 0.335 Sv.

When using a trend of 1°C per century for 7,2 (up to
AT} =5°C) and varying Ea (Fig. 1lc), we always find
an AMOC collapse for Ex > 0.342Sv as there are no sta-
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ble AMOC on states at larger Ea values (Fig. 11a). The
AMOC always recovers for Ea <0.33Sy, again demonstrat-
ing that rate-induced effects are present for Ex = 0.335Sv
and Ex = 0.34 Sv. Rate-induced effects are also present for
Ea <0.33Sv, however, the AMOC is much more stable
compared to the previous presented case of Ex = 0.335Sv.
This is also demonstrated in Fig. 11d, where we vary the
T temperature trend and then keeping AT =5°C fixed
for E = 0.33 Sv. Oscillatory behaviour becomes more pro-
nounced when increasing the 7" temperature trend and the
greatest AMOC weakening is found for relatively large tem-
perature trends. For a temperature trend of 11.85 °C per cen-
tury (inset in Fig. 11d), the AMOC strength (and other quan-
tities) crosses the basin boundary between model years 43
and 87 and the AMOC displays oscillatory behavior. These
oscillations decrease in amplitude after model year 800 and
then the AMOC recovers. For larger temperature trends than
11.85 °C per century the AMOC eventually collapses, which
is a factor of 16 larger than the critical temperature trend of

Earth Syst. Dynam., 16, 20632085, 2025

0.726 °C per century for E4 = 0.335 Sv. This demonstrates
that slightly lower E values can make the AMOC substan-
tially more stable. It is possible to collapse the AMOC for
Ea < 0.33Sv and this requires even larger climate change
anomalies (AT?2 > 5 °C).

6 Summary and Discussion

The Community Earth System Model (CESM) as used here
(version 1.0.5) is an extremely high-dimensional dynami-
cal system, representing the interaction of the ocean, atmo-
sphere, land and sea-ice processes. In a pre-industrial config-
uration, the AMOC collapses under a quasi-equilibrium in-
put of freshwater in the 20—50° N region, with surface fresh-
water compensation over the rest of the global domain (van
Westen et al., 2024a).

In this paper, we have provided arguments for the case
that, as in ocean-climate models lower in the model hier-
archy (box models (Cessi, 1994) and fully-implicit ocean
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b) AMOC strength under climate change (E4 = 0.335 Sv)
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d) AMOC strength under varying climate change (Ex = 0.33 Sv)
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Figure 11. (a) The steady states for the AMOC strength for the standard set-up (solid curves) and under climate change (dashed curves).
(b) The AMOC strength under transient climate change and E s = 0.335 Sv, where AT;? linearly increases up to 5 °C up to model year 500
(trend of 1 °C per century) and then remains constant. The steady states at Eo = 0.335 Sv for each climate change anomaly (with an accuracy
of 0.1 °C) are also displayed. The insets show the steady states and the transient AMOC state (black dot) at AT;# =2 °C (model year 200) and
AT2 =4°C (model year 400). (¢) Similar to panel b, but now for different values of E with AEA =0.005Sv. (d) The transient AMOC
strength under climate change and E = 0.33 Sv, but now for varying temperature trends in AT32. The inset shows the transient AMOC

strength for a temperature trend of 11.85 °C per century.

models (Dijkstra, 2007)), the AMOC collapse behavior in
CESM is caused by the presence of a saddle-node bifurca-
tion in the high-dimensional dynamical system. While one
indeed would expect such a bifurcation in a deterministic
dynamical system when varying a single parameter (where
the saddle-node and the Hopf bifurcation are the only two
generic codimension-1 bifurcations), this is far from triv-
ial in the CESM. The ocean component of the CESM is
much more complicated with several interacting positive and
negative feedbacks (Vanderborght et al., 2025) and which is
forced by a rapidly varying atmosphere. So attractors of the
CESM are expected to have a quite complicated geometri-
cal structure and transitions between those (such as between
the AMOC on state and AMOC off state) could in principle

https://doi.org/10.5194/esd-16-2063-2025

be much more complicated than the traditional saddle-node
bifurcation picture as suggested by conceptual models (Dijk-
stra, 2024).

For a saddle-node bifurcation, one would have to demon-
strate a square root dependence of the AMOC strength on
the freshwater forcing near the collapse point, which arises
from the destabilising salt-advection feedback (Vanderborght
et al., 2025). This is not feasible for the CESM due to its
strong internal variability and hence our case is built using
three more indirect arguments. The first argument is that in
the CESM, there is a strict critical boundary of existence
of the statistical steady “AMOC on” state. We showed this
by subsequent near-equilibrium computations near the col-
lapse point in the quasi-equilibrium simulation, similar to

Earth Syst. Dynam., 16, 2063-2085, 2025
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the approach in Hawkins et al. (2011). Such a strict bound-
ary is characteristic of a saddle-node bifurcation as shown
for the E-CCM. The full AMOC hysteresis experiment (van
Westen and Dijkstra, 2023) shows that the AMOC recovers
at a much lower freshwater flux forcing (Fg ~ 0.09 Sv) com-
pared to the collapse point (0.495 < Fy < 0.51 Sv), demon-
strating non-linear behaviour that is also essential to saddle-
node bifurcations. The second argument is based on the
CESM results with a slower freshwater forcing rate. Here,
we show that the AMOC collapse precisely follows the be-
haviour (Ritchie et al., 2021) one would expect near a saddle-
node bifurcation, i.e., with a steeper transition (in Fy space)
than for the standard forcing rate. Do note that this character-
istics is also found for other bifurcation types (Berglund and
Gentz, 2006). The third, and probably strongest, argument
relies on the assumption that overturning freshwater trans-
port predominately compensates any freshwater flux forcing,
which holds approximately for the CESM (van Westen et al.,
2024a). In this case, one can show that the AMOC strength
has a square-root dependence with the freshwater forcing us-
ing a reduced model (cf. Sect. 4).

To these arguments, we can add the support from early
warning indicators as found for the CESM (van Westen et al.,
2024a). A characteristic property of saddle-node bifurcations
is the loss of resilience (i.e., critical slowdown) near the tip-
ping point, measured by the increase in variance and auto-
correlation (van Westen et al., 2024b). Although these early
warning indicators based on the AMOC strength were not
giving any critical slowdown, optimal regions for early warn-
ing signal detection were found near 34° S (Smolders et al.,
2025). The results presented here (cf. Fig. 3) show an in-
crease in the Fy,yg variance close to the tipping point. This
increase in variability indicates that the AMOC loses re-
silience, making it more prone to transitions, characteristic
of approaching a saddle-node bifurcation (van Westen et al.,
2024b).

The implications of this result are substantial. First of all,
it shows that, for the AMOC tipping problem, conceptual
models that capture only the dominant feedbacks are useful
(Dijkstra, 2024). For example, in the E-CCM only the salt-
advection feedback and gyre feedback are captured which
are also dominant in CESM and hence it is relatively easy
to tune the behavior of the E-CCM to the CESM. Similarly,
Wood et al. (2019) tuned a box model (only representing the
salt-advection feedback) to the FAMOUS (Hawkins et al.,
2011) where likely due to its low resolution the gyre feed-
back is relatively weak. Sensitivity studies in the conceptual
model can then be used to design useful simulations in the
complex model and also physical explanations can be sought
in the reduced model. Second, if the multi-stable regime of
the AMOC is bounded by saddle-node bifurcations, then the
effect of model biases can be studied in terms of shifts of
the saddle-node bifurcations. In fully-implicit ocean models,
it was recently shown that a bias in Indian Ocean precipi-
tation leads to a right shift (i.e., to higher Atlantic freshwa-
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ter flux forcing strengths) of the bifurcation diagram (Dijk-
stra and van Westen, 2024; Boot and Dijkstra, 2025). Our
reduced model (cf. Sect. 4.2) also shows that positive fresh-
water transport biases at 34° S make the AMOC more stable
under hosing. If indeed a saddle-node bifurcation is present
in all global climate models (GCMs), this would indicate that
GCMs having such a bias would be too stable (van Westen
and Dijkstra, 2024; van Westen et al., 2025b).

So far, the saddle-node bifurcation was discussed only in
the case of an AMOC collapse when changing the freshwater
flux forcing. However, under climate change mainly the heat
flux forcing will change and not in a quasi-equilibrium way.
Also in this case, we have shown that the existence of the
saddle-node bifurcation is an important aspect to explain the
transient behavior of the CESM. Climate change modifies
the atmospheric meridional temperature gradient and shifts
the saddle-node bifurcation to lower freshwater flux forc-
ings, making the “AMOC on” state less resilient. This was
shown in greater detail by the idealized results of the E-CCM,
the collapse behavior can be viewed as crossing a moving
saddle-node bifurcation in time (Ritchie et al., 2021). Rate-
induced effects are also highly relevant under climate change
(Hankel, 2025), with the strongest evidence for rate-induced
tipping when comparing the RCP4.5 (AMOC recovery) and
RCP8.5 (AMOC collapse) and Fr =0.18Sv. Although the
AMOC collapses for both the RCP4.5 and RCP8.5 under
Fy = 0.45 Sv, which suggests a moving saddle-node bifur-
cation under climate change, rate-induced effects cannot be
dismissed and to test this we need to conduct more cli-
mate change forcing experiments, this is out of the scope
of this paper. Note that the E-CCM is limited in represent-
ing other (non-linear) climate change feedbacks, such as en-
hanced evaporation (due to higher temperatures) which could
partly stabilize the AMOC (van Westen et al., 2025b).

Finally, as the phase space of the CESM is so high-
dimensional, why would a saddle-node bifurcation appear
in such a model (as there are many instabilities)? This re-
sult can be possibly explained by looking at the Lorenz84-
Stommel1961 model or the PlaSim sea-ice model (Tantet
et al., 2018), which both display chaotic behavior, but also
show a large-scale transition under variation of one parame-
ter. Here, the chaotic behavior is only in the atmosphere com-
ponent and the large-scale transition dynamics is governed
only by the slow component, which is then noise-forced.
While in the total phase space, this may be a crisis bifurca-
tion, in the reduced phase space of the slow component, this
would appear then as a saddle-node bifurcation. However,
more work is needed to make this more precise.
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Figure A1. Schematic representation of the Stommel 2-box model
in its northward overturning state with AMOC strength v. The blue
and brown arrows are freshwater and heat fluxes, respectively. The
hosing is directed from the equatorial box (with 75, S7) to the high-
latitude box (with Ty, Sp).

Appendix A: The Analytical Solutions of the Stommel
Box Model

The Stommel 2-box model (Stommel, 1961) consists of two
well-mixed boxes (equal volume) and the boxes exchange
water mass properties over time (Fig. Al). The circulation
strength, ¥, is set by the density difference between the high-
latitude (77, S1) and equatorial box (7>, S»):

v =k(p1 — p2) (AD)

where k is a hydraulic pumping constant. A linear equation
of state (0 = po — a(T — Tp) + B(S — Sp)) yields:

¥ = k(@ AT — BAS) (A2)

where AT =T, —T1 and AS = S — §1. The governing (di-
mensionless) differential equation for the Stommel model are
then given by:

dT, a

d—t=|W|AT+)~T(T1 -1 (A3)
d7» a

T =Y |AT +Ar(Ty — Tr) (A4)
ds;

$=W|AS—H (A5)
ds,

?=—|¢|AS+U (A6)
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In these relations A7 is the thermal exchange coefficient
with the overhead atmosphere, the atmospheric temperatures
are fixed.

Under the assumption that the thermal exchange with the
atmosphere is much faster than the thermal exchange be-
tween the boxes (Y AT < Ar(T# —T;), with i =1,2), the
steady state for the temperatures has Ty = T and 7> = T
Using this steady state assumption, the time-evolution equa-
tion of the circulation strength (from Eqs. A2 and A3-A6)
reduces to:

dyr dAS ds; d$;
L — _k—— =k s
dr p dr ’3< >

=2k (Y |AS —n) (A7)

where the temperature contribution vanishes as the atmo-
. a
spheric temperatures are constant (dﬁ—lT = d%[T =0). The fi-

nal step is to substitute AS = W from Eq. (A2) to ob-
tain:
dyr

5 = 2+ 2ke AT Y| - 2k (A8)

The steady states (% = 0) with northward overturning (¢ >
0) are given by:

kaAT? ka AT\
Y2 = 2 :t\/< > )—kﬂn (A9)

For the reversed circulation (i < 0), these are:

kaAT? ka AT®\?
Y34 = 5 + 7 +kBn

but note that ¥r3 has to be rejected since 3 #£ 0. The stable
AMOC on state is given by 1, the stable AMOC off state
by 14, and the unstable state by ¥r». The (dimensionless) so-
lutions for two different atmospheric temperature differences
are shown in Fig. A2.

(A10)
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Figure A2. Bifurcation diagram for the Stommel 2-box model, where the black dots indicate saddle-node bifurcations. The atmospheric
temperature differences are (a) AT? =5 and (b) AT?® = 3. For the other dimensionless coefficients, we used: & = 2 x 1074, B=8x 10~4

and k =2 x 103,

Appendix B: The Normal Form of the Saddle Node
Bifurcation

For the Stommel model, the dynamics of the AMOC strength
in the AMOC on state is given by:
dy

- = —29 % 4+ 2ka ATy — 2kBn, (B1)

which can be generalised for the saddle-node bifurcation to:

%:Aw2+Bw+C—Dt. (B2)
where A, B, C and D are constants, and the freshwater flux
forcing is now varied linearly with time (i.e., n(¢#) = Dt).
This generalised form also holds for the reduced model
(Sect. 4.1).

Relation (B2) is rewritten as:

dW—A LAY C B2 Dt B3
w=A(reag) +(e-57)-or ®9

and we follow the procedure outlined in Faure Ragani and
Dijkstra (2025), where time ¢ is considered as a parameter
and the saddle-node bifurcation can be found by setting the
last two terms on the right hand side of (B3) to zero. Solving
for ¢ yields:
c B?
SN=— - — (B4)
D 4AD
To obtain the normal form, we apply a rescaling of the vari-
ables:

x=—AtSN <1p + E) and 7 = — (B5)
= = =

Earth Syst. Dynam., 16, 20632085, 2025

and the dynamics of the AMOC in the rescaled variables are:

d_x — d_xg — _AISN%I‘SN
dr drdr dr

2 2
= —A@SN)? (A <¢ + %) + (c - %) - Dt) . (B6)

Now using Egs. (B4) and (B5) to find the normal form of:

dx x2
D AN
dr @ < (—A1SN)2

=r—x? (B7)

+ DtSN — DtSNt>

where r = —AD(N)? (1 — 7). Note that r > 0 for t < 1 as
A <Oand D > 0.

The non-autonomous system (B7) can be solved analyt-
ically (Li et al., 2019) and it was shown that the collapse
time * = 142.3330 /3, where « = —AD(#5N)* > 0.1f the
forcing value at which the collapse occurs for a rate D is
indicated by yy = Dt*, then for the collapse forcing (yy)
at half rate D/2, we find that oy =4a s and hence y; =
D(1+2.333a; )= D(1 +o.177a;1/3) < yy. Hence, the
transition occurs at lower forcing strength (and faster) when
the rate is lower (see also Figs. 3b and 4 in Li et al. (2019)).

Code availability. All  processed  model  output  and
Python scripts to generate the results are available at:
https://doi.org/10.5281/zenodo.17123475 (van Westen et al.,
2025a).
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