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Abstract. Idealized experiments with coupled climate-carbon Earth system models (ESMs) provide a basis for
understanding the response of the carbon cycle to external forcing and for quantifying climate-carbon feedbacks.
Here, we analyze globally-averaged results from idealized esm-flat10 experiments and show that most models
exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean during a period of
constant fossil fuel emissions of 10 Pg C yr~!. We hypothesize that this relationship does not depend on emission
pathways. Further, as a simplification, we quantify the relationship between cumulative ocean carbon uptake and
changes in ocean heat content using a linear approximation. In this way, changes in oceanic heat content and
atmospheric CO; concentration become interdependent variables, reducing the coupled temperature-CO, system
to just one differential equation. The equation can be solved analytically or numerically for the atmospheric CO;
concentration as a function of fossil fuel emissions. This approach leads to a simplified description of global
carbon and climate dynamics, which could be used for applications beyond existing analytical frameworks.
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1 Introduction

The relationship between climate change and carbon emis-
sions has been extensively studied (Cox et al., 2000;
Friedlingstein et al., 2006; Matthews and Zickfeld, 2012;
Williams et al., 2016; Jones and Friedlingstein, 2020). The
framework of idealized experiments of the Coupled Climate—
Carbon Cycle Model Intercomparison Project (C4MIP)
(Jones et al., 2016) allowed the climate-carbon feedback
(Arora et al., 2020) to be quantified in the Coupled Model
Intercomparison Project phase 6 (CMIP6) while experi-
ments in the Zero Emissions Commitment Model Inter-
comparison Project (ZECMIP) helped to assessed the zero-
emission climate commitment (Jones et al., 2019; Mac-
Dougall et al., 2020). Recently, “flat10” Model Intercompar-
ison (flatlOMIP) experiments (Sanderson et al., 2024) were
conducted with a suite of ESMs to assess the carbon-climate
dynamics relevant to mitigation (Sanderson et al., 2025). The
core experiment in flatlOMIP, esm-flat10, was designed to
assess the response of temperature change and land/ocean
carbon dynamics as a function of cumulative emissions. In
this scenario, constant emissions of 10PgCyr~! continue
for 100 years with the expectation of a near-linear increase
in global temperature according to the concept of a con-
stant Transient Climate Response to cumulative CO, Emis-
sions (TCRE; Canadell et al., 2021). Here we evaluate the
results of the flatl OMIP experiments from participating mod-
els against a simple model of the energy and carbon budget
of the coupled climate-carbon system.

These idealized climate-carbon experiments differ from
historical CMIP6 experiments, where, in addition to the CO»
forcing, historical forcings such as emissions of aerosols,
non-CO; greenhouse gases and land-use changes were used
for model evaluation against observed global and regional
climate changes and atmospheric CO; concentrations.

For the carbon budget, historical simulations of ESMs
were evaluated against observed atmospheric CO, concen-
tration (Hajima et al., 2025) and results from stand-alone
land and ocean carbon models which contributed to the
Global Carbon Project (GCP; Friedlingstein et al., 2023).
Idealized experiments cannot be directly evaluated against
observations; however, they are very useful in understand-
ing the role of different climate and carbon processes and the
timescales of their dynamics.

The global energy balance of the climate system is a use-
ful framework for analyzing climate models and observations
(Forster et al., 2021; Gregory et al., 2009, 2024). Energy bal-
ance models assume that the Earth’s annual energy budget
was in equilibrium in the pre-industrial period, i.e., solar en-
ergy reaching the Earth was fully compensated by longwave
radiation outgoing into space. The increase in greenhouse
gases, especially CO», has disrupted this balance. The equa-
tion for the global energy balance can be formulated as fol-
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lows:
N=F—A\T (D

where N is the Earth’s heat uptake, [W m~2], F is a forcing
dependent on the anthropogenic greenhouse gases concentra-
tion in the atmosphere, [W m_z], A is the climate feedback
parameter, [Wm~2K™!], and T is the global temperature
change relative to equilibrium [K]. Since the heat capacity
of the land is negligible compared to the heat capacity of the
ocean on annual time scales (Palmer and McNeall, 2014),
the heat uptake could be interpreted solely as the heat up-
take of the ocean (Gregory et al., 2024). The processes of
oceanic heat uptake, mainly the warming of the mixed layer
of the ocean and the transfer of heat to the deep ocean by
convection and diffusion, are similar to the processes of in-
organic oceanic carbon uptake (Seferian et al., 2024). The
recently explored link between ocean warming and carbon
uptake indicates a strong role of the Southern Ocean in the
ocean carbon uptake (Williams et al., 2024; Bourgeois et al.,
2022). In this study, we use the flat10 experiments to sim-
plify the global dynamics and avoid going into such regional
analyses. Winkler et al. (2024) showed that there is pathway-
independent linear relationship between land and ocean car-
bon uptake in emission-driven simulations using the MPI
Earth system model (MPI-ESM; Mauritsen et al., 2019). We
generalize this empirical relationship and use it to simplify
the energy budget model (Eq. 1) in such a way that it could be
solved analytically or numerically, and then use the example
of one model, MPI-ESM, to show how this approach could
be applied to idealized experiments. We also use this simpli-
fied approach for the trajectory of the ramp-down scenario
simulation of MPI-ESM and discuss our results. Afterwards,
we apply this approach to some other flatlOMIP ESMs and
discuss analytical and numerical solutions for the airborne
fraction of carbon emissions. Finally, we compare flat1 OMIP
and CAMIP results and hypothesize about the dependence of
idealized climate-carbon dynamics on CO, emission path-
ways.

2 Linking carbon cycle with ocean heat uptake

In differential equation form for the change in the ocean heat
content (OHC) H, [J], Eq. (1) could be written as

dH

— =F AT 2)
dr

with initial conditions H(0) = T'(0) = 0.

For the carbon cycle variables, let C,, C,, and C) repre-
sent anthropogenic carbon content of the atmosphere, ocean,
and land respectively, [Pg C], the initial values are zeros (pre-
industrial equilibrium). Annual carbon emissions in the ini-
tial 100 years of flat10 experiments are prescribed at a con-
stant rate of £ = 10PgC yr_1 (Sanderson et al., 2024, 2025).
For the flatl1OMIP analysis (Sanderson et al., 2025), most of
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Figure 1. Cumulative land vs. ocean carbon uptakes in the flat10
experiments for the first 100 years. Historical land vs. ocean car-
bon sinks in the Global Carbon Budget (GCB) (Friedlingstein et al.,
2023) for the period 1850-2022 are shown by continuous black line.
The land sink in GCB is calculated from simulations in which CO,
and climate evolved over the historical period, while the land cover
stayed at its pre-industrial level (no land use change). The thin dash
line is the 1 : 1 ratio.

Table 1. Parameters of flat10 ESMs. Left, C)/Co =k — 1, the ra-
tio of cumulative land to ocean carbon uptakes by the year 100.
For comparison with C4AMIP experiments at the 2xCO; level (Arora
et al., 2020): middle, ratio of f) to Bo; right, a ratio of cumulative
land to ocean carbon uptake.

Model C1/Co, flatl0  Bi/Bo  C}/Co, CAMIP
CESM2 1L17 117 1.08
CNRM-ESM2-1 117 1.69 1.36
GFDL-ESM4 090  1.11 0.88
GISS-E2-1G 0.57  0.8% 0.96*
MIROC-ES2L 124 171 1.41
MPI-ESM1.2-LR 127 123 1.33
NorESM2-LM .09  1.07 1.03
UKESM1.2 1.05  1.14 0.98

* GISS model results are based on slightly older version of GISS-ESM.

the models show a linear relationship between cumulative
land and ocean uptakes (Fig. 1):

Ci(1) = (k = DCo(2), 3

where k is the ratio (C}+ C,)/C, to be used in the equa-
tions hereafter. This linear relationship was also observed in a
study using MPI-ESM and different idealized emission path-
ways (Winkler et al., 2024).

The ratios of land to ocean carbon uptakes, C;/C,, in
the flat10 experiments are similar to the ratios /8, of the
carbon—concentration feedback parameters as well as to the
C1/C, ratios at the 2xCO; level in the C4AMIP experiments of
CMIP6 (Table 1). This similarity is expected, as the carbon—
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Figure 2. Changes in cumulative ocean carbon (Pg C) and heat up-
takes (Zeta Joules) in the flat10 experiments.

concentration feedback parameters B; and B, reflect an in-
crease of land and ocean carbon pools, respectively, in re-
sponse to atmospheric CO, changes. However, the linear-
ity of the C;/C, ratio for the range of emissions from 0
to 1000 Pg C is unexpected. Although processes that govern
land and ocean carbon uptakes are different, the link between
them could be explained by increasing atmospheric CO; con-
centration which is a primary forcing for both land and ocean
carbon uptakes. We can apply this empirical relationship to
simplify the description of carbon cycle dynamics, in partic-
ular for MPI-ESM (Fig. 3, left). Additionally, for simplicity
one can assume a linear relationship between ocean heat and
carbon uptake, as the processes of dissolution and transport
of CO; into the deep ocean are generally similar to the trans-
port of heat (Figs. 2, 3, right):

Co(t) = nH(1), (4)

where the units of n are [PgCJ ~11. Note that the ocean car-
bon sink saturates with rising CO;, concentration and warm-
ing, therefore a non-linear logarithmic relationship between
carbon and heat uptake might fit better (Fig. 2), but for sim-
plicity we use the linear relationship (Eq. 4) thus allowing us
to find an analytical solution of the coupled climate-carbon
system. Note that the linear relationship is not valid for an-
nual heat and carbon fluxes (Gillett, 2023) but it is appropri-
ate for cumulative fluxes (Bronselaer and Zanna, 2020a).

For the atmospheric carbon content, carbon conservation
can be written as:

C,=Et—C—Co=Et—kCy=Et —knH (®))
where Et are the cumulative carbon emissions. The deriva-
tive of C, is then

dC, dH
=FE —kn—.
dt g dt

(6)
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Figure 3. Results of the flat10 experiment with MPI-ESM1.2-LR (blue lines). Left: dynamics of cumulative land vs. ocean carbon uptakes.
Right: changes in cumulative ocean carbon and heat uptakes. Black lines are for linear fits.

From the Eq. (2), it follows

dc,
de

The Eq. (7), where left and right parts are functions of atmo-
spheric CO; and time, reduces the coupled temperature-CO;
system to just one differential equation. This is the novelty
of our approach.

= E —kn(F — \T). (7

2.1 Analytical solution for the dynamical climate-carbon
system with linear approximation of the forcing

We assume that the forcing F is linearly proportional to
the CO, concentration, F =rC,, where r is a constant
[Wm~2PgC~!], and that temperature is growing linearly
with time as a consequence of constant TCRE (Transient
Climate Response to cumulative CO, Emissions; Canadell
et al,, 2021). Accordingly, T =¢Et, where { =TCRE
[KPg C~1, and we can write

dc,
dt

By renaming constants and writing x instead of C,, this dif-
ferential equation can be written in the form

=E—knrCy+kn\iEt = E(1 +knAit)—knrC, (8)

dx
Pl ki + kot +k3x 9)

where k;,i = 1, 2, 3 are constants. By substituting the vari-
able x to u = k1 + kot + k3x, Eq. (9) can be written as

— =k +k
s 2+ k3u

and solved analytically. The solution for the coupled C, and
T system is

(10)

_ )‘_C (r=20) _ a—knrt
Ca(z)_E( T (1 ek )) (11
and
T(1)=CE1. (12)
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: = = =2 =1
By renaming constants ¢o = >, 7= kn Te = gyre

Eq. (11) can be written as

Cult) = Et (o + (1 =e7/%)) = Erp(0), (13)
where ¢(t) = ¢0+%(1 —e~!/%) is the airborne fraction of cu-
mulative CO; emissions, ¢g is the asymptotic airborne frac-
tion, 7] and t. are, respectively, linear and exponential time
scales of the exponential component of the airborne fraction,
[years]. Values of parameters ¢q, 71 and 1. for ESMs are
given in the Table 2. The airborne fraction at + = 0 is about
one because emissions are added to the atmosphere and it
takes time for land and ocean carbon cycles to respond to the
rising atmospheric CO, concentration.

According to Eq. (13), the cumulative airborne CO; frac-
tion, ¢(t) includes two terms. The first term ¢ is a constant,
and the second term %(1 —e /)i time-dependent. Because

the latter is proportional to %, it decreases with time, there-
fore, the cumulative airborne fraction ¢(¢) also decreases
with time. The instantaneous airborne fraction ¢; can be writ-
ten as

a U i/,
()= — — = + —e € 14
pil)=—"F =90 - (14)
Because the exponential term e ™'/ is decreasing with time,
the instantaneous airborne fraction also decreases with time
approaching ¢ (Fig. 4, left). The land and ocean carbon stor-

ages can be written as

k—1
@)= T(Et —Ca) (15)
and
Co(t) = %(Et —Ca), (16)

and the derivative of atmospheric CO, with respect to tem-

perature:

dCy  dCadt A (r=A0) 4y
=——=—4+—"""¢ .

dTr dt dT r ri

These results can be used to understand the dynamics of car-
bon feedback parameters.

A7)
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Figure 4. Instantaneous CO, airborne fraction in the analytical (left) and numerical (right) solutions for flat10 ESMs.

2.2 Numerical solution with forcing as logarithmic
function of CO2

The assumption that the forcing F' is linearly proportional
to the CO, concentration, F = rC,, is only valid for small
changes in CO,. More correctly, a logarithmic dependence
F=rIn(1 ~|—g—§), where Cg is pre-industrial atmospheric
CO;, storage, leads to an equation in the form:

dx
— =k1 + kot + kzIn(1l +x)

18
” (18)
which does not have an analytical solution.
The equation for atmospheric CO; concentration:
dC, Ca
=FE—knrin|{ 14+ — )|+ knACEt 19
ar nr < CQ) nig (19)

can be solved using a numerical approach. Equations (15)
and (4) provide solutions for carbon and heat variables, re-
spectively. Accounting for the logarithmic dependence of the
forcing on CO; results in much better agreement with the
MPI-ESM simulation (see Fig. 5, left). The cumulative air-
borne CO; fraction is decreasing until about year 40 for MPI-
ESM and then starts to increase slowly (Fig. 4, right). This
is different from the airborne CO; fraction of the analyti-
cal solution that continues to decline (Fig. 4, left). Results
of the analytical and numerical solutions for several other
flat10 ESMs are presented on the Fig. 6. The actual airborne
fraction is the same as on the Fig. 4 (right) because the at-
mospheric CO, dynamics are captured well in the numeri-
cal solutions with logarithmic CO; forcing as shown on the
Fig. 6.

An analysis of the airborne CO; fraction in the analytical
and numerical solutions revealed an important explanation
for the linearity of the TCRE. If the radiative forcing were
linearly dependent on the atmospheric CO, concentration,
the airborne fraction would stabilize at a certain level. TCRE
is constant in this case (Eq. 12). The realistic, logarithmic de-
pendence of the radiative forcing on the CO, concentration
leads to the airborne fraction increasing after 3040 years of
emissions. With increasing atmospheric CO; level, the weak-
ening CO, radiative forcing is therefore compensated by an

https://doi.org/10.5194/esd-16-2021-2025

Table 2. Parameters of airborne fraction of atmospheric CO, for
flat10 ESMs. Left, ¢, an asymptotical airborne fraction; middle, 7,
linear airborne timescale; right, te, exponential airborne timescale.

Model @0 =CA/r 7, Te,

[years] [years]
CESM2 0.29 8.6 12.1
CNRM-ESM2-1 0.26 10.6 14.2
GFDL-ESM4 0.28 8.2 11.3
GISS-E2-1G 0.33 8.9 13.3
MIROC-ES2L 0.29 6.7 9.3
MPI-ESM1.2-LR 0.27 8.4 11.6
NorESM2-LM 0.26 8.6 11.7
UKESM1.2 0.32 6.9 10.2

increasing airborne CO, fraction, which leads to an almost
constant temperature increase per unit of emissions or con-
stant TCRE.

2.3 Ramp-down flat10cdr experiments

Beyond 100 years of flatl0 simulations (ramp-up), the
flat1OMIP experiments also included flat1Ocdr simulations
for a further 200 years aiming to assess time scales and hys-
teresis in climate and carbon variables. The flat10cdr sce-
nario included a linear decrease in emissions from +10 to
—10Pg C per year over 100 years and constant —10PgC
emissions (removed from the atmosphere) over the next
100 years (ramp-down trajectory). The results for carbon and
heat uptake for the MPI-ESM are shown in the Fig. 7. The
ramp-down dynamics are quasi-linear for both the carbon
variables and the ocean heat content, although the statisti-
cal significance of fits is lower than for the ramp-up curve.
With the simplified approach (Egs. 9—18), modified parame-
ters (k = 2.4 and n = 0.22PgCZJ~!) and initial conditions
matching the flat10cdr simulation at the year 200 (7' = 1.3 K,
CO; concentration of 385 ppm), we are able to simulate the
atmospheric CO; trajectory for the last 100 years of the
flat10cdr experiment quite well (Fig. 5, right). This indicates

Earth Syst. Dynam., 16, 2021-2034, 2025
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Figure 5. Atmospheric CO, concentration in the flat10 (left) and flat10cdr (right) experiments with MPI-ESM (black). Blue and orange

lines are for analytical and numerical solutions, respectively.

Table 3. Parameters based on flat10 experiments: Cj/C,, the ratio of cumulative land to ocean carbon uptake (year 100); Co/OHC, the ratio
of cumulative ocean carbon to heat uptake, PgCZJ -1 (year 100); TCRE, KEg c! (year 100); and A from 4xCO, experiments (Zelinka
et al., 2020). Numbers in parentheses are adjusted parameters for analytical and numerical solutions.

Model k—1=C/Co n=Co/OHC ¢ =TCRE A

[PgCZI~1] [KEgC~!l] [Wm2K™!
CESM2 1.17 0.18 (0.27) 1.95 0.63 (1.32)
CNRM-ESM2-1 1.17 0.23 1.72 0.74 (1.32)
GFDL-ESM4 0.9 0.33 1.45 0.82 (1.7)
GISS-E2-1G 0.57 0.3 (0.34) 1.62 1.46 (1.82)
MIROC-ES2L 1.24 0.28 (0.34) 1.3 1.54 (1.95)
MPI-ESM1.2-LR 1.27 0.27 15 1.6
NorESM2-LM 1.09 0.29 1.18 1.65 (1.99)
UKESM1.2 1.05 0.21 (0.34) 25 0.67 (1.14)

that the dynamics with constant negative emissions could be
simplified in a similar way to the path with positive emis-
sions. This approach captures well the ramp-down trajectory
for constant emissions but not the earlier part of trajectory

with emissions changing from 10 to —10PgCyr~!.

3 Discussion

The analysis of the idealized flat10 experiments helps to
evaluate a simplified formulation of the coupled climate-
carbon dynamics. In particular, the linear relationship be-
tween the cumulative carbon uptake of land and ocean is
a remarkable feature of the dynamics of the global carbon
cycle, independent of the emission pathway (Winkler et al.,
2024). Except for that recent study, it has not been been
discussed in previous publications examining idealized CO,
experiments. Interestingly, C1/C, dynamics are also linear
in experiments with a 1 % annual increase in CO, concen-
tration (Arora et al., 2020) up to a CO, concentration of
about 2xCO, (Fig. Al, left). The Cj/C, ratio in emission-
driven flat10 experiments and concentration-driven C4MIP
experiments is very similar (Table 1). This indicates that the
C1/C, ratio only weakly dependent on idealized emission
scenarios and that C1/C, does not differ significantly be-

Earth Syst. Dynam., 16, 2021-2034, 2025

tween concentration- and emission-driven simulations. The
study by Winkler et al. (2024) confirmed this for the MPI-
ESM model (see Fig. A2). Since we did not perform a full
set of simulations with different idealized scenarios, we can-
not prove this for all models, but formulate these results as a
set of hypotheses:

— Hypothesis I: C}/C, does not differ between idealized
emission scenarios,

— Hypothesis II: C;/C, does not differ significantly be-
tween concentration- and emission-driven idealized
simulations.

There are clear limits to the validity of these hypotheses.
Firstly, they are based on simulations spanning only a 100
year period (for some models, longer simulations are pro-
vided). Secondly, the linear relationship is known to hold for
most models up to emissions of at least 1000 Pg C or a CO,
concentration of about 560 ppmv. At higher CO; concentra-
tions, carbon uptake on land in some models increases more
slowly or even decline compared to ocean uptake (Sander-
son et al., 2025), C;/C, decreases or reverses, and the re-
lationship becomes non-linear (Fig. Al, right) as also re-
ported by Winkler et al. (2024) for different pathways. This
non-linear behavior usually emerges at high atmospheric

https://doi.org/10.5194/esd-16-2021-2025
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solution).
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Figure 7. Cumulative land to ocean carbon uptakes (left) and ocean carbon to heat uptakes (right) in the flat10 and flat10cdr experiments
with MPI-ESM1.2-LR. Gray lines are linear fits for the corresponding simulations.

CO» (and temperature) level, potentially due to saturation
in CO, fertilization- or nutrient limitation-associated vege-
tation growth (Arora et al., 2020; Tjiputra et al., 2025; Kou-
Giesbrecht et al., 2025).

An exception is the ACCESS model, one of the flat10
and C4MIP models, which shows no linear relationship after
about 30 years of experimentation (Fig. A3). In all ACCESS-
ESM1.5 CMIP6 runs and the flat10 simulations, phosphorus
limitation was accounted for and it has limited the land car-
bon uptake. However, this is not the main reason for the non-
linear behaviour. The saturation in cumulative land carbon
uptake in the ACCESS model is partly due to a relative in-
crease in heterotrophic respiration (Ry) in response to tem-
perature (Ziehn et al., 2021), which has a delayed impact
due to large carbon pool turnover times. Also, temperature
might be limiting carbon uptake in the tropics because opti-
mal temperature for photosynthesis is exceeded and produc-
tivity therefore declines, while Ry is increasing. These non-
linear dynamics deviate from the historical trajectory of the
global carbon budget (Friedlingstein et al., 2023) indicated
by black lines on the Fig. A3. Therefore, we excluded this
model from our analysis of climate-carbon dynamics. It is
noteworthy that the trajectories of the ACCESS model are
very similar for concentration- and emission-driven experi-
ments (Fig. A3). Despite the ACCESS model behaving dif-
ferently than the other models, this fact supports hypotheses I
and II.

The quasi-linear C;/C, relationship allows a simplified
analysis of the energy budget of the system. The relation-
ship between ocean carbon and ocean heat uptake is less
linear, but a linear assumption helps to simplify the coupled
energy and carbon dynamics. For MPI-ESM, the simplified
approach with parameters from the flat10 and 4xCO, ex-
periments (used for determining the climate feedback) leads
to a very good fit of the atmospheric CO, concentration
(Fig. 5). For the other models, a good fit to the atmospheric
CO; concentrations (Fig. 6) requires an adjustment of the
climate feedback parameters, mostly towards higher values
(Table 3). This possible mismatch could be explained by the
non-linearity of the relationship between carbon and heat in
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the ocean and/or by the higher values of the climate feed-
backs for the first years of the 4xCO, experiment (Zelinka
et al., 2020).

The airborne CO, fraction in the analytical solution de-
creases over time (and with increasing emissions) until it sta-
bilizes at a certain level (Fig. 4, left). This behavior sounds
counterintuitive, as feedback analysis of the climate-CO; re-
lationship (Friedlingstein et al., 2006; Arora et al., 2020)
suggests that the airborne fraction should increase and not
decrease with increased emissions and temperatures. Under
the analytical assumptions, however, this makes sense: with a
linearly increasing CO, forcing, heat uptake increases, lead-
ing to increased carbon uptake in the ocean and on land.
However, since the radiative forcing depends logarithmi-
cally on COg, the proportion of CO, left in the air initially
decreases in the simulations, and then increases after 30—
50 years in all ESMs (Fig. 4, right). It is interesting to note
that this non-linearity in the dependence of radiative forcing
on CO; leads to lower carbon uptake in the ocean and on land
than the linear dependence of radiative forcing.

The main mechanisms of carbon uptake on land are
CO,, fertilization of plant productivity (which increases log-
arithmically with increasing CO, concentration) and het-
erotrophic or soil respiration (which increases exponentially
with increasing soil temperature). The net effect is an in-
crease in carbon uptake with elevated CO,, with a ten-
dency for land carbon uptake to slow as warming progresses
(Canadell et al., 2021). There are also other less significant
processes such as disturbances and shifts in vegetation dis-
tribution that affect carbon changes on land. For example,
Winkler et al. (2024) demonstrated that vegetation dynamics
lead to an additional increase in forest carbon storage.

In the ocean, CO, uptake is mainly determined by the
CO, pressure difference between the atmosphere and the sur-
face water and by the diffusion/removal of dissolved inor-
ganic carbon (DIC) into the permanent thermocline. With
increased temperature and elevated DIC concentration, the
CO», solubility in sea water decreases and ocean uptake slows
down. Changes in marine biology also affect carbon uptake,
but to a lesser extent (Williams et al., 2020; Seferian et al.,
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2024; Tjiputra et al., 2025). An implication of the linear rela-
tionship between cumulative land and ocean uptakes (Fig. 1)
is that mechanisms either don’t change much, or slow at
the same rate for ocean and land. This is consistent with
the notion that global rates of heat and carbon uptake by
the ocean are primarily set by the background, or unper-
turbed, ocean circulation (Armour et al., 2016; Bronselaer
and Zanna, 2020b). This might help explain why the rela-
tion between cumulative heat and carbon uptake is scenario-
independent in MPI-ESM (Fig. A2), as future rates of heat
and carbon uptake are largely unaffected by changes in the
ocean circulation. Whether or not ocean dynamical adjust-
ments can break this linearity over longer timescales merits
further analysis but is beyond the scope of this paper.

4 Conclusions

The relationship between cumulative carbon uptake on land
and in the ocean, Cj/C,, is model-specific and nearly lin-
ear in flatl0 simulations until it reaches twice the pre-
industrial CO; concentration. Comparison of emission-
driven flatlOMIP and concentration-driven C4MIP simula-
tions shows that the Cj/C, relationship is the same regard-
less of whether atmospheric CO; is prescribed or interactive.
Experiments with different Earth system models suggest that
this relationship is also independent of the emission path-
ways. Therefore, we have formulated the hypothesis that the
relationship C}/C, is independent of the carbon cycle models
used in each ESM. The validity of this hypothesis is subject
to certain limitations, in particular the linearity does not work
well for CO, concentrations above twice the pre-industrial
CO; level. A further limitation arises from the hundred-year
duration of the flat10 simulations, as adjustments in the deep
ocean on a time scale of 500-1000 years will significantly
alter the carbon cycle and the temperature response.

We also found a relationship between ocean heat and car-
bon uptake in idealized simulations that allows for a sim-
plification of the coupled climate-carbon dynamics. This ap-
proach links the atmospheric CO; concentration to the ocean
heat uptake and allows a reduction of the dynamical system
to fewer variables. The simplified approach is valid for both
ramp-up and ramp-down experiments.

While our approach exploits a linear response of the
climate-carbon cycle system to the CO, forcing, the non-
linearity of the climate system is confirmed by past cli-
mate records (Brovkin et al., 2021). Therefore, the linear-
ity assumption applies within a certain range of climate
change, which is still uncertain but under active investigation
(Winkelmann et al., 2025).
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Appendix A

For comparison with the flat10 experiments, the results of the
C4MIP simulations are shown in Figs. A1 and A3. Notations
and parameter units are listed in the Table Al.
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Table A1. List of parameters used in the analysis.

Parameter Name Unit Value
k C1/Co - Table 3
n C,/OHC pgCzI! Table 3
¢ TCRE KEgC~! Table 3
A climate feedback Wm2K~!  Table3
r CO;, forcing Wm—2 5.35
Cg Reference CO; concentration  ppm 284

E emissions PgC yrfl 10
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