
Earth Syst. Dynam., 16, 1971–1988, 2025
https://doi.org/10.5194/esd-16-1971-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Spatiotemporal variation of growth–stage specific
concurrent climate extremes and their impacts

on rice yield in southern China

Ran Sun1,2,3,4, Tao Ye1,2,3,4, Yiqing Liu1,2,3,4, Weihang Liu1,2,3,4, and Shuo Chen1,2,3,4

1State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction (ESPDRR),
Beijing Normal University, Beijing 100875, China

2Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education,
Beijing Normal University, Beijing 100875, China

3Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and
Ministry of Education, Beijing 100875, China

4Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Correspondence: Tao Ye (yetao@bnu.edu.cn)

Received: 24 March 2025 – Discussion started: 4 April 2025
Revised: 18 September 2025 – Accepted: 22 September 2025 – Published: 3 November 2025

Abstract. Increasing evidence highlights the disruptive effects of compound climate extremes on global crop
yields under climate change. Existing studies predominantly rely on the whole growing–season scale and relative
thresholds, and limit the ability to capture crop physiological sensitivities and yield responses that vary critically
across growth stages. Here, we analyzed the spatiotemporal variations, dominant drivers, and potential impacts
on the yields of concurrent heat–drought and chilling–rain events for single– and late–rice in southern China
from 1981 to 2018. Specifically, we carefully distinguished three sensitive growth stages of rice and stage–
specific climate stress types and thresholds based on rice physiology. Temporally, single–rice experienced a
significant increase in concurrent heat–drought events, while late–rice experienced a modest rise in chilling–rain
events. Spatially, the hotspots of concurrent heat–drought events varied greatly across the three growth stages.
These spatial patterns are driven primarily by differences in crop phenology across locations, rather than by
the occurrence of extreme climate conditions. The concurrent chilling–rain events of late–rice were widespread
within the planting regions, with a higher incidence in certain areas. Path analysis identified heat stress as the
primary driver of heat–drought impacts (particularly in jointing–booting and heading–flowering stages), whereas
chilling and rain stress exerted comparable effects for late–rice. Our assessment of compound event impacts and
sensitivity on rice yield revealed significant growth–stage differences, with comparable yield losses from both
concurrent heat–drought and chilling–rain events. Single–rice showed the highest sensitivity to heat–drought
events during the grain filling stage, whereas the late–rice exhibited greater sensitivity during the heading–
flowering stage. The historical impact on yield diverged markedly across growth stages, with the largest having
occurred in the grain filling stage, particularly for heat–drought events. Our study provided important information
on compound agroclimatic extremes, in the context of southern China’s rice production system, and the results
provide important information for risk management and adaptation strategies under climate change.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1972 R. Sun et al.: Spatiotemporal variation of growth–stage specific concurrent climate extremes

1 Introduction

Compound climate extreme events, driven by the interac-
tion of multiple drivers and/or hazards, often have more se-
vere ecological and socioeconomic consequences than single
events (Urban et al., 2018; Zscheischler et al., 2020). There
is increasing concern regarding the future impacts of com-
pound climate extreme events considering their projected in-
creasing frequency and intensity (IPCC, 2022). Among the
multiple potential impacts, agricultural production has re-
ceived specific attention. The regional threats posed by these
extreme events could further lead to global food security is-
sues and the need to develop food system resilience (Chenu
et al., 2017; Lobell and Gourdji, 2012; Trnka et al., 2014).

Previous studies have identified increasing trends in
compound agroclimatic extremes, mostly in maize and
wheat. Globally, analyses using diverse metrics, including
growing–season precipitation–temperature anomalies (He
et al., 2022), growing–season standardized anomalies of
soil moisture and killing–degree–days (Lesk and Anderson,
2021), and Standardized Temperature Index (STI) with mul-
tiple drought indicators (i.e., scPDSI, SPI, and SPEI) (Feng
et al., 2021), have consistently revealed intensified hot–dry
extremes across major crops since 1950, with ∼ 2 % annual
expansion of maize/wheat areas exposed to such events. Re-
gionally, similar upward trends are seen in China’s rainfed
maize and wheat systems during 1980–2015 when assessed
by percentiles of daily mean temperature and precipitation
(Lu et al., 2018). However, analyses combining temperature
indices (heating/freezing degree days) and drought indica-
tors (SPI) or standardized drought–heat indices have revealed
limited temporal trends despite the widespread spatial cover-
age of compound events since 1990 (Li et al., 2022; Wang et
al., 2018).

The literature has also investigated the impact of com-
pound agroclimatic extremes on yield, mostly focusing on
compound heat and drought events (Lesk et al., 2021). Com-
pound hot and dry summer conditions in the U.S. reduced
soybean yields by two standard deviations, a sensitivity about
four times larger than for heat alone and three times larger
than for drought alone (Hamed et al., 2021). Another county–
level study also showed that combined heat and drought
events sharply reduce rainfed maize and soybean yields in
the U.S. (Luan et al., 2021). In addition to concurrent hot–
dry events, consecutive–dry–and–wet (CDW) extremes have
been linked to yield losses: one analysis found that that the
risk of yield loss caused by CDW extremes can be twice as
high as that from individual wet and dry extremes (Chen and
Wang, 2023).

Despite the growing recognition of compound climate ex-
tremes as critical threats to food security, critical knowledge
gaps remain. First, while concurrent heat–drought events in
staple crops have been extensively documented (Rötter et al.,
2018), concurrent chilling and rain events have received lit-
tle attention compared to heat–drought combinations. Sec-

ond, most studies define extremes using relative statistical
thresholds (e.g., percentiles of indicators) rather than crop–
and stage–specific physiological thresholds, which may over-
look important crop’s biophysical sensitivities of by growth
stage and event type (Kern et al., 2018). For example, rice
faces different chilling thresholds of ≤ 17 °C at the booting
stage and ≤ 20 °C at the grain filling stages (Zhang et al.,
2014). Third, analyses focusing on the whole growing sea-
son can mask critical sub-seasonal dynamics. For example,
stress during the flowering stage can disrupt pollen viability
and fertilization, while stress during the grain-filling stage
can affect sucrose transport, which are all critical for yield
formation (Sehgal et al., 2018; Xiong et al., 2016). Neverthe-
less, such stage-specific effects are seldom investigated inde-
pendently. Additionally, quantitative analyses of yield losses
under compound extreme in rice are limited.

Rice, as a critical staple crop for a large portion of
the global population, deserves particular attention (Yu et
al., 2024). Rice production in China includes single-rice in
northeast China and in the Yangtze River Basin, and late–
rice in southern parts of the country. The climate of these
rice cropping systems varies substantially, from sub–tropical
to warm temperate, and consequently the crop is exposed
to a range of agroclimatic extremes. For single–rice, sum-
mer (July to September) is the highest temperature period in
southern China and is prone to seasonal drought. At this time,
single–rice in its jointing to flowering and maturity stage is
vulnerable to the combined effects of heat and drought. From
September to October each year, late–rice in its heading–
flowering and grain filling stages is critically vulnerable to
low temperatures, strong winds, and persistent rainy weather
(Guo et al., 2020). These climate extremes compounded to-
gether are commonly referred to as “chilling–dew wind”
and “continuous rain” events (Xie et al., 2016; Zhang et al.,
2021). Climate change has driven more frequent and inten-
sive extreme events for rice cultivation (He et al., 2022; Yu et
al., 2024). The 2022 summer compound hot–dry events in the
Yangtze River Basin once induced considerable worry about
the rice–based autumn grain production in southern China
(Fu et al., 2024). In 2010, severe cold and rain stress caused
the late–rice yield losses exceeding 1500 kghm−2 in Hunan
Province, central China (Lü and Zhou, 2018). Therefore, fo-
cusing on the compound climate extremes related to rice pro-
duction in China could help add new wisdom about com-
pound agroclimatic extremes to those reported about other
staple crops.

This study aims to examine the spatiotemporal variations
of concurrent compound extremes for single– and late–rice in
southern China during 1981–2018, identify their underlying
drivers, and quantify their impacts on yield. We focus on con-
current heat–drought events for single–rice, and concurrent
chilling–rain events for late–rice, during the critical growth
stages for each crop. The analysis uses crop–specific growth
stages and physiological thresholds (detailed in Methods) to
better capture the biophysical sensitivities of rice. Specifi-
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cally, the study addresses the following questions: (1) How
did the concurrent heat–drought and chilling–rain events
change temporally and spatially in southern China’s rice sys-
tems during 1981–2018? (2) To what extent are changes in
compound severity driven by changes in individual climate
factors? (3) What are the impacts of these concurrent events
on rice yield? (4) How do the answers to the above question
differ among different growth stages?

2 Materials and methods

2.1 Study area

Our study area covers the major rice–growing areas in
southern China (Fig. 1). Local rice–growing systems in-
clude typical late–rice in the southeast and single–season
rice (hereafter “single–rice”) in the Yangtze River basin and
southwestern China. Late–rice generally grows from July to
November and is subjected to extremely low temperatures
and continuous rain from September to October. Single–
rice generally grows from June to November. Its heading–
flowering stages overlap with the hottest season and are
prone to drought owing to the hilly terrain of southern China.
To best present the complicated temporal structure of climate
extremes, both single– and late–rice were considered in our
analyses.

2.2 Data

A gridded daily dataset containing daily mean temperature
and precipitation was obtained from the CN05.1 dataset
prepared by the Institute of Atmospheric Physics, Chinese
Academy of Sciences (Wu and Gao, 2013). The CN05.1 is a
gridded daily dataset based on interpolation from over 2400
observation stations in China, with spatial resolution of 0.25°
latitude and 0.25° longitude. It is regarded as one of the best
gridded climate forcing data in mainland China and has been
widely used and tested in previous studies (Li et al., 2022;
Zhu and Yang, 2020). The 0.25° gridded daily 0–10 cm soil
moisture data were obtained from the VIC–CN05.1 surface
hydrology dataset (Miao and Wang, 2020). The dataset was
simulated by the latest variable infiltration capacity (VIC)
model and driven by pure station–based atmospheric forcings
and high–resolution soil parameters based on field surveys.
The modeled 0–10 cm soil moisture anomalies were highly
correlated with in situ measurements (438 stations) during
2003–2016, with a mean R = 0.80.

We used two rice phenology datasets: rice agrometeo-
rological station observations dataset (1981–2018) (CMA,
http://data.cma.cn, last access: 1 September 2022) and the
ChinaCropPhen1km dataset (2000–2019) (Luo et al., 2020).
Rice agrometeorological station observations dataset was
obtained from the China Meteorological Administration
(CMA, http://data.cma.cn), comprising rice phenological
dates recorded by agrometeorological stations across China

from 1981 to 2018. This dataset is considered the best quality
crop phenology observation station dataset in China and has
gained widespread usage (Chen et al., 2021; Liu et al., 2023;
Zhang et al., 2022a). Each station systematically records the
rice cropping type (single–rice or late–rice) and the corre-
sponding dates of key phenological stages throughout the
growing season, in accordance with the “Specifications for
agrometeorological observation–Rice” developed in 2018.
Rigorous checks and validation during the data preparation
process resulted in the production of extremely accurate data
on rice phenology, with an accuracy rate exceeding 95 %.
Records that exceeded twice the standard deviation were re-
jected to ensure the data quality (Zhao et al., 2016). The
ChinaCropPhen1km dataset provides gridded rice phenology
data at a 1 km spatial resolution for the period 2000–2019
(Luo et al., 2020). This data was derived based on Global
Land Surface Satellite (GLASS) leaf area index (LAI) prod-
ucts. This dataset is superior to the previous one due to its
spatially gridded format, but does not offer information be-
fore 2000. Both datasets were later fused to derive annual
phenological dates from all rice–growing grids.

The annual spatial distribution data of single and late rice
were obtained from a high–resolution distribution dataset
of single–rice (Shen et al., 2023) and late–rice (Pan et al.,
2021). The dataset provided a 10 m gridded distribution of
single rice for 21 provinces in China and that of late rice for
nine provinces in Southern China. The two datasets used a
method that combined optical and synthetic aperture radar
images based on the time–weighted dynamic time warping
method. For single–rice, the data achieved an average overall
accuracy of 85.23 % across 21 provincial regions, based on
108 195 samples, with a mean R2 value of 0.83 when com-
pared to county–level statistical planting areas over 3 years.
For late–rice, the identification accuracy reached 90.46 %
based on 145 210 survey samples. We took the data for 2020
as the southern China rice–growing area mask.

Historical gridded rice yield data were obtained from the
AsiaRiceYield4km dataset (Wu et al., 2023) covering 1995
to 2015. The AsiaRiceYield4km dataset was generated by in-
tegrating multisource predictors into machine learning mod-
els, using inverse probability weighting to select the optimal
model. It achieved high accuracy for seasonal rice yield es-
timation, with R2 value of 0.88 and 0.91for single and late–
rice, and significantly outperformed existing models. Thus
far, the dataset provides the longest time series covering all
rice cultivation areas in China.

Owing to the difference in the spatial resolution of the
above datasets, we harmonized those data to one base grid
for later analyses. We used 0.25°×0.25° grids of the CN05.1
dataset as the base. Rice–growing area masks for single rice
and late rice were then applied to the base grid map to mask
valid rice–growing grids. As each 0.25°× 0.25° climate grid
covered many 10 m rice pixels, we kept climate grids with
rice pixels ≥ 5 % of the area of each climate grid. The final
base map contained 2262 0.25°× 0.25° grids for single–rice
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Figure 1. Raster samples of single–rice and late–rice growing areas. Yellow grids indicate areas where single–rice is grown and blue grids
indicate areas where late–rice is grown.

and 1383 0.25°× 0.25° grids for late–rice (Fig. 1). For each
grid, rice phenological dates were interpolated from station–
observed dates using the co–kriging method with a Gaus-
sian function, and the gridded phenology information from
the ChinaCropPhen1km dataset as a covariate. Our interpo-
lation effectively captured spatial variability characteristics
and compensated for the sparse coverage of station obser-
vations in many areas. We also adjusted the resolution of
AsiaRiceYield4km to the base grid using bilinear interpola-
tion.

2.3 Individual extreme types and severity metrics

2.3.1 Individual extremes considered

Three growth stages that were most susceptible to extreme
stress were considered in this study: jointing–booting stage
(#1), heading–flowering stage (#2) and grain filling stage
(#3). The jointing–booting stage refers to the period from
the first day of jointing to the last day before heading. The
heading–flowering stage refers to the period from heading to
flowering and generally lasts for 10 d. The grain filling stage
refers to the period from the 11th day after heading to ma-
turity. The exact dates of the different stages were obtained
from phenological records for each year and station.

We considered four types of climate extremes known to
impact rice yields: heat (H), drought (D), chilling (C) and

rain (R). Thresholds for these extremes were initially based
on national and provincial standards. Our preliminary anal-
ysis showed that strictly adhering to these official thresholds
led to a small sample size for a valid statistical analysis. Con-
sequently, after a thorough literature review, we relaxed the
thresholds of duration but reserved those for temperature/-
moisture. Finally, we specified thresholds for each climate
extreme by growth–stage (Table 1), which were applied to
daily climate data to screen the historical occurrence of these
events.

2.3.2 Severity metrics for individual events

Here, severity (Haqiqi et al., 2021) was used to measure
the stress imposed by individual extreme event. It was de-
fined as the cumulative deviation from the threshold value of
each stressor. Following this concept, heat stress (H) sever-
ity SH,g,t at a given growth stage (g) in a given year (t) that
meets the condition can be computed by the cumulative de-
viation of mean daily temperature (T ) above its threshold
(Tbase) for all the days (i) within this stage. We used 33 °C
as the base temperature (Table 1) in Eq. (1).

SH,g,t =
∑n

i=1
|Ti − Tbase| (Ti ≥ Tbase) (1)

Similarly, chilling stress severity SC,g,t can be computed
by the cumulative deviation of daily mean temperature (T )
below its threshold (Tbase), for which we used 20 °C for
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Table 1. The thresholds of each individual extreme event.

Rice type Growth stage Climate Indicator & threshold: daily mean temperature (T / °C),
extremes daily total precipitation (PRE / mm), relative soil moisture (SM / %)

Single–rice Jointing–booting (#1) Heat T ≥ 33 °C ≥ 1 successive day
Heading–flowering (#2) Drought SM≤ 75 % ≥ 10 successive days
Grain filling (#3)

Late–rice Heading–flowering (#2) Chilling T ≤ 20 °C ≥ 1 successive day
Rain P ≥ 25 mm ≥ 1 successive day

Grain filling (#3) Chilling T ≤ 17 °C ≥ 1 successive day
Rain P ≥ 25 mm ≥ 1 successive day

Note: The above thresholds are referenced from <NY/T 2915–2016>, Identification and classification of heat injury of rice; <NY/T 3043–2016>, Code of
practice for field investigations and classification of rice seasonal drought stressess in southern–China; <NY/T 2285–2012>, Technical specification of field
investigations and the grading of chilling damage to rice and; <DB5101/T 125–2021>, Indica rice weather stress level–continuous rain. NY/T is the
Agricultural Information Resource Classification and Coding Specification in China. DB5101/T is the Local Standard of Chengdu, Sichuan Province.
Thresholds for duration were relaxed from original standards to ensure adequate samples for later analyses.

heading–flowering stage and 17 °C for grain filling stage for
one or more consecutive days in Eq. (2).

SC,g,t = ST =
∑n

i=1
|Ti − Tbase| (Ti ≤ Tbase) (2)

Drought stress severity SD,g,t can be computed by the cumu-
lative deviation of soil moisture (SMi)≤ 75% (SMbase) for
10 or more consecutive days in Eq. (3). Specifically, drought
severity was calculated cumulatively from the first day that
moisture fell below this threshold and only events lasting at
least 10 consecutive days were retained for further analysis.
The threshold of 10 d was applied based on physiological
and agronomic relevance and experimental evidence (Amin
et al., 2022; Barnaby et al., 2019). While extremely severe
but brief droughts can be fatal, recent studies have also sug-
gested that short–term drought triggers compensatory recov-
ery post–stress, potentially accelerating grain filling without
yield loss (Jiang et al., 2019; Li et al., 2005).

SD,g,t = SSM

=

∑n

i=1
|SMi −SMbase| (SMi ≤ SMbase) (3)

Rain stress severity SR,g,t can be computed by the cumu-
lative deviation of daily total precipitation (PRE) ≥ 25 mm
(PREbase) for one or more consecutive days in Eq. (4).

SR,g,t = SPRE

=

∑n

i=1
|PREi −PREbase| (PREi ≥ PREbase) (4)

For each grid, severity of heat, drought, chilling, and rain
stress were computed by growth stage by using above equa-
tions.

2.4 Compound climate extremes types and severity
metrics

2.4.1 Compound climate extremes types

For compound climate extremes, we focus on cases where
two types of stress occurred during the same growth stage,

for example, simultaneous exposure to heat and drought
during the jointing–booting stage of single–rice (Table 2).
This definition aligns with the topological framework pro-
posed by Zscheischler (Zscheischler et al., 2020) and is
hereafter referred to as concurrent climate extremes. Specif-
ically, for single–rice (Table 2), we defined three concur-
rent climate extremes: concurrent heat–drought events dur-
ing the jointing–booting stage (H1D1), heading–flowering
stage (H2D2), and grain filling stage (H3D3). A similar nam-
ing convention was applied to late–rice, which includes two
concurrent climate extremes: concurrent chilling–rain events
during the heading–flowering stage (C2R2) and grain filling
stage (C3R3).

2.4.2 Compound severity metrics

To quantify the severity of concurrent climate extremes, we
developed a copula–based framework for compound severity
assessment (Li et al., 2021; Tavakol et al., 2020). This frame-
work integrates (1) the modeling of marginal distributions
and joint dependence using copula functions, by following
Tootoonchi (Tootoonchi et al., 2022), (2) a correction proce-
dure to account for years without any events, and (3) a trans-
formation of the joint exceedance probability into a standard-
ized severity index. The resulting metric enables consistent
and comparable assessment of compound event severity.

(1) Marginal and joint modeling using copulas

Let X and Y denote the univariate indices (severity) of cli-
mate extremes for the given growth stage in Table 2. The
marginal distributions of the random variables X and Y are
defined as u= F (X) and v =G(Y ), respectively. To model
the dependence structure between the two variables, we used
copula theory to construct a bivariate joint distribution. The
copula function C(u,v) captures the joint cumulative proba-
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Table 2. The types of compound climate extremes.

Single–rice Climate extremes #1 Jointing–booting #2 Heading–flowering #3 Grain filling
Heat (H) & Drought (D) H1D1 H2D2 H3D3

Late–rice Climate extremes – #2 Heading–flowering #3 Grain filling
Chilling (C) & Rain (R) – C2R2 C3R3

Note: H: heat; D: drought; C: chilling; R: rain. #1: jointing–booting stage; #2: heading–flowering stage; #3: grain filling stage.

bility P (X ≤ x,Y ≤ y) and is expressed as:

P (X ≤ x,Y ≤ y)= C[F (X),G(Y )] = C(u,v) (5)

A range of copula families were tested, and the best–fitting
model was selected using goodness–of–fit tests (at a 0.05
significance level) and Bayesian Information Criterion (BIC)
(Ribeiro et al., 2020; Salvadori et al., 2016). Models that can-
not be rejected, based on p-values at the 0.05 significance
threshold, are considered for final selection (Li et al., 2022;
Sadegh et al., 2018). In our case, the Clayton copula was se-
lected to construct the concurrent climate extremes.

(2) Incorporating zero–severity samples into joint
probability calculation

According to our definition, for years when there were no
extreme events, severity scores (the calculated SH, SD, SC or
SR values) will be “0”. In the fitting process, samples with
0 values (u= 0 or v = 0) were not included, and should be
taken back into account when we derive the joint exceedance
probability. As our main quantity of interest is the joint ex-
ceedance probability P (X > x,Y > y), we apply the law of
total probability to reconstruct the full joint exceedance prob-
ability by using P (A)= P (A|B)×P (B):

PSH1SD1 =P (SH1 ≥ x,SD1 ≥ y|x > 0,y > 0)

·P (x > 0,y > 0) (6)

For instance, the joint distribution of concurrent heat–
drought event across stages #1 can be fitted by using the
severity of heat stress SH1 for stage #1 of all grids and all
years together with that of the drought stress SD1 of stage #1.

Here, the conditional probability P (SH1 ≥ x,SD1 ≥ y|x >

0,y > 0) is computed from the copula as: 1− u− v+
CH1D1(u,v), and the proportion of valid (non–zero) sever-
ity pairs is calculated as: n(x>0,y>0)

N
, where n denotes the

number of years when both severities are non–zero, and N
is the total number of years. Therefore, the corrected joint
exceedance probability becomes:

PSH1SD1 =P (SH1 ≥ x,SD1 ≥ y|x > 0,y > 0)

·P (x > 0,y > 0)
=[1− u− v+CH1D1(u,v)]

·
n(x > 0,y > 0)

N
(7)

This adjustment ensures that the joint probability calculation
reflects all years in the dataset, not just those included in the
copula fitting.

(3) Inverse–transformation of Joint Exceedance
Probability to Compound Severity Scores

To make the severity scores comparable across locations and
compound types, we transformed the joint exceedance proba-
bility into a standardized z-score. This was done by applying
the inverse standard normal distribution function ϕ−1:

CSH1D1 = ϕ
−1
[PSH1SD1 ] (8)

Higher CS values correspond to more severe compound
events.

2.5 Contribution of temporal changes of Individual
stress to compound events based on path analysis

We attempted to understand how the temporal changes in
individual stress were attributed to compound climate ex-
tremes. Specifically, we attempted to determine how the
changes in compound severity (CS) of a specific con-
current climate extremes are related to the corresponding
heat/chilling stress severity and drought/rain stress severity
changes over time. Because there can be strong interactions
between temperature and moisture, path analysis was con-
ducted. A path analysis decomposes the interaction between
the dependent and independent variables (correlation coeffi-
cients) into direct (direct path coefficients) and indirect (indi-
rect path coefficients) based on a multiple linear regression,
without requiring the variables to be independent of each
other (Zhang et al., 2022b). It has been widely applied to es-
timate the magnitude and significance of hypothesized causal
connections between dependent and independent variables
when the effects of the variables are confounded (Zhang et
al., 2022b, c; Yan et al., 2022).

We separated the system of correlations between the de-
pendent variable and two corresponding independent vari-
ables to obtain the path coefficients. Taking single–rice as an
example, the path coefficient of heat stress severity (SH) to
compound severity (CS) RSH,CS, which was also the Pearson
correlation coefficient between SH and CS, could be decom-
posed into direct and indirect effects by:

RSH,CS = PSH,CS+ rSH,SDPSD,CS (9)
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where, PSH,CS is the direct path coefficient of SH on CS,
and rSH,SD is the Pearson correlation coefficient between the
two independent variables, SH and SD. Thus, rSH,SDPSD,CS is
the indirect path coefficient of drought stress severity on CS.
PSH,CS and PSD,CS are two standardized linear regression co-
efficients obtained by regressing CS on SH and SD. An F -test
is conducted to test the statistical significance of the results,
and the results of the path analysis were statistically signifi-
cant when the p-value was < 0.05.

Based on the direct and indirect path coefficients, we cal-
culated the determination coefficient (DC) to assess the ex-
planatory power of individual and interactive climate stresses
on compound events. For each climate variable (i.e., heat
stress SH, drought stress SD, chilling stress SC, and rain stress
SR), the individual coefficient of determination was com-
puted as DCi = P 2

i where Pi is the total (direct plus indirect)
path coefficient, i = SH, SD, SC or SR. To quantify the contri-
bution from the cooperative interaction between two stresses,
the co–determination coefficient was calculated as DCco =

2PirijPj , where rij is the correlation between variables i and
j ; ij = SH, SD, SC or SR. DCco can indicate the extent to
which the interaction of two independent variables affected
the compound extremes. The total explanatory power of all
stresses, represented by the total coefficient of determina-
tion (DCtotal), was obtained by summing all individual and
co–determination terms: DCtotal =

∑
DCi +

∑
DCco Since

DCtotal captures both independent and interactive effects, its
value may exceed 1, which reflects the cumulative explana-
tory power.

2.6 Assessment of compound climate extremes impact
on yield

To evaluate the impact of concurrent climate extremes on rice
yield, we used yield anomalies detrended from the histori-
cal yield time-series to isolate interannual variability from
structural trends such as technological progress. The detrend
method followed Wang and Zhang (Holly Wang and Zhang,
2003) and Ye (Ye et al., 2015), which fit log–linear regres-
sion models to historical yield time–series at each grid cell:
– The yield at time t denoted by Yt , was modeled as:

log(Yt )= β0+β1t + εt (10)

Where β0 is the intercept and β1 represents the linear trend
in the log–transformed yield.

The detrended yield anomaly Yd,t was calculated as the
residual from the regression:

Yd,t = Yt − Ŷt (11)

Where Ŷt is the fitted yield at year t from the regression
model.

To enable cross–grid and cross–year comparisons, we used
standardized yield anomalies:

YAt =
Yd,t −µ

σ
(12)

Where YAt is the standardized yield anomaly. µ=
1
n

∑n
i=1Yd,t is the mean of the detrended yield, σ =√

1
n−1

∑n
i=1(Yd,t −µ)2 and n− 1 is used instead of n to pro-

vide an unbiased estimate of the population standard devia-
tion.

To formally characterize the relationship between stan-
dardized yield anomalies and compound climatic stress, we
employed a simple linear regression model. For each growth
stage, the standardized yield anomaly (YA) was regressed on
the corresponding compound severity (CS) value:

YAt = γ0+ γ1 ·CS+ δ (13)

where YAt is the standardized yield anomaly (detrended and
normalized, see Sect. 2.6), CS is the compound severity, γ0 is
the intercept representing the expected yield anomaly when
compound stress is absent, γ1 represents the yield loss per
unit increase in compound severity and δ is the error term.
The regression model is fitted exclusively using observations
where YAt < 0, i.e., only negative yield anomalies are in-
cluded in the analysis.

3 Results

3.1 Temporal changes of compound climate extremes

Using growth–stage–specific thresholds, we quantified the
annual compound severity (CS) of each concurrent cli-
mate extreme across three critical rice growth stages. The
copula cumulative distribution functions were plotted and
presented in the supplementary materials (Fig. A1). Grid–
level values were aggregated to show yearly trends from
1981 to 2018 (Fig. 2a–e). For single–rice, concurrent heat–
drought events during jointing–booting (H1D1), heading–
flowering (H2D2), and grain filling (H3D3) stages (Fig. 2a–
c) all exhibited statistically significant increasing trends,
with decadal rates of approximately 0.03–0.06 in compound
severity. Notably, H1D1 events were observed as early as
1981 and have persisted with high temporal frequency, oc-
curring almost annually since the 2000s. H2D2 events be-
gan to emerge after 1992, while H3D3 appeared the lat-
est, around 1998. In contrast, concurrent chilling–rain events
during late–rice development (C2R2–events during heading–
flowering and C3R3–events during grain filling; Fig. 2d
and e) occurred frequently throughout the historical period,
but showed only weak and statistically insignificant upward
trends over time.

3.2 Spatial distribution of compound climate extremes

To characterize the spatial distribution of severity, the av-
erage severity was calculated across all years in which oc-
currences were recorded. Specifically, the annual compound
severity for each type of concurrent climate extremes was
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Figure 2. Annual compound severity of concurrent compound events during 1981–2018. Panels (a–c) show the concurrent heat–drought
events in single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), grain filling stages#3 (H3D3). Panels (d) and (e)
show the concurrent chilling–rain events in late–rice during heading–flowering#2 (C2R2), grain filling stages#3 (C3R3). ∗ and ∗∗ indicate
statistically significant at the significance levels of 0.05 and 0.01, respectively.

averaged within each grid cell to identify and map spa-
tial hotspots (Fig. 3). The patterns were clear and contrast-
ing. The average compound severity for concurrent heat–
drought events covered a limited growing area, whereas that
for chilling–rain events was widespread.

Hotspots of high–compound severity grids for concurrent
heat–drought events differed largely among the three types
(Fig. 3a–c). H1D1 (heat–drought events during jointing–
booting stage) were concentrated in coastal areas, H3D3
(grain filling–stage events) were mainly concentrated in in-
land China and H2D2 (flowering–stage events) were mainly
distributed between these two regions. Specifically, H1D1
were mostly concentrated in the lower reaches of the Yangtze
River (East China region), while H3D3 were concentrated
in the eastern part of the Sichuan–Chongqing area. H2D2
showed a clustered occurrence in central Anhui, eastern Hu-
nan, and eastern Sichuan.

Unlike heat–drought events, concurrent chilling–rain
events were widespread within the planting regions, with a
higher incidence in certain areas (Fig. 3d and e). Hotspots of

C2R2 (chilling–rain events during heading–flowering stage)
were mostly concentrated in the southern parts of the study
area, hilly regions to the south of Hunan and Jiangxi, and
eastern Guangxi. The hotspots moved northward in C3R3
(chilling–rain events during grain filling stage), reaching the
northeastern part of the study area, occurring in Hubei, An-
hui, Zhejiang, and hilly regions in southern Hunan province
where the altitude is relatively high.

3.3 Effects of individual stress severity on concurrent
climate extremes

We took the path coefficient as the relative sensitivity of CS
(compound severity) to SH and SD for single–rice, SC and SR
for late–rice. For three types of the concurrent heat–drought
events, the direct path coefficient for heat stress severity
(PSH,CS) and drought stress severity (PSD,CS) were both pos-
itive (Fig. 4a), indicating that the changes in the severities
of heat and drought stress both contributed to increasing the
compound severity. The contribution of SH was much larger
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Figure 3. Spatial distribution of compound severity for concurrent climate extremes during 1981–2018. Panels (a–c) show concurrent heat–
drought events in single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), and grain filling stages#3 (H3D3). Panels (d)
and (e) show concurrent chilling–rain events in late–rice during heading–flowering#2 (C2R2), and grain filling stages#3 (C3R3). Shading
represents compound severity (unitless index), with darker colors indicating higher stress severity.

than SD in stage#1, but slightly smaller in stage#3. Consid-
ering that the distribution of spatial hotspots for concurrent
heat–drought events varied markedly across three growth
stages (Fig. 3a–c), the pattern also suggests the regional dif-
ference of relative contribution. In the lower–reaches of the
Yangtze River Basin (where H1D1 and H2D2 occurred), heat
stress was a greater determinant of concurrent heat–drought
events than the drought stress, while in the eastern Sichuan
Basin (where H3D3 occurred), the influence of drought stress
exceeded slightly the influence of heat stress.

For single–rice, the total determination coefficient,
DCtotal, which indicates the total effect of the two in-
dependent variables on the dependent variable, was simi-
lar across concurrent heat–drought events (median around
0.9) (Fig. 4c). The single–factor determination coefficients
(DCSH,CS and DCSD,CS) indicated that the severity of heat
stress affected the change of concurrent climate extremes to
a greater extent than the severity of drought stress in H1D1
and H2D2, with a similar pattern observed for the path coef-
ficients (PSH,CS, PSD,CS). The median DCco was around 0.3,
which indicated that the two variables are not independent
and positively correlated. It is worth noting that the median
of DCco is higher than the median of DCSD,CS in H1D1 and
H2D2, which may result from the dominant effect from heat
stress on concurrent heat–drought events in jointing–booting
stage (H1D1) and heading–flowering stage (H2D2).

The pattern of the effects of chilling and rain stress sever-
ity on concurrent chilling–rain events for late–rice was very
different to that of heat–drought events (Fig. 4b). Both chill-
ing and rain stress severity had a strong direct effect on the
changes in climate extremes, with chilling having a slightly

larger effect in C2R2 and rain having a slightly larger effect
on C3R3. This pattern was also supported by the DCs of indi-
vidual variables (DCSC,CS and DCSR,CS) (Fig. 4d). DCco was
almost 0 for both growth stages (Fig. 4d), due to the very
small indirect coefficient, indicating that there was little cor-
relation between the two stresses in concurrent chilling–rain
events. That means the interactive effects of temperature and
moisture had quite small influence on the changes observed
in concurrent chilling–rain events for late–rice.

3.4 Impact on yield of compound events

We used the linear regression model described in Sect. 2.6
to examine the relationship between compound severity and
standardized yield anomaly across different growth stages,
resulting in five statistical models for various compound
events and stages. These models provide quantitative mea-
sures of the stage-specific sensitivity of rice yield to com-
pound climatic stress. Figure 5 presents the fitted data points
and the regression trend lines to visually illustrate the mod-
els. For each regression, we reported the slope (β0), intercept
(β1), and significance level. To emphasize the magnitude of
yield loss (negative yield anomalies) under severe compound
stress (negative values), the axes in Fig. 5a–e were restricted
to negative ranges. Five types of concurrent extreme events
were examined: H1D1, H2D2, H3D3 (heat–drought), and
C2R2, C3R3 (chilling–rain).

For heat–drought events on single–rice, the highest av-
erage yield loss occurred during grain filling stage (H3D3)
(Fig. 5f). This phenomenon was determined by the com-
bined effects of historical event severity, frequency, and spa-

https://doi.org/10.5194/esd-16-1971-2025 Earth Syst. Dynam., 16, 1971–1988, 2025



1980 R. Sun et al.: Spatiotemporal variation of growth–stage specific concurrent climate extremes

Figure 4. Boxplot of the path analysis of climate factors on the duration of concurrent climate extremes during 1981–2018. Only relationships
that passed the F -test at the 0.01 significance level are presented. Panels (a) and (c) show the path coefficient and determination coefficient
of concurrent heat–drought events in single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), grain filling stages#3
(H3D3). Panels (b) and (d) show the path coefficient and determination coefficient of concurrent chilling–rain events in late–rice during
heading–flowering#2 (C2R2), grain filling stages#3 (C3R3).

tial extent. Regression analysis (Fig. 5a–c) revealed signif-
icant positive relationships between compound severity and
yield loss across all growth stages. Rice yield showed the
largest sensitivity in the grain filling stage (H1D1, β1 = 0.29,
p < 0.05). It suggested that for every standard deviation in-
crease in compound severity, yield would fall 0.29 stan-
dard deviation correspondingly. The sensitivity was followed
by heading–flowering (H2D2, β1 = 0.24, p < 0.05) and
jointing–booting (H3D3, β1 = 0.23, p < 0.05). For late–rice,
sensitivity to chilling–rain events were greater in heading–
flowering (C2R2, β1 = 0.37) than in grain filling (C3R3,
β1 = 0.19), both statistically significant (Fig. 5d and e).

The regression results quantitatively confirm that yield of
single–rice is most sensitive to heat–drought events during
grain filling, whereas yield of late–rice is most sensitive to
chilling–rain events during heading–flowering. These stage–
specific sensitivities reflect physiological vulnerabilities at
different developmental stages.

4 Discussion

4.1 Divergent spatial distribution patterns yet increasing
temporal trends of concurrent events for rice

We revealed the spatiotemporal variation of concurrent com-
pound extremes for single–and late–rice in southern China,
using growth–stage–specific physiological thresholds for
temperature and moisture (either soil moisture or precipita-
tion). This approach minimizes uncertainties inherent in ap-
plying uniform thresholds across the entire growing season.
For example, the spatial difference in the hotspots of con-
current heat–drought events of single–rice would not have
been identified if we conducted evaluations over the en-
tire growing–season. For the chilling stress to late–rice, the
different effects of extremes at the heading–flowering and
grain filling stages would not have been distinguishable if
only one single temperature threshold was used to screen
the whole growing–season. The consideration of a growth–
stage–specific threshold enabled us to distinguish the differ-
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Figure 5. Relationship between compound severity and standardized yield anomaly during 1995–2015. Panels (a–c) show concurrent heat–
drought events for single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), grain filling stages#3 (H3D3). Panels (d)
and (e) show concurrent chilling–rain events for late–rice during heading–flowering#2 (C2R2), grain filling stages#3 (C3R3). ∗∗∗ indicates
statistically significant at the significance levels of 0.001.

ent spatial and temporal characteristics of concurrent climate
extremes in different stages for single–rice and late–rice.

Temporally, we found a statistically significant increasing
trend in the compound severity of concurrent heat–drought
events in southern China. The concurrent chilling–rain events
for late–rice had a weak increasing trend, which was in-
significant. The result was consistent with the increasing fre-
quency of concurrent heat–drought events reported in pre-
vious studies. For example, increasing trends for concurrent
heat–drought events in the main crop production areas since
1980 have also been reported by He (He et al., 2022), Zhang
(Zhang et al., 2022b) and Lu (Lu et al., 2018). For chilling–
rain events in late–rice, Liu (Liu et al., 2013) also reported
that the frequency of chilling events in rice during the pe-
riod 2001–2011 was higher than that in 1990–2000. They
suggested that despite the increase in mean climatic temper-
atures, the occurrence of chilling events in rice did not de-
crease, but instead showed a gradually increasing trend. This
pattern was also consistent with our findings.

Spatially, we found that concurrent heat–drought events
occurred only in specific regions in each of the three growth
stages of single–rice, and coincided with the occurrence of
heat stress in each growth–stage (Fig. A2). These spatial dif-
ferences could mainly be attributed to regional differences in
rice phenology rather than regional high–temperature events.

That said, high temperatures in July and August in south-
ern China enacted the precondition for heat events, and the
dates of the susceptible growth–stage eventually determined
the final period of exposure to concurrent events. For exam-
ple, the single–rice transplanting date was 30 d earlier (day
of the year, DOY 174–198) in the upstream than in the lower
Yangtze River basin (DOY 207–232). When the single–rice
in Chongqing entered the grain filling stage, rice in the mid-
dle and lower reaches of the Yangtze River just entered
the jointing–booting stage. Consequently, concurrent heat–
drought events had a higher frequency in the later growth–
stage in the upstream than in the downstream.

Similarly, the late–rice heading date was 20 d earlier in
the northern part of study area (DOY 255 in Hubei, Hu-
nan, Anhui and Zhejiang) than in the southern part (DOY
273 in Guangdong, Guangxi and Hainan). In October, the
late–rice in the northern part was mostly in the grain filling
stage, whereas in the southern region, due to later planting
dates, it was mostly in the heading–flowering stage. Con-
sequently, southern late rice is more susceptible to the im-
pact of chilly and rainy conditions caused by the southward
movement of cold air from the north, which converges with
warm and moist air currents in the south, leading to low–
temperature and continuous rain days. This finding further
emphasized the importance of using growth–stage–specific
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thresholds, which allowed the exact spatiotemporal overlap
of climate extremes and susceptible growth stages to be cap-
tured.

4.2 The predominance of individual stress in driving
concurrent events

Path analysis identified the relative contribution of individual
stress to compound severity and found differences by growth
stage. For instance, individual heat stress had a greater di-
rect effect than drought stress on heat–drought events during
jointing–booting (H1D1) and heading–flowering (H2D2) of
single–rice, but this pattern was not apparent in heat–drought
events during grain filling (H3D3). For concurrent chilling–
rain events of late–rice, the effects of chilling and rain stress
were comparable, with a slightly larger effect of chilling in
C2R2 and a greater effect of rain stress in C3R3.

Previous studies on the factors driving changes in climate
extremes have reported divergent results. Bevacqua (Bevac-
qua et al., 2022) speculated that precipitation trends de-
termined the future occurrence of concurrent heat–drought
events. This is because future local warming would be suffi-
ciently frequent that future droughts would always coincide
with moderate heat extremes, and consequently, the changes
in drought frequency would become the modulating factor.
In this study, concurrent heat and drought events in the joint–
booting stage (H1D1) and in the flowering stage (H2D2)
mainly occurred in the middle–lower Yangtze River Basin.
The spatial distribution of single extreme events (Fig. A1)
showed that drought stress exhibited broad spatial coverage
and higher severity across this region (Fig. A2d and e). In
contrast, heat stress was concentrated within limited areas
(Fig. A2a and b). Consequently, when heat stress occurred,
it had a higher likelihood of coinciding with drought condi-
tions, thereby forming concurrent heat–drought events. This
spatial dichotomy highlights the fact that heat stress emerges
as the dominant driver of concurrent heat–drought events,
where its localized intensification, superimposed on drought
conditions, triggers compound cascading effects. However,
heat stress during grain filling stage in the Sichuan and
Chongqing regions was slightly more severe than drought.
(Fig. A2c and f), thus, the heat in this region has a slightly
higher impact.

The results of the path analysis also showed a correlation
between the heat stress and drought stress of the concurrent
heat–drought event (Fig. 4c, DCco). Previous studies have
shown that enhanced dry–hot dependence can lead to more
frequent concurrent heat–drought events (Hao and Singh,
2020; Zscheischler and Seneviratne, 2017). The combination
of these processes leads to a strong negative temperature–soil
moisture correlation, which can be explained by two path-
ways: land–atmosphere feedbacks and weather–scale corre-
spondence between clouds and incoming shortwave radia-
tion. Specifically, soil moisture deficits caused by low precip-
itation can lead to reduced evaporative cooling, along with

increased sensible heat fluxes and higher surface air tem-
peratures. High temperature anomalies accelerate evapotran-
spiration, which further depletes soil moisture (Liu et al.,
2020; Miralles et al., 2019). In addition, low levels of cloudi-
ness associated with low precipitation (and subsequent soil
moisture deficits) tend to enhance incoming shortwave radi-
ation, which leads to higher surface air temperatures (Berg et
al., 2015). For chilling–rain events for late–rice, our results
also indicated a weak individual chilling and rain correla-
tion (Fig. 4d, DCco). However, compared with heat–drought
events, the relationships behind chilling–rain events have
largely been ignored in previous studies, and the underly-
ing mechanism requires further investigation (Trotsiuk et al.,
2020).

4.3 The sensitivity of yield to concurrent events

Our study evaluated the historical impact on yield and its sen-
sitivity of concurrent climate extremes across different sen-
sitive growth stages and found comparable yield losses from
concurrent heat–drought and chilling–rain events (Fig. 5a–
e). Yield sensitivity also exhibited comparable values be-
tween heat–drought events (0.29 on average) and chilling–
rain events (0.19–0.37). This comparable effect is due to the
disruption of physiological processes, such as photosynthesis
and nutrient uptake, while increasing pest and disease risks
caused by chilling or excessive rainfall (Arshad et al., 2017;
Fu et al., 2023; Jiang et al., 2010). Therefore, our results add
important evidence about the impact of compound chilling–
rain on rice yield, to those that have reported heat–drought
events on crops such as maize and soybeans (Luan et al.,
2021; Seneviratne et al., 2010).

Different impacts of heat–drought events on yields were
also evident across growth stages, with the highest aver-
age yield loss observed during grain filling stage (H3D3)
(Fig. 5f). Spatial distribution patterns of compound events
indicate that H3D3 was concentrated in the Sichuan–
Chongqing region (Fig. 3c). These losses likely resulted from
the combined effects of regional exposure, climate interac-
tions and local infrastructure limitations. Variations in re-
gional climatic conditions can lead to differential yield re-
sponses to extreme events across geographical areas (Li and
Tao, 2023). In the Sichuan–Chongqing hotspot, the concen-
tration of heat–drought events was amplified by topography–
driven vapor pressure deficit anomalies (Zhu et al., 2024),
which intensified moisture stress and ultimately caused sub-
stantial yield declines. Moreover, the region’s hilly terrain
makes the development of irrigation infrastructure challeng-
ing (Ye et al., 2012), and rice cultivation here depends heav-
ily on precipitation. Consequently, under persistent hot and
dry conditions, the lack of irrigation facilities can further ex-
acerbate yield losses (Hao et al., 2023).

Rice sensitivity to compound events also differed substan-
tially according to the growth stage. Specifically, single–rice
showed the highest sensitivity to heat–drought events during
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the grain filling stage, followed by the heading–flowering and
jointing–booting stages. Late–rice exhibited greater sensitiv-
ity during the heading–flowering stage than during the grain
filling stage. These growth–stage–specific patterns may be
attributed to the physiological vulnerabilities of rice at dif-
ferent growth stages and the mechanisms by which climatic
stressors exert their effects. Although experimental studies
explicitly revealing the mechanisms of yield reduction under
compound events remain limited, plausible explanations can
be inferred from the physiological responses of rice to in-
dividual stressors. For instance, heat stress during the grain
filling process inhibits grain starch biosynthesis and shortens
the grain filling duration, leading to reduced grain weight
and yield (Cao et al., 2008; Tenorio et al., 2013). Drought
negatively impacts photosynthetic rate and chlorophyll con-
tent, while drought occurring during the grain filling stage
reduces the 1000–grain weight, ultimately leading to yield
loss (Amin et al., 2022). Chilling stress during the heading–
flowering stage impairs rice yield by inhibiting spikelet open-
ing, inducing spikelet sterility, and potentially leading to
spikelet abortion and incomplete panicle exertion (Arshad
et al., 2017; Suh et al., 2010). Rain stress exerts a physical
disturbance on pollination, thereby reducing the number of
filled grains per panicle. Additionally, the overcast conditions
associated with rain stress severely impair photosynthetic as-
similation in rice (Luo et al., 2018; Proctor, 2023).

4.4 Limitations

Our study was limited by the length of the time–series of
data. Agrometeorological station data were only available up
to 2018, and recent years that had experienced the most pro-
nounced warming (IPCC, 2021) were therefore not included
in the analysis. In particular, the severe concurrent heat–
drought event in southern China in 2022 had a substantial
impact on rice production (Hao et al., 2023). The absence of
above data might have led to underestimates of the temporal
trend and yield impact. We focused on concurrent climate ex-
tremes only in this research. However, climate extremes can
occur consecutively in different growth stages (Zscheischler
et al., 2020). Several studies have discussed the impact on
yield of switches of dry–and–wet in different stages of rice
growth (Chen and Wang, 2023). Due to limited sample size,
other types of compound climate extremes (like consecutive
climate extremes, where rice is impacted by one event at one
growth–stage, and by another at a different growth–stage)
were not discussed in this study, but require future investi-
gation, including its spatiotemporal variation, possible phys-
ical compound mechanisms, and the underlying processes of
yield loss.

5 Conclusions

In this study, we investigated the spatiotemporal variation of
concurrent compound extremes for single– and late–rice in

southern China and their underlying climate drivers, by dis-
tinguishing stage–specific climate stress types and thresholds
based on rice biology. Temporally, our results indicated a sig-
nificant increasing trend of concurrent heat–drought events
for single–rice and a slight increasing trend for concurrent
chilling–rain events for late–rice. Spatially, the hotspot dis-
tributions of concurrent heat–drought events varied greatly
across the three growth stages, being concentrated in regions
from the upper–middle to the middle–lower reaches of the
Yangtze River. These spatial patterns are driven primarily by
differences in crop phenology across locations, such as the
timing of flowering was earlier in the upstream than in the
lower Yangtze River basin, rather than by the spatial distribu-
tion of extreme climate conditions. The concurrent chilling–
rain events of late–rice were widespread within the planting
regions, with a higher incidence at higher altitudes and lati-
tudes. Path analysis suggested that heat stress had a larger di-
rect effect than drought on compound severity, particularly in
H1D1 and H2D2. For concurrent chilling–rain events of late–
rice, the effects of chilling and rain stress were comparable.
The assessment of compound event impacts and sensitivity
on rice yield revealed significant growth–stage–specific dif-
ferences, with comparable yield losses from both concurrent
heat–drought and chilling–rain events.

Our results provided critical insights into the comprehen-
sive impacts of compound events on rice production and
established a scientific foundation for developing targeted
adaptation strategies. A straightforward extension of the
present study is to project the future occurrence and severity
of compound extremes for rice, and their future impact on
yield, for risk management and adaptation purposes. Such
a projection requires quantitative vulnerability functions or
growth model simulations of compound extreme events. To
increase the capability of the models, controlled experiments
and field observations are needed to improve our understand-
ing of the impact of compound extremes on rice.
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Appendix A: Additional Figures

Figure A1. Copula cumulative distribution functions as 3D surface of u (heat or chilling severity) and v (drought or rain severity) for
concurrent heat–drought events during jointing–booting#1 (a, H1D1); heading–flowering#2 (b, H2D2); grain filling stages#3 (c, H3D3) and
concurrent chilling–rain events during heading–flowering#2 (d, C2R2); grain filling stages#3 (e, C3R3).

Figure A2. Spatial distribution of single heat and drought extreme events of rice for the period of 1981–2018. Each subgraph represents the
heat stress severity (a–c) and drought stress severity (d–f).
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