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Abstract. Terrestrial ecosystems are crucial in mitigating global climate change, and dynamic global vege-
tation models (DGVMs) have become essential tools for simulating these ecosystems. However, uncertainties
remain in DGVM simulations for China, highlighting the need for systematic evaluations of their dynamics
across various timescales to enhance model performance. As such, we utilize reprocessed monthly MODIS leaf
area index (LAI) and contiguous solar-induced fluorescence (CSIF) data as observational references to assess the
long-term trends and seasonal variations of LAI and gross primary production (GPP) simulated by 14 models
(CABLE-POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP, JULES, LPJ-GUESS, LPX, OCN, OR-
CHIDEEv3, SDGVM, and VISIT) in China from 2003 to 2019. Additionally, we evaluate the trends and seasonal
variations of simulated LAI and GPP in response to environmental and climatic factors. Our findings indicate
the following. (1) While the overall trend of simulated LAI is captured, the spatial performance of simulated
LAI and GPP is poor, with underestimation in forested areas, overestimation in grasslands, and misestimation
in croplands. (2) The models misestimate the simulated LAI and GPP responses to changes in environmental
factors, as well as their inaccuracy in capturing anthropogenic impacts on vegetation dynamics. We indicate
that the main reason for the model’s misestimation is that the model’s representation of the CO2 fertilization
effect is inadequate and thus fails to simulate the vegetation response to CO2 concentration. (3) Despite these
issues, the models can effectively capture the seasonality of LAI and GPP in China, largely due to their robust
representation of seasonal responses to climate factors.
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1 Introduction

Terrestrial ecosystems sequester approximately 30 % of an-
thropogenic carbon emissions, playing a significant role in
global climate stabilization (Le Quéré et al., 2015). Although
China covers only 6.5 % of Earth’s land area, it is estimated
to contribute between 10 % and 31 % of the global carbon
sink in terrestrial ecosystems, highlighting its crucial role in
climate mitigation (Piao et al., 2022). However, significant
uncertainties remain in estimating China’s carbon budget due
to limited understanding of carbon cycle mechanisms (Wang
et al., 2023; Zhong et al., 2023). Developing measurable and
verifiable methods for carbon sink accounting is essential for
informing China’s emission reduction and sink enhancement
policies. Currently, although China’s terrestrial ecosystems
have effectively offset a portion of the country’s fossil fuel
emissions, the growth rate of carbon sinks is significantly
slowed by the increase in fossil fuel emissions (Piao et al.,
2022). Additionally, China’s forest ecosystems, dominated
by young and middle-aged planted forests, offer substan-
tial potential for future carbon sequestration (Zhang et al.,
2017). Accurate estimation and prediction of carbon sinks in
China’s terrestrial ecosystems remain critical and challeng-
ing tasks for the scientific community.

To date, the primary methods for assessing terrestrial
ecosystem carbon sinks include the inventory method, at-
mospheric inversion method, Eddy covariance method, and
ecosystem process modeling method (Piao et al., 2022).
However, estimating China’s terrestrial ecosystems presents
significant challenges due to the strong heterogeneity of ter-
restrial ecosystems. The use of different estimation meth-
ods in China often yields widely varying results (Piao et
al., 2022). Even with the atmospheric inversion method, esti-
mates of carbon sinks in China’s terrestrial ecosystems show
considerable variation, largely due to the complex distri-
bution of diverse ecosystem types and the uneven pattern
of atmospheric CO2 observation stations across the country
(Wang et al., 2020; Chen et al., 2021). Meanwhile, the in-
ventory and Eddy covariance methods are significantly con-
strained by limited spatial resolution and the availability of
ground stations (Jiang et al., 2016; Piao et al., 2022). As a
subset of ecosystem process models and a crucial compo-
nent of the Earth system model (ESM), the dynamic global
vegetation model (DGVM) provided gridded carbon flux es-
timates and simulated the complex processes, such as ecosys-
tem carbon and nutrient cycling, vegetation growth–death,
and natural or anthropogenic disturbance, as well as mecha-
nisms within the terrestrial ecosystem carbon cycle. DGVMs
have therefore become essential tools for evaluating carbon
sequestration in terrestrial ecosystems on both global and re-
gional scales. Despite their ability to overcome limitations
related to spatial resolution and predict future changes in
carbon sinks (Friedlingstein et al., 2020), modeling regional
carbon sequestration capacity in China remains particularly
challenging due to significant uncertainties in model struc-

ture, parameters, and driving factors such as climate and land
use change data (Houghton, 2020). For example, Wang et
al. (2022a) found that the model’s sensitivity to tempera-
ture contradicted actual observations when predicting carbon
sinks in the Chinese region. Additionally, Piao et al. (2018)
noted that models often overlook or simplify the impacts
of ecosystem management practices, such as forest manage-
ment and irrigated agriculture, on the carbon cycle.

The ability of the DGVMs to accurately simulate the re-
sponse of vegetation and ecosystem dynamics in response
to historical climatic and ecological processes, as well as
carbon and biogeochemical cycling, is crucial for predict-
ing future ecosystem changes. There is significant poten-
tial for improving these models by systematically compar-
ing model outputs with relevant observations (Prentice and
Cowling, 2013). DGVMs have been tested against various
metrics, including carbon and water fluxes, photosynthetic
capacity, and carbon storage at sites around the world. For
instance, Kucharik et al. (2006) assessed the plant phenol-
ogy using data from three eddy covariance sites to evaluate
forest CO2 and water vapor exchange. Similarly, Macbean
et al. (2021) found that DGVMs underestimated net ecosys-
tem exchange (NEE) based on their analysis of NEE data
from 12 dryland flux sites in the southwestern United States.
Medlyn et al. (2015) leveraged empirical data from the Duke
and ORNL Free-Air CO2 Enrichment (FACE) experiments
to refine the parameterization of CO2 fertilization effects
in DGVMs, significantly enhancing their capacity to simu-
late forest responses to elevated atmospheric CO2 concen-
trations (eCO2). Additionally, remotely sensed observations
are widely used to evaluate model outputs on a regional scale
due to the limited number of ground-based observation sites
(Piao et al., 2020; Zou et al., 2023; Zeng et al., 2018). For in-
stance, Song et al. (2021) observed that the peak of leaf area
index (LAI) occurs 1–2 months earlier than predicted by the
ESM. Anav et al. (2015) reported significant global variabil-
ity in model-estimated gross primary production (GPP). Sim-
ilarly, Winkler et al. (2021) found that models failed to effec-
tively capture the slowdown in global greening, contrasting
with remotely sensed observations. Zou et al. (2023) eval-
uated the annual and seasonal trend of LAI and the effect
of El Niño on the greenness of DGVMs in tropical rainfor-
est regions from 2003 to 2019. These discrepancies indicate
that the models struggle to accurately represent spatially di-
verse characteristics due to their narrow focus on processes
that govern carbon flux, primarily involving only CO2 and
climate factors.

Meanwhile, accurately assessing the various responses of
DGVMs and observations to both environmental and anthro-
pogenic factors could provide insights to improve DGVMs.
Wang et al. (2022a) discovered that, compared to an upscaled
flux tower dataset using satellite, DGVMs did not accurately
capture the temperature and precipitation responses in cer-
tain tropical regions. Jiao et al. (2024) determined that the
DGVMs generally overestimated the sensitivity of tempera-
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ture and precipitation in China when compared with multi-
source data. Yuan et al. (2019) found that models underes-
timated the limiting effect of vapor pressure deficit (VPD)
on vegetation productivity. Furthermore, the models exhibit
considerable ambiguity in their simulations of vegetation re-
sponses to human activities. Many models lack observational
constraints (Li et al., 2017), and some even fail to account for
land use changes (Séférian et al., 2019). For example, Zeng
et al. (2018) found that ESMs typically underestimated shifts
in land use types due to agricultural deforestation in South-
east Asia. Song et al. (2021) suggested that errors in the land
use and land cover change (LULCC) dataset used as input
data for many DGVMs likely led to inaccurate estimations
of vegetation biomass changes in China.

LAI and GPP are critical parameters in the carbon cy-
cle of terrestrial ecosystems, representing vegetation canopy
structure and photosynthetic activity, respectively. These pa-
rameters are also key outputs of DGVMs (Piao et al., 2022;
Zou et al., 2023). However, the accuracy of LAI and GPP
simulations by these models in China and their responses
to environmental and anthropogenic factors remain unclear.
This uncertainty significantly hampers our systematic under-
standing of carbon cycling mechanisms in China’s terres-
trial ecosystems. Advanced reanalyzed LAI remotely sensed
datasets are available to validate the LAI dynamics simulated
by DGVMs (Zou et al., 2023; Yuan et al., 2011). However,
due to substantial uncertainties in GPP inversion models de-
rived directly from remotely sensed data in China (Wang
et al., 2024), it has been proposed that SIF (solar-induced
chlorophyll fluorescence) remotely sensed data, which di-
rectly reflect vegetative photosynthesis, could be a more re-
liable substitute for large-scale GPP estimation (Li et al.,
2018). However, it remains poorly documented what the
comparison between observations and model simulations is,
leading to significant uncertainty about the applicability of
DGVM in China. Current evaluations of DGVM applicabil-
ity in China have predominantly relied on site scale (Han
et al., 2025; Zhu and Zeng, 2024), which lacks integra-
tion with long-term spatial observational constraints to verify
model systematicity. Additionally, despite increasing utiliza-
tion of remote sensing and multi-source datasets for valida-
tion, these validations remain fragmented and inconsistently
address vegetation-type-specific model output variables (Yue
et al., 2024; Jiao et al., 2024).

In this context, we systematically assessed the perfor-
mance of 14 DGVM models (CABLE-POP, CLASSIC,
CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP, JULES, LPJ-
GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT)
in simulating the interannual trends and seasonality of LAI
and GPP across China’s landmass from 2003 to 2019. Addi-
tionally, to identify model deficiencies and provide insights
for improvement, we evaluated the impacts of environmen-
tal and anthropogenic factors on LAI and GPP simulations
at both interannual and seasonal scales. The specific objec-
tive of this study is to offer guidance for future enhance-

ments in the simulation of vegetation LAI and GPP, ulti-
mately reducing uncertainties in the study of carbon sinks
in China’s terrestrial ecosystems. This work aims to iden-
tify priority pathways for DGVM structural improvements
and enhance understanding of the carbon cycle applicable to
China and other regions sharing similar ecological character-
istics. Specifically, our analysis seeks to identify key path-
ways for improving DGVM structure and parameterization,
advance mechanistic understanding of China’s unique car-
bon cycle dynamics, and provide insights into quantifying
regional carbon sinks, thus supporting climate-related pol-
icy development and guiding future regional-scale ecosystem
modeling studies.

2 Materials and methods

2.1 Study area

China, located at the intersection of East and Central Asia,
spans approximately 18 to 53° north latitude and 73 to 135°
east longitude. The country features a diverse topography,
ranging from expansive plains and rolling hills in the east
to towering plateaus and mountain ranges in the west, with
a general west-to-east elevation gradient. China’s climate is
complex, exhibiting considerable spatial variability in both
annual precipitation and temperature. The eastern monsoon
region, characterized by abundant rainfall and a pronounced
north–south temperature gradient, supports a wide variety
of plant species. In contrast, the arid regions of western
China experience minimal precipitation and sparse vegeta-
tion cover. This climatic diversity has given rise to a wide
range of vegetation types, from moist evergreen broad-leaved
forests to arid desert steppes. Additionally, there are signifi-
cant regional differences in the seasonal and interannual fluc-
tuations of these vegetation patterns.

Since the late 20th century, China has undertaken sev-
eral large-scale ecological projects. These include the Three-
North Shelterbelt Project (initiated in 1978), which aims
to improve the ecological conditions of northern China’s
arid and semi-arid regions; the Grain for Green Program
(launched in 1999), which focuses on converting farmland
back to forest and grassland in ecologically fragile areas of
western and northern China; and the Natural Forest Protec-
tion Program (started in 1998), which primarily targets the
Yangtze River Basin and the upper reaches of the Yellow
River. These initiatives have significantly influenced vege-
tation cover and ecosystem functions across the country.

For the purposes of this study, China’s vegetation is clas-
sified into four major categories: forest, grassland, cropland,
and non-vegetated areas (Fig. S1 in the Supplement).

2.2 Dynamic global vegetation model (DGVM)

DGVMs offer a wide range of capabilities, serving as essen-
tial tools for systematizing our understanding of the func-
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tionality and universality of vegetation and ecosystems. The
development of DGVMs has enhanced our comprehension
of the empirical relationships among functional plant traits
and their interactions with the environment. These models
also allow for predictions of the impacts of climate change
on ecosystems and the resulting biogeochemical feedbacks.
Specifically, DGVMs can simulate surface fluxes of CO2 and
water, as well as the dynamics of water and carbon reservoirs
and their responses to factors such as climate change, atmo-
spheric composition, and land use changes.

In this study, we employed 14 DGVM models (CABLE-
POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-
CTRIP, JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3,
SDGVM, and VISIT), selected for their superior perfor-
mance in simulating gridded monthly LAI and GPP, to ex-
plore vegetation dynamics (Zou et al., 2023). These mod-
els were coordinated by the Comparative Productivity in Net
Biota project (Trends in the Land Carbon Cycle, TRENDY),
which is part of a broader initiative. Within the TRENDY
project, all DGVMs employ uniform spin-up durations. Ini-
tialization of simulations utilizes the 1700 baseline con-
ditions with model-specific plant functional types (PFTs).
Pre-industrial climate forcing data (1901–1920) are recy-
cled through model-dependent cycling or stochastic sam-
pling until a carbon equilibrium state is achieved (Sitch et al.,
2024). Despite uniform TRENDY spin-up protocols, inher-
ent structural differences among DGVMs (e.g., carbon cy-
cling, vegetation dynamics) generate divergent initial states
(LAI, GPP) that propagate into early transient simulations.
Although such discrepancies may impact model–data com-
parisons in the first few decades, their effects are mini-
mal during our study period (2003–2019). Concurrently, all
participating DGVMs adopt LUH2, leveraging its CMIP-
optimized architecture to standardize forcing and enhance
DGVM compatibility as the unified land use change dataset.
All models were subjected to scenarios S1, S2, and S3. Addi-
tionally, they were driven by historical climate fields and land
use data from the Climate Research Unit’s National Cen-
ter for Environmental Prediction (CRUNCEP) dataset. In S1
simulations, the models were influenced solely by increas-
ing atmospheric CO2 concentrations, with a constant climate
based on cyclic climate averages and variability from the
early 20th century. The S2 scenario varied both atmospheric
CO2 concentrations and climate, while the S3 scenario in-
cluded variations in CO2 concentrations, climate, and land
use. For this study, the S2 scenario, which involved vary-
ing atmospheric CO2 concentrations and climate, was used
to obtain simulated LAI and GPP. The difference between
the S3 and S2 simulations (S3–S2) was utilized to evaluate
the models’ representation of the impacts of land use changes
on LAI and GPP. In the TRENDY project, all DGVMs pro-
vide monthly outputs at a standardized spatial resolution of
0.5°× 0.5°.

2.3 Benchmark and environmental data

This study utilizes the reprocessed MODIS LAI in China
from 2003 to 2019 (Yuan et al., 2011) to validate the sim-
ulated LAI of the 14 DGVMs. The reprocessing of the ob-
served LAI data involves filling gaps in the original MODIS
LAI (MOD15A2H and MYD15A2H) datasets, which are
identified as low quality, using a modified spatiotemporal fil-
tering (mTSF) technique. This is followed by a second round
of processing using the TIMESAT SG filtering technique to
generate the final products. For this study, the observed LAI
data were resampled into monthly gridded data with a reso-
lution of 0.5°× 0.5°.

To validate the simulated GPP of DGVM, we used the
CSIF dataset, which is processed by a neural network as a
proxy for remotely sensed observations (Zhang et al., 2018).
The CSIF dataset is derived from MODIS surface reflectance
and OCO-2 SIF inversion data, trained using machine learn-
ing algorithms on daily SIF observations to produce a cloud-
independent CSIF dataset. This dataset accurately captures
the seasonal dynamics of satellite-observed SIF and shows a
high degree of consistency with ecosystem GPP, making it a
suitable proxy for GPP. In this study, the CSIF data were ag-
gregated from a 4 d period to a monthly scale, and the spatial
resolution was sampled to a 0.5°× 0.5° grid using mean ag-
gregation. Meanwhile, to enable a direct comparison of SIF
and GPP values, both SIF and GPP data were normalized at
both the annual and monthly scales.

FLUXNET, established with the aim of offering a high-
quality, shared dataset for land surface model validation and
development, is a global network of micrometeorological
flux measurement sites. We used the FLUXNET dataset to
analyze the seasonal response of LAI and GPP. In this study,
we used monthly-scale GPP data from FLUXNET to validate
the seasonal correlation of GPP at the site scale. Due to the
limited duration of consistently observed GPP at the sites in
China, they are not suitable for long-term trend validation of
GPP but can be used for seasonal validation.

We utilize the monthly CO2 concentration data from the
Mauna Loa Observatory in Hawaii (https://gml.noaa.gov/
ccgg/trends/data.html, last access: 26 September 2025) as
a representative regional indicator for CO2 concentrations
within China.

To reduce uncertainty in analyzing LAI responses to en-
vironmental factors, we employed the same dataset that
drives the DGVM. Specifically, historical temperature and
precipitation data were sourced from the reanalyzed CRUN-
CEP dataset. We utilized monthly data from the atmo-
spheric stress component of CRUNCEP (https://gdex.ucar.
edu/datasets/d314003/, last access: 26 September 2025) and
standardized the spatial resolution to 0.5°× 0.5°.

Given that the CRUNCEP dataset does not in-
clude a variable for light radiation, this study uti-
lizes monthly-scale net solar radiation data sourced
from ERA5 (https://cds.climate.copernicus.eu/datasets/
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reanalysis-era5-land-monthly-means?tab=download, last
access: 26 September 2025). The spatial resolution of this
data is sampled at 0.5°× 0.5°.

2.4 Auxiliary data

The IGBP classification scheme in MCD12Q1 of MODIS
was used to categorize China into four types: forest (tree
cover), grassland, cropland (crop), and non-vegetated areas
(non-vegetable) (Fig. S1). The image resolution was ini-
tially resampled to 0.5°× 0.5° using the majority rule. Ever-
green coniferous forest, evergreen broadleaf forest, decidu-
ous coniferous forest, deciduous broadleaf forest, mixed for-
est, woody savanna, and savanna were then combined into
a single category termed forested land. Closed shrubland,
open shrubland, grassland, and permanent wetland were col-
lectively classified as grassland. Farmland and agricultural
land (natural vegetation) were grouped together as cropland.
Urban and built-up land, permanent snow and ice, and unuti-
lized land were also categorized as non-vegetation.

We used the percent tree cover data from the Terra MODIS
vegetation continuum field (VCF) product dataset, which
provides subpixel-level estimates of global surface vegeta-
tion, as an indicator of actual tree cover to validate the ac-
curacy of models for land use change in forested land. The
spatial resolution of the tree cover data was aggregated to a
0.5°× 0.5° annual scale through mean aggregation.

This study also utilized the statistical yearbooks of each
Chinese province to assess the influence of human activ-
ities on vegetation in selected regions. For provinces pre-
dominantly characterized by grassland land use types (Tibet,
Sichuan, Qinghai, and Inner Mongolia), the intensity of graz-
ing was determined by counting the number of livestock en-
closures reported in the respective province’s statistical year-
books. In contrast, for provinces primarily featuring cropland
land use types (Henan, Heilongjiang, and Jiangsu), the ex-
tent of crop cultivation was assessed by calculating the area
dedicated to farming practices as reported in the statistical
yearbooks.

2.5 Analysis

The Theil–Sen median method was employed to determine
interannual trends in extensive time series, with significance
testing conducted via the Mann–Kendall (MK) test. The pri-
mary metric for evaluating model performance focused on
the interannual trends of LAI and GPP, as simulated by the
DGVM model at both regional and pixel scales. To spatially
evaluate the DGVM model’s performance, a t test was ex-
ecuted using a running sample size of 9, based on a 3× 3
sliding window of remotely sensed observation images.

To elucidate the mechanisms underlying the trends in an-
nual LAI and GPP changes and to address the limitations
of DGVMs, we analyzed the impacts on vegetation dynam-
ics from two perspectives: human activities and environmen-

tal drivers. This study assessed the influence of human ac-
tivities on vegetation dynamics by examining variations in
grazing intensity and crop cultivation area, both sourced di-
rectly from statistical yearbooks. Grazing intensity was cal-
culated by tallying the number of cattle and sheep confined
and then multiplying this by an empirical estimate of pas-
ture consumption per animal. To evaluate the response of
annually observed and simulated LAI to environmental fac-
tors (atmospheric CO2 concentration, precipitation, temper-
ature, and radiation) from 2003 to 2019, the multiple linear
regression equations were primarily employed to determine
the sensitivity of these observed and simulated LAI values to
environmental variables:

LAI= a×CO2+ b× pre+ c× tem+ d × rad+ ε, (1)

where LAI and CO2 are annual average LAI and carbon
dioxide concentration, respectively; pre, tem, and rad are the
annual average precipitation, temperature, and radiation, re-
spectively; a, b, c, and d are regression coefficients; and ε

is the residual error term, which is the amount of influence
of anthropogenic activities on vegetation dynamics. Both the
dependent and independent variables were normalized.

Pearson correlation coefficients were used to assess the
seasonal performance of LAI and GPP for each model at
both regional and pixel scales. Multi-year averages of ob-
served and simulated LAI and GPP, calculated from January
to December, were determined. Subsequently, their respec-
tive correlation coefficients (r) and significance (p) were
independently calculated. A positive correlation coefficient
with a p value less than 0.5 suggests that the model demon-
strates strong seasonal cycle performance. Additionally, the
site GPP data from FLUXNET were utilized to evaluate
the seasonal performance of DGVMs at various sites within
China.

Meanwhile, the cross-correlation function (CCF) was used
to analyze the correlation between monthly-scale LAI and
GPP data across all years, alongside climate factors – specif-
ically precipitation, temperature, and radiation – that may in-
fluence the seasonal dynamics of vegetation. CCF is a statis-
tical tool employed to quantify the correlation between two
time series, which reflects the correlation of one series with
another at varying time lags. In the context of climate data
analysis, CCF can detect seasonal variations by identifying
cyclical patterns and analyzing seasonal lags. Our objective
is to determine the seasonal correlation between LAI and
GPP in relation to these environmental factors and to identify
any temporal delay in the vegetation’s response to seasonal
climate changes. Additionally, we aimed to quantify the ex-
tent to which these environmental factors impact vegetation
growth and the subsequent lag effects they produce.
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3 Result

3.1 Long-term trends in LAI and GPP in China

In general, the LAI and GPP of all models exhibit an up-
ward trend, aligning with the direction of remotely sensed
observation (Fig. 1). Regarding the spatial distribution of
the observed LAI (Fig. S2 in the Supplement), most of the
area experienced an increase in LAI from 2003 to 2019, with
60.31 % of the area showing a significant upward trend and a
total of 88.11 % of the area exhibiting some level of increase.
The regions with significant increases were primarily located
in areas dominated by forested and cultivated land use types.
The increasing trend of observed LAI is 0.012 m2 m−2 yr−1,
which aligns with the trend simulated by the multi-model
ensemble (MME) (0.0094± 0.0058 m2 m−2 yr−1), suggest-
ing that the simulated LAI effectively captures the over-
all interannual trend of LAI. However, the normalized in-
terannual trend of the observed CSIF is 0.16 yr−1, which
exceeds the normalized GPP trend simulated by the MME
(0.086± 0.021 yr−1), indicating that the models may under-
estimate the actual GPP interannual trend. The spatial dis-
tribution pattern of the observed CSIF data closely mirrors
that of the observed LAI (Fig. S3 in the Supplement), with
most areas displaying an increasing trend – 66.4 % of the area
showing a significant increase and a total of 93.22 % of the
area showing some increase.

Spatially, the comparison between simulated and observed
LAI reveals that all models exhibit both overestimations and
underestimations across most regions of China (Fig. 2). In
the MME (Fig. 2a), only about one-third of the area demon-
strates strong performance in simulating LAI trends. The
normalized trend comparisons between simulated GPP and
observed CSIF mirror the performance observed with LAI
(Fig. 3). However, most models tend to underestimate GPP
over a larger area than they do LAI. Although the DLEM
model outperforms other models in simulating long-term
GPP trends, its accuracy remains constrained below 50 %
relative to observational benchmarks (Fig. 3e). Notably, the
MME underestimates GPP in more than 50 % of the area
(Fig. 3a).

Combining the results from Figs. 2 and 3, we observed
that the regions where the models overestimate or under-
estimate LAI and GPP display similar overall distribution
patterns. These patterns closely correspond with the spa-
tial distribution of vegetation and land use types in China.
To enhance the accuracy and relevance of our analysis, we
classified the study area based on these land use types.
As shown in Fig. S4 in the Supplement, the overall simu-
lated LAI and GPP trends in forested land were generally
underestimated. The LAI trend for MME in forested land
was 0.015± 0.011 m2 m−2 yr−1, and the normalized trend of
GPP was 0.13± 0.025 yr−1. These values are significantly
lower than the trend value of observed LAI in forested land
(0.027 m2 m−2 yr−1) and the normalized trend of observed

CSIF (0.16). In contrast, the trends of observed LAI in
grassland and cropland were 0.0047 and 0.086 m2 m−2 yr−1,
respectively, which fall within the margin of error of the
multi-model trend. The LAI trend values for the models in
grassland and cropland were 0.0088± 0.0066 m2 m−2 yr−1

and 0.011± 0.0072 m2 m−2 yr−1, respectively. The normal-
ized trends of observed CSIF in grassland and cropland were
0.086 and 0.13 yr−1, respectively. In grassland, the normal-
ized MME’s GPP was 0.091± 0.026 yr−1, which includes
the trend of observed CSIF within its error margin. However,
the normalized post-trend value of GPP for MME in cropland
(0.093± 0.030 yr−1) was relatively low.

Upon calculating the percentage of area misestimated for
forest land, grassland, and cropland, respectively (Fig. S5 in
the Supplement), distinct patterns of misestimation became
evident across different land use types. The models underes-
timated the LAI trend in forest land by up to 71.26 % of the
area, with overestimation occurring in less than 10 % of the
area. Conversely, for grassland, the models overestimated the
LAI trend in 60.80 % of the area, with underestimation occur-
ring in less than 10 %. In cropland, the models overestimated
the LAI trend for 20.90 % of the area and underestimated
it for 41.80 %. Overall, the models predominantly underesti-
mated the LAI trend in forest land, displayed varying degrees
of misestimation in cropland.

3.2 Long-term responses of LAI and GPP to
environmental factors

The variation in the impact of environmental factors on
vegetation LAI can be understood as a combination of the
trends in these factors and their sensitivity to LAI (Fig. 4).
Among these factors, the sensitivity of LAI to CO2 con-
centrations – both observed and simulated data – was sig-
nificantly higher compared to other environmental variables.
The annual normalized trend increase in CO2 concentration
was 0.20, markedly surpassing that of precipitation (0.035),
temperature (0.048), and light radiation (−0.036) (Figs. 4
and S6–S8 in the Supplement). Thus, when considering both
trends and sensitivities, CO2 concentration stands out as the
most dominant environmental factor driving changes in both
observed and most simulated LAI.

The study identified CO2 concentration as the most signif-
icant environmental factor influencing changes in both ob-
served and simulated LAI. A spatial comparison was con-
ducted to assess the impact of CO2 concentration on simu-
lated LAI changes versus those observed in observed LAI
(Fig. 5). The results indicated that in most models, the influ-
ence of CO2 concentration on LAI changes deviated signif-
icantly from actual observations. Even the best-performing
model, CLM5, accurately accounted for less than 40 % of
the area with accurately observed LAI changes, with large ar-
eas showing either overestimation or underestimation. These
misestimated areas displayed a consistent pattern in their
spatial distribution, mirroring the spatial trends observed in
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Figure 1. Overall annual average LAI and GPP trends in China during 2003–2019. (a) Annual trends in observed and simulated LAI.
(b) Annual trends in observed and simulated GPP. The asterisk (*) indicates the significant trend (p < 0.05). The error bar for MME is the
standard deviation of the 14 simulated trends.

Figure 2. Evaluation of the LAI trend performance of the DGVMs from 2003 to 2019 in China. A paired t test with a sample size of 9 was
conducted using a 3× 3 sliding window to determine whether the model simulated a trend that was not significantly different from the ob-
served data (good), significantly smaller than the observed data (underestimate), or significantly larger than the observed data (overestimate).
U, G, and O represent “underestimate”, “good”, and “overestimate”, respectively.
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Figure 3. Evaluation of the normalized GPP trend performance of the DGVMs from 2003 to 2019 in China. A paired t test with a sample
size of 9 was conducted using a 3× 3 sliding window to determine whether the model simulated a trend that was not significantly different
from the observed data (good), significantly smaller than the observed data (underestimate), or significantly larger than the observed data
(overestimate). U, G, and O represent “underestimate”, “good”, and “overestimate”, respectively.

the model’s overall LAI trend performance (Fig. 2), where
significant overestimation occurred in grasslands. Regarding
spatial differences in the sensitivity of observed and simu-
lated LAI to precipitation, temperature, and radiation effects
(Figs. S9–S11 in the Supplement), the models still exhibited
substantial areas of underestimated and overestimated mises-
timation for these three environmental factors. However, the
proportion of well-performing models increased compared to
those influenced by CO2 concentration. Notably, the spatial
distribution of simulated LAI changes in response to CO2
concentration closely resembled the spatial distribution of
actual LAI changes (Figs. 2 and 5).

3.3 Seasonal variations in LAI and GPP in China

Site-scale seasonal performance was validated using data
from five FLUXNET sites in China, comparing simulated

GPP with observed CSIF (Fig. S12 in the Supplement). The
results in Fig. S12 demonstrate that a significant portion of
the simulated GPP and CSIF data exhibit strong seasonal-
ity across the different sites, closely aligning with the sea-
sonal patterns observed in the GPP data from the FLUXNET
sites. The seasonal correlations between the FLUXNET sites
and the simulated GPP and CSIF exceeded the significance
threshold.

The overall seasonal correlations between simulated LAI
and GPP indicate that most models performed well in terms
of seasonal accuracy in vegetated areas (Fig. 6). With a few
exceptions, such as the DLEM model, most models demon-
strated that seasonal correlations with observed LAI ex-
ceeded the threshold, indicating significant seasonal perfor-
mance. Additionally, all models showed exceptionally high
seasonal correlations between GPP and CSIF, surpassing the
threshold. In summary, the models effectively capture the
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Figure 4. The long-term response of observed and simulated annual mean LAI to CO2, precipitation, temperature, and radiation over
different land use types during 2003–2019 in China. (a–d) The sensitivity of response of annual mean observed and simulated LAI to the
four environmental factors, respectively. (e) The annual mean normalized trends of the four environmental factors. The asterisk (*) indicates
the significant sensitivity or significant trend (p < 0.05) for environmental factors.

seasonal performance of both LAI and GPP, whether con-
sidered globally or across different land use types.

Spatially, most areas exhibited good to very good seasonal
performance for LAI and GPP across most models (Figs. 7
and 8). Specifically, the percentage of areas with good sea-
sonal performance for LAI in MME was 95.60 %, while for

GPP it was 88.58 %. When analyzing land use type classi-
fication in China, regions exhibiting weak seasonal perfor-
mance (i.e., p > 0.05) in LAI and GPP were predominantly
found in non-vegetated areas. Therefore, among vegetated
regions, the seasonal accuracy of simulated LAI and GPP
across China is remarkably high.
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Figure 5. Spatial distribution of sensitivity differences between the effects of CO2 concentration on observed and simulated LAI in China.
A paired t tests with a sample size of 9 was conducted using a 3× 3 sliding window to determine whether the effect of CO2 concentration
on the amount of simulated LAI change was not significantly different from the effect on the amount of observed LAI change (good), was
significantly smaller than the observed data (underestimate), or was significantly larger than the observed data (overestimate). U, G, and O
represent “underestimate”, “good”, and “overestimate”, respectively.

3.4 Seasonal responses of LAI and GPP to climate
factors

The CCF analysis revealed statistically significant correla-
tions between observed and simulated LAI and key climatic
variables – precipitation, temperature, and solar radiation
(Figs. 9–11). Similarly, the CCF correlations with all simu-
lated GPP are also very high, except for the DLEM. The cor-
relation coefficients of these models with climate factors all
surpass the threshold of significance. Specifically, the CCF
seasonal correlations of observed and simulated LAI and
GPP with precipitation and temperature slightly surpassed
those with radiation. Additionally, the lagged effects of pre-
cipitation and temperature were not as pronounced as radi-
ation on LAI and GPP growth promotion. Specifically, the
CCF correlations of observed LAI with precipitation and

temperature were 0.96 and 0.95, as the correlations of ob-
served CSIF were 0.95 and 0.94, respectively. These val-
ues were marginally higher than the CCF correlations of ob-
served LAI and CSIF with radiation, at 0.90 and 0.89. In con-
trast, the CCF correlations of simulated LAI for MME with
precipitation, temperature, and radiation were 0.94, 0.97, and
0.94, while those of simulated GPP with the three climate
factors were 0.95, 0.99, and 0.96, respectively. This implies
that the simulated LAI and GPP may overestimate the sea-
sonal response to climatic factors. However, in non-vegetated
areas, the CCF correlations of observed CSIF with all three
environmental factors were lower, with coefficients of 0.76,
0.70, and 0.65 for precipitation, radiation, and temperature,
respectively. Nonetheless, the CCF correlations of the simu-
lated GPP with the three climate factors remained very high
for the MME, showing coefficients of 0.88, 0.94, and 0.95 for
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Figure 6. The overall seasonal correlation between observed and simulated in China. (a) The seasonal correlation of simulated LAI with
observed LAI over different land use types. (b) The seasonal correlation of simulated GPP with observed CSIF over different land use types.
The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line indicate that
the model can capture the seasonality of MODIS LAI or CSIF in phase.

precipitation, radiation, and temperature, respectively. Al-
though the high CCF intercorrelations between seasonal sim-
ulated LAI and climate factors are evident, the models gen-
erally captured the lagged effects of these factors on LAI for
periods 1–2 months longer than observed in remotely sensed
data, except for radiation. This time lag is more pronounced
in the simulated LAI response compared to actual observa-
tions, particularly when compared to the simulated GPP re-
sponse.

4 Discussion

In this study, our findings revealed discrepancies in simulat-
ing trends in LAI and GPP, highlighting the limitations of
DGVMs in China. Specifically, the models tended to under-
estimate LAI and GPP in forested areas, overestimate them
in grassland regions, and exhibit inaccuracies in agricultural
zones. A likely contributing factor to these discrepancies is
the models’ overestimation of the sensitivity of LAI and GPP
to elevated CO2 concentrations in China. Despite these chal-
lenges, the models demonstrated a solid capacity to capture
the seasonal variations of LAI and GPP. This ability is likely
due to their effective representation of vegetation responses
to seasonal climatic factors. Numerous studies have shown
that vegetation dynamics are shaped by a complex interaction
of factors, with human activities and climate change playing
significant roles (Li et al., 2021; Liu et al., 2022; Ge et al.,
2021). The capacity of these models to accurately simulate
the effects of both natural and human influences on vegeta-
tion dynamics is critical to their overall effectiveness.

4.1 The environmental drivers of long-term changes in
vegetation dynamics and photosynthetic capacity

Increasing concentrations of CO2, climate change, nitrogen
deposition, and land use collectively shape long-term veg-
etation greening trends (Piao et al., 2013; Li et al., 2024).
Our study indicates a significant misestimation of trends in
simulated LAI and GPP at both pixel and regional scales in
China (Figs. 1–3). Overall, the observed LAI trends demon-
strate reasonable consistency with model simulations within
uncertainty bounds (Fig. 1a), indicating that current DGVM
frameworks can effectively capture the overall trend of veg-
etation dynamics. However, the overall agreement contrasts
with substantial spatial discrepancies in trend misestimation,
as evidenced by pronounced spatial misestimations in China
(Fig. 2). The primary reason for these inaccuracies in sim-
ulated LAI and GPP trends at pixel scale appears to be the
limited ability of DGVMs to capture vegetation responses
to elevated CO2 concentrations (Figs. 4 and 5). This aligns
with previous findings that underscore the significant role
of CO2 fertilization in global vegetation changes (Zhu et
al., 2016; Piao et al., 2020). Differences between observed
and simulated LAI trends reveal a spatial pattern similar to
those seen in the disparities between observed and simu-
lated LAI responses to CO2 concentration, indicating that
misestimation of simulated LAI trends likely stems from the
model’s inadequate representation of LAI response to CO2
variations (Figs. 2 and 5). Besides, the model’s representa-
tion of LAI response to climate change appears to have a
minor effect on trend accuracy, which is less critical than
the response to CO2 (Figs. 4 and 5, Figs. S9–S11). On the
other hand, the spatial patterns of dominant environmental
and anthropogenic drivers affecting observed LAI responses
differ markedly from those affecting simulated responses
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Figure 7. Spatial distribution of Pearson correlations of the seasonality of observed and simulated LAI during 2003–2019 in China. Pearson
correlations were conducted using a 3× 3 sliding window to determine whether simulated seasonal LAI was highly significantly correlated
(p ≤ 0.01) with observed data (very good), significantly correlated (p ≤ 0.05) with observed data (good), or not significantly correlated
(p > 0.05) with observed data (bad). B, G, and VG represent “bad”, “good”, and “very good”, respectively.

(Fig. S13 in the Supplement). In particular, the areas where
dominant drivers in the model diverge from actual drivers
are prominent in southeastern and south-central forested re-
gions, northern and western grasslands, and northern crop ar-
eas in China (Fig. S13a and b). For example, in south-central
and southeastern forests, the model suggests that temperature
is the primary driver of LAI trends, whereas CO2 and an-
thropogenic factors are the actual dominant influences. Con-
versely, in northern and western grasslands, the model em-
phasizes CO2 dominance, while precipitation is, in reality,
the primary driver. These discrepancies partly explain the
model’s underestimation of LAI response to CO2 in southern
forested areas and its overestimation in northern grasslands
(Fig. 5). Parameterization and model structure are fundamen-
tal for ecosystem models to generate realistic projections,
playing a critical role in their accuracy (Luo et al., 2016).
On the one hand, due to the complexity of physiological pro-

cesses and environmental interactions in ecosystems, model
accuracy is highly sensitive to parameterization. However,
DGVMs often simplify these interactions, using empirical
functions to model leaf-level photosynthetic processes – such
as CO2 partial pressure, carboxylation, and electron transport
(Reich et al., 2014; Wang et al., 2017). This approach can re-
sult in modeled stomatal conductance responses to environ-
mental factors that deviate from observed reality, particularly
during the light reaction phase (Buckley, 2017; Mcdermid
et al., 2021). Simulating stomatal conductance under vary-
ing conditions (temperature, moisture, vapor pressure, and
light radiation) on a global scale is challenging, as models
typically rely on a single temperature response curve, which
fails to capture ecosystem variability (Powell et al., 2013;
Trugman et al., 2018; Lin et al., 2015). Furthermore, the
species-specific sensitivity of stomatal conductance to CO2
is often overlooked, limiting the model’s ability to reflect di-
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Figure 8. Spatial distribution of Pearson correlations of the seasonality of observed and simulated GPP during 2003–2019 in China. Pearson
correlations were conducted using a 3× 3 sliding window to determine whether simulated seasonal GPP was highly significantly correlated
(p ≤ 0.01) with observed data (very good), significantly correlated (p ≤ 0.05) with observed data (good), or not significantly correlated
(p > 0.05) with observed data (bad). B, G, and VG represent “bad”, “good”, and “very good”, respectively.

verse physiological responses (Buckley, 2017). DGVMs gen-
erally employ PFTs to simulate vegetation responses to envi-
ronmental changes (Rogers et al., 2017), but PFTs simplify
plant functional and adaptive traits, reducing the accuracy of
physiological responses under climate change (Rogers et al.,
2014). Given substantial interspecies differences in photo-
synthetic and water-use efficiencies, a single PFT approach is
insufficient to represent the varied responses of diverse plant
types to environmental shifts (Rezende et al., 2016; Rogers
et al., 2014).

On the other hand, model behavior is also shaped by
equations representing real-world processes, which affect the
model’s capacity to simulate system functions accurately
(Luo et al., 2016). Studies show that current models fail to
capture nitrogen and phosphorus limitations on CO2 fertil-
ization effects (Terrer et al., 2019). Nutrient limitations, par-
ticularly of nitrogen and phosphorus, can lead to reduced Ru-

bisco – an essential, nitrogen-rich enzyme in photosynthesis
– which, in turn, downregulates photosynthetic capacity and
decreases CO2 assimilation by vegetation (Ainsworth and
Rogers, 2007; Long et al., 2004; Terrer et al., 2016, 2018).
DGVM assumptions of C–N and C–P coupling are thus in-
adequate. While plants employ various symbiotic strategies
to mitigate nitrogen limitation, DGVMs often overlook these
mechanisms (Sulman et al., 2019). Additionally, evidence
from phosphorus-limited ecosystems suggests that elevated
CO2 may aid plants in acquiring or mineralizing phospho-
rus (Nazeri et al., 2013). However, models generally assume
a relatively closed phosphorus cycle, and the fundamental
dynamics of vegetation under phosphorus limitation remain
poorly understood, introducing uncertainty in C–P coupling
(Medlyn et al., 2016).
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Figure 9. The overall CCF of observed and simulated data with precipitation. (a, b) The maximum CCF correlation between observed and
simulated LAI and GPP and precipitation. (c, d) The lags between observed and simulated data corresponding to precipitation. The red line
indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line indicate that the LAI or
GPP can capture the seasonality of the climate factor in phase.

4.2 Impacts of human activities on vegetation dynamics

While linear models are useful for analyzing the contribu-
tion of environmental factors to long-term vegetation trends,
determining the impact of human activities on vegetation dy-
namics remains a subject of debate in previous studies (Ge
et al., 2021; Liu et al., 2022). This uncertainty arises from
the complexity of human activities and the diverse condi-
tions across different study areas (Liang et al., 2023). In
China, specific human activities, such as enhancing the pro-
ductivity of cropland and implementing reforestation poli-
cies, have been shown to significantly enhance vegetation
growth (Zhang et al., 2000). Conversely, urbanization and
other similar human activities have been found to have a con-
siderable negative effect on vegetation growth (Wang et al.,
2022b; Lin et al., 2019; Jiang et al., 2022). To quantify the
effects of land use changes driven by human activities, two
sets of scenarios were applied in DGVMs, where the S3 sce-
nario applies historical changes in land use, and the other
S2 scenario applies a time-invariant pre-industrial land cover
distribution. By difference of the two scenarios, the dynamic
evolution of vegetation in response to land use change can be
quantified (Friedlingstein et al., 2022b).

In this study, we analyzed the trends of grazing intensity
and crop acreage in provinces predominantly characterized
by grassland and cropland. This analysis was conducted by
examining the number of livestock and crop acreage from
the respective provinces’ statistical yearbooks. Additionally,
tree cover data are utilized to represent actual regional trends
in forested land, allowing us to assess the model’s abil-
ity to capture the effects of human activities on LAI. The
S3–S2 scenario was employed to evaluate the influence of
land use change on vegetation LAI and GPP as perceived
by the DGVM model (Fig. S14 in the Supplement). Over-
all, the model did not show a significant effect of land use
change on LAI in forested land and grassland areas within
the MME. Spatially, most simulated LAI and GPP trends ex-
hibited similar patterns under the S3–S2 scenario (Figs. S15
and S16 in the Supplement), with most of the area show-
ing insignificant changes (72.47 % and 87.31 % of the area
showed insignificant changes in LAI and GPP, respectively).
In terms of tree cover change data (Fig. S17 in the Supple-
ment), there was a significant increase in tree cover in the
southern and northeastern regions of China, with 80.60 % of
the area experiencing growth and 31.54 % showing signifi-
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Figure 10. The overall CCF of observed and simulated data with radiation. (a, b) The maximum CCF correlation between observed and
simulated LAI and GPP and radiation. (c, d) The lags between observed and simulated data corresponding to radiation. The red line indicates
the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line indicate that the LAI or GPP can
capture the seasonality of the climate factor in phase.

cant growth. Tree cover increased across all land use types
in China, with the highest annual growth rate (0.417) occur-
ring in forested land (Fig. S17). Data on grazing intensity and
cropped area were obtained from the statistical yearbook for
grassland and cropland, respectively, and trends in grazing
intensity or cropped area were compared with trends in nor-
malized LAI from the model’s S3–S2 scenario (Fig. S18 in
the Supplement). The results indicated that the model’s rep-
resentation of LAI changes due to land use change was inade-
quate in several provinces dominated by cropland and grass-
land. For instance, the model’s normalized LAI trend does
not accurately reflect the actual anthropogenic changes on
vegetation LAI in the Inner Mongolia (IM) province, where
the changes were insignificant. In Qinghai (QH), Tibet (TI),
Sichuan (SC), Heilongjiang (HLJ), and Hunan (HN), the di-
rection of the LAI trend in the model’s S3–S2 scenario con-
tradicts the direction of anthropogenic effects on vegetation
LAI. Consequently, the model fails to adequately capture the
intensity or direction of anthropogenic impacts on vegetation
LAI.

Although DGVMs can dynamically adjust to imposed land
use change, there are substantial limitations for models to

respond to land use changes, which struggle to ensure the
quality of input data and incorporate land management prac-
tices and accurately simulate ecosystem responses to change.
In the TRENDY project, most of DGVMs use the HYDE
and LUH2 databases for LULCC data input variables (Klein
Goldewijk et al., 2017; Hurtt et al., 2020; Sitch et al., 2024).
However, absolute agreement with all observations remains
unattainable for any global product. While these LULCC
datasets are common across models, their implementation
varies according to the land use processes and functional-
ities inherent to individual DGVMs. In this study, we em-
ploy Table 1 to describe differences in the performance of
individual DGVMs, which were adapted from Sitch et al.
(2024). Meanwhile, the historical land use estimates within
the datasets exhibit regional variations and limitations of spa-
tial resolution accuracy, which may result in inaccurate simu-
lations of responses to land use changes due to discrepancies
in the data (Prestele et al., 2016). The globally applicable
gridded dataset necessitates simplifications of patterns and
historical trends in deforestation, cropland, and pasture man-
agement, yet these simplifications inherently introduce un-
certainties (Prestele et al., 2016; Arneth et al., 2017). These
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Figure 11. The overall CCF of observed and simulated data with temperature. (a, b) The maximum CCF correlation between observed and
simulated LAI and GPP and temperature. (c, d) The lags between observed and simulated data corresponding to temperature. The red line
indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line indicate that the LAI or
GPP can capture the seasonality of the climate factor in phase.

limitations may contribute to the model’s inadequate repre-
sentation of anthropogenic factors affecting regional vege-
tation LAI and GPP trends in China, as the models strug-
gle to accurately capture the impacts of human activities on
forested land, grassland, and cropland.

4.3 Challenges of individual DGVMs for plant physiology

Our analysis highlights several critical limitations in the cur-
rent DGVMs regarding their ability to accurately represent
vegetation responses to environmental drivers and anthro-
pogenic changes. These limitations arise primarily from dif-
ferences in how individual DGVMs parameterize and simu-
late critical ecological and physiological processes. For ex-
ample, Teckentrup et al. (2021) demonstrated significant di-
vergences among DGVMs, particularly in their approaches
to modeling responses to elevated atmospheric CO2 con-
centrations and nutrient cycle. Among these physiological
processes, plant carbon assimilation mechanisms such as
stomatal conductance and maximum carboxylation veloc-
ity (Vcmax) play pivotal roles. Previous studies found that
stomatal functioning and Vcmax are related to elevated at-

mospheric CO2 and photosynthesis acclimation, potentially
impacting the estimation of vegetation dynamics in DGVMs
(Rezende et al., 2016). Many DGVMs currently simplify or
inadequately represent these physiological processes. For in-
stance, several DGVMs estimate Vcmax at the canopy scale
rather than the physiologically more appropriate leaf scale,
leading to systematic underestimations. Furthermore, nutri-
ent cycling modules integrated into DGVMs often reduce
the sensitivity of vegetation growth to elevated CO2 concen-
trations (Smith et al., 2014; Zaehle, 2013; Meyerholt et al.,
2020). Collectively, these simplifications constitute structural
deficiencies that substantially affect DGVM accuracy. To
elucidate mechanistic discrepancies in vegetation trend simu-
lations, we synthesize findings from prior studies to summa-
rize the operational frameworks of 14 models across six criti-
cal parameters: the presence of stomatal conductance, Vcmax-
related leaf nitrogen content, dynamic natural PFT coverage,
and nutrient cycle (Teckentrup et al., 2021; Rezende et al.,
2016; Lian et al., 2021; Friedlingstein et al., 2022a; Sitch et
al., 2024). A systematic comparison of these parameteriza-
tions is presented in Table 2.
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Table 1. DGVMs and their main processes relevant to LULCC
emissions.

Model Fire Wood Shifting cultivation/ Crop
harvest subgrid transitions harvest

CABLE N Y Y Y
CLASSIC Y N N Y
CLM5.0 Y Y Y Y
DLEM N Y N Y
IBIS Y Y N Y
ISAM N Y N Y
ISBA Y Y Y Y
JULES Y N N Y
LPJ-GUESS Y Y Y Y
LPX Y Y N Y
OCN N Y N Y
ORCHIDEEv3 N Y N Y
SDGVM Y N N Y
VISIT Y Y Y Y

Our results clearly indicate that no single DGVM among
the evaluated 14 consistently performs well across all as-
pects of vegetation dynamics (e.g., trend vs. seasonal varia-
tions, LAI vs. GPP) throughout China (Figs. 2 and 3, Figs. 7
and 8). For example, while DLEM performs relatively better
in capturing regional GPP trends in certain locations, its suc-
cessful performance is spatially limited (covering less than
50 % of the study area) and remains poor in capturing LAI
trends (Figs. 2e and 3e). Similar discrepancies exist for other
models regarding their ability to simulate different vegeta-
tion variables. Thus, we emphasize the effectiveness and im-
portance of utilizing MME approaches, which collectively
capture model strengths and weaknesses, thereby providing
more robust and comprehensive assessments.

4.4 Climatic factors influencing the seasonal
performance of the DGVM

In contrast to the vegetation trend, the models simulate the
seasonal cycle of LAI and GPP excellently both overall and
spatially (Figs. 6–8). The simulated GPP also demonstrates
high seasonal cycle correlations with observed GPP in sites
(Fig. S12). Seasonal variations in precipitation, radiation,
and temperature play a crucial role in influencing the sea-
sonal dynamics of vegetation (Hou et al., 2022; Duan et al.,
2022; Wu et al., 2015). While temperature is often considered
the primary factor controlling plant phenology, the complex
interactions between temperature and other climatic factors
cannot be overlooked (Flynn and Wolkovich, 2018). Radia-
tion works in concert with temperature to regulate the tim-
ing of defoliation, meet vegetation growth thresholds, and
influence phenological events (Flynn and Wolkovich, 2018;
Chuine, 2010), while precipitation affects plant phenology
primarily through its indirect influence on the thermal re-
quirements of these events (Fu et al., 2014). The findings that
observed LAI and CSIF exhibit similar seasonal fluctuations

in response to the three key climate factors suggest that the
model may effectively capture the response to seasonality of
vegetation in China (Figs. S19 and S20 in the Supplement).
In this paper, we verified the seasonal cyclic correlation of
simulated LAI and GPP with climate factors through CCF
(Figs. 9–11) and demonstrated that the simulated LAI and
GPP are equipped with realistic seasonal cycles due to the
simulated vegetation’s ability to respond to cyclic climatic
variations affecting its seasonality. Given that the Farquhar
model and its variants, which underpin the photosynthesis
module of the DGVM, provide a detailed and unified under-
standing of photosynthesis (Farquhar et al., 1980), DGVMs
are capable of reasonably simulating dynamics of photosyn-
thesis and vegetation change (Zhao et al., 2022). To fur-
ther improve simulation accuracy, researchers have devel-
oped more mechanistic models that account for vegetation
growth influenced by seasonal climate variations (Piao et al.,
2019).

Moreover, we observed that the simulated LAI response
to seasonal climate factors typically lags behind the simu-
lated GPP response, which aligns with the analysis by Zhao
et al. (2022). This discrepancy arises because the model sim-
ulates carbon allocation to canopy structure in response to
seasonal climate changes more slowly than what occurs in
reality (Du et al., 2020). As with the above research, studies
on peak seasonal values and phenological greening dynam-
ics hold significant research importance, and future work will
strengthen research efforts in this thematic area.

4.5 Uncertainties of the observed LAI in China

Remotely sensed observations used in the study might be
compromised by various factors such as atmospheric distur-
bances and sensor errors, leading to noise, blurring, and dis-
tortion. Even with the use of the latest reprocessed MODIS
LAI data and advanced spatiotemporal filtering techniques, it
is impossible to completely eliminate the potential impacts of
cloud cover, aerosol pollution, and sensor degradation (Yuan
et al., 2011; Zou et al., 2023). These limitations mean that
satellite-based estimates may inherently underpredict values,
requiring careful consideration when comparing model data
to ensure appropriate metrics and accurate site-based com-
parisons for model evaluation (De Kauwe et al., 2016). The
quality of the MODIS LAI data used in this study is partic-
ularly low in non-vegetated areas but significantly better in
vegetated regions (Fig. S21 in the Supplement). Additionally,
in northern China, pixel quality is severely affected from De-
cember to February due to snow accumulation and other fac-
tors. Consequently, the pixel quality of the remotely sensed
observations themselves represents the primary source of un-
certainty in the experiments conducted in this study.
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Table 2. DGVMs and their main processes of plant physiology.

Model Stomatal conductance Vcmax-related leaf nitrogen content Dynamic natural N cycle P cycle
PFT coverage

CABLE – Coupled with leaf N–P ratio N Y N
CLASSIC Ball et al. (1987) Leaf N content determines Vcmax Y N N
CLM5.0 Medlyn et al. (2012) Leaf N optimization model Y Y –
DLEM – – N Y N
IBIS Collatz et al. (1991) – Y N N
ISAM – – N Y N
ISBA – – Y Y N
JULES Collatz et al. (1991) Linearly related to leaf N Y Y N
LPJ-GUESS Haxeltine and Prentice (1996) Vcmax varies with foliage N

concentration and specific leaf area
Y Y N

LPX Ball et al. (1987) Vcmax related to leaf N Y Y N
OCN Ball et al. (1987) Leaf N content determines Vcmax N Y N
ORCHIDEEv3 Ball et al. (1987) Vcmax is prescribed N Y N
SDGVM Ball et al. (1987) Leaf N content determines Vcmax Y Y N
VISIT – – Y N N

5 Conclusion

This study evaluated the long-term trends and seasonality
performance in LAI and GPP in DGVMs in China from 2003
to 2019. Overall, DGVMs struggled to accurately capture the
trends of simulated LAI and GPP in the region, though they
effectively captured their seasonality. While the overall trend
of simulated LAI was reasonably represented, the trend of
simulated GPP was not. Spatially, both simulated LAI and
GPP trends exhibited similar inaccuracies, with notable mis-
estimations. The distribution of these over- and underesti-
mations in simulated LAI trends was closely linked to land
use type: the models tended to underestimate LAI and GPP
trends in forested areas, overestimate them in grasslands, and
misestimate them in croplands. Despite these issues, the sea-
sonal variations of simulated LAI and GPP were consistent
with both measurements and remotely sensed observations,
demonstrating a strong alignment in capturing seasonal fluc-
tuations.

To elucidate the reasons for the inability of DGVMs to
simulate LAI trends accurately and the good performance
in seasonal variations of simulated LAI and GPP, we an-
alyzed the model’s shortcomings in responding to environ-
mental and anthropogenic changes, as well as its correlation
with seasonal climate factors and lagged effects. The findings
indicate the following. (1) With regard to environmental fac-
tors, the simulated LAI and GPP exhibited an inadequate sen-
sitivity in response to changes in environmental conditions,
particularly to CO2 concentrations. Furthermore, the failure
to capture the impacts of human activities on vegetation dy-
namics is likely due to limitations in input land use data
and the oversimplified representation of land management
and land use change in DGVMs. Overall, the insufficient re-
sponse of the simulated LAI and GPP to CO2 fertilization

effects is the primary factor contributing to the model’s mis-
estimation of LAI and GPP trends in China. (2) The accurate
capture of seasonal variations in simulated LAI and GPP in
response to climate factors strongly supports the reliability
of DGVMs in modeling seasonal fluctuations in China.
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