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Abstract. We provide a reduced complexity climate model (RCM) evaluation of how the IPCC WGI Sixth
Assessment Report (AR6) updates to the time series of the future atmospheric concentrations of greenhouse
gases (GHGs), the effective radiative forcing (ERF) of GHGs, and the ERF of tropospheric aerosols (ERFAgRr)
affect attributable anthropogenic warming rate, climate sensitivity, and the likelihood of achieving either the
target (1.5 °C) or upper limit (2 °C) global warming thresholds of the Paris Agreement (PA). This evaluation is
conducted for four selected Shared Socioeconomic Pathway (SSP) scenarios: SSP1-1.9, SSP1-2.6, SSP4-3.4,
and SSP2-4.5. Throughout, we compare and contrast these AR6 updates to the state of knowledge that existed
prior to the publication of AR6, and provide data-driven probabilistic model simulations based on an evaluation
of the impact in the uncertainty of ERFagr and climate feedback. Our most important findings are that the
modeled rate of human-induced warming between 1975 and 2014 is 0.18 (0.13 to 0.21) °C per decade within the
ARG framework (range reflects the Sth and 95th percentiles), which is considerably lower than values found by
many Earth system models (ESMs) that participated in Phase 6 of the Coupled Model Intercomparison Project
(CMIP6). Effective climate sensitivity (EffCS) inferred from the historical global mean surface temperature
(GMST) record was found to be 2.29 (1.54 to 3.11) °C using the ERF datasets from AR6 as model inputs. Upon
adoption of the ARG best estimate for the pattern effect (that is, 0.5 Wm™2°C~!), we find values for equilibrium
climate sensitivity (ECS) of 3.24 (1.92 to 5.15) °C, which is quite similar to the AR6 assessment of 3.0 (2.0 to
5.0) °C for ECS. The hallmark of our RCM is the ability to conduct large (here, 160000 member) ensemble
forecasts of global warming. These calculations show that AR6 updates to the ERF of GHGs and aerosols result
in a considerable decline in the likelihood of limiting warming to either 1.5 or 2 °C of the PA, compared to
prior knowledge, for the same future emissions scenarios of GHGs. The likelihood of limiting global warming
to 2.0 °C by the end of the century is found to be 100 %, 85 %, 40 %, and 8 % for the SSP1-1.9, SSP1-2.6,
SSP4-3.4, and SSP2-4.5 scenarios, respectively, based on the AR6 ERF datasets. Similarly, the ensembles run
using the AR6 updates yield likelihoods of 70 %, 32 %, 3 %, and 0 % of limiting warming to 1.5 °C by the end
of the century for the same four SSPs. For society to have high confidence in achieving at least the upper limit
of 2 °C warming of the PA, the radiative forcing of climate due to GHGs must be placed close to the SSP1-2.6
pathway over the coming decades.
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1 Introduction

Reduced complexity models (RCMs) that compute the re-
sponse of the global mean surface temperature (GMST) to
a prescribed radiative forcing (RF) due to anthropogenic
greenhouse gases (GHGs) and tropospheric aerosols are be-
coming increasingly important for evaluating important cli-
mate metrics, such as the likelihood of limiting global warm-
ing to either the target (1.5 °C) or upper limit (2.0 °C) of the
Paris Agreement (PA) (Hope et al., 2017; McBride et al.,
2021; Smith et al., 2018a; Nicholls et al., 2020, 2021). There
are various types of RCMs, including some with interactive
carbon cycles capable of computing atmospheric concentra-
tions of CO, and CH4 from emissions (Meinshausen et al.,
2020; Nicholls et al., 2020, 2021). Typically, RCMs represent
the global mean energy balance between the atmosphere and
the world’s oceans on either a monthly or annual timescale,
using various types of parameterizations that provide signifi-
cant computational efficiency compared to three-dimensional
Earth system models (ESMs) (Nicholls et al., 2020, 2021).
The computational efficiency of RCMs allows for the impact
on GMST to be quantified for ensembles with hundreds of
thousands of combinations for the RF due to GHGs, aerosols,
and climate feedback. Of course, ESMs are essential for pro-
viding comprehensive simulations of the changes in the cli-
mate system in response to rising anthropogenic RF, such as
the spatial distribution of warming, which is a key indica-
tor for the impacts of climate change on local communities
(Eyring et al., 2016). Furthermore, ESMs provide a more so-
phisticated treatment of atmospheric and oceanic interactions
than is possible to achieve with RCMs (Nicholls et al., 2020,
2021).

We use a multiple linear regression (MLR) energy balance
model, termed the Empirical Model of Global Climate (EM-
GC) (Canty et al., 2013; Mascioli et al., 2012; Hope et al.,
2017; McBride et al., 2021), to provide data-driven, prob-
abilistic forecasts of GMST. The model is constrained by
the Hadley Centre Climatic Research Unit version 5 (Had-
CRUTYS) record for GMST over 1850-2019 (Morice et al.,
2021), as described by McBride et al. (2021). In the McBride
et al. (2021) paper, their projections of GMST were based on
the time series for the atmospheric concentration of GHGs
and the RF of tropospheric aerosols from Shared Socioe-
conomic Pathway (SSP) scenarios published in between the
time of the fifth (ARS5) Working Group 1 (WGI) Intergov-
ernmental Panel on Climate Change (IPCC) report (IPCC,
2013) and the sixth (AR6) WG1 IPCC report IPCC, 2021c).
We had used formulations for the RF of GHGs from ARS
in McBride et al. (2021). Here, we rely upon formulations
for the RF of GHGs given in AR6, which as detailed in
Sect. 2.1.2 differ from the earlier formulations due to several
new considerations within AR6. Similarly, we rely on up-
dated time series of the atmospheric concentrations of GHGs
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given in ARG for four selected SSP scenarios (that is, SSP1-
1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5), which also dif-
fer from the pre-ARG6 time series of GHGs due to the use
of an updated model to compute atmospheric concentrations
from prescribed emissions (Sect. 2.1.1). Finally, we use the
ARG6 update for the RF due to tropospheric aerosols, which
also differs considerably from the ARS5-based values used by
McBride et al. (2021) (Sect. 2.1.3). The projections of GMST
shown throughout this paper are motivated by quantifying
the likelihood of achieving either the target (1.5 °C) or up-
per limit (2.0 °C) of global warming under the PA for various
assumptions regarding GHGs and aerosols.

Section 2 provides a brief overview of the EM—GC model.
Section 3 describes the simulations of GMST, the attributable
anthropogenic warming rate, climate sensitivity and global
warming projections found using our reduced complexity
model. Throughout, we focus on comparing results found us-
ing the model inputs of McBride et al. (2021) (that is, the
pre-ARG6 estimates termed “Baseline simulations™) with re-
sults found using the AR6 values of the model inputs. We
show that considerable differences are found for the end-of-
century GMST and the probability of achieving either the
target (1.5 °C) or upper limit (2.0 °C) of the Paris Agreement,
between the Baseline and the AR6 values for model inputs,
despite the fact that, for any given SSP scenario, both formu-
lations are based on the same time series of GHG emissions
(Sect. 3.2). We conclude by comparing our GMST projec-
tions to output from ESMs that participated in Phase 6 of the
Coupled Model Intercomparison Project (CMIP6) (Eyring
et al., 2016). A brief set of concluding remarks is given in
Sect. 4.

2 Data and methods

Our EM-GC is designed to quantify the influence of a variety
of anthropogenic and natural influences on GMST, using a
MLR energy balance approach. The anthropogenic contribu-
tion to GMST is simulated by the energy balance component
of the model from the radiative forcing due to GHGs, tro-
pospheric aerosols, and land use change (LUC), while also
accounting for the export of heat from the atmosphere to the
world’s oceans (ocean heat export or OHE). The MLR com-
ponent of the model is responsible for quantifying the influ-
ence of various natural factors on the GMST in a manner
similar to other MLR-based analyses of the climate system
(Lean and Rind, 2008, 2009; Foster and Rahmstorf, 2011;
Zhou and Tung, 2013). Natural factors include increases in
stratospheric aerosols due to major volcanic eruptions, the
approximate 11-year variation in total solar irradiance (TSI),
as well as interactions between the ocean and the atmo-
sphere due to the El Nifio—Southern Oscillation (ENSO), the
Atlantic Meridional Overturning Circulation (AMOC), the
Pacific Decadal Oscillation (PDO), and the Indian Ocean
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Table 1. Data sources for the Baseline and AR6 framework simulations.

Model component Baseline framework ARG framework
CO,, CHy, and N>,O SSP database?, last updated December 2018 Annex III of AR6
concentrations
GHG RF formulae Table 8.SM.1, AR5 Table 7.SM.1, AR6
Chlorinated and brominated Concentrations and radiative efficiencies from Annex III of AR6
halocarbons RF Table 6-4 and Table A-1 of WMO (2018),

respectively
Hydrofluorocarbons, Concentrations and radiative efficiencies from the Annex III of AR6
perfluorocarbons, and sulfur SSP database and Table A-1 of WMO (2018),
hexafluoride RF respectively
Tropospheric O3 RF RCPP database Annex III of AR6

(Meinshausen et al., 2011c¢)

Tropospheric aerosol RF
aerosol RF (Sect. 2.1.3)

SSP database tied to the ARS best estimate of

Annex III of ARG, tied to the ARG6 best
estimate of aerosol RF (Sect. 2.1.3)

4 SSP database: https:/tntcat.iiasa.ac.at/SspDb/dsd (last access: 17 February 2020). bRCP: Representative Concentration Pathways.

Dipole (IOD). The reader is directed towards Sect. 2.1 of
McBride et al. (2021) for a more complete description of the
model, as well as the governing equations.

Here, we examine four policy-relevant SSP scenarios:
SSP1-1.9, SSP1-2.6, SSP2-4.5, and SSP4-3.4 from Tier 1
and Tier 2 of the ScenarioMIP protocol (O’Neill et al., 2016).
These were chosen because SSP2—4.5 is the SSP scenario
most consistent with recent trends in the anthropogenic emis-
sions of GHGs and aerosols (Meinshausen et al., 2024),
while the other three SSPs we have chosen all offer more
aggressive means for climate mitigation than the SSP2—4.5
scenario. The second number in the name of the SSP scenario
is the target RF at the end of the century (W m~2), commonly
referred to as the “nameplate RF” (O’Neill et al., 2014). We
show model results for two frameworks: a Baseline that rep-
resents the state of knowledge prior to AR6 and one that is
based on data given in Chap. 7 and Annex III of AR6 (Forster
et al., 2021; IPCC, 2021b; Smith et al., 2021a, b).

2.1 Model inputs

Table 1 provides an overview of the source of model inputs
for GHG concentrations, the formulae for computing RF due
to GHGs, and the RF of tropospheric aerosols in the Baseline
and ARG6 frameworks. The remainder of this section provides
details on various components of this table.

2.1.1 Atmospheric concentrations of greenhouse gases

The EM-GC uses prescribed abundances of GHGs, includ-
ing CO,, CH4, N>O, tropospheric O3, chlorinated and/or
brominated ozone depleting substances, as well as hydroflu-
orocarbons, perfluorocarbons, and sulfur hexafluoride, as de-
scribed in Sect. 2.2.3 of McBride et al. (2021). Here, we fo-
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cus on describing changes in the atmospheric abundances of
CO,, CHy4, and N, O that occurred within four SSP scenarios,
before and after the publication of ARG, since this change
drives the differences central to this study.

Before and after publication of AR6, the atmospheric
concentrations of GHGs were computed by other groups
using the Model for the Assessment of Greenhouse Gas
Induced Climate Change (MAGICC) RCM (Meinshausen
et al., 2011a,b, 2020). These times series rely on emissions
data from various integrated assessment models (IAMs), as
described by Riahi et al. (2017). The Baseline (that is, pre-
ARG6) projections, which we obtained from the SSP database
(Riahi et al., 2017; van Vuuren et al., 2017; Fricko et al.,
2017; Fujimori et al., 2017; Calvin et al., 2017; Kriegler
etal., 2017; Rogelj et al., 2018), were found using version 6.8
of MAGICC. The ARG6 projections, which we obtain from
Annex IIT of AR6 (IPCC, 2021b), are based on model runs
with version 7 of MAGICC. MAGICC?7 includes important
updates relative to MAGICC6.8, such as a permafrost feed-
back module that results in additional emissions of CO, and
CHy from the thawing of permafrost (Meinshausen et al.,
2020).

The top three panels of Fig. S1 in the Supplement com-
pare time series of the concentrations of CO,, CHy, and N>,O
for the Baseline and AR6 frameworks. All of the GHG pro-
jections were found for the same underlying emissions sce-
narios. The impact of updates to MAGICC7 are modest but
noticeable for CO,, quite small for N>O, and substantial for
CH4. The MAGICC7 updates result in the atmospheric con-
centration of CHy projected in 2100 to be higher by 180 and
400 ppb for SSP2—4.5 and SSP4-3 .4, respectively, compared
to the projections provided in the SSP database (Riahi et al.,
2017).
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2.1.2 Radiative forcing of greenhouse gases

The EM-GC uses as input time series of the RF due to
GHGs, computed from time series of the atmospheric abun-
dance of each gas. For the Baseline framework, each RF
term is found using parameterizations given in Table 8.SM.1
of the ARS report (Myhre et al., 2013a), as described in
Sect. 2.2.3 of McBride et al. (2021). These AR5 formu-
lations, termed effective radiative forcing (ERF), allow for
stratospheric temperature adjustments to the instantaneous
RF for many GHGs. The AR5 ERF formulae are based on the
analysis by Myhre et al. (1998) of output found using line-
by-line models (Edwards, 1992; Myhre and Stordal, 1997),
and are identical to those given in the third WG1 IPCC re-
port (IPCC, 2001) as well as the fourth report (IPCC, 2007).

Chapter 7 of the AR6 report introduced two important
changes to the parameterizations of ERF due to GHGs
(Forster et al., 2021). First, the parameterizations were up-
dated to reflect the spectral overlaps of CO;, and N;O, the
shortwave RF due to CHg4, and a new representation of
the HyO continuum (Etminan et al., 2016; Meinshausen
et al., 2020). Second, the AR6 values of ERF accounts for
both stratospheric and tropospheric temperature adjustments
(Smith et al., 2018b). Consequently, while AR5 considers
stratospheric temperature adjusted RF (SARF) to be equal
to ERF, these two quantities differ in the AR6 formulation
of RF. The AR5 and ARG formulae for the ERF due to CO,,
CHy, and N, O are given in the Supplement.

The middle row of Fig. S1 compares time series of ERF
due to CO,, CHy, and N,O for the Baseline (dotted lines)
and ARG (solid lines) frameworks. The results shown in
this middle row reflect the AR6 updates to both the ERF
and the future atmospheric abundances of GHGs. Values of
ERF are higher in the AR6 framework compared to Base-
line, with particularly large increases found for the ERFs
of CO, and CHy for the SSP4-3.4 and SSP2-4.5 scenar-
ios. Finally, Fig. S1h compares ERF due to all GHGs for
the Baseline and AR6 frameworks. The largest increase in
ERF, among the four SSP scenarios considered, is found for
SSP4-3.4 and SSP2-4.5, with end-of-century increases of
0.6 and 1.0 Wm™2, respectively. A similar qualitative con-
clusion was reached by Fredriksen et al. (2023), who con-
trasted projections of ERF from CMIP5 models with those
from CMIP6 models, and found that CMIP6 models project
higher levels of ERF by the end of the century relative to
CMIP5 models.

2.1.3 Radiative forcing of tropospheric aerosols

Time series of the RF due to tropospheric aerosols (hereafter,
aerosols) is another very important input to the EM—-GC. Fig-
ure S1g compares the total ERF of aerosols (ERFagRr) for the
Baseline and AR6 frameworks, which is the sum of direct
cooling by aerosols and the effect of aerosols on clouds (that
is, the indirect effect). A summary of the ERFapRr time se-
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ries for the Baseline framework, which considers a range of
aerosol types such as sulfate, dust, organic carbon, black car-
bon, and biomass burning products, is given in Sect. 2.2.4 of
McBride et al. (2021). These time series, published prior to
the ARG report, originate from the Potsdam Institute of Cli-
mate Research (PICR) website (https://www.pik-potsdam.
de/~mmalte/rcps, last access: 21 May 2024) and are based on
future emissions of aerosol precursors in the SSP database
(Riahi et al., 2017; van Vuuren et al., 2017; Fricko et al.,
2017; Fujimori et al., 2017; Calvin et al., 2017; Kriegler
et al., 2017; Rogelj et al., 2018).

Considerably stronger aerosol cooling is evident in the
ARG time series of ERFAgR, compared to the Baseline time
series (Fig. S1g). Further, the temporal evolution (that is, the
shape) of the historical cooling differs substantially between
the AR6 and Baseline. Finally, AR5 and AR6 each provide
best estimates, and possible ranges for ERFagr, over the
time periods 1750-2011 and 1750-2019, respectively. These
estimates were assessed to be —0.9 Wm™2 with a possible
range of —0.1 to —1.9 Wm™2 in AR5 (Myhre et al., 2013b),
andtobe —1.1 (—0.4to —1.7) Wm~2 in AR6 (Forster et al.,
2021). Formally, the possible range limits correspond to the
5th and 95th percentiles.

It is beyond the scope of this paper to delve deeply into
the cause of the differences between the ARS and ARG esti-
mates of ERFagR. It is somewhat surprising that the AR6 up-
date to the best estimate of ERFagR in the year 2019 exhibits
more cooling than the ARS best estimate that reflected condi-
tions out to 2011, because individual time series of ERFAgr
in both AR5 and ARG6 (Fig. S1g) exhibit a considerable de-
cline in the absolute value of ERFagr over the 2011-2019
period of time. This decline was driven by successful efforts
to reduce the emissions of aerosol precursors, by various en-
tities throughout the world, due to the public health concerns
of aerosols (Smith and Bond, 2014; Fu et al., 2021). The pri-
mary reason for larger aerosol cooling in the AR6 best esti-
mate of ERFagR, despite the 8-year extension in end year,
is the nearly factor of 2 increase in the assessed value of
cooling due to the aerosol indirect effect from ARS’s best
estimate of —0.45 (0.0 to —1.2) Wm™~2 to the ARG6 best es-
timate of —0.84 (—=0.25 to —1.45)Wm™2. A significant de-
cline in the best estimate of black carbon warming in AR6
(0.11 (—0.20 to 0.42) Wm~2) compared to AR5 (0.4 Wm™>
(0.05 to 0.80) Wm™2) also contributes to the decline in the
absolute value of ERFagRr in AR6, compared to ARS. There
are other updates in the AR6 approach for ERFagR, as sum-
marized in Sect. 7.3.3 of Forster et al. (2021).

Recently, Zelinka et al. (2023) pointed out two coding er-
rors in the Smith et al. (2020) paper that influenced the AR6
evaluation of ERFagr. These two errors largely cancel for
the evaluation of ERFagrr. The Zelinka et al. (2023) best es-
timate and standard deviation of ERFagR, over 1750 to 2014,
is —1.09 £ 0.24 Wm™2, which is slightly less aerosol cooling
than the ARG estimate of —1.3 (—0.6 to —2.0) W m ™2 for the
same time period. Given the “medium confidence” associ-
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ated with the assessed value of ERFagr noted in Chap. 7 of
ARG (Forster et al., 2021), the lack of evaluation of ERFagr
by Zelinka et al. (2023) for the 1750 to 2019 time period
that is central to our study, and the focus within Zelinka
et al. (2023) on the evaluation of the various components of
ERFAgR for contemporary periods of time rather than the his-
torical evolution of ERFaggr, we have decided to use the AR6
historical time series for aerosol cooling as presented in the
assessment.

Time series of ERFagRr are vitally important inputs to the
EM-GC. A hallmark of this approach is spanning a wide
range of possible time series of ERFagr as well as a model
parameter Ay that represents the sum of all climate feed-
backs, retaining for further analysis the members of this en-
semble that satisfy three goodness-of-fit constraints on the
observed (1) 170-year GMST record, (2) GMST record over
the past 8 decades (formally, 1940 to 2019), and (3) ocean
heat content record that begins in 1955. Further details of
this ensemble approach are given in Sect. 2.1 of McBride
et al. (2021). Figure S2 in the Supplement illustrates the
approach for generating an ensemble of ERFogr time se-
ries for the SSP2—4.5 scenario, within the AR6 framework.
The solid black line shows the AR6 assessed best value of
the time series of ERFagr. An ensemble is created by scal-
ing this time series by various constant multiplicative fac-
tors, with the color scheme chosen to highlight the numerical
value of ERFagR in 2019. A similar approach is used for the
Baseline framework, relying upon time series of ERFAgr ob-
tained from the aforementioned PICR website, as detailed in
Sect. 2.5 and Fig. S7 of McBride et al. (2021). While one can
envision a more sophisticated approach that allows for the
alteration of the shape of ERFagR, in addition to the mag-
nitude, the actual ERFpgr responds quickly to changes in
precursor emissions due to the short lifetime of tropospheric
aerosols. Generally, historical aerosol precursor emissions
are fairly well known (e.g., Hoesly et al., 2018). The more
sophisticated approach of Smith and Bond (2014), which re-
lied upon a RF parameterization tied to the emission of sul-
fate, black carbon, and organic carbon aerosols, resulted in
an ensemble of time series for ERFagr that exhibit nearly
the same shape, with quite different peak cooling.

Figure S1i shows time series of total anthropogenic ERF
(ERFaNTH)- As noted above, the design of the SSPs was
predicated on the end-of-century RF due to all human activity
being close to the last numerical value in the scenario (that
is, 4.5 Wm~2 for SSP2-4.5) (O’Neill et al., 2014; Tebaldi
et al., 2021). Close agreement of end-of-century ERFanTH
and the SSP nameplate is found using GHG concentra-
tions together with ERF formulations for the Baseline frame-
work. Conversely, within the AR6 framework, ERFanTH in
2100 exceeds the nameplate values, with the difference be-
ing particularly large for SSP4-3.4 (0.6 Wm™2) and SSP2—-
4.5 (0.9Wm~2). One final, important difference between
the two frameworks is the steeper rise in ERFantg be-
tween about 1960 and present within AR6 compared to Base-
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line, which is attributable to an assessed best value of much
stronger aerosol cooling over the latter part of the prior cen-
tury in ARG relative to the Baseline (Fig. S1g).

2.1.4 Other model inputs

The EM-GC output shown below relies entirely on simu-
lations that we constrain to match the HadCRUTS GMST
anomaly (AT) record (Morice et al., 2021) over the years
1850-2019. Model simulations are also constrained by ob-
servations of Ocean Heat Content (OHC) that start in 1955.
Here, we use the average OHC from data provided by five
groups: Levitus et al. (2012), Balmaseda et al. (2013), Cheng
et al. (2017), Ishii et al. (2017), and Carton et al. (2018). Fur-
ther details, including the evaluation of the uncertainties in
observed AT and OHC, are given in Sect. 2.2 of McBride
et al. (2021).

The EM—-GC simulations consider a variety of natural fac-
tors alongside the anthropogenic component of warming.
The ENSO time series used during the training period (1850-
2019) is based on Version 2 of the Multivariate ENSO In-
dex (MELv2) (Wolter and Timlin, 1993; Zhang et al., 2019).
The MEI.v2 dataset provides data starting in 1979. For 1850
to 1978, a historical extension based on Wolter and Tim-
lin (2011) and the HadSST3 dataset (Kennedy et al., 2011)
is used, as detailed in Sect. 2.2.6 of McBride et al. (2021).
The input time series that is used to reflect changes in the
strength of the AMOC is based on sea surface temperature
(SST) data from HadSST4 (Kennedy et al., 2019) between
the Equator and 60° N in the Atlantic Ocean, detrended using
the magnitude of global anthropogenic radiative forcing, then
Fourier-filtered to remove frequencies above 1/9 years~! as
described in Sects. 3.2.3 and 4.1.2 of Canty et al. (2013), as
well as Sect. 2.2.7 of McBride et al. (2021). Input time series
for the PDO and the IOD, which are found to have little effect
on the historical simulations of AT, are the same as described
by McBride et al. (2021). Indices for all of the oceanic prox-
ies after 2019, which marks the end of the training period,
are set to zero.

The model also considers the impact on AT of variations
in total solar irradiance (TSI) and major volcanic eruptions.
The input time series for TSI anomalies is constructed from
CMIP6 model data between 1850 and 2014 (Matthes et al.,
2017), while values for 2015-2019 are obtained from the
Solar Radiation and Climate Experiment (SORCE) (Dudok
de Wit et al., 2017). The input time series for stratospheric
aerosol optical depth (SAOD), for 1850 to 1978, is based
on extinction coefficients obtained from the Volcanic Forc-
ing Dataset (Arfeuille et al., 2014) that had been prepared
for CMIP6 ESM runs. For 1979 to 2018, we use a time se-
ries of SAOD at 550 nm from the Global Space-based Strato-
spheric Aerosol Climatology (GloSSAC v2.0) (Thomason
et al., 2018). For the earlier time period (1850 to 1978),
the extinction coefficients from the Volcanic Forcing Dataset
were integrated from the tropopause to 39.5 km, to obtain a
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globally averaged SAOD, weighted by the cosine of latitude
from 80° S to 80° N. For the latter time period (1979 to 2018),
we calculate globally averaged SAOD from the GloSSAC
dataset using cosine-latitude weighting over the same range
of latitudes. For the year 2019, level 3 gridded SAOD product
from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) (Vaughan et al., 2004) is used
to obtain a global average SAOD, which is then offset by
the average difference between the GloSSAC and CALIPSO
datasets for the period of overlap (2006-2018) between the
two datasets, as described in Sect. 2.2.5 of McBride et al.
(2021). Values of the TSI anomaly beyond 2019 are set to
zero, while for SAOD we use the value from December 2019
for 2020 to 2100. The input time series for all natural and
anthropogenic factors are archived in Zenodo (Farago et al.,
2025).

2.2 Model outputs

Here we provide a brief overview of various outputs of the
EM-GC simulations that will be described in Sect. 3.

2.2.1 Attributable anthropogenic warming rate and
effective climate sensitivity

Attributable anthropogenic warming rate (AAWR) is defined
as the rate of change of the GMST anomaly (AT) due to an-
thropogenic activity, between 1975 and 2014. This time inter-
val spans a 40-year period in which AT rose in a near-linear
manner due to human activity (McBride et al., 2021). AAWR
is determined as the slope of a linear fit to the anthropogenic
component of global warming, defined by Eq. (9) of McBride
et al. (2021). This method for the evaluation of AAWR is
similar to earlier, MLR-based studies (Lean and Rind, 2008,
2009; Foster and Rahmstorf, 2011; Zhou and Tung, 2013),
except that we quantitatively account for the impact of the
uncertainty in the RF of aerosols and the strength of climate
feedback on the possible range of AAWR.

Equilibrium climate sensitivity (ECS) is defined as the rise
in AT after climate has equilibrated to a theoretical dou-
bling of the pre-industrial concentration of CO, (IPCC, 2001,
2021a; Forster et al., 2021). Since equilibrium can take cen-
turies to reach due to the slow transfer of heat to the deep
oceans (Hansen et al., 2011; Church et al., 2013; Tokarska
et al., 2020a), often the more short-term effective climate
sensitivity (EffCS) is used (Gregory et al., 2020; Tokarska
et al., 2020a; Spencer and Christy, 2023). We compute Ef-
fCS from the ERF due to the doubling of the pre-industrial
CO; concentration (AERF,co,) as shown in Eq. (1),

EffCS =

x AERF2xc0,, (D
p— Az

where Ap is a constant equal to 32Wm~2°C~!, Ay rep-
resents the sum of all feedbacks that varies for different
members of the ensemble, and AERF;yco, is the rise in
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RF due to a doubling of CO,. This methodology, based on
the terminology of Bony et al. (2006), is consistent with
Box 7.1 of AR6 (Forster et al., 2021). Within the Baseline
framework, we use the RF formula of Myhre et al. (1998),
which leads to AERF>co, =5.35x1In(2) =3.71 Wm~2. For
the AR6 framework, we use a value for AERF>yxco, of
3.93Wm~2, which is the best estimate for AERF o,
given in Sects. 7.3.2.1 and 7.SM.1.2 of AR6 (Forster et al.,
2021; Smith et al., 2021a). Consequently, EffCS computed
using the AR6 formula is 6 % larger than that found using
the Myhre et al. (1998) formula for a given value of Ax. Fi-
nally, we note that climate sensitivity deduced from histori-
cal warming may be different from true ECS, as the historical
climate feedback could differ from the climate feedback un-
der an abrupt 4 x CO; forcing scenario that is often used to
evaluate ECS in ESMs (Andrews et al., 2018; Andrews et al.,
2019; Winton et al., 2020; Forster et al., 2021).

2.2.2 Future temperature projections

Projections of AT, for various SSP scenarios, are central to
assessing the likelihood of achieving either the Paris Agree-
ment target (1.5°C) or upper limit (2.0 °C) for the rise of
GMST relative to pre-industrial (Hope et al., 2017; McBride
et al., 2021; Smith et al., 2018a; Nicholls et al., 2020, 2021).
An important aspect of EM-GC simulations is the ability to
compute probabilistic forecasts of the rise in AT, taking into
account the uncertainty in the radiative forcing of climate due
to tropospheric aerosols.

To consider the uncertainty in the magnitude of net cli-
mate feedback and the strength of aerosol cooling, we use a
160000 member ensemble, comprised of 400 possible val-
ues for the parameter Ay, each combined with 400 time se-
ries for ERFagr. This ensemble serves as the basis for the
probabilistic forecasts of AT, as well as the numerical eval-
uations of AAWR and EffCS. We consider only the mem-
bers of the ensemble that satisfy three x 2-based metrics given
by Egs. (S1)—(S3) in the Supplement (that is, each x2 value
must be <2), which serve as the observational constraints
of the model. Two of these metrics quantify how well the
modeled GMST anomaly represents the observed tempera-
ture anomaly of the atmosphere for the entire training period
(1850-2019, X,iTM) and over the last 80 years (1940-2019,
XI%ECENT)' The third metric ( X(Z)CE AN) 18 @ goodness-of-fit
value between the observed and modeled ocean heat content.
The XI%ECENT metric is used because without this particular
constraint, some solutions with values of X/iTM <2 have a
visually poor simulation of the observed rise in GMST over
the past 4 to 5 decades, due to the large uncertainty associated
with early measurements of AT, as described in Sect. 2.1 of
McBride et al. (2021).
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Figure 1. Aerosol weighting method and EM-GC-computed values of AAWR and EffCS for combinations of ERFAgpR and Ay. (a, c,
e) Simulations using the Baseline framework. (b, d, f) Simulations using the AR6 framework. (a, b) Asymmetrical Gaussians used to weight
aerosol scenarios for probabilistic forecasts, as described in Sect. 2.2.2. Points marked on the Gaussians represent specific ERF values used
as the central values, as well as 1o and 20 boundaries of each Gaussian (Table S3). The Gaussians are overlaid for visual comparison. The
Gaussians shown with the solid black line are used to weight the EM—GC output in each column. (¢, d) EM—-GC-computed values of AAWR
for the Ay —ERFAgR ensemble. Colors denote the specific values of AAWR as indicated by the color bar on the right and are only shown for
the combinations of ERFagR and Ay for which a good fit to the HadCRUTS historical climate record was found. (e, f) EM—GC-computed

values of EffCS for the A5;—~ERFAgR ensemble.

For the results shown in Sect. 3, the observationally
constrained ensemble is then weighted by an asymmetri-
cal Gaussian function, shown in Fig. la and b, centered
around the IPCC best estimate of ERFaggr in the reference
year (—0.9Wm~2 in 2011 for the Baseline framework and
—1.1Wm™2 in 2019 for the AR6 framework). The lo and
20 boundaries of the Gaussians are derived from the possible
and likely ranges for ERFagr provided by the ARS (Baseline
framework) and AR6 (ARG framework) reports (Table S3 in
the Supplement). The Gaussians are asymmetrical because
the likely and possible ranges of ERFagr specified in ARS
and ARG6 are not symmetric around the respective best esti-
mates. The weighted ensemble is then used to compute prob-
abilistic estimates of AAWR and EffCS (Sect. 3.1), as well
as probabilistic forecasts on the GMST anomaly (Sect. 3.2).

The projections of AT shown in Sect. 3 assume that the cli-
mate feedback parameter, Ay, is constant over time. Support
for this assumption is given by the temporal invariance of the
residual between measured and modeled values of AT, over
the past century and a half, as shown in Fig. 14 of McBride
et al. (2021). If the true value of Ay varies over time, as has
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been suggested based on analysis of CMIP5 (Marvel et al.,
2018; Rugenstein et al., 2020) and CMIP6 (Dong et al., 2020;
Salvi et al., 2023), then the analysis conducted by McBride
et al. (2021) indicates that the end-of-century projections of
global warming could be biased low by a few tenths of de-
grees Celsius. Regardless, the primary contributor to the un-
certainty in end-of-century warming is the imprecise knowl-
edge of ERFAgR.

3 Results

3.1 Attributable anthropogenic warming rate and

effective climate sensitivity

We begin by analyzing values of AAWR found from the EM—
GC ensemble simulation of AT over the 1850 to 2019 time
period. As noted above, our estimates of AAWR quantify the
human contribution to the rate of global warming from 1975
to 2014. Figure 1 shows the values of AAWR (Fig. 1c and d)
and EffCS (Fig. le and f), as the function of climate feedback
(vertical axis) and the strength of aerosol cooling (horizontal
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axis) for the Baseline (Fig. la, c, and e) and ARG frame-
works (Fig. 1b d, and f). Colors corresponding to values of
AAWR and EffCS are only shown for combinations of Ay
and ERFgr for which a good fit to the historical GMST and
OHC record was obtained, defined by the values of all three
reduced x2 indicators being < 2. Figure la and b show the
asymmetrical Gaussian functions used to weight the EM-GC
output described in Sect. 2.2.2. Notably, the highest values of
Ay for which the model can achieve a good fit to the histori-
cal climate record is lower for the AR6 framework relative to
Baseline, which allows for a tighter constraint on the upper
limit of EffCS. This difference is driven by the considerable
variation in the shape of the best estimate of the ERFAgr
associated with each framework (Fig. S1g) that drives con-
siderable variations in the value of total anthropogenic ERF
between about 1960 and 2000 (Fig. S1i).

The weighted median estimate and 5 %-95 % range for
AAWR are 0.16 (0.12 to 0.20) and 0.18 (0.13 to 0.21) °C per
decade for the Baseline and AR6 frameworks, respectively.
The probability distribution function (PDF) of AAWR, for
both frameworks, is shown in Fig. S3a in the Supplement.
The estimates of AAWR are quite similar for the two frame-
works, which is of course to be expected since both esti-
mates result from observations of the GMST anomaly that
are identical for both sets of ensembles. The slightly higher
median value of AAWR in the AR6 framework is due to a
larger slope of ERFanTH over 1975 to 2014, 0.47 Wm2 per
decade, compared to the 0.36 Wm~2 per decade slope of
ERFanTH in the Baseline framework. The values of AAWR
within both frameworks are considerably lower than the me-
dian and 5 %-95 % range of 0.221 (0.151 to 0.299) °C per
decade from the CMIP6 multi-model ensemble derived by
McBride et al. (2021). This finding is consistent with Sam-
set et al. (2023), who found that “virtually all CMIP6 sim-
ulations have higher 50-year warming rates than the obser-
vations”, using an ensemble of 119 ESM simulations from
CMIP6. The empirical estimates of AAWR align well with
several other recent empirical estimates, suggesting that our
quantification of the natural and anthropogenic drivers of the
variations in AT is consistent with other studies. Recent es-
timates of AAWR are between 0.17 to 0.20 °C per decade
based on the 1973-2022 period (Samset et al., 2023) and
the 1980-2020 period (Table 2.4 of AR6 Chap. 2; Gulev
et al., 2021; Forster et al., 2023). Finally, the rate of warm-
ing has likely accelerated since 1990 at a rate of 0.008 to
0.025 °C decade™! per decade (Samset et al., 2023), with
Forster et al. (2023) finding a rate of 0.2 °C per decade for
human-induced warming for the 2013-2022 period, while
Ribes et al. (2021) found this rate to be 0.23 °C per decade
over the 2010-2019 period.

Figure le and f show values of EffCS obtained for the
Baseline and AR6 frameworks. The median EffCS is nearly
identical for the Baseline and AR6 frameworks, at 2.26 and
2.29 °C, respectively. However, the corresponding 5 %—95 %
ranges of EffCS differ considerably, with the Baseline range
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of (1.45 to 4.37) °C being considerably larger than that found
using the AR6 framework (1.54 to 3.11) °C. This difference
is readily apparent in the PDFs of EffCS for both frame-
works, as shown in Fig. S3b. Simulations based on the AR6
framework allow for a tighter constraining of the upper es-
timate of EffCS, due to the fact that within this ensem-
ble, we are not able to obtain good fits to the historical
GMST and OHC records with values of Ay greater than
about 2.0 Wm—2°C~!. In contrast, simulations in the Base-
line framework can achieve good fits for stronger levels of
climate feedback, upwards to about 2.5 Wm—2°C~!, that
also correspond to higher amounts of aerosol cooling (Fig. le
and f). Our estimate for EffCS of 2.29 (1.54 to 3.11)°C
within the AR6 framework exhibits close agreement with the
results of Skeie et al. (2024), who found the best estimate and
90 % uncertainty range for EffCS to be 2.2 (1.6 to 3.0) °C
using a Bayesian estimation model and ERF datasets from
ARG, while assuming climate feedback to be constant over
the historical period, similar to our approach.

We now discuss the relationship between the estimates of
EffCS from our model simulations and ECS. Values of ECS
can be approximated from observationally constrained esti-
mates of EffCS by applying a correction factor to the strength
of the climate feedback term, termed o', as shown in Eq. (2).
Here, o’ represents the difference between climate feedback
inferred from historical warming and the climate feedback
consistent with an equilibrated climate following an abrupt
doubling of the pre-industrial concentrations of CO; (here-
after abrupt2xCQO3), as described in Sects. 7.4.4.3 and 7.5.2
of Forster et al. (2021). This difference in climate feedback
is associated with differences in the spatial pattern of warm-
ing over the historical period and the equilibrium warming
pattern, termed the pattern effect.

ECS =
Ap—Ax —«

> x AERF2xco, 2)

Section 7.4.4.3 of AR6 assessed o’ to have a value of
0.5+0.5Wm2°C!, at a low confidence level. The large
uncertainty is due to the fact that estimates for the value of o’
vary greatly between individual studies and specific CMIP
models (Armour, 2017; Proistosescu and Huybers, 2017; An-
drews et al., 2018; Andrews et al., 2019; Dong et al., 2020;
Winton et al., 2020). The black symbols in Fig. 2 show ECS
found using Eq. (2) as a function of the value of o’ for the
ARG6 ensemble EM—GC simulation. The dots and error bars
represent the median and 5 %-95 % range of ECS, respec-
tively. The green dashed line and shaded area correspond to
the central value and very likely range of ECS given in Ta-
ble 7.13 of the ARG report (Forster et al., 2021).

For o' =0Wm™2°C~! (corresponding to no pattern ef-
fect), EffCS is equal to ECS and we obtain the me-
dian and range for ECS of 2.29 (1.54 to 3.11) °C, which
had been given above. For the ARG best estimate of
o' =0.5Wm2°C~!, we find ECS to be 3.24 (1.92 to
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Figure 2. Equilibrium climate sensitivity (ECS) as the function of
the pattern effect (o, see text). Black vertical bars and circles corre-
spond to the EM-GC 5 %-95 % range, and 50 % probability, respec-
tively. The green shaded area and horizontal dashed line represent
the AR6 very likely range, and central estimate of ECS, respec-
tively, from Table 7.13 of Forster et al. (2021). All results shown in
this figure are based on simulations that use inputs from the AR6
framework.

5.15) °C, which is in very good agreement with the AR6 as-
sessment of ECS (green shaded region). The AR6-based up-
per limit of @’ =1.0 Wm™2°C~! yields a median and 5 %—
95 % range of 5.39 (2.52 to 13.54) °C, which tends to exceed
the assessed value of ECS from AR6. These results highlight
the sensitivity of ECS to the pattern effect, a concept first in-
troduced in the latest WG1 IPCC report. The value of ECS
found here for &’ =0.5 Wm™2°C~! is consistent with Skeie
et al. (2024), who performed a similar analysis and found
their estimate of ECS to be “almost identical” to the AR6
central value and very likely range of 3.0 (2.0 to 5.0) °C, upon
using the AR6 best estimate for the value of «’. Finally, our
estimates of ECS for o/ =0.5Wm~2°C~! also show good
consistency with the range for ECS of 2.42 to 5.83 °C ob-
tained from millennium-long CMIP model simulations (Ru-
genstein et al., 2020) performed under the auspices of the
LongRunMIP protocol (Rugenstein et al., 2019).

Figure 2 shows that the 5th percentile values of ECS vary
between about 1.5 and 2.5 °C depending on the magnitude
of o, consistent with the AR6 assessment of ECS being
greater than 1.5 °C at a virtually certain level of confidence
(Forster et al., 2021). Further, the 50th percentile estimates
for ECS (black dots) fall into the range of ECS assessed by
ARG (green shading), except for ' =1.0 Wm~2°C~!. Con-
versely, the 95th percentile estimates for ECS vary greatly
with o, and exhibit a substantially larger level of variation
than the 5th and 50th percentile estimates. These findings are
consistent with Chap. 7 of AR6, which stated that “warming
over the instrumental record provides robust constraints on
the lower end of the ECS range (high confidence), but owing
to the possibility of future feedback changes it does not, on its
own, constrain the upper end of the range, in contrast to what
was reported in ARS” (Forster et al., 2021). Finally, numer-
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ous studies have linked strong, positive feedback between
clouds and anthropogenic RF as being a causal factor in the
tendency of some ESMs to exhibit values of ECS that are
considerably higher than our median value of 3.24 °C found
for @’ =0.5Wm—2°C~! (Gettelman et al., 2019; Zelinka
et al., 2020; Wang et al., 2021).

We now discuss how the rate of warming in recent decades
relates to EffCS/ECS and the spatial pattern of global warm-
ing. Armour et al. (2024) found that the rate of warming be-
tween 1981 and 2014 of 0.18 (0.15 to 0.21) °C per decade
inferred from the HadCRUTS record corresponds to ECS of
2.7 (1.5 to 3.9) °C and EffCS of 2.3 (1.9 to 2.7) °C within
a set of CMIP5/6 models. The rate of warming obtained by
Armour et al. (2024) is in close agreement with our AAWR
estimate of 0.18 (0.13 to 0.21) °C per decade between 1974
and 2014. Furthermore, our EffCS estimate of 2.29 (1.54 to
3.11) °C closely matches that of Armour et al. (2024), al-
beit with a wider 5 %—95 % range. Finally, the ECS estimate
of 3.24 (1.92 to 5.15) °C for o’ =0.5Wm~2°C~! is broadly
consistent with the Armour et al. (2024) value. The ECS in
Armour et al. (2024) was computed from the first 150 years
of the CMIP model simulation, which on average, is about
17 % lower than ECS in full equilibrium (Rugenstein et al.,
2020); a 17 % increase to the ECS values of Armour et al.
(2024) brings their estimates closer to our values of ECS for
o =0.5Wm~2°C~!. Consequently, the estimates of EffCS
and ECS found here are consistent with values obtained from
CMIP models that accurately capture the observed rate of
rise in GMST over recent decades.

3.2 Probabilistic forecast on future warming

Here we quantify the magnitude of future warming based
on projections of ERF from four SSP scenarios for both the
Baseline and AR6 frameworks. We first briefly discuss the
simulated GMST anomalies at the end of the 21st century,
followed by the analysis of the projected temporal evolution
of warming in this century. Finally, we quantify the likeli-
hood of accomplishing the goals of the Paris Agreement un-
der the four SSP scenarios, based on the simulations within
both the Baseline and AR6 frameworks. Unless otherwise
stated, all GMST anomalies are relative to an 1850-1900 pre-
industrial baseline.

Figures S4 and S5 in the Supplement show the GMST
anomaly in year 2100 (ATz100) as a function of climate feed-
back and ERFAgR, in a manner similar to Fig. 1, for the Base-
line and AR6 frameworks, respectively. Probabilistic pro-
jections of ATjjgp are obtained using the same weighting
technique that was used for AAWR and EffCS, as described
in Sect. 2.2.2. Table 2 provides median as well as 5th and
95th percentile values of AT,jgg for the four SSP scenarios
considered throughout. Median projections of AT;1¢p within
the AR6 framework are about 0.2 °C (SSP1-1.9, SSP1-2.6),
0.3 °C (SSP4-3.4), and 0.4 °C (SSP2-4.5) greater than found
using the Baseline framework. This difference originates

Earth Syst. Dynam., 16, 1739-1758, 2025




1748

Table 2. Probabilistic projections of ATyqg for the four SSP scenarios studied.

E. Z. Farago et al.: AR6 updates to the RF by GHGs and aerosols

AT2100 SSP scenario

median (5 %-95 % range)

Baseline framework (°C)

ARG6 framework (°C)

SSP1-1.9
SSP1-2.6
SSP4-3.4
SSP2-4.5

1.14 (0.81 to 1.87)
1.46 (1.05 to 2.28)
1.80 (1.31 to0 2.77)
2.18 (1.62 to 3.14)

1.34 (0.93 to 1.72)
1.67 (1.18 t0 2.13)
2.10 (1.54 to 2.62)
2.60 (1.92 to 3.20)

from the fact that projected ERF at the end of the century
is higher in the AR6 framework than in Baseline for all four
SSPs, which is driven by higher end-of-century atmospheric
concentrations of CO, and CHy in AR6 (Fig. S1i).

Next, we examine the temporal evolution of AT under the
four SSP scenarios. Figure 3 shows time-dependent, prob-
abilistic forecasts of AT for the AR6 framework. Time-
dependent projections of AT for the Baseline framework are
shown in Fig. S6 in the Supplement. The colors in Fig. 3
correspond to the probability that AT would be equal to or
greater than the given numerical value, as indicated by the
color bar. Each panel of Fig. 3 also shows the multi-model
mean (solid line), and minimum and maximum (dashed
lines) for AT obtained from the CMIP6 ESM archive, nor-
malized to zero over 1850 to 1900. These CMIP6 values of
AT are based on the analysis of output from 10, 34, 6, and 32
models for SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5,
as described in Sect. 3.3.1 of McBride et al. (2021). Figure 3
also shows the HadCRUTS GMST observations in black, as
well as a green trapezoid that represents the likely range of
warming between 2016 and 2035 provided by Chap. 11 of
the AR5 report (Kirtman et al., 2013). This trapezoid was
placed in Fig. 11.25b of ARS due to the recognition, by
the chapter authors, that the CMIPS models central to ARS
tended to overestimate the observed rate of global warming.
Gold horizontal lines in Fig. 3 represent the 1.5 and 2.0 °C
GMST anomalies relative to pre-industrial, while gold circles
correspond to the years where the 1.5 and 2 °C thresholds
are crossed with 5%, 50 %, and 95 % probabilities (here-
after termed crossover years). Table 3 provides the years in
which the temperature anomaly thresholds are projected to
be crossed for the median as well as the S5th and 95th per-
centiles.

Our probabilistic projections of AT are in excellent agree-
ment with the assessed likely range of global warming pro-
vided by Chap. 11 of AR5 (Kirtman et al., 2013). Our pro-
jections of AT fall within the bottom half of those obtained
from the CMIP6 ESMs. Numerous studies have similarly
concluded that many of the ESMs central to CMIP6 tend to
provide estimates of the rate of global warming due to human
activity (that is, AAWR) that exceeds empirically based esti-
mates of AAWR (Tokarska et al., 2020b; Nijsse et al., 2020;
McBride et al., 2021; Chylek et al., 2024), which Hausfather
et al. (2022) have termed the “hot model problem”. Armour
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et al. (2024) suggested that the high estimates of AAWR ex-
hibited by some of the CMIP6 historical simulations are due
to the inability of these models to reproduce observed SST
patterns, particularly an observed cooling of the eastern trop-
ical Pacific and a warming of the western Pacific that affects
the distribution of clouds in the tropics. Weaver et al. (2024)
reached the same conclusion based on an analysis of top-
of-the-atmosphere albedo of clouds and aerosols, from radi-
ances observed by NASA and NOAA satellite instruments.

For all four SSP scenarios, the 1.5 and 2.0 °C thresholds
are projected to be crossed much earlier based on the simula-
tions of the AR6 framework, relative to those of the Baseline.
For example, for SSP2—4.5, the 2.0 °C threshold is projected
to be crossed in the years 2059 and 2082 within the AR6
and Baseline frameworks, respectively. The AR6 updates to
the ERF from GHGs and aerosols result in nearly a quar-
ter of a century shift forward in crossover year. This find-
ing is consistent with the increases in end-of-century warm-
ing (ATz10p) obtained from the simulations using the AR6
framework, relative to those of Baseline (Table 2). Com-
pared to the literature, the crossover years found here using
the AR6 framework fall on the latter end of the projected
crossover years for the 1.5 and 2.0 °C thresholds given in Ta-
ble 4.5 of AR6 (Lee et al., 2021), and are much later than
projected based on the analysis of CMIP5 and CMIP6 out-
put shown in Table 1 of Tebaldi et al. (2021). The values
in their table are based on an analysis of an unconstrained
ESM ensemble, which projects higher levels of future warm-
ing than observationally constrained models, as evidenced by
Table A6 of Tebaldi et al. (2021).

Figure 4 shows the PDF of AT»1¢p found with EM-GC for
the four SSP scenarios, using the AR6 and Baseline frame-
works. The height of the bars corresponds to the probability
of ATj100 being in the range defined by the width of each
column. Figure 4 also shows PDFs derived from a CMIP6
ESM ensemble, as detailed by McBride et al., (2021). As ex-
pected, based on the “hot model problem” described above,
our projections of AT,jgo within both the Baseline and AR6
frameworks fall on the lower end of the projections from the
CMIP6 ensemble. Furthermore, the EM-GC-based PDF for
the AR6 framework tends to be shifted towards higher values
of AT»100 than found for Baseline, with a smaller tail, behav-
iors that are consistent with higher end-of-century RF of the
climate within the AR6 framework (Fig. S1i), as well as the
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Figure 3. Time-dependent probabilistic forecasts of the GMST anomaly within the AR6 framework. The black line shows the HadCRUTS
GMST anomaly, which was used (along with OHC) to constrain the simulations. Colors represent the probability of reaching a certain
temperature or higher at a given time, as indicated by the color bars on the right. The green trapezoid represents the likely range of warming
as shown in Fig. 11.25b of the IPCC ARS report (Kirtman et al., 2013). The target and upper limit of the Paris Agreement are shown by
gold-colored horizontal dotted lines. Circle markers on these lines correspond to the projected GMST anomaly crossing these thresholds,
with the probability indicated by the colors. The grey lines denote the multi-model mean (solid), as well as the minimum and maximum
(dashed) projections of AT from CMIP6 ESMs as described in Sect. 3.3.1 of McBride et al. (2021). All values of AT shown in this figure are
with respect to an 1850-1900 pre-industrial baseline. (a) GMST projections for SSP1-1.9. (b) GMST projections for SSP1-2.6. (¢) GMST
projections for SSP4-3.4. (d) GMST projections for SSP2—4.5. Results for the Baseline framework are shown in the same fashion in Fig. S6.

Table 3. Years of crossing the 1.5 and 2.0 °C GMST anomaly thresholds for the four SSP scenarios studied. For each entry, we present the
50 % probability as the central estimate, as well as the 5 %—-95 % range. The label “n.c” is used in a manner similar to Table 4.5 of AR6 (Lee
et al., 2021) and corresponds to a given threshold not being crossed in the 2020-2100 period.

1.5 °C crossover ‘ 2.0 °C crossover
Baseline AR6 ‘ Baseline ARG
SSP1-1.9 n.c (2028 to n.c) n.c (2029 to n.c) n.c (n.c to n.c) n.c (n.c to n.c)
SSP1-2.6  n.c (2029 to n.c) 2043 (2029 to n.c) n.c (2059 to n.c) n.c (2065 to n.c)

SSP4-3.4 2048 (2030 to n.c) 2038 (2029 to 2079) | n.c (2050 to n.c) 2083 (2051 to n.c)
SSP2-4.5 2042 (2030 to 2080) 2035 (2028 to 2055) | 2082 (2047 ton.c) 2059 (2046 to n.c)

ability to fit the climate record with higher values of climate strained CMIP6 models. The values of AT»jgp in Table 2,
feedback (model parameter Ay) in the Baseline framework relative to 1995-2014, are 0.81 (0.32 to 1.27)°C and 1.74
(Fig. 1). (1.06 to 2.34) °C for SSP1-2.6 and SSP2-4.5. Consequently,

We now further compare our projections of ATz1g9 from our quantification of ATjqq is in very good agreement with
the ARG framework with results based on CMIP6 model the empirically constrained CMIP6 projections of Tokarska
output. Tokarska et al. (2020b) reported that observation- et al. (2020b). Chylek et al. (2024) recently found end-of-
ally constrained CMIP6 projections of end-of-century warm- century warming to be 2.41 °C relative to pre-industrial con-
ing are 9 % to 13 % lower than unconstrained CMIP6 pro- ditions for SSP2—4.5 using a set of CMIP6 models that ac-
jections for SSP1-2.6 and SSP2-4.5, respectively. Tokarska curately reproduce the 2014-2023 warming, which is about
et al. (2020b) found the median and 5 %-95 % ranges of end- 0.5 °C smaller than the value of AT;jgo obtained from their
of-century warming relative to a 1995-2014 baseline to be unconstrained CMIP6 ensemble. Consequently, their empiri-
0.94 (0.41 to 1.46) °C and 1.84 (1.15 to 2.52) °C for SSP1- cally constrained value of ATz is in good agreement with
2.6 and SSP2-4.5, respectively, using observationally con- our median estimate of 2.6 °C for SSP2-4.5 (Table 2).
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Figure 4. Probability distribution functions (PDFs) for AT,1qo obtained from EM—GC simulations trained on the HadCRUTS temperature
dataset. Model runs for the Baseline and AR6 frameworks are shown in blue and red, respectively. Grey color represents the PDFs obtained
from a CMIP6 multi-model ensemble as described in Sect. 3.3.1 of McBride et al. (2021), and are shown for comparison with EM—GC results.
The left-hand y axis corresponds to the EM—GC probabilities, and the right-hand y axis is for the CMIP6 probabilities. The PA target and
upper limit are shown as solid and dashed vertical lines, respectively. (a) PDFs for SSP1-1.9. (b) PDFs for SSP1-2.6. (¢) PDFs for SSP4-3.4.

(d) PDFs for SSP2-4.5.

Larger values of AT are found in the AR6 framework
compared to the Baseline (Table 2). As detailed in Table 4,
the more aggressive warming within the AR6 framework is
due mainly to three factors: (1) stronger cooling over the
historical time period by tropospheric aerosols in the AR6
framework relative to Baseline (Fig. Sle); (2) larger future
concentrations of CO; projected by AR6 compared to the
SSP database (Fig. Sla); (3) greater ERF due to CO, using
ARG6 formula compared to the ARS formula. Table 4 shows
the change in the median value of AT;19g, found for a se-
ries of full ensemble model simulations conducted using the
ARG6 framework, except for replacement of individual model
inputs from the Baseline run. The entry labeled “CO, PPM”
for SSP4-3.4 represents the difference between a computa-
tion of AT»0o found using AR6-based model inputs (2.10 °C
for SSP4-3.4, as shown in Table 2) and a new median value
of ATs1090 found from a simulation that uses the Baseline
projection of the atmospheric concentration of CO, (dotted
line, Fig. S1a) and ARG values for all other model inputs (in
this case, yielding a median value for ATs1pg of 1.986 °C for
SSP4-3.4). Similarly, the entry labeled “CO, RF Formula”
shows the difference in ATz199 from the full AR6 simula-
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tion compared to a run that uses the ERF formula for CO,
from Table 8.SM.1 of ARS. The fact that the single, largest
impact on ATsqqo is driven by changes to the ERF of tropo-
spheric aerosols, for both the SSP4-3.4 and SSP2-4.5 sce-
narios, underscores the importance of reducing the current
uncertainty in this quantity, to better constrain future pro-
jections of global warming. Furthermore, the most important
GHG-related factors affecting our forecasts of AT;1qg are the
projections of the future atmospheric concentrations of CO,
and CHy4, which are notably different within Annex III of
ARG compared to the SSP database. Finally, changes to other
inputs between the AR6 and Baseline computations, that are
not considered in Table 4 such as the ERF due to tropospheric
ozone, halocarbons, and LUC, make small contributions to
the differences in the model projections of ATs1qg.

We conclude by evaluating the probability of achieving
both the target (1.5 °C) and upper limit (2.0 °C) of the PA.
Table 5 provides the probability that end-of-century warming
will be below either the target or the upper limit of the PA,
relative to pre-industrial conditions. These estimates were
obtained from our probabilistic forecasts of AT for both the
Baseline and AR6 frameworks (Fig. 4). As shown in Table 2,
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Table 4. Differences between projected median AT, gg from the
ARG6 framework, and model runs where a single model component
was replaced with input from the Baseline framework (see the text).
The sum of the individual changes is shown in bold in the last row.

Model component ~ Change in median AT;1gg (°C)

SSP4-3.4 SSP2-4.5

CO, PPM 0.114 0.175
RF formula 0.032 0.031

CH; PPM 0.071 0.043
RF formula —0.011 —0.008

N,O PPM —0.002 0.005
RF formula —0.003 0.000

AER RF 0.134 0.182
Sum 0.335 0.473

median projections of AT,jgp are larger within the AR6
framework relative to the Baseline for all four SSPs, which
leads to a decline in the probability of accomplishing the PA
within the AR6 framework (Table 5). For the SSP1-1.9 and
SSP1-2.6 scenarios, the probability of limiting global warm-
ing to 2.0°C is high (at least 85 %) for both model frame-
works. For SSP4-3.4, the probability of limiting warming to
2.0°C falls from 64 % (Baseline) to 40 % (AR6). Most no-
tably, the 2.0 °C probability drops from 35 % to 8 % for the
SSP2-4.5 scenario. The 1.5 °C warming probabilities for the
ARG6 framework are all uniformly lower than found for the
Baseline framework, with the SSP1-2.6 scenario dropping
from 54 % (Baseline) to 32 % (AR6). The takeaway mes-
sage from Table 5 is that, for society to have high confidence
in achieving at least the upper limit of the PA, the radia-
tive forcing of climate due to GHGs must be placed close
to the SSP1-2.6 pathway over the coming decades. More ag-
gressive reductions in GHG radiative forcing are needed to
achieve the target of the PA, such as those of the SSP1-1.9
scenario. This message stands in stark contrast to the prior
statement in McBride et al. (2021), that SSP4-3.4 would pro-
vide about a two-thirds chance of limiting global warming to
2 °C by the end of the century, since this earlier work relied
upon the Baseline framework.

4 Conclusions

The extent of global warming is proportional to the ERF from
greenhouse gases and tropospheric aerosols. In this work, we
use a multiple linear regression energy balance model (EM—
GC) to quantify how updates to the projections of effec-
tive radiative forcing (ERF) due to GHGs and tropospheric
aerosols given by the IPCC ARG report impact estimates of
attributable anthropogenic warming, climate sensitivity, and
projected future increases in GMST. We focus on four policy-
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Table 5. EM-GC-computed probabilities of achieving the Paris
Agreement target (1.5 °C) and upper limit (2.0 °C). Columns with
the “Baseline” header represent EM-GC simulations using the
Baseline framework, while “AR6” represents simulations of the
ARG6 framework. The values presented in this table are derived from
the PDFs shown in Fig. 4.

Paris 1.5°C ‘ Paris 2.0 °C
Baseline (%) AR6 (%) ‘ Baseline (%) ARG6 (%)
SSP1-1.9 81 70 98 100
SSP1-2.6 54 32 87 85
SSP4-3.4 21 3 64 40
SSP2-4.5 1 0 35 8

relevant SSP scenarios: SSP1-1.9, SSP1-2.6, SSP4-3.4 and
SSP2-4.5 (O’Neill et al., 2014, 2016).

We show that projected total anthropogenic ERF
(ERFanTH) computed from AR6 forecasts of the atmo-
spheric concentrations of GHGs, AR6 changes to the param-
eterizations of ERF due to GHGs, and AR6 updates to the
radiative effects of tropospheric aerosols (termed the AR6
framework) results in considerably larger values of projected
ERFaNnTH compared to values in the Baseline framework,
which represents the state of knowledge prior to AR6. It is
important to note that ERFanTy found in both the AR6 and
Baseline frameworks relies on the same emission time se-
ries for GHGs. The higher values of ERFanty in the AR6
framework relative to Baseline is driven by updates to fu-
ture atmospheric concentrations of CO, and CH4 due to the
use by AR6 of a new version of the Model for the Assess-
ment of Greenhouse Gas Induced Climate Change (MAG-
ICC) model (Meinshausen et al., 2011a, b, 2020), updates to
the mathematical formulations of ERF due to GHGs in AR6
that results in about a 6 % increase in the radiative forcing of
climate for “doubled CO,” relative to the ARS parameteri-
zation (Forster et al., 2021), as well as major changes in the
assessed values of the magnitude and temporal evolution of
ERF due to tropospheric aerosols by AR6. The combination
of these factors results in about a 0.9 Wm™2 increase in the
end-of-century value of ERFanTy for the SSP2—4.5 scenario
for AR6 compared to Baseline. While some minor deviation
of end-of-century ERFanTH from the nameplate RF value of
SSP scenarios is expected (that is, 4.5 W m~2 radiative forc-
ing for SSP2—4.5) (van Vuuren et al., 2014), the AR6 updates
increase ERFanTH such that end-of-century values are now
considerably larger than the nameplate RF for each of the
four SSP scenarios we have examined.

The rate of human-induced warming between 1974 and
2014 (AAWR) was found to be 0.18 (0.13 to 0.21) °C per
decade within the AR6 framework, a slight increase relative
to the central estimate and range of 0.16 (0.12 to 0.20) °C per
decade for the Baseline framework (the range reflects the
5th and 95th percentiles). Our estimate of AAWR within the
ARG framework was shown to be consistent with other re-
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cent studies that adopt various means to separate human and
natural influence on GMST (Gulev et al., 2021; Forster et al.,
2023; Samset et al., 2023). Most importantly, our estimate
of AAWR is lower than values found by many of the free-
running (that is, unconstrained by observed GMST) CMIP6
ESMs (Tokarska et al., 2020b; McBride et al., 2021; Tebaldi
et al., 2021; Hausfather et al., 2022; Chylek et al., 2024)

The magnitude of EffCS inferred from the historical
GMST record was found to be 2.29 (1.54 to 3.11) °C within
the AR6 framework and 2.26 (1.45 to 4.37) °C for the Base-
line framework. Although the median value of EffCS is
nearly identical between the two frameworks, there is a nar-
rower range within the AR6 framework. The narrower range
is driven by the ability to obtain good fits to the historical
GMST record for a larger values of climate feedback within
the Baseline framework compared to AR6, which we have
shown is driven by large differences in the assessed temporal
evolution of cooling by tropospheric aerosols in AR6 com-
pared to Baseline. Using the AR6 best estimate for the pat-
tern effect (o’ in Eq. 2) of 0.5 Wm~2°C~! (Forster et al.,
2021), we find values for ECS of 3.24 (1.92 to 5.15) °C for
the AR6 framework. This estimate of ECS is quite similar to
the AR6 assessment of 3.0 (2.0 to 5.0) °C given in Table 7.13
of Forster et al. (2021). Overall, the estimates of EffCS and
ECS found within the AR6 framework compare quite well
with values reported by several other recent analyses of the
climate system (Rugenstein et al., 2020; Skeie et al., 2024;
Armour et al., 2024).

The computational efficiency of the EM—GC allows for
probabilistic projections on future warming that rely on con-
sideration of the uncertainty in the magnitude of ERF from
tropospheric aerosols as well as climate feedback. Median
projections on end-of-century warming (AT2100) found us-
ing our model are higher, by 0.2 to 0.4 °C, for the AR6 frame-
work relative to projections found in the Baseline frame-
work. Both frameworks rely upon the same time series for
the future emissions of GHGs. The larger projected warming
within the AR6 framework is driven by AR6 updates to pro-
jections of the atmospheric concentrations of GHGs, the ERF
of GHGs, and the temporal evolution of aerosol cooling.

Finally, we evaluate the likelihood of achieving either the
target (1.5 °C) or upper limit (2 °C) warming thresholds of
the PA. The AR6 updates to GHGs and aerosols result in a
decline in the likelihood of limiting warming to either 1.5
or 2°C, compared to Baseline. Below, we give numerical
results for only the AR6 framework. Model simulations us-
ing SSP2-4.5 (designed to reflect trends in the absence of
further climate policies) and SSP1-2.6 (full implementation
of currently proposed emission targets; Meinshausen et al.,
2024), are found to offer no chance and a 32 % chance of
limiting the rise in GMST to 1.5°C by 2100. Model sim-
ulations conducted using SSP4-3.4 (intermediate scenario
between SSP1-2.6 and SSP2—4.5) and SSP1-1.9 (aggres-
sive future reductions in GHG emissions) show probabilities
of 3 % and 70 % of limiting warming to 1.5 °C by the end of
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the century. The likelihood of limiting warming to 2.0 °C is
found to be 8 %, 40 %, 85 %, and 100 % for the SSP2-4.5,
SSP4-3.4, SSP1-2.6, and SSP1-1.9 scenarios, respectively.

In earlier work using the EM-GC that relied upon the
Baseline framework, McBride et al. (2021) concluded that
the SSP4-3.4 scenario provided a 64 % probability of limit-
ing global warming to 2 °C by the end of the century. The
ARG6-based updates to ERFanTH considered here result in
a lower, 40 % probability of achieving this upper limit of
the PA. Nonetheless, the EM—GC-based estimates of limit-
ing end-of-century warming to 2 °C for both the AR6 and
Baseline frameworks are more optimistic than is provided by
many free-running CMIP6 ESMs. Our results suggest that
SSP1-2.6 is the “two-degree pathway”, since this scenario
provides an 85 % probability of limiting global warming to
the upper limit of the PA.

Code and data availability. All data used as inputs of
EM-GC are available from online resources. We have pro-
vided the links to these datasets below. The compiled input
files used by EM-GC are also provided on Zenodo.org at
https://doi.org/10.5281/zenodo.14720490 (Farago et al., 2025,
last access: 22 January 2025). The EM-GC output data are also
provided in this Zenodo repository.

SSP database (Baseline framework): https://tntcat.iiasa.ac.at/
SspDb (last access: 17 February 2020).

Tropospheric O3 RF (Baseline framework): https://www.
pik-potsdam.de/~mmalte/rcps (last access: 15 September 2023).

AR6 radiative forcing (AR6 framework):
https://doi.org/10.5281/zenodo.5705391 (last access: 16 November
2017).

MEIv2 and MEIext: https://psl.noaa.gov/enso/mei and https://
psl.noaa.gov/enso/mei.ext (last access: 28 January 2020).

PDO: https://doi.org/10.5281/zenodo.14720490 (last access: 22
January 2025).

COBE SST data used to construct the IOD time series are
available at https://psl.noaa.gov/data/gridded/data.cobe.html (last
access: 2 March 2020).

GloSSAC SAOD: https://asdc.larc.nasa.gov/project/GloSSAC
(last access: 11 August 2020).

TSI: https://lasp.colorado.edu/sorce/data/tsi-data (last access: 28
January 2020).

OHC records:

Balmaseda: https://www.cgd.ucar.edu/cas/catalog/ocean/oras4.
html (20 January 2020).

Carton: http://www.soda.umd.edu/soda3_readme.htm (last ac-
cess: 18 February 2019).

Cheng: http://www.ocean.iap.ac.cn/pages/dataService/
dataService.html?navAnchor=dataService (last access: 6 March
2020).

Ishii: https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_
global_en.html (last access: 6 March 2020).

Levitus: https://www.ncei.noaa.gov/access/
global-ocean-heat-content (last access: 17 February 2020).
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Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esd-16-1739-2025-supplement.
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