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Abstract. Seamless climate predictions integrate forecasts across various timescales to provide actionable in-
formation in sectors such as agriculture, energy, and public health. While significant progress has been made,
there is still a gap in the continuous provision of operational forecasts, particularly from seasonal to multi-annual
timescales. We demonstrate that filling this gap is possible using an established climate model analog method
to constrain variability in CMIP6 climate simulations. The analog method yields predictive skill for surface air
temperature forecasts across timescales, ranging from seasons to several years. On average, the analog-based
surface air temperature predictions provide added value over the unconstrained CMIP6 ensemble, especially on
seasonal to annual timescales. Similar to operational climate prediction systems, Standardized Precipitation In-
dex forecasts are less skillful than surface air temperature forecasts but still better than the CMIP6 unconstrained
simulations. The analog-based seamless prediction system shows very similar patterns of skill compared to
state-of-the art initialized climate prediction systems and has competitive skill on annual and biennial forecast
ranges. While the current prediction systems provide only 1-2 initializations per year, the analog-based system
can easily provide predictions with monthly initializations, delivering seamless climate information throughout
the year currently not available from traditional seasonal or decadal prediction systems. Furthermore, due to
analog-based predictions being computationally inexpensive, we argue that these methods are a valuable and
viable complement to existing operational prediction systems.

sources to better preparing for climate-related disasters and

Seamless climate prediction aims at integrating and syn-
thesizing climate forecasts over a range of forecast times,
from sub-seasonal to multi-decadal timescales (Kirtman et
al., 2013; Merryfield et al., 2020; Meehl et al., 2021). It is
rooted in the concept that the internal climate variability is
not confined to any specific timescale but instead spans days
to several decades (Schindler et al., 2015; Zhang et al., 2020).
Seamless climate prediction can support various practical ap-
plications, ranging from managing agriculture or water re-

better meeting energy demands (Buontempo et al., 2018; Bett
et al., 2022; Sanchez-Garcia et al., 2022).

On subseasonal to seasonal timescales (i.e. from a few
weeks to a few months), seamless climate prediction aims to
inform about variability associated with phenomena such as
the Madden Julian Oscillation (Kim et al., 2019a) or sudden
stratospheric warming events (Sigmond et al., 2013). Climate
and weather variability in these timescales can affect sec-
tors such as agriculture, energy production, and public health
(Thomson et al., 2006; Klemm and McPherson, 2017; Kim et
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al., 2019b; Lled¢ et al., 2019; Ceglar and Toreti, 2021). Sea-
sonal to multi-annual climate predictions (i.e. from a season
to a few years) provide information to better anticipate cli-
mate variations that are externally forced or occur due to nat-
ural variability within the climate system and which include
for example the El Nifio—Southern Oscillation (ENSO, Lopez
and Kirtman, 2014), the Indian Ocean Dipole (Shinoda and
Han, 2005), or the Arctic Oscillation (Riddle et al., 2013)
and Antarctic Oscillation (Seviour et al., 2014), being impor-
tant in various sectors including agriculture, water resource
management, energy, public health, and disaster risk man-
agement (Caron et al., 2015; Solaraju-Murali et al., 2021;
Dunstone et al., 2022). Decadal and multi-decadal predic-
tions provide information on longer climate trends and vari-
ability like the Atlantic Multidecadal Variability (Mann et al.,
2014) or Pacific Decadal Oscillation (Liu and Di Lorenzo,
2018) which are essential for long-term planning in infras-
tructure, resource management, and climate change adapta-
tion (Solaraju-Murali et al., 2022; Dunstone et al., 2022).
Operational seasonal and decadal climate predictions are
produced by integrating forward in time an ensemble of sev-
eral parallel climate model simulations forced by a likely ex-
ternal forcing scenario and initialized from a climate state
that is representative of the observed climate (Meehl et al.,
2021). The ensemble of model simulations is meant to con-
stitute a pool of equally probable realizations of future cli-
mate. After initialization, the models are often subject to
shocks followed by a drift away from the observed climate
typically towards its own attractor. This can result in a re-
duction of forecast skill (Bilbao et al., 2021). Model simula-
tions used to deliver climate predictions are computationally
expensive, thus being produced only by a limited number
of institutions around the world. Analog-based approaches
are alternatives that exploit the freely available large ensem-
bles of non-initialized climate model simulations such as
the ones from the Coupled Model Intercomparison Project
Phase 6 (CMIP6; Eyring et al., 2016) to produce computa-
tionally cheaper climate predictions. These approaches work
by scanning for analogs of the observed climate in a large
model catalog, typically selecting a subset of them in order
to better constrain the variability of those simulations and
provide predictability beyond the one determined by the ex-
ternally forced signal alone (see methods). An incomplete
representation of the climate state at initialization is likely
the major disadvantage of the analog-based predictions be-
cause of the finite available states present in the multi-model
catalog. These states may be less representative or “further
away” from the observed target state than the initial states
in an initialized climate prediction system. Despite these po-
tential disadvantages from a lack of a more sophisticated ini-
tialization, the simulations used in the analog-based predic-
tions are not impacted by initialization shocks, and their di-
rect use is computationally cheap. Analog-based prediction
methods have been successfully applied on seasonal/annual
scales by Ding et al. (2018, 2019) to predict climate in the
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tropics (e.g. multi-year ENSO forecasts) and by Mahmood
et al. (2021, 2022), De Luca et al. (2023), and Donat et
al. (2024) on decadal to multi-decadal timescales to give an
outlook beyond the available operational decadal predictions.

Despite recent progress in existing prediction systems
(Kirtman et al., 2013; Kushnir et al., 2019: Merryfield et al.,
2020; Meehl et al., 2021), only operational decadal predic-
tions provide information across these different timescales,
yet this information is only available typically at the begin-
ning of each year. Operational seasonal forecasts do provide
information about once a month, but the forecast horizon is
typically limited to 6 months. For example, a user interested
in obtaining climate information for different timescales
(e.g. seasonal to multi-annual) would currently have to com-
bine the information from different prediction systems for
the different timescales which are often inconsistent in their
setup, the model used, and the predictions they provide. In
this study we show that this key climate information gap on
the seasonal to multi-annual timescales can be filled by ex-
ploiting the model analog method to constrain existing non-
initialized CMIP6 simulations.

2 Methods

We build from the hypothesis that finding the climatic states
(analogs) in simulations from a large multi-model ensemble
that are closest to an observed target state can provide valu-
able information on the future evolution of the climate sys-
tem (Mahmood et al., 2022). The CMIP6 ensemble is cur-
rently the largest available pool of simulations from multi-
ple state-of-the-art climate models. In this study we use data
from 149 climate simulations from 19 climate models cov-
ering the period 1960-2030 forced by historical emissions
before 2015 and the SSP2-4.5 scenario emissions afterwards
(Table S1 in the Supplement). The total number of model
simulation years is 10579. The period 1960-2030 was cho-
sen to include both a climatically representative period of the
hindcast and an extension to the future to allow for the oc-
currence of unprecedented climatic states in a real-time fore-
casting context.

More specifically, we scan across time and ensemble
members for the conditions that better resemble the observed
sea surface temperature (SST) anomaly pattern over oceans
at a given time as a means to align the natural climate vari-
ability around the climatological state of the model to the
observed one, which conceptually corresponds to the initial-
ization of climate predictions. To do this, we first estimate
the area-averaged, area-weighted (w) mean absolute error
(MAE) of monthly SSTs for each member of each model
(! in Eq. 1) and across years (k in Eq. 1) with respect to
the observational reference (O in Eq. 1) at the desired target
month of “initialization” (m in Eq. 1). For example, to pro-
duce the surface air temperature (TAS) or Standardized Pre-
cipitation Index (SPI) forecasts of June—August 2024 with 1-
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month lead time, the observed SST anomalies of April 2024
(m) are compared with all the April SST anomalies between
1960 and 2030 (k) across members in the multi-model en-
semble and ranked according to their respective MAE, for
each member separately. The modeled SSTs from all months
of April that have the greatest similarity with the target month
of April 2024 (i.e. smallest MAE) are then selected (analogs
of April 2024), and the forecast is constructed by taking the
average conditions of the June—August following the selected
April analogs. The selection is always done with 1-month
lead time (unless otherwise noted) to provide information
well ahead of the targeted forecast period. We found that the
analogs generated with an SST pattern comparison for the
whole planet are broadly superior to the analog using a re-
duced Indo-Pacific region as in Ding et al. (2018) (Tables S2—
S3). Additional sensitivity tests also reveal that the optimal
length (m and k) of SST pattern comparison is 1 month, in-
dependent of the different forecast ranges considered, in par-
ticular for seasonal to inter-annual predictions (Tables S2—
S7). Please note that for longer (e.g. multi-annual to multi-
decadal) forecast times, analogs based on longer-term SST
averages were determined to give highest skill (e.g. Mah-
mood et al., 2022; Donat et al., 2024). The timescales of
the analogs represent processes relevant for the predictions.
While for seasonal to inter-annual predictions SST variations
at higher frequency (e.g. ENSO) are most relevant, for longer
prediction horizons (also reaching beyond the ENSO pre-
dictability barrier), other lower-frequency variations (e.g. At-
lantic multidecadal variability) are more relevant. The num-
ber of analogs for each TAS (SPI) prediction is defined by
the top (top 5) analog(s) in each one of the model simula-
tions which cover the period 1960-2030. Note that for long
predictions, the period of analog selection is slightly reduced
at both extremes (e.g. 48-month predictions are based on
analogs centered between 1963 and 2027). The number of
selected analogs (i.e. 1 or 5 per member) and the number of
models and members used have been determined by perform-
ing sensitivity tests (Tables S8—S13). More specifically, four
methods were tested:

— Method 1. All available members from the six models
that provide more than 10 members each (Table S1),
122 members in total.

— Method 2. Only 10 members from the same six models
that provide more than 10 members each, 60 members
in total.

— Method 3. Ten members from each model. For mod-
els that provide less than 10 members, the members are
used more than once to complete a set of 10 for each
model, 190 members in total — essentially increasing the
relative weight of the analogs of models with fewer than
10 members.

— Method 4. All available members from the 19 models,
149 members in total.
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Using the best overall method from the sensitivity tests
(method 4), the selected analogs then constitute the forecasts
and can be interpreted as ensemble members. Additionally,
the trend of the ensemble-mean TAS analog-based predic-
tions is adjusted by first removing the signal explained by
external forcing as in Smith et al. (2019) and then adding
the externally forced trend (i.e. the CMIP6 ensemble mean)
to those residuals. This is necessary because the analogs can
be selected from any year in the period 1960-2030 and do
not necessarily have the right forcing state. The trend ad-
justment ensures that potential offsets related to selecting
analogs from other forcing states are corrected to represent
the forcing of the year(s) of the predictions. For the SPI pre-
dictions the trend adjustment is not needed, as they are opti-
mal without it (not shown).

Mathematically, the criterion to rank and determine the
analogs is

i Tk = Oijom

N )
where the indices i, j, k, and [ run across longitudes, lati-
tudes, months, and models/members, respectively. T stands
for the model values, and N stands for the total number of
ocean grid points.

We apply the methodology described above to generate
retrospective predictions of SPI and TAS of 3 months, 1 year,
2 years, and 4 years and evaluate their predictive skill in the
period 19622018, except for the 3-month predictions which
are only evaluated during 1982-2018, defined by the avail-
ability of the benchmark SEAS51 predictions (see next para-
graph). We compute the SPI (McKee et al., 1993) for 3-, 12-,
24-, and 48-month accumulations using the R package SPEI
(Begueria and Vicente-Serrano, 2023). Following Smith et
al. (2019), the non-forced analog-based predictions and ob-
servations are by definition the residuals that contain only
the variability that is not explained by the CMIP6 ensemble
mean. Hence, the non-forced skill throughout the study can
be interpreted as the residual skill explained after removing
the externally forced signal. The skill metrics used in this
study are the anomaly correlation coefficient (ACC) and the
mean absolute error skill score (MAESS):

Y0 (Fi—F)(0i-0)
—\2 —\2
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In Egs. (2) and (3) F stands for forecasted values, and O
stands for observed values, and in Eq. (3) the reference R
is a trivial climatological forecast based on observations, the
multi-model uninitialized CMIP6 ensemble mean, or the en-
semble mean forecast from an operational prediction system.

The letters with the bars denote climatological values. The
index i in Egs. (2) and (3) runs across time.
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The list of CMIP6 models used in this study is available in
Table S1. All model and observational data have been bilin-
early interpolated to a common grid of 5° x 5° for TAS and
about 2.8° x 2.8° for both SSTs (i.e. analog search) and SPI.
The observational reference datasets for SST analog search is
ERSSTvVS5 (Huang et al., 2017), while the observational ref-
erences for prediction evaluation of TAS and SPI are based
on the monthly averages of Berkeley Earth Surface Tem-
peratures (BEST, Cowtan) and the Global Precipitation Cli-
matology Center (GPCC, Becker et al., 2013), respectively.
In addition to the CMIP6 simulations, we used data from
two operational climate prediction systems as a benchmark
for the comparisons. For the 3-month predictions, we used
the European Centre for Medium-Range Weather Forecast-
ing SEASS51 (Johnson et al., 2019) and for the 12-, 24-, and
48-month predictions, we used the initialized climate model
EC-Earth3 (Bilbao et al., 2021). Note that both dynamical
prediction systems are limited to 25 members, whereas the
analog-based predictions are based on the 149 members from
the non-initialized CMIP6 ensemble. A key strength of the
analog-based method is its ability to leverage a large-sized
ensemble at minimal computational cost as opposed to the
significant cost it requires to generate such large ensembles
with initialized prediction systems. However, we acknowl-
edge that a fraction of the skill of the analog-based predic-
tions stems from exploiting large ensembles, and reducing
the ensemble size to match the size of the dynamical pre-
diction systems reduces the skill. This is demonstrated in
Fig. S1, which shows that the skill of the analog-based pre-
dictions clearly increases with ensemble size, regardless of
variable or forecast range.

3 Results

3.1 Seasonal predictions (3 months)

Figure 1a—f illustrate the spatial distribution of skill for bo-
real winter (December—February) TAS predictions initialized
on 1 November, as assessed by the ACC and the MAESS.
The analog method shows positive statistically significant
correlation in the tropics and subtropics, most of the ocean,
and the Arctic (Fig. 1a). A large fraction of skill in these ar-
eas can be attributed to the alignment of internal variability in
the predictions and observations as revealed by the residual
correlation after removing the externally forced signal from
CMIP6 (Fig. 1b). In general, the analog-based predictions of-
fer added value over a trivial climatological forecast (Fig. 1d)
and over the uninitialized CMIP6 ensemble (Fig. 1e), espe-
cially over tropical regions. Figure 1c displays the correla-
tion between the observations and SEAS51, an operational
seasonal forecast system, while Fig. 1f displays the added
value of the analog-based predictions over the SEAS51 ones
according to the MAESS. Generally, SEASS51 has higher
skill than the analog-based predictions, especially marked in
ocean regions like the North Atlantic. However, the overall
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spatial patterns are very similar between the analog-based
and SEASS51 predictions, which gives some confidence that
both exploit similar sources of predictability.

Although not as widespread as December—February pre-
dictions, boreal summer (June—August) TAS predictions ini-
tialized on 1 May also display high skill in the tropics. Ad-
ditionally, skill is also high in many subtropical and mid-
latitude regions (Fig. 2a, d). Generally, the skill in North-
ern Hemisphere land regions is higher in boreal summer than
in winter. Specifically, the Middle East, Europe, and large
parts of East Asia show high skill in terms of both ACC
and MAESS, although this skill stems primarily from the re-
sponse to external forcing and not from the analog initializa-
tion. Hence, the added value of analog-based predictions over
the uninitialized CMIP6 ensemble is mostly limited to tropi-
cal and subtropical regions according to the residual correla-
tion (Fig. 2b) but limited to Central America, Southeast Asia,
and tropical oceans according to MAESS (Fig. 2e). Again
there is a very large similarity between the spatial patterns
of skill in the analog and SEASS51 predictions (Fig. 2a, c,
respectively). SEASS51 shows larger correlations with obser-
vations in general, but similar to boreal winter, the disadvan-
tage of the analog-based predictions over land areas seems
limited and mostly not statistically significant with respect to
SEASS51 when evaluated with the MAESS (Fig. 2f).

Figure 3 shows the correlation coefficients of the SPI3
analog seasonal forecasts and observations during the boreal
winter (Fig. 3a—c) and summer (Fig. 3d-f), respectively. The
analog-based predictions exhibit skill in Australasia, south-
ern Africa, and the tropical Americas. In line with what is
observed in forecasts from dynamical forecast systems, the
analog technique yields predictions for SPI3 that are notably
less skillful than those for TAS. Nonetheless, the spatial pat-
terns of regions with skill in the analog and SEASS51 are very
similar (Fig. 3a, c, d, f). The residual correlation of precipita-
tion forecasts with the analog method during the boreal win-
ter and summer is shown in Fig. 3b and e, respectively. The
similarity of these maps to the full-skill maps (i.e. Fig. 3a, d)
suggests that the analog-based predictions’ accuracy is pre-
dominantly due to the alignment of natural climate variabil-
ity in both the models and observations, with one notable
exception: the Sahel region in boreal summer (Fig. 3d, e),
in which the skill seems to result from the external forcing
(Ndiaye et al., 2022). It is important to note that the MAESS
of both boreal summer and winter analog-based predictions
of SPI3 when using SEASS51 as a reference shows gener-
ally non-statistically significant differences, similarly to land
TAS (not shown).

The SPI3 analog-based predictions show skill compara-
ble to SEASS51 predictions between boreal fall and spring in
terms of land area with positive and statistically significant
residual correlation, while the analog-based predictions of 3-
month TAS are generally less skillful than SEASS1 through-
out the year (Fig. 4). Skill over land peaks around boreal
summer/fall and fall/winter for TAS and SPI3, respectively,
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Figure 1. (a) ACC between December—February analog-based ensemble mean predictions and observations of TAS. (b) Residual ACC
between December—February analog-based ensemble mean predictions and observations of TAS. (¢) ACC between ECMWF-SEASS1
December—February ensemble mean predictions and observations of TAS. (d) MAESS of December—February analog-based ensemble
mean predictions of TAS. The reference (R) is a climatological forecast derived from observations. (¢) MAESS of December—February
analog-based ensemble mean predictions of TAS. The reference (R) is the ensemble mean of CMIP6 historical simulations. (f) MAESS
of December—February analog-based ensemble mean predictions of TAS. The reference (R) is the ECMWF-SEASS51 December—February
ensemble mean predictions of TAS. The evaluation period is 1982-2018. The predictions are initialized each November in both analog-based
predictions and SEAS51. The hatched regions in all figures indicate statistically non-significant values (p > 0.1) using a two-sided ¢ test.
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Figure 2. The same as Fig. 1 but for June—August TAS predictions. The predictions are initialized each May.
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Figure 3. (a) ACC between December—February analog-based ensemble mean predictions and observations of SPI3. (b) Residual ACC
between December—February analog-based ensemble mean predictions and observations of SPI3. (¢) ACC between ECMWF-SEASS1
December—February ensemble mean predictions and observations of SPI3. (d) ACC between June—August analog-based ensemble mean
predictions and observations of SPI3. (e) Residual ACC between June—August analog-based ensemble mean predictions and observations
of SPI3. (f) ACC between ECMWF-SEASS51 June—August ensemble mean predictions and observations of SPI3. The evaluation period is
1982-2018. The predictions are initialized each November (a—c) and each May (d—f). The hatched regions in all figures indicate statistically

non-significant values (p > 0.1) using a two-sided ¢ test.

in both analog and SEASS51 predictions. This difference be-
tween the two variables can most likely be attributed to a
more dominant influence of external forcing on TAS pre-
dictability, while for SPI3 the primary driver is natural vari-
ability.

Figure 5 shows the temporal evolution of four key sea-
sonal climate indices of the tropical oceans: the December—
February NINO34 (Fang and Xie, 2020) in the tropical Pa-
cific, the June—August tropical Atlantic index (ATL3, Zebiak,
1993), and the March—May Western (WIO) and September—
November Eastern (EIO, Saji et al., 1999) tropical Indian
Ocean indices. All forecasts are initialized 1 month before
the target season. The indices in the respective seasons are
important because they measure oceanic variability that in-
duces remote impacts on hydroclimatic conditions over land.
They are a small selection to highlight and confront the ana-
log and the SEAS51 predictions in these particular areas. Al-
though not as skillful as SEASS51, the analog-based predic-
tions of NINO34 and the WIO show high skill and closely
follow the observed year-to-year variability and trend. The
ATL3 and EIO follow the observed trend but largely under-
estimate the magnitude of year-to-year variability as opposed
to SEASS51. This underestimation of the local variability may
be a result of the sampling and averaging of hundreds of
analogs, with some of them being less representative of the

Earth Syst. Dynam., 16, 1723-1737, 2025

observed conditions in the particular area. Despite this, at the
global scale, the larger the ensemble of analogs the higher
the skill (Fig. S1). As commonly done for other types of cli-
mate predictions, recalibrating the ensemble could make the
analog-based forecasts more valuable.

3.2 Annual and multi-annual predictions (1-4 years)

The skill of annual TAS analog-based predictions is very
high (ACC > 0.8, MAESS > 0.3) across most tropical ar-
eas and the North Atlantic, as well as being high, posi-
tive, and statistically significant over land regions outside of
the tropics, as shown in Fig. 6a, d. However, skill in areas
like central Asia, central North America, and southern South
America exhibits mostly low to moderate skill (ACC > 0.2)
but still surpasses that of a climatological forecast (MAESS
> 0). The results indicate a distinct improvement of the an-
nual analog forecasts when compared to the CMIP6 ensem-
ble across the Pacific region, the tropical Atlantic and In-
dian oceans, Australasia and East Asia, and large parts of
the Americas and Africa. However, based on MAESS, these
improvements are limited mostly to the Caribbean, southern
Africa, and the Maritime Continent (Fig. 6e). This discrep-
ancy between ACC and MAESS is likely the result of analog-
based predictions being capable of estimating the variability

https://doi.org/10.5194/esd-16-1723-2025
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Figure 5. Observed and predicted evolution of the indices estimated as the area-averaged TAS time series of the (a) December—February
NINO34 (170-120° W, 5° S—-5° N; Fang and Xie, 2020) in the tropical Pacific Ocean, (b) the March—-May WIO (50-70° E, 10° S—-10° N; Saji
et al., 1999) in the tropical western Indian Ocean, (c) the June—August ATL3 (20° W-0° E, 3° S-3° N; Zebiak, 1993) in the tropical Atlantic
Ocean, and the September—November EIO (90-110°E, 10° S-0° N; Saji et al., 1999) in the tropical eastern Indian Ocean.

around the forced signal (positive ACC), but due to biases
in the analog-based predictions, MAESS may be affected
to the point of making it zero or negative. There is also a
broad similarity in the spatial distribution of skill (correla-
tion) of the analog-based and the operational decadal predic-
tions from EC-Earth3 (Fig. 6a vs. 6¢). The analog-based pre-
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dictions slightly outperform EC-Earth3 over land according
to MAESS, as seen in southern Africa or Australia (Fig. 6f)

When extending the forecast to a 2-year period, the
analog-based predictions of TAS continue to show high skill
across most land areas. The skill in the extratropical regions
such as the Mediterranean or East Asia is comparable with
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Figure 6. The same as Fig. 1 but for annual TAS predictions (January—December). The evaluation period is 1962-2018. The predictions
are initialized each November in both analog-based predictions and EC-Earth3. The dynamic forecast system evaluated in (c¢) and (f) is

EC-Earth3.

the skill in the tropical zones, as shown by Fig. 7a and d. The
residual skill after removing the forced signal is slightly less
pronounced for forecasts spanning 2 years than for 1-year
forecasts, as shown in Figs. 7b and 6b, respectively. The ben-
efit from initialization (residual correlation) of the analog-
based predictions can still be observed in several areas like
tropical South America, South Asia, Australia, and sub-
Saharan Africa. Most of the Pacific and the Indian oceans
also show benefits from initialization in the analog-based
predictions. Subtropical regions tend to show reduced skill in
the TAS analog-based predictions according to the MAESS
(Fig. 7e), with the Mediterranean region under-performing
CMIP6 but still generally outperforming EC-Earth3 predic-
tions in northern South America, sub-Saharan Africa, and
Australia (Fig. 7f). As for annual predictions, possible biases
present in the analog-based biennial predictions are likely be-
hind the little to no advantage of the analog-based predic-
tions over CMIP6 ensemble based on MAESS (Fig. 7e), de-
spite some clear advantages measured by the residual corre-
lation (Fig. 7b), which only estimates the variability around
the forced signal.

The results for quadrennial predictions of TAS show
higher overall ACC and MAESS than the biennial or an-
nual predictions (Fig. 8a, ¢). However, residual correlation
is generally smaller in the quadrennial predictions (e.g. the
tropical Atlantic and western Africa no longer show added
skill). This implies that despite higher overall ACC, the ben-
efit from initialization is smaller for quadrennial predictions
than for biennial and annual. Furthermore, the analog pre-
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dictions clearly underperform CMIP6 when measured by
MAESS (Fig. 8e) as opposed to the overall clear advan-
tage measured by residual ACC (Fig. 8b). This is especially
clear in the Northern Hemisphere subtropics and again most
likely the result of biases. The added value of the analog pre-
diction over EC-Earth3 is however still visible in many re-
gions, with the analog-based predictions under-performing
EC-Earth3 predictions only in the North Atlantic, northern
Africa, and southwestern Asia but outperforming it in north-
ern South America, Sub-Saharan Africa, South and South-
east Asia, Australia, and parts of Europe (Fig. 8f).

The correlation maps of SPI12 (Fig. 9a, c), SPI24 (Fig. 9d,
f), and SPI48 (Fig. 9g, i) predictions using the analog method
and EC-Earth3 are again spatially similar. There is an in-
crease in correlation in Northern Hemisphere high latitudes
with longer precipitation accumulations (SPI48) but compa-
rable skill elsewhere in SPI12, 24, and 48, except for a few
regions such as southern Africa or western North America
which exhibit lower skill at longer accumulations. An im-
portant fraction of the skill for SPI24 and especially SPI12
predictions stems from the synchronization of unforced vari-
ability in the models and observations, similar to the seasonal
predictions. This can be implied by the broad similarities be-
tween Fig. 9a and d and b and e. Contrastingly, for SPI48
predictions, the forced signal largely dominates over the non-
forced one. MAESS maps of SPI12, 24, and 48 reveal mostly
non-significant values when comparing analog-based predic-
tions with both CMIP6 and EC-Earth3 (not shown).
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Figure 10 presents the time series for annual (a, b), bien-
nial (c), and quadrennial (d) averages of global TAS in the
analog-based predictions, the EC-Earth3 predictions, and the
observations. Annual predictions initialized each November
for the following January—December (Fig. 10a) show very
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similar results, with comparable performance metrics for the
analog and EC-Earth3 predictions. When considering the 12-
month period from July—June (Fig. 10b), the analog-based
predictions initialized in June (1-month lag) are superior to
the EC-Earth initialized the previous November (8-month

Earth Syst. Dynam., 16, 1723—-1737, 2025
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Figure 9. The same as Fig. 3a—c but for (a—c) SPI12, (d—f) SPI24, and (g-f) SPI48 predictions initialized every November. The reference
period is 1962-2018. The dynamic forecast system evaluated in (c), (f), and (i) is EC-Earth3.

lag), showing residual correlations of 0.74 and 0.26 for the
analog-based and EC-Earth3 predictions, respectively. This
example highlights a key advantage of the analog-based pre-
dictions over the dynamical prediction systems, as the ana-
log ones can be produced every month throughout the year
without large computational cost as opposed to the dynami-
cal ones. Biennial and quadrennial predictions (Fig. 10c, d),
initialized each November (1-month lead), show very similar
values of correlation for both analog and EC-Earth3 predic-
tions, with residual correlations higher in analog-based pre-
dictions and MAESS slightly higher in EC-Earth3 predic-
tions.

Figure 11 summarizes the results of the analog and EC-
Earth3 predictions in terms of total land area fraction with
significant positive correlation for annual, biennial, and qua-
drennial predictions of TAS and SPI. Due to a saturation of
correlation with observations, the residual correlation after
removing CMIP6 signal is used for TAS, while the anomaly
correlation of the actual time series is used for SPI. The
analog-based and EC-Earth3 predictions initialized every
November have a comparable skill of predicting 12-month
mean TAS and SPI (Fig. 11a, d) that decreases with increas-
ing lead time from 2 months up to 13 months (dark-green
and yellow lines). However, when using 12-month analog-
based TAS and SPI predictions initialized every month al-
ways with 1-month lead time, the skill is broadly superior

Earth Syst. Dynam., 16, 1723-1737, 2025

to the benchmark (light-green line vs. yellow lines), and
the skill increases when the forecasts are initialized after
the spring ENSO predictability barrier. For 24-month fore-
casts, the November-initialized analog-based predictions are
also slightly superior to EC-Earth for TAS (Fig. 11b, e),
and the analog-based predictions initialized every month are
consistently superior to the November initialized ones, sim-
ilar to the 12-month forecasts. Analog-based predictions of
48-month TAS and SPI initialized every November are less
skillful than the EC-Earth3 counterpart, while the analog-
based predictions initialized every month have a similar skill
closer to EC-Earth3 on average but exhibit more variability
throughout the year depending on the month of initialization
and variable predicted (Fig. 11c, f).

4 Summary and conclusions

The analog-based predictions provide skillful forecasts on
seasonal to multi-annual timescales and show in general sim-
ilar spatial patterns of skill to initialized numerical predic-
tions. Furthermore, the analog-based predictions are compet-
itive with existing annual and multi-annual predictions from
initialized numerical predictions. On seasonal timescales the
analog-based predictions demonstrate high skill for boreal
winter and summer TAS forecasts with 1-month lead time,
particularly in the tropics, North Atlantic, and most of the
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Arctic, offering substantial added value over the CMIP6 en-
semble (e.g. residual skill). As for boreal summer, the skill
extends into subtropical and mid-latitude regions, with the
Northern Hemisphere land showing greater skill in sum-
mer than winter. The improvement over the non-initialized
CMIP6 ensemble is less pronounced in the tropical Pacific
during summer, likely due to the peak activity of the El Nifio
Southern Oscillation (ENSO) in winter. Like climate predic-
tions from dynamical forecasting systems, analog SPI3 fore-
casts are generally less skillful than 3-month TAS predictions
but still show higher skill than the non-initialized CMIP6 en-
semble and skill peaks around boreal winter. We show that
skill in SPI3 predictions primarily stems from internal cli-
mate variability alignment, while for TAS predictions, exter-
nal forcing also plays an important role. Seasonal TAS and
SPI3 predictions for all initializations throughout the year
display clear added value over the non-initialized CMIP6 en-
semble but are generally less skillful than operational predic-
tions from SEAS51 (Johnson et al., 2019). Furthermore, the
spatial patterns of skill are very similar between the analog-
based predictions and the state-of-the-art benchmark predic-
tion system SEAS51, suggesting that both predictions have
skill due to similar physical processes.

On annual to multi-annual timescales, the annual TAS
analog-based predictions are highly skillful across most trop-
ical and many extratropical land regions. Central Asia, cen-
tral North America, and southern South America show lower
skill but still better than climatological forecasts. The analog-
based predictions generally outperform the CMIP6 ensem-
ble, while the added value over the CMIP6 ensemble de-
creases with increasing forecast range (i.e. biennial and qua-
drennial), indicating that external forcing drives most of the
skill particularly at quadrennial timescales. Spatially, the
skill of annual and biennial SPI forecasts is generally sim-
ilar to that of seasonal ones, with positive statistically signif-
icant correlations in several tropical regions being a common
feature. High-latitude regions in Eurasia exhibit enhanced
skill, particularly for quadrennial predictions, with external
forcing contributing significantly to the skill in these areas.
A comparison with the operational decadal prediction sys-
tem EC-Earth3 (Bilbao et al., 2021) reveals that the analog
method can provide comparable annual and biennial predic-
tions of TAS and SPI when the predictions are initialized at
the same month (i.e. every November) and the lead time in-
creases. While decadal prediction systems are typically ini-
tialized only once per year, the analog-based predictions can
however be easily generated every month in an operational
context, and the skill of those predictions is broadly superior
to the skill of the EC-Earth3 decadal predictions initialized
only once a year. The 48-month analog-based predictions of
TAS and SPI are less skillful than the EC-Earth3 counter-
part when initialized in November but become comparable
if the analog-based predictions are produced every month.
We have chosen EC-Earth3 as a representative model of the
typical decadal prediction system. It is possible that other
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decadal prediction systems perform better in particular re-
gions and for particular timescales, but EC-Earth3 forecasts
quality metrics reveal it to be a good representative of these
systems. For a thorough evaluation of several decadal pre-
diction systems including EC-Earth3, the reader is referred
to Figs. S7T-S11 in Delgado-Torres et al. (2022).

Building on the established concept of climate analogs,
our research demonstrates that by sampling through time
and model of a large CMIP6 multi-model ensemble based
on their similarity with observed SST patterns, one can ex-
tract valuable information on the future evolution of TAS
and SPI, spanning a forecast range of seasons to multiple
years. In other words, the analog-based forecasts can provide
seamless predictions for different forecast times, which have
traditionally been addressed with specific forecast systems
(seasonal or decadal). Despite some potential limitations re-
lated to the lack of a more sophisticated model initialization,
these analog-based forecasts have no initialization shock nor
drift and are competitive with the existing prediction systems
on annual to multi-annual forecast ranges. This methodol-
ogy offers a complementary source of climate information
to existing seasonal and decadal climate predictions, filling
an existing gap across timescales and doing so in a seamless
manner. Crucially, the method is computationally inexpen-
sive and based on a straightforward approach that facilitates
the generation of seamless climate predictions reproducible
at low computational cost once the multi-model ensemble of
transient simulations has been produced.

Code and data availability. The @ CMIP6 and EC-Earth
simulation data that support the findings of this study are
available at https://esgf-node.llnl.gov/search/cmip6/ (last ac-
cess: 14 June 2024), SEASS51 data are available at https:
/lcds.climate.copernicus.eu/ (last access: 14 June 2024), BEST
data are available at https://climatedataguide.ucar.edu/climate-
data/global-surface-temperatures-best-berkeley-earth-surface-
temperatures (last access: 14 June 2024) (Cowtan and National
Center for Atmospheric Research Staff), GPCC data are avail-
able at https://psl.noaa.gov/data/gridded/data.gpcc.html  (last
access: 14 June 2024), and ERSSTv5 data are available at
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