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Abstract. A large fraction of the interannual variation in the global carbon cycle can be explained and predicted
by the impact of the El Niño–Southern Oscillation (ENSO) on net biome production (NBP). It is therefore
crucial that the relationship between ENSO and NBP is correctly represented in Earth system models (ESMs). In
this work, we look beyond the top-down ENSO–CO2 relationship by describing the characteristic ENSO–NBP
pathways in 22 Coupled Model Intercomparison Project Phase 6 (CMIP6) ESMs. These pathways result from
the configuration of three interacting processes that contribute to the overall ENSO–CO2 relationship: ENSO
strength, ENSO-induced climate anomalies, and the sensitivity of NBP to climate. The analysed ESMs agree
on the direction of the sensitivity of global NBP to ENSO but exhibit very high uncertainty with regard to its
magnitude, with a global NBP anomaly of−0.15 to−2.13 Pg C yr−1 per standardised El Niño event. The largest
source of uncertainty lies in the differences in the sensitivity of NBP to climate. This uncertainty among the
ESMs increases even further when only the differences in NBP sensitivity to climate are considered. This is
because differences in the climate sensitivity of NBP are partially compensated for by ENSO strength. A similar
phenomenon occurs regarding the distribution of ENSO-induced climate anomalies. We show that even models
that agree on global NBP anomalies exhibit strong disagreement with regard to the contributions of different
regions to the global anomaly. This analysis shows that while ESMs can have a comparable ENSO-induced
CO2 anomaly, the carbon fluxes contributing to this anomaly originate from different regions and are caused by
different drivers. These alternative ENSO–NBP pathways can lead to a false confidence in the reproduction of
CO2 by assimilating the ocean and the dismissal of predictive performance offered through ENSO. We suggest
improving the underlying processes by using large-scale carbon flux data for model tuning in order to capture
the ENSO-induced NBP anomaly patterns. The increasing availability of carbon flux data from atmospheric
inversions and remote sensing products makes this a tangible goal that could lead to a better representation of
the processes driving interannual variability in the global carbon cycle.
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1 Introduction

The relationship between the El Niño–Southern Oscillation
(ENSO) and atmospheric CO2 observations at Mauna Loa
was first reported by Bacastow (1976). Altered atmospheric
circulation patterns during El Niño events cause warm and
dry conditions across the tropics, leading to a reduction in net
biome production (NBP) due to reduced net primary produc-
tivity (NPP) and increased or decreased heterotrophic respi-
ration (Rh) (Qian et al., 2008; Bastos et al., 2018). ENSO-
induced climate anomalies have a significant impact on the
gross primary productivity (GPP) of 32 % of the vegetated
land area and can explain up to 26 % of the interannual varia-
tion in global GPP (Zhang et al., 2019). Some El Niño events
can be severe enough to turn the Amazon Basin, a carbon
sink of global importance, into a net carbon source (Tian
et al., 1998).

However, ENSO not only explains a large fraction of the
NBP variability but also is the main source of seasonal-to-
decadal predictability in the Earth system (Manzanas et al.,
2014; Zeng et al., 2008; Spring and Ilyina, 2020; Li et al.,
2022). Tropical carbon flux anomalies lag behind ENSO by
3 to 6 months (Zhu et al., 2017; Wang et al., 2016), mean-
ing that even without further knowledge of the evolution of
ENSO, near-term carbon flux variability can be anticipated
based on present ENSO conditions. On top of this lag effect,
Earth system model (ESM) simulations starting in winter can
predict ENSO conditions for up to 1 year (Barnston et al.,
2019).

Further predictability is added to the system by the land
surface, which prolongs the ENSO-induced climate anoma-
lies. The larger the anomaly, the longer it takes for soil mois-
ture and conditions to return to normal, and ENSO years are
often among the most extreme years of variability (Holm-
gren et al., 2001). Even longer predictability mechanisms
might be triggered through vegetation dynamics (Holmgren
et al., 2001). This can happen in dry years through the lasting
impacts of defoliation and tree mortality (Wigneron et al.,
2020; Santos et al., 2018) or through wildfires, which re-
quire decades of recovery (Silva et al., 2018). Wet events,
on the other hand, can provide long-term predictability as
these events drive plant recruitment in semi-arid ecosystems
(Holmgren et al., 2001). Extreme events play a crucial role
in the vegetation dynamics of these ecosystems, where the
establishment of trees and shrubs needs sustained wet condi-
tions (Chang-Yang et al., 2016; López et al., 2006).

Because ENSO plays such a large role in the variability
and predictability of NBP, the correct representation of re-
lated processes in ESMs is especially important. Three key
processes that explain the relationship between ENSO and
NBP can be arranged hierarchically. At the highest level of
this hierarchy is the strength of the ENSO events. Despite
considerable advancements in our understanding of ENSO
dynamics, there remains a wide range of simulated ENSO
amplitudes in ESMs (Beobide-Arsuaga et al., 2021). The am-

plitude of ENSO can be measured as the standard deviation
(SD) of sea surface temperature anomalies (SSTAs) in the
Niño3.4 region (5° N–5° S, 170–120° W) and ranges from
0.4 to 1.4 °C in models from the sixth phase of the Cou-
pled Model Intercomparison Project (CMIP6) (Brown et al.,
2020; Beobide-Arsuaga et al., 2021; Cai et al., 2022).

The second process that explains the impact of ENSO
on NBP involves ENSO-induced climate anomalies. Most
ENSO teleconnections are caused by a reorganisation of
tropical convection patterns (Perry et al., 2020). These
patterns create temperature and precipitation anomalies in
northern South America, Southeast Asia, and northern Aus-
tralia. However, ENSO-induced changes in the upper atmo-
sphere can create Rossby waves that propagate polewards
and lead to climate anomalies in the midlatitudes. ENSO tele-
connection strengths show high uncertainty among CMIP5
models, with an average correlation with observed telecon-
nection patterns of 0.7 for temperature and 0.46 for pre-
cipitation (Perry et al., 2020). Although the representation
of the relationship between ENSO and tropical precipitation
improved from CMIP5 to CMIP6, there are still consider-
able deviations from the observed relationship (Yang and
Huang, 2022). The impact of ENSO on eastern Asian sum-
mer rainfall, for example, can only be captured by 11 out of
20 CMIP6 models (Fu et al., 2021).

The last stage within the hierarchy of processes that shape
the ENSO–NBP relationship involves differences in biogeo-
chemistry – specifically, the sensitivity of NBP to local cli-
matic anomalies caused by ENSO. Due to limitations in car-
bon flux observations and the covariability of climatic condi-
tions, the contributions of temperature and moisture to driv-
ing the carbon cycle remain a debated topic in the literature
(Piao et al., 2020). This uncertainty can be demonstrated by
the sensitivity of the atmospheric CO2 growth rate to tropical
temperatures from reanalysis data, where determined sensi-
tivities differ by a factor of 2 (Piao et al., 2020). Regional
differences in the sensitivity of carbon fluxes to climate de-
pend on the ecosystem type and climate. Semi-arid ecosys-
tems and tropical forests, which cover most of the land area
affected by ENSO, show the highest sensitivity to climate
variability (Bastos et al., 2013; Poulter et al., 2014; Ahlström
et al., 2015; O’Sullivan et al., 2020). However, these biomes
are also where carbon flux sensitivities have the highest inter-
model spread and bias relative to observations (O’Sullivan
et al., 2020; Koirala et al., 2022).

While the land carbon sink variability in ESMs can be con-
strained using the sensitivity of the entire tropical carbon sink
to ENSO-driven climate anomalies (Cox et al., 2013; Zech-
lau et al., 2022), we aim to test whether a spatially explicit
constraint is feasible. The aim of this study is to look beyond
the relationship between ENSO and the global atmospheric
CO2 growth rate in ESMs and reveal the sources of uncer-
tainty in the ENSO–NBP relationship. We quantify the spe-
cific ENSO–NBP pathways that describe the locations and
drivers of the ENSO-induced NBP anomalies. These path-
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ways are characterised by three main processes that shape the
ENSO–NBP relationship: ENSO strength, ENSO-induced
climate anomalies, and biogeochemistry. We quantify how
much the uncertainties in these three processes contribute to
the uncertainty in the ENSO–NBP relationship among the
ESMs and compare the ESMs with observations.

2 Methods

2.1 Data

We measure the interactions between ENSO, temperature,
precipitation, and NBP across 22 CMIP6 ESMs and compare
them with observation-based data sources. In order to have
a large sample size of ENSO conditions, we use unforced
pre-industrial control (piControl) simulations. The analysed
ESMs, their variant labels, and the simulation lengths are
listed in Table 1. We decompose the NBP anomalies into the
following components:

NBP≈ NPP−Rh−fire. (1)

Because some ESMs simulate types of disturbances other
than fires, Eq. (1) does not lead to an exact reproduction
of NBP but provides an approximate value for the contri-
bution of the large carbon fluxes to the land–air CO2 ex-
change. Fire emissions are only available for 13 of the anal-
ysed ESMs. Although CMCC-CM2-SR5 simulates fire emis-
sions, the data are not available online. Instead, we calculate
fire emissions for CMCC-CM2-SR5 by inverting the mass
balance in Eq. (1).

The carbon fluxes of the ESMs are compared with two
observation-based data sets, referred to as observations here.
These are land–atmosphere carbon fluxes from the Coper-
nicus Atmosphere Monitoring Service (CAMS) (Chevallier
et al., 2005), an atmospheric inversion product, and net
ecosystem exchange (NEE) from upscaled flux tower mea-
surements (FLUXCOM version: ANN.CRUNCEPv6; Jung
et al., 2019). Although NEE includes land–atmosphere car-
bon fluxes that are not part of NBP (Ciais et al., 2022),
such as geological CO2 release and lateral fluxes, these
fluxes only play a minor role in the global carbon cycle and
are unlikely to significantly affect the sensitivity to ENSO
(Canadell et al., 2021). We also compare the carbon fluxes
to NBP from the TRENDY v6 ensemble of land surface
models (Sitch et al., 2015). This data product contains the
results of land surface models that are also components of
the ESMs used in this work. Due to this dependence, we
do not treat the TRENDY results as observations. To ac-
count for uncertainty in meteorological data, we use dif-
ferent reanalysis products. We use sea surface temperature
(SST) reanalysis data (Hadley Centre Sea Ice and Sea Sur-
face Temperature (HadISST); Rayner et al., 2003); temper-
atures from the ERA-Interim reanalysis (1979–2018; Dee
et al., 2011); version 4 of the Climatic Research Unit grid-
ded Time Series (CRU TS v4 (1959–2019); Harris et al.,

2020); the Japanese 55-year Reanalysis (JRA-55 (1958–
2019); Kobayashi et al., 2015); version 2 of the Modern-
Era Retrospective analysis for Research and Applications
(MERRA-2 (1980–2021); Gelaro et al., 2017); the National
Centers for Environmental Prediction–National Center for
Atmospheric Research (NCEP–NCAR) 40-Year Reanaly-
sis Project (1948–2021; Kalnay et al., 1996); bias-adjusted
ERA5 reanalysis data (WFDE5 (1979–2018); Cucchi et al.,
2020); and precipitation data from the ERA-Interim reanaly-
sis, JRA-55, MERRA2, the NCEP–NCAR 40-Year Reanaly-
sis Project, and the Rainfall Estimates on a Gridded Network
(REGEN) data set (1950–2016; Contractor et al., 2020).

2.2 Processing and analysis

We calculate the annual anomalies in Niño3.4 SST, tempera-
ture, precipitation, and carbon fluxes for the analysis. In this
study, we base annual averages on a time window from July
to June of the following year, rather than on a window from
January to December. We use this definition of a year to
better capture distinct ENSO events. ENSO SSTAs usually
peak during boreal winter, and warm El Niño events are of-
ten followed by a cold La Niña event (An and Kim, 2017).
Years starting in January are, therefore, not centred around
event peaks and could thus contain the tail of an El Niño
event and the beginning of a La Niña event. Annual anoma-
lies in the data are obtained by subtracting the climatology
from the ESM data and removing the linear trend from the
observational products. ENSO strength is calculated as the
SD of annual SSTAs for the Niño3.4 region. NBP and cli-
mate anomalies are aggregated into regional averages using
the boundaries of the updated Intergovernmental Panel on
Climate Change (IPCC) reference regions (Iturbide et al.,
2020). For this analysis, we only focus on the regions with
the strongest ENSO–NBP relationships. These regions are
identified by averaging the ENSO-induced NBP anomalies
across all data sources and selecting the 14 regions with the
highest absolute ENSO-induced NBP anomalies (Fig. 1). We
calculate the ENSO-induced climate and carbon anomalies
using the coefficients of a linear regression model with a zero
intercept:

1Tempijp = βETij ×1ENSOjp, (2)
1Precipijp = βEPij ×1ENSOjp, (3)
1NBPijp = βENij ×1ENSOjp, (4)

where1Xijp represents the annual anomaly,1ENSOjp rep-
resents the annual mean Niño3.4 SSTA, the regression co-
efficient (βEXij ) corresponds to the region (i = 1, . . .,46,
i.e. all IPCC regions with land surface) and data source
(j = 1, . . .,25, i.e. 22 ESMs and three observational NBP
products using an ERA-Interim climate), and p represents
the year. Although El Niño and La Niña events do not pro-
duce entirely symmetrical responses in the atmosphere and
the land system, we use this method for the sake of simpli-
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Table 1. The Earth system models used in this study, as well as the experiment runs, the simulation lengths, and whether or not fire emissions
are provided.

ESM Variant label No. of years Fire emissions Reference

ACCESS-ESM1-5 r1i1p1f1 1000 Ziehn et al. (2020)
AWI-ESM-1-1-LR r1i1p1f1 100 × Shi et al. (2020)
BCC-CSM2-MR r1i1p1f1 1374 Wu et al. (2019)
CanESM5 r1i1p1f1 1400 Swart et al. (2019)
CESM2 r1i1p1f1 1200 × Danabasoglu et al. (2020)
CMCC-CM2-SR5 r1i1p1f1 500 × Lovato et al. (2022)
CMCC-ESM2 r1i1p1f1 500 × Cherchi et al. (2019)
CNRM-ESM2-1 r1i1p1f2 500 × Séférian et al. (2019)
E3SM-1-1 r1i1p1f1 165 × Golaz et al. (2019)
EC-Earth3-CC r1i1p1f1 1505 × Döscher et al. (2022)
GFDL-ESM4 r1i1p1f1 500 × Dunne et al. (2020)
GISS-E2-1-G r1i1p3f1 165 Orbe et al. (2020)
INM-CM5-0 r1i1p1f1 1201 Volodin et al. (2018)
IPSL-CM6A-LR r1i1p1f1 2001 Boucher et al. (2020)
MIROC-ES2H r1i1p4f2 420 Watanabe et al. (2021)
MIROC-ES2L r1i1p1f2 500 Hajima et al. (2020)
MPI-ESM1-2-LR r1i1p1f1 1000 × Mauritsen et al. (2019)
MRI-ESM2-0 r1i2p1f1 251 × Yukimoto et al. (2019)
NorCPM1 r1i1p1f1 500 × Bethke et al. (2021)
NorESM2-LM r1i1p1f1 300 × Seland et al. (2020)
NorESM2-MM r1i1p1f1 500 × Seland et al. (2020)
UKESM1-0-LL r1i1p1f2 1880 Sellar et al. (2019)

Figure 1. The 14 Intergovernmental Panel on Climate Change (IPCC) climate reference regions with the largest ENSO-induced NBP
anomalies: SE Asia (SEA), northern South America (NSA), NE South America (NES), eastern southern Africa (ESAF), the South American
monsoon (SAM) region, northern Australia (NAU), NW South America (NWS), central Africa (CAF), South Asia (SAS), central Australia
(CAU), eastern Australia (EAU), southern Central America (SCA), western southern Africa (WSAF), and SE South America (SES).

fied results, assuming that El Niño and La Niña events are
similar.

We describe the ENSO–NBP pathways using three distinct
processes: ENSO strength, ENSO-induced climate anoma-
lies, and NBP sensitivity to climate (biogeochemistry). To

quantify these pathways, we calculate the ENSO-induced
NBP anomalies due to the differences in each of these pro-
cesses (1NBPENSO, 1NBPCLIM, and 1NBPBIO). This is
done by considering the differences in only one of the pro-
cesses at a time while using the mean conditions across all
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ESMs for the other processes. To compare the effects of sim-
ilar ENSO events across the ESMs, we calculate the 90th
percentile of Niño3.4 SSTAs for each ESM and for HadISST.
These standardised ENSO events are referred to as “ENSO-
90” here and have a return interval of around 11 years.
We calculate 1NBPENSO by multiplying the mean global
NBP sensitivity to ENSO (βENj ) with the ENSO-90 SSTA
(1ENSOj90) values for each model:

1NBPENSO
j = βENj ×1ENSOj90. (5)

The differences due to ENSO-induced climate anomalies and
NBP sensitivity to climate are assessed by fitting a multiple
linear regression model of NBP (MLRNBP) for each region
and data source. These models predict NBP based on annual
temperature and precipitation anomalies as follows:

1NBPijp = βNTij ×1Tempijp +βNPij ×1Precipijp, (6)

where 1NBPijp represents the NBP anomaly and its sen-
sitivity to temperature (precipitation) is denoted by βNTij
(βNPij ). To assess the differences due to ENSO-induced cli-
mate anomalies, we use MLRNBP with temperature and pre-
cipitation anomalies from an ENSO-90 event for each ESM
and averaged sensitivity values across all ESMs:

1NBPCLIM
ij =

1
22

22∑
j=1

(βNTij )×βETij ×1ENSOj90

+
1

22

22∑
j=1

(βNPij )×βEPij ×1ENSOj90. (7)

Conversely, the differences due to biogeochemistry are cal-
culated using temperature and precipitation anomalies from
an ENSO-90 event averaged across all ESMs with the fol-
lowing model-specific NBP sensitivities to climate:

1NBPBIO
ij = βNTij ×

1
22

22∑
j=1

(βETij ×1ENSOj90)

+βNPij ×
1
22

22∑
j=1

(βEPij ×1ENSOj90). (8)

We compare the contributions of the three processes to the
overall uncertainty by measuring the spread of the ENSO–
NBP relationship among the ESMs as the coefficient of vari-
ation (CV), i.e. the ratio of the standard deviation to the mean
(expressed as a percentage).

3 Results

3.1 Global ENSO–NBP relationship

The NBP anomalies of a standardised ENSO-90 event range
from −0.15 to −2.13 Pg C yr−1, with a CV of 48 %, which

we use as the reference value for the uncertainty in the
ENSO–NBP relationship (Fig. 2a). The mean ESM ENSO-
90 NBP anomaly has a value of −0.88 Pg C yr−1, which is
between the CAMS and TRENDY values. The mean ENSO-
90 NBP anomaly from the observations is pulled down by
FLUXCOM, which is reported to underestimate the interan-
nual variability in carbon fluxes (Jung et al., 2019). There
is strong disagreement regarding the regional contribution
to global NBP anomalies (Fig. 3). This disagreement is ex-
emplified in SE Asia (SEA) and northern South America
(NSA), the two regions contributing the most to global NBP
anomalies. The combined NBP anomalies of these two re-
gions account for 48 % of the global NBP anomalies across
all ESMs. However, the global contribution of SEA and
NSA ranges from −23 % in MIROC-ES2H (unlike the other
ESMs, MICRO-ES2H has positive NBP anomalies in SEA
during El Niño events), to 70 % in NorESM2-LM. There
is also little agreement regarding the ratio of SEA to NSA
anomalies. Although the mean NBP anomaly from SEA is
21 % larger than the mean anomaly from NSA, half of the 22
ESMs have larger anomalies in NSA than in SEA.

Although the method used here does not take the asymme-
try of ENSO events into account, we found this effect to be
negligible on the global scale for most ESMs (Fig. S1 in the
Supplement).

3.2 ENSO strength

ENSO strength varies between 0.35 °C (INM-CM5-0) and
1.39 °C (CMCC-ESM2), while the ESM mean (0.86 °C) is
slightly higher than that of the HadISST reanalysis (0.76 °C;
Fig. 4). Despite the wide variation in ENSO strength, these
differences are partially offset by the sensitivity of global
NBP to ENSO. ESMs with strong ENSO values tend to have
a lower NBP sensitivity to Niño3.4 SSTAs.

To single out the effect of the differences in ENSO
strength, we multiply the ENSO-90 SSTAs by the
mean NBP sensitivity (−0.86 Pg C yr−1 °C−1). The result-
ing ENSO-induced NBP anomalies range from −0.39 to
−1.64 Pg C yr−1. Considering only the differences in ENSO
strength leads to a CV of 32 %, which is a 33 % reduction
compared to the overall ENSO–NBP CV (Fig. 2b).

3.3 ENSO-induced climate anomalies

We compare the regional patterns of ENSO-induced climate
anomalies between ESMs and observations and assess how
these differences affect the ENSO–NBP relationship. The
ESMs generally capture the sign and strength of ENSO-
induced temperature and precipitation anomalies (Figs. S2
and S3). There are, however, regional differences in the un-
certainty in climate anomalies among the ESMs. The spread
in ENSO-induced temperature anomalies is especially high
in central Australia (CAU), northern Australia (NAU), and
NSA, and there are high uncertainties in the ENSO-induced
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Figure 2. ENSO-induced NBP anomalies across ESMs (green) and observational products (purple) for (a) an El Niño event with a 90th-
percentile intensity (CV of 48 % (39 % without GFDL-ESM4)), as well as the contributions of three processes to differences in the ENSO–
NBP relationship: (b) differences in ENSO strength (CV of 32 %), (c) differences in ENSO-induced climate anomaly patterns (teleconnec-
tions (CV of 27 %)), and (d) differences in biogeochemistry (CV of 56 %). Results from the TRENDY ensemble are denoted as diamonds.

precipitation anomalies in SEA and NW South America
(NWS).

We use a statistical model with uniform NBP sensitivities
to determine the effect of differences in ENSO-induced cli-
mate anomaly patterns on NBP (Figs. 2c and S4). Differ-
ences in ENSO-induced climate anomalies contribute less
to the uncertainty in the ENSO–NBP relationship than the
other two processes (CV of 27 %). Most of the global NBP
anomalies fall within a similar range, except those from MPI-
ESM1-2-LR. The above-average NBP anomalies in MPI-
ESM1-2-LR are caused by strong ENSO-induced tempera-
ture anomalies in several regions (Fig. S2).

The comparison of the data sources used has some limita-
tions because the reanalysis-based observation data include
climate forcing, while the ESM data from piControl runs do
not. However, the measured changes to ENSO teleconnec-
tion patterns remain weak and are only expected to alter by
the mid-21st century (Yeh et al., 2018).

We find some notable biases in the ENSO-induced climate
anomalies among the ESMs. Figure 5 shows the ENSO-90
NBP anomalies from the MLRNBP model using mean val-
ues for NBP sensitivity and ENSO-induced climate anoma-
lies from ESMs and observations. The strongest biases are
found in SEA, where the observed ENSO-induced climate
anomalies result in NBP anomalies almost twice as strong as
those in the ESM climate. This bias is mostly due to stronger
ENSO-induced precipitation anomalies in the observations,
especially in MERRA2 (Fig. S3). Other areas with biases in-
clude eastern southern Africa (ESAF) and SE South America
(SES), where ENSO-induced NBP anomalies are stronger in
the observed climate than in the ESM climate, as well as the
South American monsoon (SAM) region and central Africa
(CAF), where the ESM climate creates stronger NBP anoma-
lies than the observed climate.
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Figure 3. Regional ENSO-induced NBP anomalies in ESMs and observational products from an El Niño event with a 90th-percentile
intensity. Note the differences in the x-axis ranges.

3.4 Biogeochemistry

Differences in biogeochemistry lead to a CV of 56 %, rep-
resenting a 17 % increase compared to the differences in
the overall ENSO–NBP relationship (Fig. 2d). This makes
biogeochemistry the largest source of uncertainty in the
ENSO–NBP relationship. Indeed, considering only differ-
ences in biogeochemistry produces a larger uncertainty than
the apparent uncertainty in the ENSO–NBP relationship.
This highlights the compensatory effects that offset some of
the differences among the ESMs.

We decomposed the ENSO-90 NBP anomalies into NPP,
Rh, and fire emissions to reveal the factors driving the
differences in biogeochemistry (Fig. 6). Global ENSO-
induced NPP anomalies are relatively consistent, except in
the MIROC ESMs. Fire emissions make up 43 % and 32 %
of the ENSO-induced NBP anomalies in E3SM-1-1 and Nor-
CPM1, respectively, while in 7 out of the 13 ESMs (with
fire emissions), fire explains fewer than 4 % of the ENSO-
induced NBP anomalies. ENSO-induced fire emissions orig-

inate mostly from SEA. Notable deviations among the NBP
anomalies are due to uncertainties in the sign of Rh. Rh
anomalies can either increase or dampen the effect of re-
duced NPP. In particular, the high NBP anomalies in GFDL-
ESM4 result from increased Rh, most of which originates
from SEA. However, there is no consistency in the role of
Rh with respect to ENSO-induced NBP anomalies. While
GFDL-ESM4 and UKESM1-0-LL have comparable NPP
anomalies for SEA, NBP anomalies are 20 times higher in
GFDL-ESM4 because the NPP anomalies in UKESM1-0-LL
are offset by Rh. This demonstrates that while the NBP sen-
sitivity to climate is suitable for describing CO2 dynamics, it
fails to capture the underlying processes.

3.5 SEA and NSA

Since the majority of the ENSO-induced NBP anomalies
originate from SEA and NSA, we will examine the cause of
these anomalies in more detail. Figure 7 shows the ENSO-
induced precipitation anomalies and the sensitivity of NBP
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Figure 4. ENSO strength and the sensitivity of global NBP to ENSO in 17 ESMs, FLUXCOM, CAMS, and TRENDY. The strength of the
ENSO events is given as the SD of the mean annual sea surface temperatures in the Niño3.4 region (x axis). NBP sensitivity to ENSO is
given as the global NBP anomaly relative to a 1 °C anomaly in the Niño3.4 region (y axis). A correlation of 0.46 between ENSO amplitude
and NBP sensitivity to ENSO compensates for some of the differences between ESMs. IAV: interannual variability.

to precipitation for these two regions. The NBP anomalies
in SEA are less constrained than those in NSA due to both
the uncertainty in the ENSO-induced precipitation anoma-
lies and the sensitivity of NBP to precipitation. While the
differences in the ENSO-induced climate anomalies have
a small impact on the uncertainty in the global ENSO–
NBP relationship, we find large uncertainties on a regional
scale. The ENSO-induced precipitation anomalies range in
value from 100 to −210 mm yr−1 in SEA and from −33 to
−180 mm yr−1 in NSA.

Although the ENSO-induced NBP anomalies from IPSL-
CM6A-LR for SEA reflect the mean NBP anomalies from
the other ESMs (Fig. 3), they result from the compensation
of two anomalous behaviours. In IPSL-CM6A-LR, unlike in
most ESMs, ENSO creates positive precipitation anomalies
in SEA. However, this atypical behaviour is cancelled out by
the negative sensitivity of NBP to precipitation.

These results highlight the need to describe the complete
ENSO–NBP pathway to fully understand the relationship be-
tween ENSO and CO2. The pathways describe not only the
strength but also the where and why of the ENSO–NBP re-
lationship. We demonstrate the extent of these differences
qualitatively by comparing the ENSO–NBP pathways of the
four ESMs that are most similar in terms of apparent ENSO–
NBP strength (Table 2). The ENSO-90 NBP anomalies of
these four ESMs fall within a very narrow range of −0.97
to −0.99 Pg C, which encompasses the TRENDY anomaly
(−0.98 Pg C). Within these four ESMs, we focus on the role
of SEA as this is the region with the strongest ENSO-induced
NBP fluxes. The share of SEA in the global NBP anomaly is
9 % in ACCESS-ESM1-5, 12 % in MPI-ESM1-2-LR, 19 %
in CanESM5, and 56 % in NorCPM1. We further use the
MLRNBP model to separate the SEA NBP anomalies into
components caused by either temperature or precipitation.
Temperature anomalies explain 74 % and 86 % of the NBP
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Figure 5. Differences in regional NBP anomalies based on ENSO-induced climate anomalies from ESMs and observations.

anomalies in MPI-ESM1-2-LR and ACCESS-ESM1-5, re-
spectively. While the high NBP anomaly in NorCPM1 is
exclusively caused by precipitation, the positive precipita-
tion anomaly in CanESM5 even mitigates the overall NBP
anomaly caused by temperature. Lastly, we break down
whether the temperature-related NBP anomalies are caused
by strong ENSO-related temperature anomalies or by a high
sensitivity of NBP to temperature. Although CanESM5 has
by far the highest temperature-related NBP anomalies, the
actual temperature anomalies are 2 and 4 times smaller than
those in ACCESS-ESM1-5 and MPI-ESM1-2-LR, respec-
tively. The temperature-related NBP anomalies in CanESM5
can be attributed to the high sensitivity of NBP to temper-
ature. The remaining ESMs, ACCESS-ESM1-5 and MPI-
ESM1-2-LR, are the most similar in terms of temperature-
related NBP anomalies. However, this is because the 2.5-
times-higher ENSO-induced temperature anomalies in MPI-
ESM1-2-LR are somewhat compensated for by differences
in the sensitivity of NBP to temperature.

4 Discussion

We compared the strength and characteristics of the ENSO–
NBP relationship across 22 CMIP6 ESMs. The largest source
of uncertainty in the simulated ENSO–NBP relationship is
due to differences in biogeochemistry. Although differences

in ENSO-induced climate anomalies are strong at the re-
gional scale, these errors cancel out globally.

The sensitivity of NBP to Niño3.4 SSTAs is still poorly
constrained, with SSTA values ranging from −0.13 to
−2.00 Pg C °C−1 (with an SD of 0.44 Pg C °C−1). A possi-
ble explanation for the negative relationship between ENSO
strength and the sensitivity of global NBP to Niño3.4 SSTAs
could be an artefact of model tuning. Although we could not
find direct evidence that the climate sensitivity of the terres-
trial carbon cycle is directly tuned to ENSO, it is possible that
this happens indirectly by constraining the overall variability
in atmospheric CO2. Some of the spread in the sensitivity of
NBP to Niño3.4 SSTAs can be explained by differences in
individual processes, such as ENSO, or the overall sensitiv-
ity of carbon fluxes to climatic drivers (Padrón et al., 2022).
Although this type of error leads to a large uncertainty in the
ENSO–NBP relationship, the errors introduced by a single
process do not compromise the consistency of the results.
Differences in ENSO strength, for example, could be bal-
anced out with a single scaling factor.

Another type of error is based on differences in the ENSO–
NBP pathways. The combined differences in ENSO-induced
climate anomaly patterns and biogeochemistry lead to high
uncertainty in the processes behind the ENSO–NBP rela-
tionship. Our exemplified descriptions of four ENSO–NBP
pathways show that there is little agreement regarding the
origin and drivers of ENSO-induced NBP anomalies, even
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Figure 6. The decomposition of ENSO-induced NBP fluxes (diamonds) into net primary production (NPP), heterotrophic respiration (Rh),
and fire for global fluxes, Southeast Asia (SEA), and northern South America (NSA). The anomalies represent the carbon fluxes of an ENSO
event with a 90th-percentile intensity. Negative values indicate reduced NPP and increased Rh and fire emissions.

Table 2. Differences in the ENSO-induced NBP anomaly pathways for four ESMs. All models have an ENSO-induced NBP anomaly of
around −0.98 Pg C yr−1 per standardised El Niño event. SEA NBP refers to the ENSO-induced NBP anomaly originating from Southeast
Asia (SEA), Tfrac represents the fraction of NBP anomalies in SEA that can be attributed to temperature,1Temp denotes the ENSO-induced
temperature anomaly, and βNT represents the sensitivity of NBP to temperature.

SEA NBP Tfrac 1Temp βNT

ESM (%) (%) (°C) (Pg C yr−1 °C−1)

ACCESS-ESM1-5 9 86 0.13 −0.63
CanESM5 19 105 0.07 −1.62
MPI-ESM1-2-LR 12 74 0.32 −0.41
NorCPM1 56 0 0.03 −0.02

if they result in similar CO2 growth. The disagreements in
the pathways primarily affect the estimation of regional car-
bon dynamics. However, the differences in the ENSO–NBP
pathways can also distort the prediction of atmospheric CO2
in initialised prediction systems. This results from the in-
teraction of initial conditions and ESM-specific ENSO tele-
connection patterns. Although ESMs might exhibit compara-
ble relationships between ENSO and global NBP, a specific
ENSO event can still result in different NBP anomalies. This
can be exemplified by the pathways of ACCESS-ESM1-5
and NorCPM1 (Table 2). While both ESMs exhibit a simi-

lar average response to ENSO, the NBP anomaly is almost
exclusively from SEA in NorCPM1; however, SEA does not
play a large role in ACCESS-ESM1-5. Consequentially, the
initial conditions and large-scale weather patterns that influ-
ence SEA interact with the ENSO-induced climate anoma-
lies in SEA and co-determine the global NBP anomalies. An
initial positive water storage anomaly in NorCMP1, for ex-
ample, can mitigate the impact of reduced precipitation in
SEA and limit the reduction in global NBP.

The main challenge in improving the representation of the
ENSO–NBP relationship is addressing the errors in the bio-
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Figure 7. Compositions of ENSO-induced NBP anomalies with respect to SE Asia (SEA) and northern South America (NSA). The x axis
shows the ENSO-induced precipitation anomalies, and the y axis shows the sensitivity of NBP to precipitation.

geochemistry. The differences in the sensitivity of NBP to
climate drive the uncertainty in the overall ENSO–NBP rela-
tionship. A large portion of this uncertainty can be attributed
to the partitioning of NBP. While there is some deviation in
the climate sensitivity of NPP, there is no consensus on the
sign of Rh sensitivity. Under normal circumstances, NPP and
Rh are positively correlated (Baldocchi et al., 2018) because,
firstly, similar climatic conditions favour both types of fluxes
and, secondly, the organic material required for Rh is pro-
vided through NPP. An exception to this behaviour was pro-
posed by Zeng et al. (2005) and results from a “conspiracy”
between ENSO-induced climate anomalies and plant and soil
physiology. Increased temperatures and reduced precipita-
tion during El Niño events in the tropics can limit NPP while
enhancing Rh. However, this additive effect of NPP and Rh is
only observed in SEA in GFDL-ESM4 and EC-Earth3-CC.
In most other ESMs, the ENSO-induced reduction in NPP is
partially compensated for by the negative Rh anomaly.

A smaller but still significant portion of the uncertainty
can be attributed to ENSO-induced climate anomalies. While

the extent of global climate anomalies does not vary much
among the ESMs, there is high uncertainty in the spa-
tial distribution of the ENSO-induced anomaly patterns.
Although ENSO-induced climate anomalies affect several
regions across the globe, they induce the strongest NBP
anomalies in SEA and NSA. Important steps in model de-
velopment include reflecting the observed balance of ENSO-
induced climate anomalies for these regions and reducing the
strong bias in climate anomalies in SEA.

The uncertainty among observed carbon fluxes is mostly
due to the low interannual variability in NBP in FLUXCOM.
Although FLUXCOM data are not suitable for estimating ab-
solute ENSO-induced NBP anomalies, they can still be used
to assess the relative contributions of individual regions to the
global ENSO–NBP signal. The ENSO-induced NBP anoma-
lies in CAMS are also below the mean ESM values. This gen-
erally lower response of land carbon fluxes to ENSO in inver-
sion data, compared with ESMs, has been reported by others
(Bastos et al., 2018, 2020). Although there are differences
between inversion products based on atmospheric transport
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models, assimilated observations, prior carbon fluxes, and
fossil fuel emission data (Gaubert et al., 2019), the differ-
ences among inversion products are small compared to the
differences among ESMs (Bastos et al., 2020).

5 Conclusions

Although ESMs are able to reproduce the relationship be-
tween ENSO SSTAs and CO2, there is little agreement with
regard to the processes behind this relationship. While some
of the ESMs and the multi-model mean reflect the observed
ENSO–NBP pathways well, individual ESMs deviate sub-
stantially. This is because uncertainties on regional scales
are balanced out when fluxes are aggregated globally. Conse-
quentially, the correct reproduction of atmospheric CO2 vari-
ability in assimilation runs forced by SSTAs does not neces-
sarily indicate a good representation of atmospheric circula-
tion patterns and biogeochemistry. It could also result from
an alternative ENSO–NBP pathway that does not reflect ob-
servable processes. We attribute this high uncertainty in the
ENSO–NBP relationship to our limited understanding of the
sensitivity of terrestrial carbon fluxes to climate. This ongo-
ing challenge is due to the low availability and quality of
carbon flux observations, limiting the ability of ESMs to re-
produce interannual variability in the terrestrial carbon cycle.
This is, however, where the ENSO–NBP relationship pro-
vides untapped potential. Instead of tuning ESMs with local
observations of carbon flux data, the models could be opti-
mised to reproduce the large-scale ENSO-induced patterns.
This could be a favourable alternative to the traditional ap-
proach due to the availability of high-accuracy data from at-
mospheric CO2 measurements and continental carbon flux
anomalies from inversion products. Improving the reproduc-
tion of the regional response of terrestrial carbon fluxes to
ENSO-induced climate anomalies is not only a tangible goal
but also one that may lead to ESMs with both a better abil-
ity to simulate interannual variability in global carbon fluxes
and improved predictability of the global carbon cycle.
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