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Abstract. Coral reef ecosystems are remarkable for their biodiversity and ecological significance, exhibiting
the capacity to exist in different stable configurations with possible abrupt shifts between these alternative stable
states. This study applies landscape—flux theory to analyze how these complex systems behave when subjected
to random environmental disturbances. We use this theory to formulate and investigate several early warning
indicators of ecosystem transitions in a well-known coral reef model. We studied a number of specific indica-
tors, including the average flux (the driving force when the system is out of equilibrium), the entropy production
rate (EPR), the non-equilibrium free energy, and the time irreversibility of the cross-correlation functions. These
indicators demonstrate a distinctive advantage when compared to classical indicators based on the phenomenon
of critical slowing down; they exhibit turning points midway between two bifurcations, enabling them to forecast
transitions in both directions substantially earlier than conventional methods. In contrast, early warning indica-
tors based on the critical slowing down (CSD) phenomenon typically only become apparent when the system
approaches the actual bifurcation or tipping point(s). Our findings offer improved tools for anticipating critical
transitions in coral reef and other at-risk ecosystems, with the potential to enhance conservation and management

strategies.

1 Introduction

These complex systems provide critical ecological functions
and substantial economic value through coastal protection
and support of fish and marine biodiversity (Mcmanus and
Polsenberg, 2004; Hughes et al., 2007; Mccook et al., 2001;
Dudgeon et al., 2010). However, globally, coral reefs are con-
fronting multiple challenges and experiencing serious threats
to their abundance, diversity, structural integrity, and ecolog-
ical functioning (Mumby et al., 2007; Li et al., 2014; Mc-
manus et al., 2018; Nes et al., 2016). The degradation of coral

reef ecosystems results from a synergistic combination of an-
thropogenic pressures (including overfishing and pollution)
and natural disturbances (such as disease outbreaks, hurri-
canes, and coral bleaching events). The magnitude of this de-
cline is striking — average hard coral cover in the Caribbean
Basin has plummeted from approximately 50 % to merely
10% over just 3 decades since 1977 (Diko, 2010; Pandolfi
et al., 2003). While algal proliferation rarely causes direct
coral mortality, these organisms compete with corals for es-
sential resources such as space and light, contributing to the
death of established coral colonies. Furthermore, algae im-
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pede coral recruitment and regeneration, thereby undermin-
ing the capacity of coral populations to recover from envi-
ronmental stressors (Mumby et al., 2007; Li et al., 2014; Mc-
manus et al., 2018; Nes et al., 2016). The most dramatic illus-
tration of such transformation is observed in Caribbean reefs,
which have undergone a profound shift to an alternative sta-
ble state dominated by algal cover (Mumby et al., 2007; Li
et al., 2014; Mcmanus et al., 2018; Nes et al., 2016). This
striking ecological transition represents one of the most well-
documented examples of regime shifts in marine ecosystems,
fundamentally altering both reef structure and function.

Human land use activities have increased oceanic nutrient
loading, promoting excessive algal growth in marine ecosys-
tems. Historically, herbivorous fish have played a crucial role
in regulating algal biomass (Mumby et al., 2007; Li et al.,
2014). However, widespread overfishing has significantly re-
duced populations of important herbivores, such as parrot-
fish. These herbivores primarily consume algae and indi-
rectly benefit coral communities by reducing algal compe-
tition. Consequently, conservation strategies aimed at restor-
ing parrotfish populations are considered essential for main-
taining resilient coral-dominated reef systems (Mumby et al.,
2007; Li et al., 2014). The ecological importance of protect-
ing parrotfish for endangered corals is substantial. Under nor-
mal conditions, parrotfish communities can maintain approx-
imately 40 % of coral reefs under consistent grazing pres-
sure, whereas overfishing diminishes this capacity to merely
5% (Mumby et al., 2007; Li et al., 2014; Mcmanus et al.,
2018; Nes et al., 2016). Sea urchins, when present in mod-
erate numbers, function as even more effective herbivores
than parrotfish. This was dramatically demonstrated in 1983
when mass sea urchin mortality led to a shift from coral
dominance to algal dominance, leaving only the less effi-
cient parrotfish as grazers. The critical transition dynamics
between coral and algal states have been extensively inves-
tigated by numerous researchers (Mumby et al., 2007; Li
et al., 2014; Nes et al., 2016; Mcmanus and Polsenberg,
2004; Hughes et al., 2007; Mccook et al., 2001; Dudgeon
et al., 2010; Andersen et al., 2009). Research has established
that coral-algae systems typically exhibit two distinct sta-
ble states: coral-dominated conditions and algal-dominated
conditions (Mumby et al., 2007; Li et al., 2014; Mcmanus
et al., 2018; Nes et al., 2016). This ecological bistability
forms the conceptual foundation for our study. While recent
work has explored more complex models incorporating re-
cruitment seasonality and grazing effects (Mcmanus et al.,
2018), our analysis focuses specifically on a simplified coral—
algae interaction model (Mumby et al., 2007; Li et al., 2014)
to investigate the critical factors determining the reef ecosys-
tem.

At low grazing intensities, where parrotfish consume
macroalgae without distinguishing from algal turfs, coastal
seabeds become covered by macroalgae, resulting in a
macroalgal-dominant state. Conversely, high grazing intensi-
ties promote coral coverage, creating a coral-dominant state.
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When grazing pressure decreases below a critical thresh-
old, coral populations decline, while macroalgae proliferate,
causing a shift from coral dominance to macroalgal domi-
nance (Mumby et al., 2007; Li et al., 2014; Mcmanus et al.,
2018). Within a specific range of grazing intensities, both
macroalgal-dominant and coral-dominant states represent al-
ternative stable state of the ecosystem (Mcmanus and Polsen-
berg, 2004; Hughes et al., 2007; Mccook et al., 2001; Dud-
geon et al., 2010; Mumby et al., 2007; Li et al., 2014; Mc-
manus et al., 2018).

State changes in complex ecological systems can be
described through the mathematical frameworks of phase
transitions or bifurcations. Nonlinear dynamical systems
can exhibit various behaviors, including steady states, pe-
riodic orbits, and chaotic dynamics. Much research has
predominantly focused on ecological stability at equilib-
rium points (Mumby et al., 2007; Li et al., 2014; Mc-
manus et al., 2018). This approach typically examines the
basins of attraction of these equilibria across different pa-
rameter values, thereby emphasizing local stability proper-
ties near equilibrium points (Scheffer et al., 2009). How-
ever, conducting global stability analysis of coral-algal sys-
tems presents significant challenges, and the relationship be-
tween system-wide dynamics and the behavior of individ-
ual components remains incompletely understood. In this
study, we demonstrate how landscape—flux theory, derived
from non-equilibrium statistical mechanics, provides an ef-
fective framework for analyzing the global stability proper-
ties of coral-algae ecosystems. We utilize a well-established
coral—algal model as our primary case study (Mumby et al.,
2007; Li et al., 2014).

Understanding how natural systems respond to human dis-
turbances and identifying critical thresholds is essential for
developing effective early warning systems for ecological
transitions (Andersen et al., 2009; Bestelmeyer et al., 2013;
Biggs et al., 2009). As ecosystems face increasing pressure
from climate change, the ability to detect tipping points and
anticipate critical transitions has become increasingly im-
portant (Lenton, 2011; Scheffer et al., 2015; Thompson and
Sieber, 2011). Early warning signals (EWSs) play a crucial
role in this process, helping us to understand when abrupt
and significant changes might occur in complex ecological
systems (Clements and Ozgul, 2018a; Contamin and Ellison,
2009; Drake and Griffen, 2010). Before reaching a critical
point, ecosystems typically maintain a sustainable balance;
however, once this threshold is crossed, the current stable
state loses stability, triggering catastrophic shifts to alter-
native stable states (Dai et al., 2012, 2013; Scheffer et al.,
2015).

Recent theoretical and empirical investigations have sub-
stantially advanced our understanding of ecological system
instabilities (Carstensen et al., 2013; Dakos et al., 2012; Gut-
tal and Jayaprakash, 2009; Kéfi et al., 2014). Critical slowing
down (CSD) theory has emerged as a framework in this field
and has been widely applied to predict warning signals from
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univariate time series data (Dakos et al., 2015; Lindegren
et al., 2012; Veraart et al., 2012; Scheffer et al., 2001). This
behavior occurs as a control parameter approaches a criti-
cal threshold value, causing system dynamics to decelerate
while the current steady state becomes increasingly unstable
(Berglund and Gentz, 2006; Hastings et al., 2018; Scheffer
et al., 2012). Common indicators include increased variance,
stronger autocorrelation, and longer return times following
perturbations (Boettiger and Hastings, 2012; Dakos et al.,
2012; Gsell et al., 2016).

Despite its theoretical promise, research has revealed sig-
nificant limitations to CSD’s practical application. Time de-
lays in ecological systems fundamentally alter the dynam-
ical properties near critical transitions, potentially rendering
CSD indicators unreliable or misleading (Guttal et al., 2013).
This theoretical concern is substantiated by empirical evi-
dence from natural systems, where comprehensive analyses
of long-term data from aquatic ecosystems demonstrate that
CSD indicators’ efficacy is considerably constrained by real-
world complexity, with environmental stochasticity and mul-
tiple interacting stressors frequently obscuring warning sig-
nals (Gsell et al., 2016).

While recent advances have expanded CSD applica-
tions through refined statistical indicators (Boulton and
Lenton, 2019; Bury et al., 2021a) and multivariate exten-
sions (Weinans et al., 2019), significant limitations remain.
Most notably, CSD often provides warnings only when sys-
tems are already near-critical thresholds — frequently too late
for effective intervention (Biggs et al., 2009; Boettiger and
Hastings, 2013b; Ditlevsen and Johnsen, 2010). Addition-
ally, while CSD performs reliably in one-dimensional sys-
tems, it struggles with complex multidimensional ecological
dynamics involving feedback loops (Boerlijst et al., 2013;
Hastings and Wysham, 2010; Weinans et al., 2019). These
shortcomings, along with challenges such as false signal sus-
ceptibility (Boettiger et al., 2013b; Perretti and Munch, 2012)
and extensive data requirements (Burthe et al., 2016), high-
light the need for complementary approaches that can pro-
vide earlier warnings for complex ecological systems and
overcome the limitations inherent in current methodologies
(Boettiger and Hastings, 2013b; Clements and Ozgul, 2018a;
Dakos et al., 2015).

There has also been considerable recent interest in early
warning signals based on Al and machine learning methods
(Grassia et al., 2021; Bury et al., 2021b). While these meth-
ods often show impressive results with simulated and training
data, it remains to be seen how well they generalize to differ-
ent physical systems and unseen datasets. Moreover, these
methods have an inherent disadvantage in that the generated
EWSs do not have a rigorous mathematical underpinning and
are typically not as interpretable to practitioners working in
the application area (George et al., 2023). Machine learn-
ing methods have also recently been used to predict critical
transitions by using existing EWSs (including those based
on CSD) as features in the models to leverage subject mat-
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ter expertise and insights (Ma et al., 2018; Lassetter et al.,
2021). This hybrid approach could be a promising direction
for practical testing of EWSs, including our landscape—flux-
based indicators.

Early warning signals of critical transitions help us to
anticipate and understand the likelihood of abrupt and sig-
nificant changes in complex systems. Ecosystems can usu-
ally maintain a sustainable balance before reaching a critical
point, but, upon crossing the critical point, the current stable
state can lose stability, triggering a catastrophic transition to
a new stable state. Near the critical point, the mechanisms
sustaining the functioning of the ecosystem can break down,
resulting in a sudden loss of resilience and preventing recov-
ery. It is crucial to detect signals of critical transition as early
as possible to give enough time to avert a potential ecological
crisis, and the search for early predictions of imminent struc-
tural changes has thus become the focus of intense research.
Critical slowing down theory is among the most popular and
well-known approaches, but its predictions are only valid
near the bifurcation point. In coastal ecosystems specifically,
the goal is to detect warning signals for transitions from val-
ued states (such as coral-dominated reefs) to degraded states
(such as macroalgal-dominated reefs) and to assess the like-
lihood of recovery transitions. Developing indicators that can
predict both the impending degradation and potential recov-
ery before critical transitions occur would have substantial
practical significance for ecosystem management (Mumby
et al., 2007; Li et al., 2014; Veraart et al., 2012; Scheffer
etal., 2001).

Ecological systems are increasingly recognized as inher-
ently multivariate complex systems, and the understanding
of their high-dimensional dynamic behavior requires further
development (Boettiger and Hastings, 2013a; Boettiger et al.,
2013a; Nolting and Abbott, 2016; Lamothe et al., 2019;
Abbott and Dakos, 2021). Conventional one-dimensional
stochastic models may be missing crucial elements needed to
describe behaviors generated by rotational curl forces among
variables originated from high-dimensional systems. Rather
than using traditional ecological theories based on general
equilibrium assumptions, we need to characterize ecologi-
cal systems through non-equilibrium processes. Recent ad-
vances in non-equilibrium statistical mechanics offer valu-
able insights into understanding attractor state formation, sta-
bility, bifurcations, and phase transitions in both physical
and biological systems (Xu et al., 2014b; Wang, 2015; Wang
et al., 2008; Xu et al., 2012; Wang et al., 2011, 2010; Qian,
2006; Ge and Qian, 2010; Qian, 2009; Xu et al., 2021, 2023).

In this study, we propose early warning signals for detect-
ing approaching phase transitions in complex ecological sys-
tems. Firstly, we measure the entropy production rate (EPR),
which quantifies the energy dissipation or “thermodynamic
cost” required to maintain ecosystem states far from equi-
librium. Secondly, we analyze the average flux, which rep-
resents the net directional movement or flow of the system
through its state space, indicating the strength of forces driv-
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Figure 1. (a) The schematic diagram for the coral-algae model.
(b) The phase diagram versus grazing rate g.

ing ecological dynamics. Thirdly, we calculate the difference
between forward-time and backward-time cross-correlations
between system variables, which measures time irreversibil-
ity — the statistical difference between observing the system’s
behavior in normal versus reversed time sequences. Together,
these metrics can detect changes in system dynamics before
traditional indicators reveal impending critical transitions,
potentially providing warning signals.

Our findings demonstrate that these non-equilibrium warn-
ing indicators exhibit turning points between bifurcations,
enabling predictions for both upcoming transitions signifi-
cantly earlier than traditional critical slowing down indica-
tors, which only become apparent near bifurcation points.
The potential flux—landscape theory presents effective ap-
proaches for exploring the underlying mechanisms of eco-
logical catastrophes and improving the ability to predict crit-
ical transitions.

2 Methods

2.1 Coral-algal model

We explore the dynamics of a typical coral-algae ecosystem
model (Mumby et al., 2007; Li et al., 2014), whose schematic
diagram is shown in Fig. 1a. The ecosystem model contains
three functional types: macroalgae (X), coral (Y), and algal
turfs (7") — entities that can be colonized by macroalgae, algal
turfs, or coral. Algal turf consists of communities of short,
densely growing filamentous algae that form a “turf-like”
covering layer on hard substrates in coral reefs, typically
reaching only a few millimeters in height. Unlike macroal-
gae, these turfs develop a low, compact structure that cre-
ates distinctive microhabitats while serving as a entity in reef
ecosystem dynamics (Mumby et al., 2007; Li et al., 2014;
Mcmanus et al., 2018).

We track the evolution of the proportions of space occu-
pied by each functional type, effectively assuming that the
system is spatially well mixed, leading to a spatially im-
plicit modeling framework (Mumby et al., 2007; Li et al.,
2014; Mcmanus et al., 2018). This approach is appropriate
for intermediate spatial scales where mixing processes (such
as larval dispersal, water circulation, and mobile herbivore
grazing) tend to homogenize local variations. The spatially
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implicit framework allows us to focus on ecosystem-level
dynamics without the computational complexity of spatially
resolved models. Corals recruit and overgrow algal turfs at
rate r, while coral can be overgrown by macroalgae at rate
a. Natural coral mortality occurs at rate z, and we assume
that space released by the death of the coral will be rapidly
recolonized by algal turfs. Macroalgae colonizes algal turfs
by covering them vegetatively at rate y. Reef grazers, such
as parrotfish, are assumed to consume macroalgae and algal
turfs equally at rate g, and algal turfs arise when macroalgae
are grazed. Thus, the rate of algal turf production as a func-
tion of macroalgae is given by the proportion of grazing that
affects macroalgae, i.e., g X /(X +T) (Mumby et al., 2007; Li
et al., 2014; Mcmanus et al., 2018).

The coral-algae system can thus be described by the
following set of nonlinear ordinary differential equations
(ODEs):

dX— Y X +yXT

a x+7 7

dYy

EZVTY—I?Y—CZXY, (1)

where X represents the proportion of space covered by
macroalgae and Y represents the proportion of space cov-
ered by coral. T represents the proportion of algal turf cover,
and, since we assume that all space (seabed) is completely
covered by either macroalgae, coral, or algal turfs, we have
X+Y+T=10orT=1—-X-Y. g is the grazing rate at
which parrotfish graze macroalgae without distinction from
algal turfs, ranging from O to 0.8. The parameter interpreta-
tions and their default values are given in Table 1.

Coral reef ecosystems can exhibit up to six distinct sta-
ble states: hard corals, turf algae, macroalgae, soft corals,
coralimorpharians, and urchin barrens (Jouffray et al., 2015;
Norstrom et al., 2009). While a more complex model incor-
porating all six states would better reflect ecological real-
ity, we adopted a simplified two-state approach to facilitate
analytical tractability while still capturing the fundamental
bistable dynamics characteristic of critical transitions. This
simplification enables us to clearly demonstrate the utility of
our landscape—flux framework while maintaining mathemat-
ical accessibility. Additionally, our approach could poten-
tially be extended to higher-dimensional systems with mul-
tiple stable states in future research, acknowledging both the
limitations of our current model and opportunities for further
development.

2.2 Landscape and flux theory for the coral-algae
model
2.2.1  The concept of landscape—flux theory

Landscape—flux theory provides a promising alternative
framework for analyzing complex ecological systems and
predicting critical transitions. This non-equilibrium statisti-
cal mechanics approach offers several distinct advantages
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Table 1. Parameter interpretation and default values (Mumby et al., 2007; Li et al., 2014).

Symbol  Ecological interpretation Default

value
a The rate at which corals are overgrown by macroalgae (yr_l) 0.1
y The rate at which macroalgae spread vegetatively over algal turfs (yr_l) 0.8
r The rate at which corals recruit and overgrow algal turfs (yr_l) 1.0
h The natural mortality rate of corals (yr_l) 0.44
g The rate at which herbivores consume macroalgae in the coral-algal model (yrfl)

over traditional methods. Foremost among these is its ca-
pacity to characterize global system stability through the
construction of potential landscapes that quantify the rel-
ative stability of different states (Wang et al., 2008; Xu
et al., 2014b, 2021). Unlike critical slowing down theory,
landscape—flux theory effectively captures multidimensional
system dynamics, including rotational forces (curl flux) as
an additional driving force besides landscape gradient for
the dynamics that are often overlooked in equilibrium-based
analyses (Wang, 2015; Ge and Qian, 2010; Qian, 2006).
This enables more comprehensive characterization of system
behavior, particularly in complex ecological networks with
multiple feedback mechanisms (Xu et al., 2023).

Another significant advantage is the theory’s ability to de-
tect warning signals substantially earlier than bifurcation-
proximity indicators (Wang et al., 2011, 2010). By quanti-
fying both the potential landscape topography and the non-
equilibrium flux, the approach provides mechanistic insights
into transition drivers rather than merely phenomenologi-
cal descriptions (Qian, 2009; Xu et al., 2012). The theory
has been successfully applied to various complex systems
(Wang, 2015; Fang et al., 2019), including gene regula-
tory networks (Wang et al., 2008), cell fate decisions (Wang
et al., 2010; Xu et al., 2014b), and, more recently, ecological
regime shifts (Xu et al., 2021, 2023).

Despite its significant promise and advantages, landscape—
flux theory presents certain challenges, particularly in its
practical implementation. Its implementation requires so-
phisticated mathematical techniques and substantial compu-
tational resources (Wang, 2015; Fang et al., 2019). The ap-
proach demands comprehensive system knowledge for accu-
rate model formulation and parameter estimation, which can
be difficult to obtain for many ecological systems (Ge and
Qian, 2010). Quantifying flux components in empirical sys-
tems poses challenges, often requiring high-resolution tem-
poral data (Wang et al., 2011; Qian, 2009). There have not yet
been any empirical studies combining the landscape flux the-
ory and associated EWSs with data, and it remains to be seen
how successful the theory will be in practice. Nevertheless,
the theory’s capacity to provide earlier warnings and deeper
mechanistic understanding of ecological transitions makes it
a valuable complement to existing approaches for analyzing
complex ecosystems facing anthropogenic pressures, and we
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hope that it can be empirically tested in the near future (Xu
etal., 2021, 2023).

By adapting the potential landscape—flux framework to
ecological dynamics, we bridge a critical gap between phys-
ical systems, where these methods originated, and complex
biological systems characterized by nonlinear feedback and
multiple stable states. Coral reef ecosystems represent an
ideal test case for this theoretical extension due to docu-
mented evidence of alternative stable states, their sensitiv-
ity to environmental perturbations, and their growing vul-
nerability to climate change impacts. Our implementation
demonstrates how landscape—flux theory can quantify stabil-
ity of ecological systems under stochastic forcing, provid-
ing a mathematically rigorous foundation for early warning
signals that complement existing early warning indicators
for ecological systems (Clements and Ozgul, 2018b). This
contrasts with some recent methods relying on Al and ma-
chine learning to produce indicators for transitions based on
training on empirical data, but without a mathematical un-
derpinning or basis through which to interpret the result-
ing indicators (George et al., 2023). Our work thus creates
new opportunities for anticipating critical transitions in reef
ecosystems, where traditional monitoring approaches often
detect degradation only after substantial ecological changes
have occurred. The framework’s ability to characterize global
stability while accommodating environmental stochasticity
makes it particularly suited to reef conservation, where iden-
tifying resilience thresholds and intervention windows is in-
creasingly urgent for management and preservation efforts.

2.2.2 Mathematics of landscape and flux theory

The dynamics of the coral-algae model without noise or ex-
ternal fluctuations are characterized by a set of ordinary dif-
ferential equations. In natural environments, however, coral—
algae ecosystems are subject to diverse stochastic influences;
internal stochasticity may emerge from variations in indi-
vidual growth rates or grazing patterns, while external fluc-
tuations may arise from processes such as ocean acidifica-
tion, sedimentation, or other climate-change-driven stressors
(Scheffer et al., 2015; Carstensen et al., 2013). The deter-
ministic model can be expressed in differential notation as
dx = F(x)dt, where vector x represents the ecosystem state

Earth Syst. Dynam., 16, 1503-1522, 2025
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and the driving force F encapsulates the interactions and
transitions between coral, macroalgae, and algal turfs de-
scribed in Fig. 1a. To incorporate these various noise sources,
we extend the model to

dx = F(x)df + m-dW, 2)

where W, coupled with matrix m, represents an independent
Gaussian noise process (Gillespie, 1977; Wang, 2015; Swain
et al., 2002). For analytical convenience, we define DG =
(1/2)(m-mT), where D is a constant representing the fluc-
tuation scale and G is the diffusion matrix. Environmental
disturbances, such as temperature fluctuations, storm events,
and nutrient pulses, simultaneously affect coral, algae, and
algal turfs, introducing correlations in the noise structure
of natural reef systems. While our potential landscape—flux
framework remains theoretically valid for systems with cor-
related noise, we have chosen to use a diagonal identity ma-
trix for G to maintain analytical tractability. This simplifica-
tion allows us to focus on the core dynamics while avoid-
ing the substantial increase in mathematical complexity that
would result from incorporating non-zero off-diagonal ele-
ments to represent correlated noise effects (Wang, 2015). Fu-
ture extensions of this model could incorporate these more
realistic noise structures to further refine predictions of reef
dynamics under stochastic environmental forcing.

The probability of finding the coral-algae system in state
x at time ¢ is given by the probability density function
P(x,t), which evolves according to the Fokker—Planck equa-
tion (Van Kampen, 2007; Wang, 2015; Nicolis and Pri-
gogine, 1977):

%P =-V-J==V-[FP—(1/2)V-(m-m")P)], (3)

where J represents the probability flux through the system.
The steady-state probability distribution Pss(x) can be ob-
tained by solving

0=-V-J(x)

=~V [F®)Ps(x) = (1/2V - (m-mHP)L @)

For equilibrium systems, we identify a “detailed balance
solution” in which the flux J vanishes completely, signi-
fying the absence of net energy transfer into or out of the
system (detailed discussion in Appendix A). In this case,
Pgs ~ exp[—U] (Gillespie, 1977; Van Kampen, 2007; Wang,
2015; Nicolis and Prigogine, 1977), where U represents the
population-potential landscape. The driving force F can then
be decomposed as

F=-DG-VU+DV-G. 5)

Thus, in equilibrium systems, F is determined entirely by
the gradient of the potential landscape. We can calculate Pgg
by solving the equation or through experimental data collec-
tion and subsequently derive the potential landscape using
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U = —In Ps; (Wang et al., 2008; Wang, 2015; Van Kampen,
2007).

For non-equilibrium systems, which better represent eco-
logical reality (Hastings and Wysham, 2010; Weinans et al.,
2019), the force decomposition becomes

F=—DG-VU + DV -G+ J/Ps, (6)

where J ¢ denotes the non-zero steady-state probability flux,
calculated as Jg = F Pss — DV - (G Pg). This flux satisfies
V- Jss =0, indicating that J s/ Pgss represents a purely rota-
tional force component. The potential gradient —DG - VU
drives the system toward stable states, while the divergence-
free flux component generates rotational flow that facilitates
transitions between alternative stable states (Wang et al.,
2011; Xu et al., 2012). In non-equilibrium systems such as
coral reefs, both the potential landscape U and flux J¢ con-
tribute to the system dynamics. Despite being conceptually
derived from equilibrium theory, the potential landscape pro-
vides valuable insights into the global stability properties of
non-equilibrium ecological systems (Xu et al., 2021, 2023),
as we demonstrate for the coral-algae model.

2.2.3 Entropy production rate (EPR) and the average
flux (Fluxay)

In non-equilibrium systems, the non-zero curl flux J ¢ breaks
detailed balance and provides a quantitative measurement of
the system’s deviation from equilibrium (Xu et al., 2014b;
Wang et al., 2008; Wang, 2015; Wang et al., 2011, 2010;
Qian, 2006). This deviation metric is particularly valuable
for investigating instabilities in the current state and de-
tecting transitions to new stable states, making flux a crit-
ical component in developing early warning indicators for
non-equilibrium ecological systems (Xu et al., 2021; Dakos
et al., 2015). Fundamentally, flux provides a framework for
analyzing non-equilibrium thermodynamics through entropy
production. For the stochastic coral-algae model, the sys-
tem entropy can be defined as Sentropy = f Pln Pdx. The
temporal evolution of this entropy can be decomposed into
two components: Semropy = SEpR Se, where SEpR represents
the entropy production rate (EPR) and S. denotes the heat
dissipation rate or environmental entropy change. The en-
tropy production rate is mathematically expressed as EPR =
Sgpr = [dx(J -(DG)~'- J)/P (Qian, 2006; Wang et al.,
2008; Zhang et al., 2012; Ge and Qian, 2010), while the heat
dissipation rate is given by S = [dx(F —DV-G)-J

The EPR is directly proportional to flux J, with larger
flux values generating higher EPR values and consequently
greater deviations from equilibrium (Ge and Qian, 2010;
Qian, 2006). At steady state, a fundamental relationship
emerges: the entropy production rate equals the heat dissipa-
tion rate (Ge and Qian, 2010; Qian, 2006; Wang et al., 2008;
Zhang et al., 2012). In our analysis of the stochastic coral—
algae model, we utilize both the EPR and the average flux
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magnitude, defined as Flux,y = ['|J|dx, to quantify the de-
gree of non-equilibrium behavior and generate early warning
signals for critical transitions (Wang et al., 2011; Xu et al.,
2023).

2.2.4 Time irreversibility: the average difference
between forward and backward cross-correlation

Time irreversibility in dynamical trajectories provides an
effective method for quantifying non-equilibrium behav-
ior in complex systems. We analyzed long-time trajecto-
ries of coral (X) and macroalgal (Y) cover simulated from
the Langevin equation, focusing on noise-induced transi-
tions between the macroalgae and coral attractors. The cross-
correlation function forward in time is defined as Cxy(t) =
(X(0)Y (7)), where X and Y represent time trajectories with
interval T (Qian and Elson, 2004; Zhang and Wang, 2018).
Correspondingly, Cxy (1) represents the cross-correlation
function backward in time. The average difference between
forward and backward cross-correlation, defined as ACC =
\/#fot’ (Cxy(t) — Cxy(1))2dr, effectively quantifies time
irreversibility. This measure captures the degree of non-
equilibrium and flux strength through the system’s devia-
tion from detailed balance (Qian and Elson, 2004; Zhang and
Wang, 2018; Xu and Wang, 2020), offering a practical indi-
cator of phase transitions directly observable from temporal
trajectories.

2.2.5 Escape time (the mean first passage time)

Ecological systems may transition from their current stable
state to an alternative stable state due to stochastic fluctua-
tions or external forces, effectively escaping their basin of
attraction. The escape time between stable states provides a
valuable quantitative measure for assessing global stability
in coral reef ecosystems. By estimating the mean exit time
from a basin of attraction (Arani et al., 2021; Wang et al.,
2008; Xu et al., 2021, 2014a), we can better understand the
likelihood of transitions between coral-dominated and algae-
dominated states. Mean first passage time (MFPT), the av-
erage time required for a stochastic process to first reach a
specified threshold value, provides a robust metric for quan-
tifying this phenomenon. MFPT effectively measures the ki-
netic speed or temporal characteristics of transitioning be-
tween states, offering natural indicators of a system’s propen-
sity to depart from its current basin of attraction.

To investigate this behavior, we employ Langevin dynam-
ics to simulate the stochastic coral-algae model and analyze
the MFPT distribution between stable states. Our method-
ology begins with us selecting one stable state as the initial
condition, while designating a disk with radius o = 0.01 sur-
rounding the alternative stable state as the target “state”. We
then compile first passage time statistics from the initial to
the final state, subsequently averaging across all simulations
to determine the mean first passage time. We define oy as
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the MFPT from the coral-dominated state to the macroalgae-
dominated state and, conversely, Tmc as the MFPT from the
macroalgae-dominated state to the coral-dominated state.

2.2.6 Lyapunov function for the coral-algae model
under zero fluctuations

In dynamical systems theory, Lyapunov functions serve as
powerful tools for stability analysis, enabling characteriza-
tion of an attractor’s global stability beyond the limitations
of local stability analysis (Wang, 2015; Fang et al., 2019).
We discussed the differences between global stability and
local stability detailed in the Supplement. While no gen-
eral method exists for constructing Lyapunov functions for
complex nonlinear systems, we can utilize the steady-state
probability distribution Pgs and the population potential U
to investigate the global stability properties of the stochastic
coral-algae model under finite fluctuations. Unfortunately,
the population-potential landscape U does not generally
function as a Lyapunov function (Xu et al., 2014a; Zhang
et al., 2012); in the small noise limit (D — 0™T), the intrinsic-
potential landscape ¢y emerges as a viable Lyapunov func-
tion. We can compute ¢g by solving the Hamilton—Jacobi
equation:

H=F Véo+ Vo G-V =0. (7)

This equation results from expanding the population-
potential U in powers of noise level D, substituting this se-
ries into the Fokker—Planck equation, and truncating at order
D~! to obtain the equation for ¢9 (Wang, 2015; Xu et al.,
2014a; Zhang et al., 2012).

To verify that ¢y functions as a Lyapunov function, we
calculate

d
Ed)O(x) =x-Voo=F -Voo=—V¢o-G- Vg <0, (8)

where the inequality holds when G is positive definite. This
demonstrates that ¢o(x) monotonically decreases along de-
terministic trajectories as D — 0, confirming its utility for
quantifying global stability in the small noise regime. The
intrinsic-potential landscape ¢¢ relates to the steady-state
probability and population-potential landscape through U =
—In P~ ¢o/D as D — 0.

In the zero-fluctuation limit, the driving force F can be
decomposed into gradient and curl components:

F =-G- V¢O +(Jss/Pss)|D—>O = -G V‘PO +V.

The first term, —G - V¢, represents the gradient of the non-
equilibrium intrinsic potential, while V = (Jss/ Pss) p—o de-
fines the intrinsic steady-state flux velocity. The steady-
state intrinsic flux term Jg|p—.o is divergence-free due
to V. J =0. From the Hamilton—Jacobi equation, we de-
rive (Jss/ Pss)|p—0- Voo = V-V = 0, establishing that the
intrinsic-potential gradient is perpendicular to the intrinsic
flux in the zero-fluctuation limit (Wang et al., 2011, 2010).
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For the coral-algae model, calculating the intrinsic poten-
tial ¢ presents substantial difficulties due to the constrained
state space (an isosceles triangle where 0 < X,Y <1, 0 <
1—X —Y < 1). The intrinsic potential is challenging to com-
pute from the Hamilton—Jacobi equation in a normalized tri-
angular state space. These geometric constraints complicate
the analytical solution of the Hamilton—Jacobi equation, re-
quiring specialized mathematical approaches to capture the
system’s dynamical properties within this bounded domain.
We therefore expand the potential U (x) in the small diffusion
limit as U(x) = ¢o(x)/D +¢1(x)+ O(D?) and employ a lin-
ear fitting method to approximate ¢. By plotting diffusion
coefficients D versus D U (specifically D In Pg) using small
D values, we determine ¢y from the slope of the resulting
line (Zhang et al., 2012; Xu et al., 2021, 2023).

Additional analyses presented in the Supplement include
non-equilibrium thermodynamics, entropy dynamics, energy
and free energy characteristics under both zero-fluctuation
and finite-fluctuation conditions, and kinetic pathways be-
tween alternative stable states (macroalgae and coral) in the
model system. We add a glossary of terms in Table S1 in the
Supplement.

3 Results

Applying the landscape—flux framework described above, we
now examine the dynamics and stability properties of the
coral—algal ecosystem model under both finite- and zero-
fluctuation conditions. Throughout our analysis, we distin-
guish between two alternative stable states: the “macroalgae”
state, characterized by macroalgal dominance and low coral
density or by macroalgal only, and the “coral” state, defined
by coral dominance and minimal macroalgal presence or by
coral only (Mumby et al., 2007; Scheffer et al., 2015). This
bimodal pattern of community structure represents a classic
example of alternative stable states in marine ecosystems,
with critical implications for reef resilience and conservation
(Hastings et al., 2018; Scheffer et al., 2001). By quantifying
the potential landscape and probability flux patterns associ-
ated with these states, we aim to characterize global stability
properties and develop early warning indicators for critical
transitions between these alternative ecosystem.

In the model, parameter g represents the grazing rate of
macroalgae by herbivorous fish and invertebrates, a cru-
cial ecological process with well-documented real-world
counterparts. This parameter directly connects mathematical
modeling to measurable ecological dynamics that reef man-
agers can monitor and potentially influence. Real-world fac-
tors affecting the grazing rate g include overfishing of her-
bivores (decreasing g); establishment of marine protected
areas (increasing g); disease outbreaks among key grazers,
such as the 1983 Caribbean sea urchin die-off (reducing g);
and predator—prey dynamics through trophic cascades. As g
gradually decreases in natural systems, algae gain compet-
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itive advantage over corals, system resilience weakens, re-
covery becomes increasingly difficult after disturbances, and,
eventually, at the critical threshold, even minor herbivore
loss can trigger a shift to algal dominance. This mechanism
explains ecological transitions observed on reefs, where re-
duced herbivory caused coral-to-algae phase shifts matching
our bifurcation analysis predictions.

Figure 1b illustrates the deterministic phase diagram of
the coral-algae system as a function of the parrotfish graz-
ing rate g (which acts on macroalgae without distinguish-
ing from algal turfs). When 0 < g < 0.1796, the system ex-
hibits one unstable fixed point (the dashed coral state) and
one stable fixed point (the solid macroalgae state), indicat-
ing macroalgal dominance. As grazing intensity increases
t0 0.1796 < g < 0.3927, the system transitions to bistability,
characterized by two stable fixed points — the solid macroal-
gae state and the solid coral state — separated by an unsta-
ble green saddle fixed point that serves as a threshold be-
tween the two stable regimes. This bistable configuration
persists until g = 0.3927, beyond which (g > 0.39) only the
coral-dominated fixed point remains stable, indicating a com-
plete shift to coral dominance at higher grazing intensities.
The diagram which denotes the noise-induced transitions
with parameter-driven ones reveals a bistable region wherein
two alternative stable states — macroalgae and coral — coex-
ist across a specific range of grazing values. This bistable
region is bounded by transcritical bifurcations, which oc-
cur precisely when one equilibrium solution enters or exits
the ecologically feasible region of phase space (defined by
0<X+Y+T<1,0<X,Y,T<1).

To characterize the global stability properties of this sys-
tem, we solved the Fokker—Planck equation for the coral-
algae model, yielding the steady-state probability distribu-
tion Pg and consequently the population landscape via U =
—In Pg,. Figure 2a presents three-dimensional visualizations
of these population-potential landscapes under finite fluc-
tuations (D = 0.0005). These landscapes reveal how sys-
tem stability evolves with changing grazing pressure. At low
grazing rates (0 < g < 0.1796), the landscape exhibits a sin-
gle stable state dominated by macroalgae (the macroalgae
state). As grazing intensity increases (0.1796 < g < 0.3927),
a bistable landscape emerges with local minima correspond-
ing to both macroalgal and coral dominance. With further
increases in grazing rate, the coral state deepens, while the
macroalgae state becomes increasingly shallow and eventu-
ally disappears (g > 0.39), as also conceptualized in Fig. 1b.
At sufficiently high grazing rates, macroalgae are effectively
eliminated from the system, and the landscape exhibits a sin-
gle deep basin corresponding to coral dominance. This pro-
gression of landscape topographies provides a comprehen-
sive visualization of how grazing pressure drives transitions
between alternative community states in coral-algae ecosys-
tems (Scheffer et al., 2012; Hastings et al., 2018).

Natural ecosystems invariably experience disturbances
and stochastic fluctuations. In systems characterized by alter-
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Figure 2. (a) The population-potential landscape U for the coral-algae model with finite fluctuation D =5 x 10%. (b) The population-

potential landscape U projected on X.

native stable states, sufficiently intense fluctuations can pro-
pel the system from one stability basin through an unstable
threshold, resulting in transition to an alternative stable con-
figuration. Figure 2b illustrates this dynamic process through
the classical “ball-in-the-valley” conceptual model (Scheffer
et al., 1993; Scheffer, 2009), which visually represents the
population-potential landscape U projected onto coral cover
(X) under different grazing intensity (g). This potential land-
scape is quantitatively derived from the steady-state proba-
bility distribution of the stochastic coral-algal model.

In this visualization, the ecosystem state is represented by
a ball that naturally moves downhill and stabilizes in poten-
tial basins (valleys) that vary with grazing intensity. Each val-
ley corresponds to an attraction basin in dynamical systems
theory (Nolting and Abbott, 2016; Lamothe et al., 2019; Ab-
bott and Dakos, 2021). Under small fluctuations, the system
may temporarily deviate from equilibrium (the ball climbs
partway up the slope) before returning to its steady state at
the basin minimum. However, sufficiently large fluctuations
can drive the system across the ridge (passing an unstable
saddle point) into an alternative stability basin.

The landscape topography undergoes systematic transfor-
mations as grazing intensity increases: at g =0.125, only
the macroalgal valley (M) exists; at g = 0.275, both val-
leys exist, but the coral valley (C) remains shallower than
the macroalgal valley; at g = 0.3, both valleys attain simi-
lar depths, indicating comparable stability; at g = 0.325, the
coral valley becomes deeper than the macroalgal valley; and,
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finally, at g = 0.75, only the coral valley remains. This pro-
gression captures the grazing-mediated shift from macroalgal
to coral dominance in reef ecosystems.

Figure 3a—c demonstrates that the intrinsic-potential land-
scapes calculated for the coral-algae model exhibit qual-
itatively similar patterns to the corresponding population-
potential landscapes across the grazing gradient, further val-
idating the stability analysis approach. Figure 3d illustrates
the intrinsic flux (purple arrows) and the negative gradient
of the intrinsic-potential landscape (white arrows) at grazing
rate g = 0.29, clearly depicting their directional relationships
in the vicinity of steady states. A striking feature of these vec-
tor fields is their orthogonality: the intrinsic fluxes are per-
pendicular to the negative gradients of the intrinsic-potential
landscape —V¢g. This perpendicularity emerges from the
mathematical relationship (Jss/ Pss)|p—0- Vo=V -Vg =
0, which is derived from the Hamilton—Jacobi equation under
the zero-fluctuation limit.

Figure 3e and f display the flux (purple arrows) and neg-
ative gradient of the population-potential landscape (white
arrows) superimposed on the landscape for different fluctua-
tion intensities: D = 0.0005 (e) and D = 0.005 (f). The cir-
culating fluxes around the stable states enhance communi-
cation between the macroalgae and coral states. These visu-
alizations effectively demonstrate how the driving forces of
the coral—algal system can be decomposed into complemen-
tary components: F = —D - VU + J/Pss+ DV - G for fi-
nite fluctuations and F = —G-V¢o+ (Jss/ Pss)|lp—o = —G-

Earth Syst. Dynam., 16, 1503-1522, 2025
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Figure 3. (a—c) The intrinsic-potential landscape with different g for the coral-algae model. (d—f) The dominant intrinsic paths and fluxes
on the intrinsic-potential landscape ¢ with a zero-fluctuation limit and a grazing rate of g = 0.29 (d). The dominant population paths and
fluxes on the population-potential landscape U with the diffusion coefficients D = 0.0005 (e) and D = 0.005 (f). The red lines represent
the dominant paths from the macroalgae state to the coral state. The black lines represent the dominant paths from the coral state to the
macroalgae state. The white arrows represent the steady-state probability fluxes. (g) The population barrier heights versus parameter g. (h)
The intrinsic barrier heights versus parameter g. (i) The population barrier heights versus the mean first passage time. The population barrier
height AUgc = Ug — U and intrinsic barrier heights Aggsc = ¢os —Poc, AUsy = Us — Uy, Adosy = ¢os — dos» and tey represent
the mean first passage time from state coral to state macroalgae, and tyjc represents the mean first passage time from state macroalgae to

state coral. (j) The logarithm of MFPT versus g. (k) The frequency of the flickering f® versus grazing rate g.

V¢o+V for the zero-fluctuation limit. The substantial differ-
ence in magnitude of color bar units reflects the fundamen-
tally different metrics being visualized: Fig. 3d represents
the intrinsic-potential landscape derived from the Hamilton—
Jacobi equation with zero limit fluctuations, whereas Fig. 3e
and f show the population-potential landscape from the
Fokker—Planck equation with finite fluctuations. These in-
herent mathematical differences naturally produce different
numerical ranges.

Figure 3d, e, and f further reveal the dominant transi-
tion pathways between alternative stable states. Red lines
represent the dominant paths from the macroalgae state to
the coral state, while black lines indicate dominant paths in
the reverse direction, shown on both the intrinsic-potential
landscape ¢o under zero fluctuations (d) and the population-
potential landscape U under finite fluctuations (e and f). The
purple arrow fluxes in Fig. 3d guide these dominant paths
under zero fluctuations, causing them to deviate from the
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steepest descent paths and diverge from each other as they
pass through the saddle point — a deviation from equilibrium
systems where zero flux would result in convergent paths.
Similarly, under finite fluctuations (Fig. 3e, f), the dominant
population paths guided by the purple arrow fluxes also de-
viate from steepest descent trajectories. This analysis reveals
a fundamental feature of non-equilibrium systems: path ir-
reversibility. The dominant paths from macroalgae to coral
differ significantly from those in the reverse direction. This
irreversibility stems from the non-equilibrium rotational flux,
which creates spiral-shaped currents around stability basins.
Interestingly, the dominant paths under zero-fluctuation limit
appear closer to each other compared to those under finite
fluctuations, though they remain distinct due to the non-zero
intrinsic flux. These spiral flux patterns represent the dynam-
ical signature of non-equilibrium behavior in the coral-algal
ecosystem (Wang et al., 2011; Xu et al., 2012; Zhang et al.,
2012).
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Figure 3g and h illustrate how barrier heights in both
population-potential and intrinsic-potential landscapes vary
with grazing rate g. As g increases, the coral-algal sys-
tem transitions from macroalgae state dominance to coral
state dominance. This transition is reflected in the changing
barrier heights: population barrier height AUgc = Ugs — Uc
and intrinsic barrier height Agosc = ¢os —doc increase with
higher grazing rates, while AUgy = Us—U)ps and Adosy =
¢os —Pom decrease. Here, Ug and ¢ represent the potential
values at the saddle point between alternative states, while
Um, ¢om, Uc, and ¢oc denote the minimum potential val-
ues in the macroalgae and coral states, respectively. These
patterns demonstrate that elevated parrotfish grazing progres-
sively destabilizes the macroalgae state while enhancing the
stability of the coral state. The deeper attraction basin with
higher barrier heights creates greater resistance to state tran-
sitions. Notably, both population and intrinsic barrier heights
display nearly identical trends as g increases.

Figure 3j presents the mean first passage time (MFPT),
which quantifies the average time required for a stochastic
process to first reach a specified state. The behavior of the
mean first passage time (MFPT), as it is represented in log-
arithmic form, specifically shows an increase in Intcy and
a decrease in In tyjc as the parameter g increases. This trend
indicates that it takes more time to exit the coral state, while
it requires less time to transition out of the macroalgae state
as g rises. Consequently, the MFPT can effectively charac-
terize the transition from the macroalgae state to the coral
state with increasing g, providing a measurable indicator of
this critical transition.

Figure 3i illustrates that the logarithmic MFPT plotted
against population barrier heights reveals a positive corre-
lation: both Intcy and Intyc increase with barrier height,
approximating a relationship of v ~ exp(AU). This expo-
nential relationship indicates that escape time dramatically
lengthens as barrier height increases, directly linking transi-
tion kinetics to landscape topography. Specifically, a higher
barrier height or deeper valley results in a longer time re-
quired to escape from that valley. This correlation suggests
that the population-potential landscape topography is closely
related to the kinetic speed of state switching, thereby influ-
encing the communication capability for the global stability
of the system.

The flickering frequency quantifies the number of state
transitions per unit time. Specifically, f,ca represents the
frequency of transitions from the coral state to the macroal-
gae state per unit time. In Fig. 3k, we illustrate the fre-
quency of transitions from macroalgae to coral ( f,3¢c) with
fluctuation strength D =5 x 10™*. Our results demonstrate
that f,yc increases dramatically as g increases. This phe-
nomenon can be explained by the decreasing stability of the
macroalgae state’s basin of attraction, which becomes shal-
lower as g increases. Consequently, the system exhibits a
higher probability of transitioning to the coral state. Previous
research has established flickering frequency as an effective
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early warning signal for critical transitions (Scheffer et al.,
2012, 2009). The tipping points identified through flickering
frequency occur near the bifurcation point in the coral-algae
model, where the macroalgae state becomes unstable (flat po-
tential), while the coral state becomes dominant. Flickering
frequency indicates that the macroalgae state loses resilience,
characterized by a diminishing basin of attraction in the po-
tential landscape, while the coral state gains dominance. It is
important to note that actual transitions may occur consider-
ably earlier than this bifurcation point due to larger environ-
mental fluctuations.

While the effectiveness of critical slowing down as an
early warning indicator is under low-noise conditions, a crit-
ical question remains regarding its robustness under more
realistic, higher-noise scenarios. This consideration is par-
ticularly important given that traditional critical slowing
down indicators are known to perform poorly with increased
stochastic fluctuations (Hastings and Wysham, 2010). We
conducted analyses systematically varying the noise magni-
tude from D =1 x 1075 to D =1 x 102 (Fig. 4aj). Fig-
ure 4 demonstrates how the population entropy production
rate (EPR; a—e) and average flux (Flux,,; f—j) vary with
grazing rate under increasing finite fluctuations. Our find-
ings reveal that both EPR and average flux (Flux,,) main-
tain relatively robust performance as early warning signals
up to D =1 x 1072, beyond which signal reliability begins
to deteriorate significantly. This represents a substantial im-
provement over conventional critical slowing down indica-
tors, which typically lose effectiveness at high noise levels.
The relative noise robustness of our framework likely stems
from the fact that our indicators directly quantify system-
wide properties reflecting global stability, rather than local
temporal patterns that become increasingly masked by higher
noise.

Figure 4k displays the intrinsic entropy production rate
inEPR and intrinsic average flux inFlux,, against g. These
two metrics exhibit a similar pattern, initially increasing and
subsequently decreasing with higher grazing rates, with pro-
nounced peaks occurring between the two transcritical bi-
furcations shown in Fig. 4k. These peaks coincide with the
critical transition region from macroalgae to coral domi-
nance. Additionally, Fig. 4k reveals that intrinsic free energy
reaches a minimum near the peaks of inEPR and inFlux,y.
Collectively, these findings suggest that EPR, Flux,,, inEPR,
inFlux,y, and intrinsic free energy can serve as effective in-
dicators for detecting phase transitions and bifurcations in
coral-algal systems (Xu et al., 2021, 2023).

To calculate state-specific time irreversibility measures,
we employed relatively small diffusion coefficients to pre-
vent spontaneous transitions between alternative stable
states. This approach allowed us to collect sufficient stochas-
tic simulation data while the system remained within ei-
ther the macroalgae or coral state. We denote the resulting
irreversibility measures as ACCM (for trajectories within
the macroalgae state) and ACCC (for trajectories within the
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Figure 4. The population entropy production rate (a—e) and the population average flux (f-j) versus grazing rate g with increasing D. (k) The
intrinsic entropy production rate, the population average flux, and the free energy versus grazing rate g for the coral-algae model (parameters
are set in Table 1). (I-m) The EPR and Flux,y versus grazing rate g with different natural mortality rate of corals £ for the coral-algal model.
The dashed lines represent the locations of the transcritical points for each value of /, with the same colors for the EPR lines.

coral state). Notably, once a system transitions to an alter-
native state, the pre-transition irreversibility measure can no
longer predict the transition that has already occurred.

Figure 5a illustrates how both ACCM and ACCC exhibit
pronounced peaks between the two transcritical bifurcations
under small fluctuations (D =1 x 1072 ) with the parameter
h = 0.44. Figure 5b displays the derivatives of these mea-
sures: kaccum (the slope of ACCM) for the macroalgae state
and kaccc (the slope of ACCC) for the coral state. We fitted
an exponential function to the simulation data to calculate
these derivatives. The derivative measures exhibit clear in-
flection points, indicating significant changes as the system
approaches bifurcation points. These characteristic patterns
in irreversibility measures and their derivatives demonstrate
their potential as early warning signals for critical transitions
in coral—algae ecosystems.

Figure 5c illustrates the relationship between variance and
grazing rate g. Specifically, as the grazing rate g increases,
the variance in the macroalgae state (Varyy) shows a clear in-
creasing pattern, while, simultaneously, the variance in the
coral state (Varc) exhibits a decreasing trend. This diver-
gent behavior in variances provides important insights into
the system’s stability characteristics. The increasing variance
in the macroalgae state (Vary) indicates growing instability
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and fluctuations in this state as grazing pressure intensifies.
Conversely, the decreasing variance in the coral state (Varc)
signifies that this state becomes more stable and resilient with
increasing grazing pressure. These variance patterns serve as
quantitative early warning indicators of the shifting stabil-
ity landscape in the coral-algae system and help identify the
approach toward critical transition points in this ecological
model.

Critical slowing down emerges as ecosystems approach
bifurcation points during gradual environmental changes.
When a system within a stable state experiences external
disturbance, it eventually returns to its original equilibrium
after a characteristic period known as the relaxation time
(Scheffer et al., 2009). This relaxation time represents the
system’s adaptive response to environmental perturbations.
When the varying grazing rate g, bifurcations can be ap-
proached from either increasing or decreasing directions.
Critical slowing down effectively identifies the left bifur-
cation (where macroalgae becomes dominant and the coral
state flattens) when g decreases and identifies the right bifur-
cation (where coral becomes dominant and the macroalgae
state flattens) when g increases. Figure 5d illustrates this phe-
nomenon in the coral-algal model: the relaxation time Trejaxm
for the macroalgae state increases sharply when approach-

https://doi.org/10.5194/esd-16-1503-2025



L. Xu et al.: Global stability and tipping point prediction 1515
0.010 0.04
(a) ——ACCM (b) i —&Var,
0.008 0.02 | —O— Var,
g .
8 0.006 270.00 :
< ” i
0.004 -0.02 :
0.002 : ! : :
0.0 0.2 0.4 0.6 08 %0 0. . 0.6 0.8
¢} g
(d) , : ()1000 : :
20 : @ T | 1 ACCM
relaxM ' ' ‘max|
5 500 ! ! s AGCC,
x l 1
% ° -} trelaxC 8 3 d TrelaxMmax
e 10 X 0 3 veeeaamem—————— L 7 T TrelaxCmex
A : 1
-500 ' ! % No feasible
v ! solutions
. : | -1000 a : 0.0 ' ' ;
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
g g g

Figure 5. (a) The average difference in the cross-correlations forward and backward in time: ACCM and ACCC versus g. (b) kaccm (the
slope of ACCM) and kaccc (the slope of ACCC) versus g. (¢) The variance Varyg and Varc versus grazing rate g. (d) The relaxation
time TrejaxM and TrelaxC Versus grazing rate g. (e) kcspm (the slope of the relaxation time Tejaxv) and kcspe (the slope of the relaxation
time Tyejaxc) Versus grazing rate g. (f) The two-dimensional phase diagram of the natural mortality rate of corals & versus grazing rate g
for the coral-algal model. ACCMpax represents the maximum of ACCM, and ACCCpyax represents the maximum of ACCC. TrelaxMmax
represents the coordinate position of the sharp rise in TyejaxM» and TrelaxCmax represents the coordinate position of the sharp rise in TejaxC-

(D=1.0x 10751 =0.44)

ing the right transcritical bifurcation point with increasing g,
while the relaxation time T.jaxc for the coral state similarly
increases when approaching the left transcritical bifurcation
with decreasing g.

Figure 5e displays the derivatives of these relaxation times,
kcspm (slope of Trelaxm) and kcspc (slope of Trelaxc), plotted
against grazing rate g. These slopes, particularly kaccc and
kkaccc, exhibit sharp increases as the system approaches bi-
furcation points, confirming that relaxation time lengthens
near critical transitions. However, the analysis reveals a cru-
cial advantage of non-equilibrium warning indicators (flux,
entropy production rate, time irreversibility) over traditional
critical slowing down indicators: they provide substantially
earlier predictions of impending bifurcations. For instance,
Fig. 5a shows that peaks in time irreversibility measures
(ACCC and ACCM) occur within the bistable zone, whereas
peaks in relaxation times (Fig. 5d) appear only at the imme-
diate vicinity of bifurcation points.

The non-equilibrium measures (flux magnitude, entropy
production rate, intrinsic free energy, and time irreversibil-
ity) collectively provide early warning signals that precede
predictions from conventional methods. In the coral-algae
model, these non-equilibrium indicators predict the transi-
tion from macroalgae dominance to coral dominance mid-
way through the bistable region, rather than near the critical
threshold at g = 0.3927 where the coral state becomes dom-
inant. This represents a significantly earlier warning than in
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previously reported approaches (Veraart et al., 2012; Schef-
fer et al., 2001, 2012).

Our non-equilibrium warning indicators (flux, entropy
generation rate, time irreversibility from cross-correlation
analysis, and non-equilibrium free energy) consistently ex-
hibit critical transitions between the two transcritical bifur-
cations in the coral-algal model. These indicators provide
substantially earlier warnings compared to traditional criti-
cal slowing down signals. From the perspective of a system
currently in the macroalgae state, our non-equilibrium sig-
nals anticipate the right bifurcation (where macroalgae be-
comes unstable, while coral becomes dominant) well before
critical slowing down indicators detect this transition. Simi-
larly, from the perspective of a system in the coral state, our
indicators predict the left bifurcation (where coral becomes
unstable, while macroalgae becomes dominant) earlier than
critical slowing down. This positioning of non-equilibrium
indicator turning points in the middle of the bistable region
enables prediction of both bifurcations with considerable ad-
vance warning.

Critical slowing down indicators suffer from a fundamen-
tal limitation: they invariably miss one bifurcation in each
parameter direction. For instance, as grazing rate g increases
toward the right bifurcation, critical slowing down fails to
detect the left transcritical bifurcation, where the macroal-
gae state dominates and the coral state first appears as a
shallow attractor. This occurs because critical slowing down
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only manifests when the landscape around the current attrac-
tor flattens near a bifurcation point. When approaching the
right bifurcation, the system’s current macroalgae state be-
comes flat, producing critical slowing down. However, near
the left bifurcation with increasing g, the macroalgae state re-
mains dominant with a non-flat landscape, preventing critical
slowing down from emerging. Consequently, critical slowing
down cannot predict left bifurcations when in a macroalgae-
dominated state with increasing g or right bifurcations when
in a coral-dominated state with decreasing g.

Figure 41 and m display entropy production rate (EPR) and
average flux (Flux,y) plotted against grazing rate g across
different coral natural mortality rates /. Every data curve ex-
hibits a pronounced peak within its corresponding bistable
region, confirming that both EPR and Flux,, effectively in-
dicate phase transitions in coral-algal systems. Our non-
equilibrium early warning signals emerge midway between
bifurcations, providing much earlier predictions in both pa-
rameter directions compared to critical slowing down indica-
tors that appear only near specific bifurcations. This bidirec-
tional predictive capacity represents a significant advantage
of our approach, as illustrated in Fig. 4.

Critical slowing down has been widely used in models
with saddle-node bifurcations. In our case, because the sta-
ble solutions leave the feasible region exactly at the point at
which transcritical bifurcations occur, we effectively have the
same qualitative dynamics that occur in models with saddle-
node bifurcations. In particular, there is one stable and one
unstable solution approaching the bifurcation, and both solu-
tions disappear after the bifurcation occurs. So far, most stud-
ies have been focused on effective one-dimensional meth-
ods, the results of which can often be applied to effective
equilibrium systems where global stability can be quanti-
fied by landscape alone, without considering the key non-
equilibrium in-gradient component, i.e., flux (Veraart et al.,
2012; Scheffer et al., 2001, 2012, 2009). Our fully vector-
ized high-dimensional formulation of the potential flux and
landscape can quantify the non-equilibrium by the non-zero
curl flux, which can lead to much richer complex dynamics
with detailed balance breaking. In contrast, the equilibrium
dynamics are determined entirely by the gradient of the po-
tential landscape. Curl fluxes that break the detailed equilib-
rium play an important role in driving the dynamics of the
non-equilibrium system.

Figure 5f presents a two-parameter phase diagram illus-
trating the relationship between coral natural mortality rate &
and grazing rate g. Parameter / in our model represents coral
mortality rate, encompassing the cumulative effects of di-
verse environmental stressors affecting reefs globally. These
include rising sea temperatures that trigger coral bleaching
events (significantly increasing /4 during thermal anomalies);
ocean acidification that reduces calcification rates and weak-
ens coral skeletons (gradually elevating £); pollution, sedi-
mentation, and coastal development that impose direct phys-
iological stress; and the increasing frequency and severity of
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coral diseases worldwide that directly contribute to higher
h values. These real-world stressors operate across differ-
ent temporal scales, from acute (bleaching events) to chronic
(acidification), which aligns with our analysis of how grad-
ual versus rapid parameter shifts influence system dynamics
and stability. The diagram features four distinct regions: a
blue region where only the macroalgae state is stable, a gray
bistable region where both macroalgae and coral states are
stable, a purple region where only the coral state is stable,
and a pink region without feasible stable states. These re-
gions are delineated by bifurcation curves (black for trans-
critical points, blue for saddle node points). Figure S1 in the
Supplement provides additional phase diagrams for different
h values.

Figure S2 demonstrates how time irreversibility metrics
capture approaching bifurcations which are noise-induced
transitions versus parameter grazing rate g driven in the
coral—algal model for increasing . Comparing the positions
of maximum values and sharp rises in these indicators reveals
a crucial temporal advantage of time irreversibility measures
over critical slowing down indicators. Within the bistable re-
gion shown in Fig. S2, ACCMpx (position of maximum
ACCM) occurs significantly earlier than TrelaxMmax (pOsition
where Trelaxm sharply rises, defined as where kk > 1 x 1()4)
as gradual parameter changes. Similarly, ACCCpax (position
of maximum ACCC) appears much earlier than TrejaxCmax
(position where Trelaxc sharply rises). The TrelaxMmax line lies
considerably closer to the right bifurcation boundary than the
ACCMjx line, while the Trejaxcmax line lies much nearer to
the left bifurcation boundary than the ACCCpy,x line. These
spatial relationships consistently demonstrate that time ir-
reversibility measures (ACC) provide substantially earlier
warning signals than relaxation time (7rax) indicators from
CSD theory as the gradual parameter g changes with fluctu-
ations, confirming their efficacy as early warning signals for
critical transitions in coral-algae ecosystems.

Figure 6a and d illustrate the average differences in cross-
correlations over time, represented as ACCM and ACCC,
plotted against the grazing rate g. These values provide in-
sight into the dynamics of the coral-algae system, revealing
how the interaction strength between states varies as graz-
ing pressure changes. Figure 6b and e display the relaxation
times, TrelaxM and TrelaxC, in relation to the grazing rate g. The
relaxation time quantifies how quickly the system responds
to perturbations, serving as a crucial indicator of the stability
of the macroalgae and coral states under varying conditions.
Figure 6¢ and f present the variances Vary and Varc as func-
tions of the grazing rate g. These variances reflect the degree
of fluctuations within each state, highlighting how stability is
affected as grazing pressure increases. It is noteworthy that,
for Fig. 6, the fluctuation strength is set at D = 5.0 x 1074,
while, for panels (d)—(f), the fluctuation strength increases to
D = 1.0 x 1073, with a fixed height parameter of 4 = 0.44.
This variation in D is expected to have a significant impact
on the observed relationships, further illustrating the deli-
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Figure 6. (a, d) The average difference in the cross-correlations forward and backward in time: ACCM and ACCC versus g. (b, €) The
relaxation time TpejaxM and TrelaxC Versus grazing rate g. (c, f) The variance Vary; and Varc versus grazing rate g. (a—¢) D = 5.0 x 1074

(A D=1.0x 1073, (h = 0.44)

cate balance between grazing intensity and the stability of
the coral-algae ecosystem. We observe that, while increas-
ing noise can also serve as an indicator for predicting state
transitions, its predictive effectiveness diminishes relative to
the performance observed at lower noise levels.

Our landscape—flux framework offers substantial advan-
tages over traditional CSD-based indicators, particularly in
its ability to provide earlier detection of approaching transi-
tions. While CSD focuses primarily on local stability proper-
ties near equilibrium states, our method captures global sta-
bility characteristics and non-equilibrium dynamics across
the entire state space.

Our study demonstrates that the landscape—flux approach
and its derived early warning signals (cross-correlation func-
tion ACC multidimensional data) can detect approaching
transitions earlier than critical slowing down indicators based
on theoretical relaxation time T.],x (one-dimensional data,
measured through autocorrelation). This earlier detection ca-
pability is crucial for ecological management, as it poten-
tially provides a longer window for intervention before crit-
ical transitions occur. This comparison is particularly mean-
ingful because relaxation time represents the fundamental
dynamical property underlying all CSD indicators, rather
than just comparing with empirical manifestations of CSD
(such as variance or autocorrelation methods). By demon-
strating advantages at this fundamental level, we establish
the theoretical superiority of our approach.

Real-time ecological monitoring data from coral reef
ecosystems present an unprecedented opportunity to bridge
theoretical frameworks with empirical validation. By inte-
grating time series data from reef monitoring stations (cap-
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turing coral cover, algal abundance, and environmental pa-
rameters) into our landscape—flux methodology, we can oper-
ationalize the theoretical results outlined above. In particular,
the cross-correlation functions of the coral reef ecosystem
can be estimated directly from observed time series; hence
we may calculate the average difference between forward
and backward cross-correlation as an empirical EWS. Our
framework thus provides practical early warning tools for
policymakers and researchers, bridging the gap between ab-
stract mathematical models and urgent conservation needs in
threatened ecosystems.

4 Conclusions

We explored the global dynamics of a coral-algal model un-
der stochastic fluctuations using landscape—flux theory from
non-equilibrium statistical physics. In this framework, sys-
tem dynamics are governed by two fundamental components:
potential landscapes that guide the system toward local min-
ima and curl fluxes that drive transitions between alterna-
tive stable states. Quantifying global stability in complex
ecological systems requires identifying an appropriate Lya-
punov function, a challenging task that our approach ad-
dresses through the intrinsic-potential landscape ¢, which
serves as a Lyapunov function in the small noise limit and
effectively quantifies the global stability of coral-algal dy-
namics.

The presence of non-zero fluxes creates a notable devi-
ation from classical equilibrium dynamics: dominant tran-
sition paths between alternative stable states do not fol-
low simple steepest descent trajectories on the population-
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potential landscape. Instead, transitions from macroalgae to
coral states and vice versa follow irreversible paths deter-
mined by the interplay between the underlying population-
potential landscape and non-zero curl fluxes. This directional
path asymmetry represents a fundamental characteristic of
non-equilibrium systems.

Within the bistable regime, the basin of attraction for the
current state remains non-flat until reaching the right bi-
furcation point. Under sufficiently small noise conditions,
this property enables prediction of impending state transi-
tions before the system reaches critical points. Small fluctu-
ations remain insufficient to trigger state switching until the
right bifurcation point, where the current state’s basin flat-
tens completely as the alternative basin becomes dominant.
Consequently, time irreversibility measured through cross-
correlation differences between forward and backward tra-
jectories provides an effective predictor for approaching bi-
furcations, even when the system remains within its current
basin without transitioning.

The analysis identifies several quantitative markers for
system stability and dynamics: barrier heights between sta-
ble states, kinetic switching times (mean first passage time
— MFPT), thermodynamic cost (entropy production rate —
EPR), and dynamical driving force (average flux). We ob-
served consistent trends across multiple metrics: average
flux (Flux,y), entropy production rate (EPR), intrinsic av-
erage flux (inFlux,y), and intrinsic entropy production rate
(inEPR). The rotational nature of flux tends to destabilize
point attractors, providing a dynamical mechanism underly-
ing phase transitions in coral-algal ecosystems. Maintaining
non-equilibrium flux requires energy dissipation, revealing
the thermodynamic origin of bifurcations. Intrinsic free en-
ergy also serves as an effective early warning indicator, with
all these metrics exhibiting significant changes and char-
acteristic peaks between the two transcritical bifurcations:
patterns that become even more pronounced in the zero-
fluctuation limit of intrinsic-potential landscapes.

The non-equilibrium indicators, average flux (Fluxyy), en-
tropy production rate (EPR), time irreversibility (ACC), and
non-equilibrium free energy, all function as reliable predic-
tors for critical transitions. Their turning points (peaks or
troughs) consistently appear between the two transcritical bi-
furcations, enabling prediction of both bifurcations before
the current state’s landscape flattens. These non-equilibrium
warning signals precede the right bifurcation when start-
ing from the macroalgae state with increasing grazing rate
g and similarly anticipate the left bifurcation when starting
from the coral state with decreasing g. This bidirectional pre-
dictive capacity provides substantially earlier warnings than
conventional critical slowing down theory for both bifurca-
tion types. While specific tipping point locations may vary
across different models (Xu et al., 2021, 2023), we propose
that non-equilibrium indicator turning points occurring be-
tween transcritical bifurcations represent a generic feature of
systems with similar qualitative dynamics.
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In the current model, we utilize uncorrelated white noise
as a mathematical simplification that provides analytical
tractability while still capturing the essential stochastic na-
ture of state transitions. This approach allows us to derive
expressions for potential landscapes and flux patterns. We
recognize that environmental disturbances, such as temper-
ature fluctuations, storm events, or nutrient pulses, would in-
deed affect coral, algae, and algal turfs in coordinated ways,
introducing correlations in the noise structure of natural reef
systems (Jouffray et al., 2015; Norstrom et al., 2009; Diko,
2010; Gardner et al., 2003; Mcmanus and Polsenberg, 2004).
It is worth noting that our potential landscape—flux frame-
work remains theoretically appropriate for systems with cor-
related noise. The mathematical formalism can accommo-
date various noise structures, including anisotropic and cor-
related fluctuations. Due to space limitations in the present
article and its complexity, we have focused on the uncor-
related case as a first approximation. The extension to cor-
related noise models, which would more accurately reflect
synchronized environmental forcing experienced by differ-
ent reef components, will be addressed in future research.

Without conducting significant further analysis, it is chal-
lenging to accurately predict the precise effects of correlated
noise on the overall system dynamics. The specific correla-
tion patterns, timescales, and amplitudes of the noise would
significantly influence the system’s response. The introduc-
tion of correlation structures in stochastic perturbations fun-
damentally alters the statistical properties of system trajecto-
ries, potentially creating emergent behaviors that cannot be
intuited through qualitative reasoning alone. The precise cor-
relation structure to be introduced would need to be moti-
vated by data and may differ by reef location and climate,
making this a nontrivial extension of the current work but
undoubtedly a valuable and interesting one.

The model tracks the evolution of proportions of space
occupied by each functional type, effectively assuming that
the system is spatially well mixed, leading to a spatially im-
plicit modeling framework (Mumby et al., 2007). This ap-
proach is appropriate for intermediate spatial scales where
mixing processes (such as larval dispersal, water circula-
tion, and mobile herbivore grazing) tend to homogenize lo-
cal variations. The spatially implicit framework allows us
to focus on ecosystem-level dynamics without the compu-
tational complexity of spatially resolved models. Our poten-
tial and flux field landscape theoretical framework offers con-
siderable versatility and could be naturally extended to spa-
tially explicit models in future research. We recognize the
importance of spatial heterogeneity in coral reef ecosystems,
and, in subsequent work, we plan to develop spatially ex-
plicit extensions of this framework. In recent work, we have
shown that the framework can be extended to spatially ex-
plicit models (of vegetation dynamics); hence it is a natu-
ral next step to leverage this progress to explore how the
present results compare with EWSs in spatial extension of
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the coral reef model studied here (Siu et al., 2025; Wu and
Wang, 2013b, 2014, 2013a; Lepzelter and Wang, 2008).

Despite the simplifying assumptions of the mathematical
model, our current framework provides valuable insights into
the global stability of coral reef ecosystems and demonstrates
the utility of landscape—flux theory for understanding com-
plex ecological dynamics. The simplifications employed here
serve as a necessary first step toward more comprehensive
models that can incorporate the full complexity of coral reef
systems (Mcmanus et al., 2018; Nes et al., 2016).

The ongoing degradation of coral reefs and deterioration
of reef ecosystems remain among the most pressing conser-
vation challenges of our time. By advancing theoretical un-
derstanding of coral-algae dynamics through our potential
landscape—flux approach, this study contributes valuable in-
sights that may guide practical conservation strategies for
protecting and restoring these ecologically crucial yet in-
creasingly threatened marine ecosystems.

Appendix A: Potential landscape and local stability
analysis of equilibrium systems

In equilibrium systems, the potential function or landscape
is an essential tool for describing the stability of system
states. For such systems, dynamics are completely deter-
mined by the potential landscape, with the system always
evolving along the direction of decreasing potential energy
until reaching a potential energy minimum. A key character-
istic of equilibrium systems is the absence of non-zero proba-
bility flux, meaning the system satisfies detailed balance con-
ditions, with zero net flow along any closed path being zero
(Wang, 2015; Ge and Qian, 2010; Qian, 2006; Nicolis and
Prigogine, 1977; Van Kampen, 2007; M., 1992).

Mathematically, the dynamic equation of an equilibrium
system can be represented as a gradient system: dx/dr =
—VU(x), where U(x) is the potential function landscape.
The system’s steady states correspond to extremal points of
the potential function, with minima representing stable equi-
librium points and maxima representing unstable equilibrium
points.

Local stability analysis is a method for studying the be-
havior of small perturbations near equilibrium points. By lin-
earizing the dynamic equations around an equilibrium point,
one obtains the Jacobian matrix characterizing the fluctua-
tions. For equilibrium systems, this matrix is symmetric, and
its eigenvalues completely determine the stability of the equi-
librium point (Nicolis and Prigogine, 1977; Van Kampen,
2007; M., 1992):

— all negative eigenvalues: stable node;

— presence of positive eigenvalues: unstable equilibrium
point;

— presence of zero eigenvalues: potential bifurcation.
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The potential landscape of equilibrium systems visually
demonstrates the global stability structure of the system, with
low-potential-energy regions corresponding to states where
the system is more likely to reside, while the height of poten-
tial barriers reflects the difficulty of state transitions. This an-
alytical approach has wide applications in the study of phys-
ical, chemical, and biological systems.
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