Earth Syst. Dynam., 16, 1453-1482, 2025
https://doi.org/10.5194/esd-16-1453-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth System
Dynamics

Introduction

Increased future ocean heat uptake constrained by
Antarctic sea ice extent

Linus Vogt!->>, Casimir de Lavergne', Jean-Baptiste Sallée!, Lester Kwiatkowski',
Thomas L. Frolicher>*, and Jens Terhaar?>*

'Sorbonne Université, CNRS/IRD/MNHN, Laboratoire d’Océanographie et du Climat Expérimentations et
Approches Numériques (LOCEAN), Paris, France
2Woods Hole Oceanographic Institution, Woods Hole, MA, USA
3Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
40eschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
5Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Correspondence: Linus Vogt (linus.vogt@nyu.edu)

Received: 19 March 2025 — Discussion started: 5 May 2025
Revised: 23 June 2025 — Accepted: 3 July 2025 — Published: 2 October 2025

Abstract. The ocean takes up over 90 % of the excess heat stored in the Earth system as a result of anthro-
pogenic climate change, which has led to sea level rise and an intensification of marine extreme events. How-
ever, despite their importance for informing climate policy, future ocean heat uptake (OHU) projections still
strongly differ between climate models. Here, we provide improved global OHU projections by identifying a
relationship between present-day Antarctic sea ice extent (SIE) and future OHU across an ensemble of 28 state-
of-the-art climate models. Models with more sea ice at present also simulate a colder Southern Hemisphere
climate state in general, allowing a larger shift in atmospheric and ocean warming. This regional change affects
global warming and heat uptake via a northward-propagating cloud feedback. Combining this relationship be-
tween historical Antarctic sea ice extent and future global OHU with satellite observations of Antarctic sea ice
reduces the uncertainty of OHU projections under future emission scenarios by 12 %-33 %. Moreover, we show
that an underestimation of present-day Antarctic sea ice in the latest generation of climate models results in an
underestimation of future OHU by 3 %—14 %, an underestimation of global cloud feedback by 19 %-32 %, and
an underestimation of global atmospheric warming by 6 %—7 %. This emergent constraint is based on a strong
coupling between Antarctic sea ice, deep-ocean temperatures, and Southern Hemisphere sea surface tempera-
tures and cloud cover in climate models. Our study reveals how the present-day Southern Ocean state impacts
future climate change and suggests that previous constraints based on warming trends over recent decades have
underestimated future warming and ocean heat uptake.

expansion and the melting of marine-terminating glaciers

Since the beginning of the industrial period, the ocean has
taken up over 90 % of the excess heat generated by human-
caused climate change (Forster et al., 2021). This ocean heat
uptake (OHU) has limited the rate of atmospheric tempera-
ture increase (Liu et al., 2016), but the widespread warming
of the ocean (Johnson and Lyman, 2020) has had cascading
negative consequences for humans and marine ecosystems.
Ocean warming contributes to sea level rise through thermal

(Cazenave and Llovel, 2010). Sea level rise and ocean warm-
ing create risks for coastal communities due to increased
flooding and more destructive tropical cyclones (Sun et al.,
2017; Portner et al., 2022). Higher upper-ocean temperatures
also lead to changes in stratification and the supply of nutri-
ents and oxygen to marine ecosystems (Sallée et al., 2021;
Bopp et al., 2013; Morée et al., 2023), impacting fish stocks
(Cheung et al., 2016) and perturbing the global carbon cycle
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(Joos et al., 1999; McNeil and Matear, 2013; Terhaar, 2024).
Furthermore, ocean warming drives more frequent and in-
tense marine heatwaves, potentially causing widespread col-
lapses of foundation species, including corals, kelps, and sea-
grasses (Frolicher et al., 2018; Smith et al., 2023).

These direct negative impacts of ocean warming imply
a need for accurate projections of OHU under future cli-
mate change. The magnitude of future OHU primarily de-
pends on cumulative greenhouse gas emissions and thus on
the effectiveness of mitigation policies (Fox-Kemper et al.,
2021). However, for any given level of greenhouse gas emis-
sions, OHU is also influenced by the strength of climate feed-
backs and by oceanic ventilation and overturning (Zelinka
et al., 2020; Marshall et al., 2015). Climate feedbacks, such
as cloud and albedo feedbacks, alter the radiative balance of
the Earth and thus affect the transient climate response, cli-
mate sensitivity, and future ocean heat storage (Zelinka et al.,
2020; Williams et al., 2020). In turn, the efficiency at which
the ocean transports heat from the surface layer to the deep
ocean influences its capacity for heat storage and can modu-
late climate feedbacks by affecting surface warming patterns
(Winton et al., 2010; Armour et al., 2013; Andrews et al.,
2022).

Regionally, the majority of OHU occurs in the Southern
Ocean (Frolicher et al., 2015). In an observation-based re-
construction, the Southern Ocean south of roughly 40° S ac-
counts for around 67 % of global OHU between 1871 and
2017 (Zanna et al., 2019). In climate model simulations
from phase 6 of the Coupled Model Intercomparison Project
(CMIP6; Methods), the Southern Ocean south of 30° S is re-
sponsible for 84 % (68 %—99 %) of the global historical OHU
from 1850 to 2024, 53 % (38 %—62 %) of future OHU from
2024 to 2100 under the low-emission SSP1-2.6 scenario, and
48 % (42 9%—52 %) under the high-emission SSP5-8.5 sce-
nario (inter-model uncertainty is expressed as 66 % likely
ranges) (Frolicher et al., 2015; Shi et al., 2018). The dis-
proportionately large heat uptake in the Southern Ocean is a
direct consequence of the vigorous deep-reaching overturn-
ing in this region (Armour et al., 2016). The overturning in
the high-latitude Southern Ocean is driven by strong west-
erly winds which provoke the upwelling of large volumes of
cold water from the deep ocean (Marshall and Speer, 2012).
Much of this upwelled water is warmed by the atmosphere
before being subducted back into the ocean interior further
northward as mode and intermediate waters, following the
upper cell of the Southern Ocean meridional overturning cir-
culation (Armour et al., 2016; Sallée, 2018; Talley, 2013).

Although robust and precise projections of OHU are
paramount for informing climate mitigation and adaptation
measures, accurately projecting OHU remains challenging
(Cheng et al., 2022) (Fig. 1). The uncertainty of the future
cumulative global OHU from 2024 to 2100 is 23 %-28 %
of the multi-model mean (depending on emissions scenario),
and the ranges of cumulative OHU projections for 2100 over-
lap across scenarios (Fig. 1). Uncertainties in future OHU are
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large because cloud feedbacks and oceanic heat sequestration
by ocean ventilation and mixing remain notoriously chal-
lenging to correctly simulate (Frolicher et al., 2015; Ceppi
et al., 2017; Zelinka et al., 2020; Terhaar et al., 2021). The
Southern Ocean overturning is particularly difficult to faith-
fully simulate in Earth system models (ESMs), such as those
participating in CMIP6 (Beadling et al., 2020). Biases in the
baseline state of ESMs are known to have global repercus-
sions on projected climate change, notably by precondition-
ing future cloud feedback (Kajtar et al., 2021; Shin et al.,
2023; Siler et al., 2018) and Southern Ocean ventilation (Ter-
haar et al., 2021; Bourgeois et al., 2022).

One approach to reducing inter-model uncertainties is the
method of emergent constraints (Hall and Qu, 2006; Hall
et al., 2019; Eyring et al., 2019). An emergent constraint
identifies a physically grounded relationship between an ob-
servable historical climate variable and an uncertain future
climate variable across an ensemble of models. Combining
this quantitative relationship with observations of the histor-
ical variable yields a constrained estimate of the uncertain
future variable. Emergent constraints can be broadly divided
into three categories (Sanderson et al., 2021):

i. trend-on-trend constraints that assume a time-invariant
model bias that has existed over the historical period
and will continue in the future (e.g., Tokarska et al.,
2020; Lyu et al., 2021; Nijsse et al., 2020; Jiménez-de-la
Cuesta and Mauritsen, 2019),

ii. process-based constraints that identify a physical or bio-
chemical bias that causes a mechanistically linked bias
in projections of the considered variable (e.g., Terhaar
et al., 2021, 2020; Bourgeois et al., 2022), and

iii. sensitivity-based constraints where the sensitivity of a
system to changes on short timescales, such as seasonal
changes, is related to the response of a system to climate
change (e.g., Hall and Qu, 2006; Kwiatkowski et al.,
2017).

Trend-on-trend constraints have previously indicated smaller
future OHU and atmospheric warming compared to the un-
constrained mean of CMIP6 projections (Lyu et al., 2021;
Tokarska et al., 2020). However, trend-on-trend constraints
can fail if the historically observed trend is not representa-
tive of a time-invariant bias. This can occur either because the
past trend has been strongly affected by a particular phase of
natural variability (England et al., 2014; Marvel et al., 2018;
Armour et al., 2024) or because the climate system under-
goes a profound change under forcing such that the identified
past bias does not persist in the future or becomes dwarfed by
alarger bias that only emerges in a changing climate (Sander-
son et al., 2021). In particular, climate change over recent
decades has been characterized by relatively muted radiative
feedbacks, likely biasing low constrained estimates of future
warming based on observed warming trends (Andrews et al.,
2022; Armour et al., 2024).
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Figure 1. Ocean heat uptake in CMIP6 models. Globally integrated cumulative historical and future ocean heat uptake relative to the
year 2024 under different scenarios and the associated global mean sea level rise through thermal expansion (see Methods). Thin lines are
individual models, while the thick lines and shading depict, respectively, the ensemble mean and standard deviation for each scenario. The
colored bars on the right indicate the 95 % confidence interval around the mean OHU in 2100 for each scenario. Colored bars are shown for
four scenarios (SSP5-8.5 in dark red, SSP3-7.0 in bright red, SSP2-4.5 in orange, SSP1-2.6 in dark blue), whereas the time series are shown
only for the historical period and the SSP1-2.6 and SSP5-8.5 scenarios. The black curve and gray shading show the observed changes over

1960-2020 (Miniere et al., 2023).

Here we show that model biases in past OHU may indeed
be unable to explain differences in projected OHU and that
previously published constraints were likely influenced by
internal climate variability. To narrow the spread in projected
OHU, we propose a process-based and mechanistically in-
terpretable emergent relationship. This relationship makes it
possible to reduce uncertainties in future OHU by account-
ing for ESM biases in the baseline state of the Southern
Hemisphere as quantified by Antarctic summer sea ice ex-
tent (SIE).

2 Methods

2.1 Model output

We use output from 28 Earth system models participating
in CMIP6 (Table Al) (Eyring et al., 2016). We selected
one ensemble member per model based on the availability
of necessary output variables in the preindustrial, historical,
and SSP5-8.5 CMIP6 experiments. When available, output
from the SSP1-2.6, SSP2-4.5, and SSP3-7.0 scenario exper-
iments was also used. Anomalies relative to the preindustrial
state for variables such as heat fluxes, sea ice extent, or ther-
mal expansion were computed by subtracting the matching
preindustrial experiment period from the historical and future
variable output starting from the correct experiment branch
point. This procedure removes the effect of model drift in the
calculated changes (Gupta et al., 2013). The raw preindus-
trial model output was directly subtracted from the historical
and SSP output without prior processing, such as fitting a
polynomial regression (Silvy et al., 2022).

OHU is defined as the anomalous net air—sea heat flux
(CMIP6 variable h fds) integrated in space and cumulatively
integrated in time, resulting in units of Joules:
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t

OHU(t) = //(b(x, y,t') dx dy dt’, (D)
o A

where ¢ is the anomalous net heat flux into the ocean rela-
tive to the preindustrial period (units of Wm~2), x and y are
longitude and latitude, A is the surface area of the ocean, and
to = 1850 for past OHU and #y = 2024 for future OHU.

Past and future OHU are defined as OHU over the periods
1850-2023 and 2024-2100, respectively. Since the CMIP6
historical scenario covers 1850-2014 and the SSP scenarios
start from 2015, the historical OHU is extended until 2023
using the SSP5-8.5 scenario. We chose SSP5-8.5 because it
is the scenario for which most models provide results and
because differences across SSP experiments are small over
the 2015-2023 period (Riahi et al., 2017).

Antarctic sea ice extent is defined as the total area in which
the monthly mean sea ice concentration (CMIP6 variable
siconc) exceeds 15 %.

2.2 Estimation of sea level rise due to thermal
expansion

As a measure of the direct effect of OHU on sea level,
we used the global mean thermal expansion (CMIP6 vari-
able zostoga). This variable is available for 20 out of
the 28 models. Future global mean thermosteric sea level
rise is strongly correlated to future OHU across the model
ensemble (r =0.97, p < 0.05 two-sided), allowing a direct
conversion of OHU to sea level rise based on the ratio of
1.22x 1072 mJ~1,

2.3 Climate feedback parameters

Climate feedback parameters (units: Wm™2K~!) quantify
the strength of climate feedbacks that either amplify or
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dampen the climate system’s temperature response to radia-
tive forcing (e.g., Ceppi et al., 2017). Among various feed-
back components, such as surface albedo or lapse rate feed-
back, the cloud feedback is of particular importance due
to its large uncertainty (Zelinka et al., 2020). Cloud feed-
back arises due to changes in a number of cloud proper-
ties, including cloud amount, altitude, and optical depth. For
the quantification of cloud feedback in this study, we com-
pute spatially resolved climate feedback parameters under
the SSP5-8.5 scenario using the radiative kernel method (So-
den and Held, 2006) with kernels based on the ERAS reanal-
ysis (Huang and Huang, 2023a). The kernel method consists
of systematically applying perturbations in variables of inter-
est (such as temperature, humidity, or albedo) in the radiation
code of an atmospheric model and diagnosing the resulting
change in shortwave and longwave radiation (Soden et al.,
2008).

For each variable X (specifically temperature, water vapor,
and surface albedo), this procedure yields a kernel Ky such
that

ARy = Kx - AX, )

where Ry (in W m—2) is the radiative response for variable X
with anomaly A X (Huang and Huang, 2023a). From this, the
climate feedback parameter for variable X can be calculated
as Ax = ARy /AT, where AT is the global mean surface
temperature anomaly.

The cloud feedback parameter is a special case and can-
not be directly computed from radiative kernels. Instead, it is
computed as a residual of all other terms via

ARcloud = AR — ZARX —res’, 3)
X

where AR is the total radiative response and

res’= AR’ — > AR} )
X

is the residual radiative response under clear-sky conditions
indicated by the superscript 0 (Huang and Huang, 2023a).

2.4 Emergent constraint

The posterior probability density functions (PDFs) of ocean
heat uptake constrained by sea ice extent observations were
calculated using a previously established method (Cox et al.,
2013, 2018; Kwiatkowski et al., 2017). Given N realizations
of the response variable y and the predictor variable x, along
with their least-squares linear fit f(x) = a+by (in the present
case, N = 28 climate models provide values for the Antarctic
sea ice extent predictor x and the global OHU response y),
the prediction error is (Cox et al., 2018)

1 (x—x)?
Uf(x)zs\/l—i-ﬁ—i- Noxz . (®)]
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In the above equation, s> is the quantity minimized by the
linear fit,

1 N
sP=~s ;j(y,v — @)Y, ©6)

while % and o2 are the ensemble mean and variance of the
predictors, respectively. Finally, the constrained PDF P(y)
can be calculated as

o0

P(y) = / P(ylx)P(x) dx, )

—00

where P(x) is the observational distribution of the predictor
and

P(ylx)=

_ 2
= f) ) )

1
V2o r(x) exp( 207(x)?
is the conditional probability density of y given x.
The observational distribution P(x) is assumed to be nor-
mal with mean and standard deviation from observations.
Where the uncertainty of the observations is not available,
an uncertainty is conservatively estimated. For the emer-
gent constraint on future OHU using summer sea ice ex-
tent from OSI SAF satellite observations (Fig. 7), we use
Oobs = 1 X 100 km?Z, and our results are robust to reasonable
changes in this parameter (see Sect. 2.6 below and Fig. A9d
for a discussion of this uncertainty).

2.5 Observational data

Our principal source of sea ice extent observations for use in
the emergent constraint is the OSI SAF Sea Ice index (OSI
SAF, 2024), which is based on Advanced Microwave Scan-
ning Radiometer (AMSR) and Special Sensor Microwave
Imager/Sounder (SSMIS) instruments, with daily data avail-
able starting in 1978. For the sensitivity analysis (Fig. A9),
we use two additional satellite microwave radiometry prod-
ucts covering the period 1978-2023 (the NASA Team (Di-
Girolamo et al., 2022) and Bootstrap (Comiso, 2023) prod-
ucts), along with reconstructions of past sea ice extent from
HadISST2.2 (Titchner and Rayner, 2014; Hobbs et al., 2016)
and two recent studies (Fogt et al., 2022; Dalaiden et al.,
2023).

Interior ocean temperature and salinity were obtained from
the World Ocean Atlas 2018 (Garcia et al., 2019), and po-
tential density was calculated from these variables using the
Gibbs-SeaWater (GSW) toolbox for Python (McDougall and
Barker, 2011).

Ocean heat uptake estimates are from a recent analysis of
ocean heat content products (Miniere et al., 2023), includ-
ing an estimate from the international assessment conducted
within the Global Climate Observing System (von Schuck-
mann et al., 2023).

https://doi.org/10.5194/esd-16-1453-2025
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2.6 Uncertainty in sea ice extent observations

An estimate of the total uncertainty in daily sea ice concen-
tration due to algorithm and “smearing” effects from grid in-
terpolation is provided in the gridded OSI SAF sea ice con-
centration data (OSI SAF, 2017). However, this uncertainty
cannot simply be propagated to the calculation of sea ice
extent due to spatial and temporal error correlations (Wer-
necke et al., 2024). An assessment of Arctic sea ice extent
uncertainty from a similar satellite observation product found
that the uncertainty in minimum sea ice area in the Arctic is
only half of the inter-product spread (Wernecke et al., 2024).
Additionally, instrument uncertainties have previously been
found to be only 0.036 x 10°®km? for Antarctic February
sea ice extent in comparable satellite-based sea ice products
(Meier and Stewart, 2019).

An alternative approach to gauge the uncertainty of the sea
ice extent estimate is to assess the spread of estimates com-
puted from different products. The three satellite-based sea
ice concentration products we tested, which use the OSI SAF
(OSI SAF, 2017), Bootstrap (Comiso, 2023), and NASA
Team (DiGirolamo et al., 2022) algorithms, only differ by
0.38 4 0.23 x 10° km? in their January—February sea ice ex-
tent on average.

Reconstructions of sea ice extent covering decades and
centuries preceding the satellite era have larger uncertain-
ties, as illustrated by the spread across the three sea ice prod-
ucts for the time before the satellite period (Fogt et al., 2022;
Dalaiden et al., 2023; Titchner and Rayner, 2014, Fig. A10).
Nonetheless, there is good agreement between the recon-
struction of Fogt et al. (2022) and that of Dalaiden et al.
(2023) over the overlapping period, whereas the HadISST2.2
reconstruction shows large, likely spurious step-like variabil-
ity. We therefore deem the former two reconstructions (Fogt
et al., 2022; Dalaiden et al., 2023) to be the most reliable.
We use these two reconstructions of annual mean sea ice ex-
tent to estimate the range of multi-decadal variability across
40-year periods. We find a maximum difference in sea ice ex-
tent between 40-year periods of 0.23 x 10 km? for the period
1850-1980 in the reconstruction of Dalaiden et al. (2023)
and a maximum difference of 0.13 x 10® km? for the period
1905-1980 in the reconstruction of Fogt et al. (2022). This is
comparable to the CMIP6 multi-model average of the stan-
dard deviation of historical sea ice extent across 40-year pe-
riods between 18501980 of 0.26 x 10° km?. This measure
of sea ice multi-decadal internal variability in observations
and models is 1 order of magnitude smaller than the inter-
model standard deviation of 1850-1980 mean sea ice extent
of 3.3 x 106 km?.

In summary, our best estimate of the uncertainty of sea
ice extent would be the sum of the uncertainty estimated
from the spread between different products (0.38 £0.23 x
10 km?) and the uncertainty that arises from internal vari-
ability (0.23 x 10 km?). Here we choose a rather large obser-
vational uncertainty of ogps = 1 % 10° km? to derive a conser-
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vative emergent constraint. Varying this parameter does not
change the central constrained estimate but influences the un-
certainty reduction (Fig. A9d).

2.7 Alternative predictors

The robustness of the constrained result could further be
tested by using Southern Ocean cloud cover or deep-ocean
temperatures as predictors to constrain OHU, as both are
mechanistically linked to Antarctic sea ice extent (Fig. 2).
However, a direct comparison between observed and mod-
eled cloud cover requires sampling the CMIP6 ESMs at the
same time and location as satellites do. Although this can
be done with satellite simulators in ESMs, only 5 out of the
28 ESMs considered here provide this output. In the case
of mean deep-ocean temperature, the limited spatiotempo-
ral density of historical temperature measurements below
2000 m depth entails that such a predictor would have siz-
able uncertainty. Moreover, we find that the relationship be-
tween mean deep-ocean temperature and future OHU across
the model ensemble (r = —0.44, p < 0.05) is not as strong
and linear as the presently used emergent relationship.

3 Results

3.1 Antarctic sea ice as an indicator of Southern
Hemisphere climate

Antarctic sea ice extent is an indicator of the climate state of
the extratropical Southern Hemisphere. Models with greater
sea ice extent under preindustrial conditions tend to have
colder sea surface temperatures across the Southern Ocean
(Fig. 2b), along with more cloud cover over the mid-latitude
Southern Ocean (Kajtar et al., 2021; Shin et al., 2023; Ce-
sana et al., 2025) (Fig. 2a), which modulates radiative heat
transfer by reducing downwelling shortwave radiation and
enhancing downwelling longwave radiation. Greater sea ice
extent is also associated with colder temperatures across the
global deep ocean (Fig. 2b), including in deep Atlantic lay-
ers mainly ventilated from the North Atlantic (Fig. Al).
Given the mean ocean circulation pathways and the long
timescales associated with the deep-ocean circulation, the
plausible causality explaining these correlations is that bi-
ases in the temperature of deep-ocean waters, much of which
ultimately upwell in the high-latitude Southern Ocean, have
cascading effects on Southern Hemisphere sea ice, surface
temperatures, and clouds (Luo et al., 2023; Sherriff-Tadano
etal., 2023).

Under future global warming, ESMs with higher present-
day sea ice extent have the potential to lose more sea ice
(Kajtar et al., 2021). In particular, under the SSP5-8.5 sce-
nario, many ESMs lose virtually all of their Antarctic sum-
mer (January—February) sea ice by 2100 so that summer sea
ice loss in 2100 is almost equivalent to baseline sea ice extent
(Fig. 3a). Similarly, models with greater preindustrial extra-
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Figure 2. Atmospheric and oceanic connections to Antarctic sea ice extent in the preindustrial state. (a) Inter-model correlation between
preindustrial annual mean Antarctic sea ice extent and preindustrial total cloud cover in the Southern Hemisphere. In red areas, local cloud
cover is increased for models with higher sea ice extent. (b) Inter-model correlation between preindustrial annual mean Antarctic sea ice
extent and preindustrial zonal mean ocean temperature across all ocean basins. In blue areas, local seawater is colder for models with higher
sea ice extent. Black contours show zonal mean potential density relative to a reference pressure of 2000 dbar from observations (Garcia
et al., 2019). In both panels, stippling indicates regions where the correlation is not significant (p > 0.05, two-sided).

tropical and equatorial cloud cover simulate a greater future spreading northwards and covering most of the Southern
reduction in cloud cover at these latitudes (Fig. A2), consis- Hemisphere by 2030-2050 under SSP5-8.5 (Fig. 5). This
tent with previous studies (e.g., Thackeray et al., 2024). As causes a concomitant spreading of sea-ice-related local cloud
a consequence of these links between preindustrial baseline feedback starting from the Southern Ocean and attaining its

climate and future changes, ESMs with higher preindustrial near-global extent by mid-century (Fig. A4). Although cloud
Antarctic sea ice extent tend to experience a greater shift in feedback is in general controlled by a number of contribu-

their simulated Southern Hemisphere climate in the future. tions, including cloud amount, altitude, and optical depth
This shift in climate manifests itself through greater warming (Zelinka et al., 2016; Ceppi et al., 2017), the signal is ap-
of the surface atmosphere and ocean in the Southern Hemi- parent in total cloud amount (Fig. A2). The northward prop-
sphere (Fig. 3b, c¢), a more positive global cloud feedback agation of these significant inter-model relationships likely

(Fig. 3d), and consequently greater global OHU (Fig. 7). This results from anomalous heat transport in the ocean and/or the
additional OHU in models with higher preindustrial Antarc- atmosphere (England et al., 2020b, a; Ayres et al., 2022; Luo
tic sea ice extent is particularly pronounced in the Southern et al., 2025), resulting in a teleconnection from the Southern

Hemisphere mode and intermediate waters (Fig. 4), which Ocean to the tropical oceans via mid-latitude cloud feedback
tend to transport heat northwards and into the interior ocean (e.g., Zhang et al., 2021; Zhang and Deser, 2024; Ford et al.,
(Armour et al., 2016). 2025).

The cloud feedback links preindustrial Antarctic sea ice Decomposing cloud feedback into its shortwave and long-
extent and future global OHU. Across the ESM ensemble, wave radiative components reveals that the global relation-
this connection is globally apparent by the end of the 21st ship between sea ice loss and cloud feedback is mostly me-
century as strong correlations between cloud feedback and diated by the shortwave component (Fig. A3c—d), whereas
Antarctic sea ice extent loss (Fig. A3a) and between cloud the longwave component remains restricted to the South-

feedback and global OHU (Fig. A3b). The global extent of ern Ocean by the end of the 21st century. Furthermore, par-
this relationship between Antarctic sea ice extent and extent titioning the excess OHU into its individual air—sea heat
loss, cloud feedback, and OHU is the result of a northward flux components demonstrates that the higher OHU in mod-
propagation of this relationship originating in the Southern els with greater Antarctic sea ice loss is mainly due to in-

Ocean. The surface warming signal in the ocean and atmo- creased shortwave-driven OHU in the Southern Hemisphere
sphere related to preindustrial sea ice extent first emerges and globally increased sensible OHU (Fig. AS). The in-
in the southern high latitudes around 1990-2010, gradually creased sensible OHU is a direct consequence of the stronger
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Figure 3. Links between preindustrial Antarctic sea ice and Southern Hemisphere climate change. CMIP6 inter-model relationship between
preindustrial Antarctic summer (January—February) sea ice extent and future sea ice extent loss (a), Southern Hemisphere surface air temper-
ature increase (b), Southern Hemisphere sea surface temperature increase (c), and global mean cloud feedback parameter (d). In each panel,
the black line shows the least-squares linear regression fit, and the Pearson correlation coefficient r and the two-sided p value are given in
the upper-left corner. The y axis of all panels represents anomalies between years 2080-2100 of the high-emission SSP5-8.5 scenario and
the preindustrial state.
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Figure 4. Zonal mean ocean warming related to preindustrial sea ice extent. Correlation coefficient across the ensemble of CMIP6 models
between preindustrial annual mean Antarctic sea ice extent and zonal mean ocean warming in 2080-2100 under SSP5-8.5 relative to prein-
dustrial. Red shading indicates regions where models with more preindustrial sea ice tend to have more ocean warming in the future scenario.
Stippling indicates regions where the correlation is not significant (p > 0.05, two-sided). Black contours show zonal mean potential density
referenced to 2000 dbar from observations (Garcia et al., 2019).
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Figure 5. Time evolution of sea-ice-related surface warming and cloud feedback. Inter-model correlation across CMIP6 models under SSP5-
8.5 between preindustrial Antarctic summer sea ice extent and (top row) local sea surface temperature anomaly and (bottom row) local total
cloud feedback parameter A.oyq during different 20-year periods between 1970 and 2100. In all panels, stippling indicates regions where the

correlation is not significant (p > 0.05, two-sided).

atmospheric warming in models with more Antarctic sea ice
loss. The increased shortwave-induced and sensible OHU as-
sociated with larger Antarctic sea ice loss is slightly counter-
acted by a reduced latent air—sea heat flux at low latitudes
(Fig. ASh). As sea ice loss strongly accelerates after 2024,
these relationships emerge only for future (2024-2100) OHU
and are not apparent for OHU over the historical (1850-
2024) period.

We emphasize that changes in summer Antarctic sea ice
extent are likely not the primary cause of global cloud and
temperature changes. Rather, Antarctic sea ice extent is an
indicator and integral part of the baseline state of the extra-
tropical Southern Hemisphere climate (Fig. 2; Kajtar et al.,
2021; Luo et al., 2025; Ford et al., 2025), which itself pre-
conditions projected global climate warming. This idea is
schematically illustrated in Fig. 6, which shows how the am-
plitude of climate warming is preconditioned by the initial
climate state. The summer extent of Antarctic sea ice can
thus be regarded as measuring a potential for future change
(Fig. 3). Nonetheless, the loss of Antarctic sea ice does have
direct local influences (Kay et al., 2014). Any reduction in
white sea ice cover exposes the underlying ocean, allowing
more heat to be absorbed. While the additional OHU under
the previously covered sea ice is small compared to the global
OHU (about 6 % in the multi-model mean), this additional
warming close to the sea ice edge further accelerates the loss
of sea ice cover through surface albedo feedback and con-
tributes to the link between present-day sea ice and future
climate change (Stolpe et al., 2019).

3.2 Emergent constraints on future change

The mechanistic understanding and inter-model relationships
presented show that model bias in baseline sea ice extent
in austral summer is a physical indicator of future sea ice
loss, surface warming, and cloud feedback (Fig. 3). As cloud
feedback mediates future OHU (Fig. A3), historical obser-
vations of Antarctic sea ice can be used to constrain future
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Figure 6. Schematic representation of the link between historical
Antarctic sea ice extent and future ocean heat uptake. Under 21st-
century climate change, the Southern Hemisphere climate system
transitions from an initial state (a) to a perturbed state (b) charac-
terized by reduced sea ice, surface ocean and atmospheric warm-
ing, and reduced lower cloud cover. Crucially, the amplitude of this
transition in each climate model, and therefore the magnitude of fu-
ture ocean heat uptake, depends on the model’s initial climate state:
a cold initial state characterized by large sea ice extent leads to a
strong transition with high heat uptake (c), while a mild initial state
characterized by small sea ice extent leads to a weaker transition
with less heat uptake (d).

OHU (Fig. 7). Using the 1980-2020 summer sea ice extent
from the OSI SAF satellite observational product (OSI SAF,
2017) of 4.4141.0 x 10° km? to constrain future OHU results
in an estimate of future global OHU between 2024-2100 of
12444141 ZJ under SSP1-2.6 (Fig. 7a-b) and 2595+209 Z]
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under SSP5-8.5 (Fig. 7c—d; results for SSP2-4.5 and SSP3-
7.0 are shown in Fig. A6 and detailed in Table A2), the con-
strained median estimate is 3 % higher and 14 % less uncer-
tain than the CMIP6 ensemble prior median under SSP1-2.6
and 14 % higher and 33 % less uncertain under SSP5-8.5.

In all four SSPs considered, the correlation between 1980—
2020 sea ice extent and future OHU is above 0.6 and statis-
tically significant at the p < 0.05 level according to a two-
sided Student’s ¢ test (Table A2). This suggests that the
identified relationships are robust and explain a substantial
fraction of inter-model spread in future OHU irrespective
of the scenario. Given our conservative choice of predictor
uncertainty and available model ensemble sizes (Methods),
the difference between unconstrained and constrained OHU
mean values is statistically significant under SSP2-4.5 and
SSP5-8.5 but not under SSP1-2.6 (p =0.11) and SSP3-7.0
(p =0.09) according to a two-sided two-sample Student’s ¢
test (Table A2).

The higher OHU estimates directly translate to a future sea
level rise greater than currently anticipated due to thermal
expansion. Under SSP1-2.6, the constrained thermosteric
global mean sea level rise from 2024 to 2100 is 15.24+1.7 cm,
assuming a constant conversion factor between OHU and
thermosteric sea level rise (see Methods). Under SSP5-8.5,
the constrained estimate is 31.6 & 2.5 cm. Both estimates are
higher and less uncertain than the respective unconstrained
estimates of 14.5 2.0 cm and 29.5 £ 3.8 cm (Table A2).

The relationships uncovered here can also help to con-
strain the strength of cloud feedback and the magnitude of
global warming by the end of the 21st century. Present-day
Antarctic sea ice extent is significantly correlated with future
cloud feedback and global warming in all four SSPs consid-
ered (Table A2). Using 1980-2020 summer sea ice extent as
a predictor, global mean cloud feedback is constrained to be
19 % and 31 % higher than the CMIP6 median under SSP1-
2.6 and SSP5-8.5, respectively (Fig. 8b). Future global mean
surface air warming is constrained to be 3 %—7 % greater
than the CMIP6 median (Fig. 8c). The uncertainty in the esti-
mates is reduced by 18 % for cloud feedback and by 11 % for
surface warming under SSP5-8.5 (results for other SSPs are
shown in Fig. A7 and detailed in Table A2). The uncertainty
reduction for warming and cloud feedback is smaller than
for OHU because present-day sea ice extent is more strongly
correlated with future OHU (r = 0.87 under SSP5-8.5) than
with end-of-century cloud feedback (r = 0.71) or surface air
warming (r = 0.61).

The tighter constraint on OHU may be explained by two
factors. Firstly, the correlation between Antarctic sea ice ex-
tent and local cloud feedback is particularly strong over the
southern mid-latitudes where OHU is most efficient (Armour
etal., 2016) (Fig. A3) and where much of the additional OHU
occurs (Fig. 4). Secondly, larger baseline Antarctic sea ice is
associated with colder deep waters (Fig. 2b), whose expo-
sure to the warming atmosphere in the Southern Ocean can
promote OHU through sensible heat flux (Fig. AS).

https://doi.org/10.5194/esd-16-1453-2025

For completeness, we also test whether sea ice extent can
be used to constrain past (1850-2024) OHU. We find no sig-
nificant emergent relationship between baseline Antarctic sea
ice and historical OHU. The inter-model correlation coeffi-
cient between January—February Antarctic sea ice extent and
1850-2024 OHU is r = —0.03 for preindustrial mean sea ice
extent and » = —0.04 for 1980-2020 mean sea ice extent.
The non-existing correlation over the past indicates that the
sea-ice-linked feedback we identify has not yet influenced
past OHU, warming, or cloud feedback, although it will af-
fect their future.

To facilitate comparison with previous studies which used
past warming trends as predictors to constrain future OHU
(Lyu et al., 2021) or global surface warming (Tokarska et al.,
2020), we now apply our emergent constraint to the same
uncertain variables considered in these two studies. For fu-
ture 0-2000 m OHU under SSP5-8.5 in 2081-2100 relative
to 2005-2019, as in Lyu et al. (2021), we obtain a con-
strained estimate which is 16 % (9 %) higher than the un-
constrained CMIP6 median (mean), in contrast to Lyu et al.
(2021), whose constrained OHU estimate was 10 % lower
than the prior mean (Fig. A8a-b). Historical Antarctic sea ice
extent provides higher predictive skill for future 0—-2000 m
OHU (r = 0.9) than past 0-2000 m OHU does (r =0.72 in
Lyu et al., 2021). For future global surface air temperature
warming under SSP5-8.5 in 2081-2100 relative to 1850-
1900, as in Tokarska et al. (2020), we obtain a constrained
estimate which is 5% (7 %) higher than the unconstrained
CMIP6 median (mean), again in contrast to the constrained
estimate from Tokarska et al. (2020), which was 14 % lower
than the prior mean (Fig. A8c—d).

3.3 Robustness of the emergent constraint

In these constrained projections, we used the satellite-
observed summer (January—February) sea ice extent aver-
aged over 1980-2020 as the observable climate variable.
Similar results are obtained when alternative definitions of
the observable variable are employed (Fig. A9). Different
satellite observational products lead to very minor shifts
in the constrained OHU projection, indicating that obser-
vational uncertainty in present-day sea ice extent is suffi-
ciently small (much less than the specified uncertainty of
1 x 10®km? in Fig. 7) to obtain robust uncertainty reduc-
tion (Fig. A9a,d and Methods). Using annual mean or austral
winter sea ice extent or different definitions of the summer
season also yields broadly consistent uncertainty reductions
(from —13% to —38 %) and OHU increases (from +3 % to
+11 %) under SSP5-8.5 (Fig. A9c).

Antarctic sea ice cover shows both inter-annual and multi-
decadal variability over the satellite record (Fig. A10) so that
the choice of baseline period can affect our emergent con-
straint. Choosing 1980-2000, 1990-2010, or 2000-2020 in-
stead of 1980-2020 as baseline periods within the satellite
record yields constrained OHU estimates of +5 %, +8 %,
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Figure 7. Emergent constraint on future global ocean heat uptake. (a) Inter-model relationship between 1980-2020 Antarctic summer
(January—February) sea ice extent and cumulative global OHU over 2024-2100 under the SSP1-2.6 scenario. The blue line and shading
show the least-squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation coefficient » and the two-sided
p value given in the upper-left corner. The dashed vertical line shows satellite observations of Antarctic summer sea ice extent averaged
over 1980-2020 (OSI SAF, 2017), and the gray shading shows the associated uncertainty of 1 x 106 km?2; this relatively large observational
uncertainty ensures we derive a conservative emergent constraint (Methods). (b) Unconstrained prior (black) and constrained posterior (blue)
probability density functions of 2024-2100 global OHU. In gray, we show the prior histogram for 2024-2100 OHU (Methods). (¢) Same as
panel (a) but for the SSP5-8.5 scenario. (d) Same as panel (b) but for the SSP5-8.5 scenario.
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Figure 8. Constrained distributions of global OHU, cloud feedback, and warming. Prior and constrained distributions of (a) cumulative
global OHU from 2024 to 2100, (b) global mean cloud feedback parameter in 2080-2100, and (c) global mean surface air temperature
(GSAT) anomaly in 2080-2100 relative to the preindustrial. In each panel, distributions are shown for SSP1-2.6 (left) and SSP5-8.5 (right).
The gray circles and gray boxplots show the prior distribution of model values, and the blue and red boxplots show the constrained distri-
butions for SSP1-2.6 and SSP5-8.5, respectively. In each boxplot, the white line shows the median, the central box spans the likely range
(66 %), and the whiskers extend to a 95 % confidence interval. The constrained values are normally distributed by construction (Methods).
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or 49 % above the unconstrained mean, respectively. This
relatively small sensitivity stems from the large inter-model
spread in Antarctic sea ice extent across CMIP6 models com-
pared to observed variability since 1980 (Fig. A10). Recon-
structions of Antarctic sea ice cover over earlier parts of the
20th century and preceding centuries possess larger uncer-
tainties (Dalaiden et al., 2023; Fogt et al., 2022; Titchner
and Rayner, 2014), yet they also indicate a negative bias of
the multi-model mean annually averaged extent (Fig. A10).
Consequently, choosing different 40-year baseline periods
between 1920 and 2000 in these reconstructions (Meth-
ods) leads to a constrained heat uptake between 3-12 %
higher than the CMIP6 mean under the SSP5-8.5 scenario
(Fig. A9).

For further robustness testing, we examine the correlation
between historical sea ice extent and future OHU (Fig. 7a,c)
in an out-of-sample test using 16 models from the CMIP5
ensemble, and we probe the sensitivity of this correlation to
the chosen OHU time period and sea ice seasonality in both
CMIP5 and CMIP6 ensembles (Fig. A11). In the CMIP6 en-
semble, maximal correlation between historical sea ice ex-
tent and future OHU under SSP5-8.5 is obtained for sum-
mer sea ice extent together with an OHU time period start-
ing at any year after 1850 and ending after approximately
2070 (Fig. Alla-b). For time periods ending prior to 2030,
the correlation becomes statistically insignificant, underlin-
ing the fact that the mechanism underlying the emergent re-
lationship occurs only under future forcing. In the CMIP5
ensemble, correlations are higher for annual mean sea ice
extent, but the temporal structure is similar to CMIP6, with
maximal correlations for OHU periods extending towards the
end of the 21st century (Fig. Allc—d).

The correlation between historical sea ice extent and fu-
ture OHU is not an artifact of outliers or caused by indi-
vidual model values of sea ice extent or OHU far from the
center of the multi-model distribution (Fig. A12). A signifi-
cant positive correlation persists across all considered SSPs
even when discarding several models with the highest or
lowest values of sea ice extent (Fig. Al2a, ¢) and OHU
(Fig. A12b, d). Furthermore, using a Huber loss function
instead of ordinary least squares (OLS) in order to reduce
the influence of outliers yields an almost identical regression
slope (131 x 1070 ZJkm™2 for OLS, 130 x 10~° ZJ km~? for
Huber) and coefficient of determination (r2 = 0.75 for both
methods under SSP5-8.5).

The robustness of the constrained results can be further
corroborated by observations of cloud cover and deep-ocean
temperatures. Though these observations are not readily used
as formal predictors in an emergent constraint (see Methods),
they show that ensemble mean simulated global deep-ocean
temperatures are 7 % higher than observations and that simu-
lated mid-latitude Southern Ocean (30-50° S) cloud cover is
7 % less than in satellite observations. The underestimation
of cloud cover and overestimation of deep-ocean tempera-
tures in ESMs concur with a negative bias in Antarctic sea
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ice extent (Fig. 2) and with underestimated cloud feedback,
atmospheric warming, and OHU over the 21st century in the
unconstrained CMIP6 ensemble mean (Figs. 3 and 8).

4 Conclusions

The increased estimates of OHU, cloud feedback, and global
warming found here are consistent with increased low-
cloud feedback estimates by recent observational constraints
(Ceppi et al., 2024; Wu et al., 2025; Aerenson and Marchand,
2025) but contrast with previous studies that suggest an over-
estimation of the future warming by CMIP6 ESMs based on
past warming and OHU trends (Tokarska et al., 2020; Lyu
et al., 2021; Nijsse et al., 2020; Jiménez-de-la Cuesta and
Mauritsen, 2019). A possible explanation for this difference
is the limited length and representativeness of the observa-
tional records from 1980 to 2015 employed in these stud-
ies for the underlying long-term climate change (Andrews
etal., 2022; Armour et al., 2024). The 1980-2015 period has
been marked by patterns of sea surface temperature change
associated with weaker climate feedbacks than expected un-
der long-term climate change (Andrews et al., 2022). These
patterns, which include surface cooling in the eastern trop-
ical Pacific and parts of the Southern Ocean, are less likely
than 5 % across CMIP5 and CMIP6 simulations (Wills et al.,
2022). This mismatch between models and observations can
bias emergent constraints that use trends over the 1980-2015
period (Andrews et al., 2022; Armour et al., 2024). More
generally, climate variability is a critical confounding fac-
tor when short-length observational records are employed to
constrain projections. As an example, shifting the 2005-2019
observational period for past OHU trends used in Lyu et al.
(2021) only 6 years earlier (1999-2013) results in a statisti-
cally insignificant relationship between past OHU trends and
future OHU (Fig. A13).

Similarly, satellite observations of Antarctic sea ice could
coincide with a period of anomalously large or small sea ice
extent, biasing our emergent constraint. To test our results
for such potential bias, we used different baseline periods
for sea ice extent, including periods before the satellite era
for which reconstructions of Antarctic sea ice are available
(Dalaiden et al., 2023; Fogt et al., 2022; Titchner and Rayner,
2014). We find that our mechanism-based emergent con-
straint consistently reduces uncertainty and increases OHU
projections, even with the substantial uncertainty we attribute
to the predictor (Methods). This robustness of our constraint
stems from the use of an observable mean-state variable —
instead of observable trends, which tend to be more sensitive
to transient (decadal) anomalies — and from the strength of
the emergent relationship of Fig. 7c¢ (r = 0.87).

Another potential factor for the difference between the
present and previous estimates of OHU and atmospheric
warming (Tokarska et al., 2020; Lyu et al., 2021; Nijsse et al.,
2020; Jiménez-de-la Cuesta and Mauritsen, 2019) is the in-
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ability of past trends to account for a future regime shift in
the climate system (Marvel et al., 2018; Armour et al., 2024;
Liang et al., 2024). The climatic relationships and feed-
backs underpinning our emergent constraint are dependent
on a shift in the Southern Hemisphere climate state under
pronounced greenhouse forcing (Fig. 6), exemplified by the
near-total disappearance of Antarctic summer sea ice under
a high-emission scenario (Fig. 3a). Indeed, the constraint is
stronger for higher-emission scenarios (Fig. 7) and is invalid
for past OHU, indicating that the processes presented here
dominate inter-model spread only under moderate to strong
forcing. Similarly, the OHU constraint based on past warm-
ing trends (Lyu et al., 2021) is insignificant for initial time
periods ending before 2010 but becomes stronger for time pe-
riods chosen later in the 21st century (Fig. A13), which sug-
gests that the potential regime shift connected to cloud feed-
back (Fig. 5) is necessary for obtaining a strong constraint.
Although Antarctic sea ice extent has long seemed relatively
unresponsive to anthropogenic forcing, the recently observed
abrupt sea ice loss in 2016 and the historical minimum extent
anomaly in 2023 have highlighted the possibility of an on-
going regime shift (Hobbs et al., 2024). These observed sea
ice changes could foreshadow stronger Southern Hemisphere
climate feedbacks and ocean warming in the coming decades
(Kang et al., 2023).

Our results suggest more warming and heat uptake than
the CMIP6 multi-model mean, in contrast to previous studies
(Tokarska et al., 2020; Lyu et al., 2021; Nijsse et al., 2020).
Our results thus confirm the recent finding that these studies
may have underestimated future warming and that the very
low equilibrium climate sensitivity (ECS) estimates of some
climate models are unlikely (Myhre et al., 2025). Neverthe-
less, our results do not invalidate previous results indicat-
ing that the extreme end of strong warming and cloud feed-
back of high-ECS CMIP6 projections is unlikely (Tokarska
et al., 2020; Lyu et al., 2021; Nijsse et al., 2020; Jiménez-de-
la Cuesta and Mauritsen, 2019; Myers et al., 2021; Cesana
and Del Genio, 2021). Furthermore, other shared biases in
CMIP6 models could potentially imply additional positive or
negative corrections to future OHU projections (e.g., Wang
et al., 2024). Ideally, if other such biases are identified in the
future, they could be combined with our findings to arrive
at a combined observational constraint (e.g., Bretherton and
Caldwell, 2020; Terhaar et al., 2022). Endeavors to identify
and correct such biases thus remain of utmost importance.

The relationships between oceanic, cryospheric, and at-
mospheric variables revealed in this study provide guidance
for the reduction in important mean state biases in ESMs.
Specifically, they highlight the need for an accurate repre-
sentation of clouds in ESMs and the importance of reducing
uncomfortably large biases in the deep-ocean hydrography.
Similarly to clouds, deep-ocean temperatures explain an im-
portant part of differences in present-day Antarctic sea ice
and clouds (Fig. 2) and thereby influence the future climate
change in CMIP6 models (Fig. 6). Improving ocean circu-
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lation and hydrography for climate projections therefore re-
quires additional attention (Luo et al., 2023; Sherriff-Tadano
et al., 2023), alongside efforts to improve the simulation of
clouds (Hyder et al., 2018; Zelinka et al., 2020).

Overall, our results imply that potent feedback mecha-
nisms at mid- to high southern latitudes may cause future
ocean heat uptake to be higher than expected from previ-
ous assessments. Increased ocean heat uptake would cause
more thermosteric sea level rise (our central estimates for to-
tal end-of-century sea level rise are between 15-31 cm, de-
pending on the scenario) and more damage to marine ecosys-
tems and create additional risks to socio-economic systems.
Moreover, increased cloud feedback and consequently larger
future warming will make it even harder to limit warming in
order to reach climate targets, for example, those set by the
Paris Agreement. This prospect calls for improved projec-
tions of coupled ocean—atmosphere climate feedbacks, con-
tinued monitoring of variability and trends across the South-
ern Ocean, and imminent and strong reductions in green-
house gas emissions.
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Appendix A

Local deep temperature Global mean deep temperature
(a) vs. sea ice extent (b) vs. local cloud cover

L

Figure A1. Relationship between deep-ocean temperature and preindustrial surface climate. (a) Inter-model correlation between preindus-
trial local deep-ocean temperature (averaged over 2000—4000 m depth) and preindustrial Antarctic annual mean sea ice extent. (b) Inter-model
correlation between preindustrial global mean deep-ocean temperature (averaged over 2000—4000 m depth) and preindustrial local total cloud
cover. In both panels, stippling indicates regions where the correlation is not significant (p > 0.05, two-sided).
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Figure A2. Changes in cloud cover. (a) Change in total cloud cover in 2080-2100 under SSP5-8.5 relative to preindustrial. (b) Inter-model
correlation between local preindustrial cloud cover and local cloud cover change. Blue regions indicate that models with high local initial

cloud cover lose more local cloud cover. In panel (a), the unit of % is the unit of total cloud cover and does not refer to a relative change. In
panel (b), stippling indicates regions where the correlation is not significant (p > 0.05, two-sided).
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Figure A3. Relationship between the local cloud feedback and anomalies in sea ice extent and OHU. Inter-model correlation across CMIP6
models under SSP5-8.5 between (a) local net cloud feedback parameter and Antarctic summer sea ice extent loss by 2080-2100 and (b) local
net cloud feedback parameter and total ocean heat uptake from 2024-2100. (c) As for panel (a) but with shortwave cloud feedback parameter.
(d) As for panel (a) but with longwave cloud feedback parameter. Stippling indicates regions where the correlation is not significant (p >
0.05, two-sided). In panels (a), (c), and (d), red areas indicate locations where models with greater Antarctic sea ice loss tend to have more
positive local cloud feedback. In panel (b), red areas indicate locations where models with more positive local cloud feedback tend to have
greater global 2024-2100 OHU.
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Figure A4. Time evolution of sea-ice-related climate change. Inter-model correlation across CMIP6 models under SSP5-8.5 between prein-
dustrial Antarctic summer sea ice extent (SIE) and (left column) local surface air temperature anomaly, (middle column) local sea surface
temperature anomaly, and (right column) local cloud feedback parameter during progressive 20-year periods between 1970 and 2050. In all
panels, stippling indicates regions where the correlation is not significant (p > 0.05, two-sided).
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(a) Total OHU 18502024 (b) Total OHU 2024-2100

(c) Shortwave OHU 1850-2024 (d) Shortwave OHU 2024-2100

(e) Longwave OHU 1850-2024 (f) Longwave OHU 2024-2100
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i
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ﬂ
ﬂ

Figure A5. Relationship between sea ice loss and historical and future OHU components. Left column: inter-model correlation between
total Antarctic summer sea ice loss and historical 1850-2024 total OHU (a) and OHU from shortwave (c), longwave (e), latent (g), and
sensible heat fluxes (i). Right column: same as the left column but for the future 2024-2100 period. In all panels, stippling indicates regions
where the correlation is not significant (p > 0.05, two-sided).
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Figure A6. Emergent constraint on future global ocean heat uptake under SSP2-4.5 and SSP3-7.0. (a) Inter-model relationship between
1980-2020 Antarctic summer (January—February) sea ice extent and cumulative global OHU over 2024-2100 under the SSP2-4.5 scenario.
The orange line and shading show the least-squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation
coefficient r and the two-sided p value given in the upper-left corner. The dashed vertical line shows satellite observations of Antarctic
summer sea ice extent averaged over 1980-2020 OSI SAF (2017), and the gray shading shows the associated uncertainty of 1 x 10° km?;
this relatively large observational uncertainty ensures we derive a conservative emergent constraint (Methods). (b) Unconstrained prior
(black) and constrained posterior (orange) probability density functions of 2024-2100 global OHU. In gray, we show the prior histogram for
2024-2100 OHU (Methods). (¢) Same as panel (a) but for the SSP3-7.0 scenario. (d) Same as panel (b) but for the SSP3-7.0 scenario.
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Figure A7. Constrained distributions of global OHU, cloud feedback, and warming under SSP2-4.5 and SSP3-7.0. Prior and constrained
distributions of (a) cumulative global OHU from 2024 to 2100, (b) global mean cloud feedback parameter in 2080-2100, and (c) global mean
surface air temperature (GSAT) anomaly in 2080-2100 relative to the preindustrial. In each panel, distributions are shown for SSP2-4.5 (left)
and SSP3-7.0 (right). The gray circles and gray boxplots show the prior distribution of model values, and the yellow and red boxplots show
the constrained distributions for SSP2-4.5 and SSP3-7.0, respectively. In each boxplot, the white line shows the median, the central box
spans the likely range (66 %), and the whiskers extend to a 95 % confidence interval. The constrained values are normally distributed by
construction (Methods). Note that the y-axis scale is different between the two SSPs in panels (a) and (c).
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Figure A8. Emergent constraints on previously published metrics. (a) Inter-model relationship between 1980-2020 Antarctic summer
(January—February) sea ice extent and 0-2000 m OHU in 2081-2100 relative to 2005-2019 under the SSP5-8.5 scenario (as in Lyu et al.,
2021). The red line and shading show the least-squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation
coefficient » and the two-sided p value given in the upper-left corner. The dashed vertical line shows satellite observations of Antarctic
summer sea ice extent averaged over 1980-2020 (OSI SAF, 2017), and the gray shading shows the associated uncertainty of 1 x 100 km?.
(b) Unconstrained prior (black) and constrained posterior (red) probability density functions of 0-2000 m global OHU. In gray, we show
the prior histogram for 0-2000 m OHU. (¢) Same as panel (a) but for global mean atmospheric surface warming in 2081-2100 relative to
1850-1900 under the SSP5-8.5 scenario (as in Tokarska et al., 2020). (d) Same as panel (b) but for global mean atmospheric surface warming
as in panel (c).

https://doi.org/10.5194/esd-16-1453-2025 Earth Syst. Dynam., 16, 1453-1482, 2025




1470 L. Vogt et al.: Ocean heat uptake constrained by Antarctic sea ice extent

(a) (b
8+ 8- F0.0015
F0.00125
10.0015 . >
£ g < F0.001 2
g ) o3
L . >
T 4 0.001 2 g 4 i L0.00075 2
° 3 © H i
<} [} § B g
= ° i F0.0005 S
2 0.0005 & 24 gl o
i: -3\ 0.00025
0= Lo 0 T L .
2000 2500 3000 2000 2500 3000
OHU (2J) OHU (2))
(c)
8 - 10.002
] | | 10.0015 > 2
a 6 <\ ‘@ B
S N % GCJ
§ N ° °
< 4] N Fo.001 £ )
o e} Qo
[e] g g
= o °
2 10.0005 & o
‘ : : 0 0
2000 2500 3000 2000 2500
OHU (2J) OHU (2J)

Figure A9. Robustness of emergent constraint to parameter choices. Prior OHU histograms and probability density functions (PDFs) as
in Fig. 7 and posterior PDFs obtained from different parameter choices. (a) Different satellite January—February sea ice extent observation
sources, OSI SAF (blue), Bootstrap (orange), and NASA Team (green), using different time periods (solid: 1980-2000; dashed: 1990—
2010; dotted: 2000-2020). (b) Different pre-satellite-era yearly sea ice extent observation sources, HadISST2.2 (blue) and reconstructions
from Dalaiden et al. (2023) (red) and Fogt et al. (2022) (orange), using different time periods (solid: 1920-1960; dashed: 1940-1980;
dotted: 1960-2000). (c) Different season definitions for sea ice extent baseline from the OSI SAF satellite product OSI SAF (2017): yearly
(blue), January—February—March (orange), February—March (green), January—February (red), July—August—September (purple). (d) Different
observational uncertainties for January—February sea ice extent from the OSI SAF satellite product: 0.2 x 106 km? (blue), 0.5 x 100 km?
(orange), 1 x 100 km? (green), 1.5 x 100 km? (red), 2 x 100 km? (purple), 3 x 100 km? (brown).
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Figure A10. Time series of observed and simulated Antarctic sea ice extent. Antarctic sea ice extent simulated by individual CMIP6 models
(thin gray lines), in the ensemble mean (bold black line), and in observational products (colored lines). Model time series extend to 2100

under SSP1-2.6 (a, b) and SSP5-8.5 (¢, d). Yearly values are calculated for (left column) January—February, and (right column) the annual
mean.
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Figure A11. Sea ice—OHU correlation in CMIP5 and CMIP6 for different values of OHU time period. Heatmaps of the correlation coefficient
between 1980-2020 Antarctic (left column) annual or (right column) January—February sea ice extent and global OHU in (a~b) CMIP5 under
RCP8.5 forcing and (c—d) CMIP6 under SSP5-8.5 forcing for different OHU time periods. Hatching indicates parameter values where the
sea ice—OHU correlation is not statistically significant (p > 0.05, two-sided).

Earth Syst. Dynam., 16, 1453-1482, 2025

https://doi.org/10.5194/esd-16-1453-2025



L. Vogt et al.: Ocean heat uptake constrained by Antarctic sea ice extent 1473

(a) SSP1-2.6 ; (b) SSP1-2.6 |
3 0.95 o] 0.95
5 g
g 0.9 § 0.9
3 0.85 @ 0.85
3 3
E 0.8 g 7/ 0.8
@ j= c
Qo k<] ) k<]
© 075 © T 075 ®©
2 @ O 2
° 0.7 8 S 0.7 8
) <
S 0.65 2 0.65
g = 7
5 0.6 g 0.6
O e}
E 0.55 E 0.55
3 =
= 05 05
0 1 2 3 4 5 0 1 2 5
Number of low-end sea ice models removed Number of low-end OHU models removed
(c) SSP5-8.5 1 (d) SSP5-8.5 1
B 0.95 - 0.95
5 g
IS o
15 0.9 g 0.9
3 3 0.85
0.85 ° .
8 g
® 08 ¢ E 08 ¢
kel k<] o) k=]
= 2 =
8 0753 O 0753
° S 2 S
© 07 © 9 07 ©
5 5
2 0.65 £ 0.65
i :
g 0.6 _g 0.6
g S
2 0.55 z 0.55
0.5 0.5
0 1 2 3 4 5 0 1 2 3 4 5
Number of low-end sea ice models removed Number of low-end OHU models removed

Figure A12. Robustness of sea ice—OHU correlation to removing extreme model values. Heatmaps of the correlation coefficient between
1980-2020 Antarctic summer sea ice extent and future (2024-2100) global OHU under (a-b) SSP1-2.6 and (c—d) SSP5-8.5 when removing
a number of models with the highest or lowest sea ice extent (left column) and the highest or lowest future OHU (right column). Hatching
indicates parameter values where the sea ice—OHU correlation is not statistically significant (p > 0.05, two-sided).
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Figure A13. Sensitivity of OHU constraint based on past warming. Heatmap of the correlation coefficient between past OHU and future
(2081-2100 vs. past) OHU among CMIP6 models under SSP5-8.5 forcing for different choices of the start and end year of the past time
period. Hatching indicates time periods for which the correlation is not statistically significant (p > 0.05, two-sided).

Table A1. CMIP6 models used in this study.

Model Modeling center Reference Missing SSPs*
CanESM5 CCCma Swart et al. (2019) -
CanESM5-CanOE -
CMCC-CM2-SR5 CMCC Cherchi et al. (2019) -
CMCC-ESM2 Lovato et al. (2022) -
CNRM-CM6-1 CNRM-CERFACS Voldoire et al. (2019) -
CNRM-CM6-1-HR -
CNRM-ESM2-1 Séférian et al. (2019) -
ACCESS-ESM1-5 CSIRO Ziehn et al. (2020) -
ACCESS-CM2 CSIRO-ARCCSS Bi et al. (2020) -

EC-Earth3 EC-Earth-Consortium  D&scher et al. (2022) -
EC-Earth3-CC ssp126, ssp245, ssp370

EC-Earth3-Veg
EC-Earth3-Veg-LR
IPSL-CM6A-LR
MIROC6
HadGEM3-GC31-LL
HadGEM3-GC31-MM
UKESM1-0-LL
MPI-ESM1-2-HR
MPI-ESM1-2-LR
MRI-ESM2-0
GISS-E2-1-G
CESM2
CESM2-WACCM
NorESM2-LM
NorESM2-MM
GFDL-CM4
GFDL-ESM4

IPSL
MIROC
MOHC
MPI-M

MRI
NASA-GISS
NCAR

NCC

NOAA-GFDL

Boucher et al. (2020)
Tatebe et al. (2019)
Andrews et al. (2020)

Sellar et al. (2019)
Gutjahr et al. (2019)

Yukimoto et al. (2019)
Kelley et al. (2020)

Danabasoglu et al. (2020)

Seland et al. (2020)

Held et al. (2019)
Dunne et al. (2020)

ssp370
8sp245, ssp370

ssp126, ssp370
sspl26

* Models for which essential output variables (hfds and siconc) are unavailable for any of the SSP1-2.6, SSP2-4.5, or SSP3-7.0
scenarios.
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Table A2. Emergent constraints across scenarios. For each variable and each SSP, this table gives the inter-model correlation (Pearson’s r
value) between 1980-2020 Antarctic summer sea ice extent (SIE) and the respective future variable (X), along with the unconstrained and
constrained median values of X. Correlation r values with an asterisk indicate significant correlations at the p < 0.05 level according to a
two-sided Student’s ¢ test. Constrained values with an asterisk indicate significant difference between unconstrained and constrained mean
values at the p < 0.05 level according to a two-sided Student’s ¢ test. Uncertainty ranges express the 66 % likely range. Variable abbreviations
stand for ocean heat uptake (OHU), global mean sea level rise from thermal expansion (SLR), global mean surface air temperature warming
(AGSAT), and global mean cloud feedback parameter (A¢jouq); see Methods.

Future scenario OHU (ZJ) SLR (cm) AGSAT (°C)  Acloud (W m~2 Kil)
SSP1-2.6(n =25)  Corr(X, SIE) r =0.66* r =0.66* r=045* r =0.64*
Prior 1205+ 163 14.7£2.0 2.25£0.52 0.43£0.47
Constrained 1244 £ 141 152+£1.7 2.36+0.51 0.51+0.41
SSP2-4.5 (n=26) Corr(X, SIE) r=0.82* r=0.82* r=0.56* r = 0.66*
Prior 1528 +178 18.6£2.2 3.20+0.63 0.40+£0.43
Constrained 1678%+£129 20.5*+1.6 3.36£0.58 0.48 £0.37
SSP3-7.0 (n =24) Corr(X, SIE) r=0.64* r=0.64* r=0.62* r=0.63*
Prior 1981 £308  24.2+3.8 4.17£0.82 0.24+£0.48
Constrained 2193+270  26.7+3.3 4.48+0.73 0.42+0.42
SSP5-8.5 (n =28) Corr(X, SIE) r=0.87* r=0.87* r=0.61* r=0.71*%
Prior 2273+£314  27.7+3.8 5.36+0.93 0.48£0.42
Constrained 2595* £208 31.6%+2.5 5.524+0.83 0.63*£0.35
Data availability. Preprocessed time series of Antarctic sea ice — NASA  Team  algorithm sea ice extent data:
extent, ocean heat uptake, global mean sea surface temperature, https://climatedataguide.ucar.edu/climate-data/sea-ice-
and atmospheric temperature used in this study are available at concentration-data  (National Center for Atmospheric

https://doi.org/10.5281/zenodo.15693981 (Vogt, 2025).
Observational and model data used in this study are available at
the following locations:

— CMIP6 model output: https://esgf-node.llnl.gov/projects/
cmip6/ (Earth System Grid Federation, 2024)

— World Ocean Atlas ocean temperature and salinity data: https://
www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (Boyer
et al., 2024)

— Radiative kernels from Huang and Huang (2023a):
https://doi.org/10.17632/vmg3s67568.4 (Huang and Huang,
2023b)

— Ocean heat content time series from Mini¢re et al.

(2023): included in this study’s Zenodo repository
(https://doi.org/10.5281/zenodo.15693981; Vogt, 2025).

— Cloud cover observational data:
https://doi.org/10.24381/cds.68653055 (C3S and CDS,
2022)

- OSI SAF sea ice extent data:

https://doi.org/10.24381/cds.3cd8b812 (C3S, 2020)

— HadISST2.2 sea ice extent data: https://www.metoffice.gov.
uk/hadobs/hadisst2/data/download.html (Titchner and Rayner,
2014)

— Sea ice extent reconstruction from Fogt et al. (2022):

https://doi.org/10.6084/m9.figshare.c.5709767.v1 (Fogt,
2021).
— Bootstrap algorithm sea ice extent data:

https://doi.org/10.5067/XSLG68MHO0130 (Comiso, 2023)
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