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Abstract. The ocean is forced at the surface by a heat flux and freshwater flux field from the atmosphere.
Short-timescale variability in these fluxes, i.e., noise, can influence long-term ocean variability and might even
affect the Atlantic meridional overturning circulation (AMOC). Often this noise is assumed to be Gaussian, but
detailed analyses of its statistics appear to be lacking. Here we study the noise characteristics in reanalysis data
for two fields that are commonly used to force ocean-only models: evaporation minus precipitation and 2 m
air temperature. We construct several noise models for both fields, and a pointwise normal inverse Gaussian
distribution model gives the best performance. An analysis of CMIP6 models shows that these models do a
reasonable job at representing the standard deviation and skewness of the noise, but the excess kurtosis is more
difficult to capture. The pointwise noise model performs better than the CMIP6 models and can be used as
forcing in ocean-only models to study, for example, noise-induced transitions of the AMOC.

1 Introduction

The ocean is forced at the surface by momentum, heat, and
freshwater fluxes from the atmosphere. Since the ocean re-
sponds relatively slowly to the atmospheric forcing, anoma-
lies in this forcing can be modeled as a noise process (Has-
selmann, 1976). This study is motivated by the role of such
noise in causing noise-induced transitions in the Atlantic
meridional overturning circulation (AMOC). The AMOC
has a major influence on the global and Northern Hemi-
spheric climate and has been identified as one of the poten-
tial major tipping points in the Earth system (Lenton et al.,
2008; McKay et al., 2022). A collapse or strong weakening
of the AMOC has major consequences for the climate system
by changing, e.g., global temperature patterns (van Westen
et al., 2024b), atmospheric circulation (Orihuela-Pinto et al.,
2022), Arctic sea ice cover (van Westen et al., 2024b), the
global carbon cycle (Zickfeld et al., 2008; Boot et al., 2024),
and marine ecosystems (Schmittner, 2005; Boot et al., 2025).

Simple box models have shown that the AMOC can show
noise-induced transitions (Castellana et al., 2019; van Westen

et al., 2024a) and that probabilities of such transitions can be
obtained using rare-event techniques. In these types of stud-
ies, the noise is applied only in the freshwater flux and is
often assumed to be white for simplicity. Recently, noise-
induced transitions have also been studied in an intermediate
complexity Earth system model (EMIC; Cini et al., 2024) us-
ing rare-event techniques. Ideally, one would want to study
the transitions in full-complexity, CMIP6 type, Earth system
models (ESMs). However, due to the complexity and cost of
these models, it is not yet possible to systematically use these
ESMs for these types of studies. Recently, a study did look
at AMOC tipping in a 10-member ensemble of the NASA-
GISS ESM, showing that under the same forcing some en-
semble members simulate an AMOC recovery under future
emissions, while others show a consistent weakening (Ro-
manou et al., 2023). However, the AMOC does not show a
complete collapse in these ensemble members.

To determine the probability of noise-induced transitions
using rare event techniques, one is at the moment restricted
to using ocean-only models, and hence the specification of
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the atmospheric noise is crucial. However, to our knowl-
edge, a detailed study on the properties of the noise in the
actual fields relevant in the forcing of ocean models is lack-
ing. Here we focus on noise in the freshwater flux (E−P )
and in the 2 m air temperature (T2 m). Noise in the momen-
tum flux related to surface winds might also be important for
the AMOC. However, we do not consider this here for two
main reasons: the statistical properties of the surface winds
have been studied more thoroughly before (Sura, 2003; Mon-
ahan, 2004, 2018), and the noise in the momentum flux is
less important for simulating noise-induced transitions of the
AMOC.

Such a study is also useful to determine whether EMICs
and ESMs adequately capture these noise fields. We know
that these types of models exhibit sometimes very large bi-
ases in their mean state and in variability on a whole range
of timescales. For example, T2 m is biased too warm in
the CMIP6 models over the Atlantic sector of the South-
ern Ocean and the eastern South Atlantic, while there is a
cold bias over much of the North Atlantic and Arctic oceans
(Eyring et al., 2021). The air temperature biases can also be
seen in the sea surface temperatures (Zhang et al., 2023),
thereby directly affecting the density structure of the ocean.
For precipitation there is a consistent double Intertropical
Convergence Zone (ITCZ) bias from CMIP3 to CMIP6 mod-
els (Tian and Dong, 2020). This means that in the Atlantic,
the ITCZ, and therefore bands of high precipitation, extends
too much towards the south. Following the double ITCZ bias
(Tian and Dong, 2020; Li et al., 2020), there is a strong pos-
itive freshwater flux bias north of the Equator and a strong
negative bias south of the Equator in the CMIP6 multi-model
mean (MMM; Liu et al., 2022). Between 10 and 60° N and
the Equator and 35° S, the freshwater flux is typically posi-
tively biased in the CMIP6 MMM (Liu et al., 2022). These
biases are among the reasons why the AMOC is thought to
be too stable in CMIP6 type models (Weijer et al., 2019; van
Westen and Dijkstra, 2024).

In this study, we determine the statistical properties of the
E−P and T2 m noise based on the ERA5 reanalysis data. We
compare this observation-based noise with the noise simu-
lated by coupled CMIP6 ESMs and identify relevant biases.
Based on the ERA5 noise, we construct a noise model that
can be used to force ocean-only models. This product can be
used to study the influence of short-timescale atmospheric
variability on long-term ocean variability and eventually to
study noise-induced transitions of the AMOC.

2 Methods

2.1 ERA5 reanalysis data

We analyze the noise in E−P and T2 m over the Atlantic
Ocean between 60° S and 80° N. For this we use ERA5 re-
analysis data (Hersbach et al., 2020), the most recent re-
analysis product of the European Center for Medium-Range

Weather Forecasts (ECMWF) that replaces the ERA-Interim
reanalysis product. The ERA5 product is created by combin-
ing both satellite and ground observations with a numerical
model used for weather forecasting. For the freshwater flux
we determine the net freshwater forcing by taking the sum of
the variables “total precipitation” and “evaporation” (i.e., to-
tal precipitation+ evaporation). Since evaporation is defined
as being negative and total precipitation as being positive in
ERA5 data, this results in a dataset forE−P where net evap-
oration is positive and net precipitation negative. The datasets
contain monthly data from 1940 to 2022 on a 0.25° rectilin-
ear grid. To determine the noise in both fluxes, we first de-
trend each grid point by subtracting a 5-year running mean.
Next, we deseasonalize the data by subtracting a monthly cli-
matology based on the detrended data. This results in a noisy
dataset where each grid point has zero mean and no trend.
We analyze the fields by looking at the standard deviation
(σ ), skewness, and excess kurtosis of the noise, where Gaus-
sian white noise would have zero skewness and zero excess
kurtosis.

2.2 CMIP6 models

We compare the noise in the ERA5 data to that found in
CMIP6 ESMs. In total, we use 36 different models; note that
we use two different realizations from the UKESM-1-0-LL
model that are run by two different model groups (i.e., the
Met Office Hadley Centre (MOHC) and the National Insti-
tute of Meteorological Sciences–Korea Meteorological Ad-
ministration (NIMS-KMA), respectively). For each model
we determine the evaporation minus precipitation using the
variables “evspsbl” and “pr”, and we use “tas” for T2 m. We
do this for the historical simulations between 1940 and 2014.
We first regrid all models to a 1°× 1° rectilinear grid. We
next compute the noise in the models by following the same
methodology as for the ERA5 data; i.e., we detrend and de-
seasonalize the data. We could also use simulations without
forcing, i.e., the piControl simulations. However, for compar-
ison with the ERA5 data it is better to use a similar method-
ology for both data sources, which includes the detrending in
the ERA5 data.

When comparing the CMIP6 data to the ERA5 data, we
use the same time period in the ERA5 data as in the CMIP6
data, i.e., 1940 to 2014, and regrid the ERA5 data to a 1°
rectilinear grid. Due to its original higher resolution, the land
mask in ERA5 captures small islands that are not captured
by the CMIP6 land mask. To account for this, we mask out
these small islands in both the ERA5 and the CMIP6 data. A
full list of the models used and their citations can be found in
Appendix A (Table A1).
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Figure 1. Standard deviation (σ ), skewness, and excess kurtosis over time for the ERA5 noise for the E−P flux (a–c) and T2 m (d–f).

3 Results

3.1 ERA5 reanalysis data

Figure1a–c show the standard deviation, skewness, and ex-
cess kurtosis in the E−P noise. The highest standard de-
viation is found north of the Equator in the ITCZ, and
other regions with relatively high standard deviations are
those where the western boundary currents are present. In
the Northern Hemisphere, the strongest negative skewness
is found between 10 and 30° N (Fig. 1b). The negative skew-
ness here indicates that the distribution is skewed towards ex-
treme precipitation events, which is partially related to tropi-
cal storm activity in this region. In the Southern Hemisphere
there is a strong negative skewness in the region of the South
Equatorial Current, and there is a small region of moderate
positive skewness to the south of this area. The rest of the
ocean generally shows a slightly negative or near-zero skew-
ness. The excess kurtosis shows a relatively similar pattern

to the skewness but with the opposite sign (Fig. 1c). The
strongest positive excess kurtosis is found over the entire lat-
itudinal band 10° S to 30° N. This is also an indication of
high extremes, and because of the negative skewness it indi-
cates extreme precipitation events. The rest of the ocean has
slightly positive or near-zero excess kurtosis. Due to the non-
zero skewness and excess kurtosis in the noise at most grid
points, the noise cannot be classified as Gaussian white noise
in these grid points.

For T2 m (Fig. 1d–f), the largest standard deviation in the
noise is found in the (seasonally) sea-ice-covered regions in
the high-latitude North Atlantic (Fig. 1d). The Gulf Stream
region also shows a relatively high standard deviation. Re-
gions around the sea ice edge in both the Northern Hemi-
sphere and Southern Hemisphere show a relatively strong
negative skewness (Fig. 1e), which means the distributions
in these regions are skewed towards more cooling events.
The pattern for the skewness in the South Atlantic is rela-
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tively patchy, with both slightly negative and slightly positive
values. In the North Atlantic, the regions around the trade
winds show positive skewness, while the subtropical gyre
shows negative skewness. The (seasonally) sea-ice-covered
regions show strong negative skewness. For the excess kurto-
sis (Fig. 1f), most of the Atlantic region shows (strong) pos-
itive values, with the strongest signals being present over the
sea -ice-covered regions, close to the seasonal sea ice edge
(also in the South Atlantic), and in the Gulf of Mexico. The
combination of negative skewness and positive excess kurto-
sis in the sea-ice-covered regions suggests that in these re-
gions strong cooling events can take place, which is likely
associated with strong increases in sea ice cover. Just as for
the freshwater flux, the excess kurtosis deviates from zero
in most regions of the ocean, which means that the noise in
T2 m is also unlikely to be Gaussian white noise at most grid
points.

To better understand the results, we look in the noise fields
for regions with similar distributions. We do this by dividing
both the E−P and T2 m noise fields into 12 different clus-
ters (Fig. 2). For this we use a k-means clustering algorithm
where we use the standardized standard deviation, skewness,
and excess kurtosis as input. The decision for 12 clusters is
based on several methods (Fig. A1), i.e., the elbow method,
the silhouette score, the gap statistic, and a visual inspec-
tion of the clusters performed while the number of clusters
is varied. The probability density function, standard devia-
tion, skewness, and excess kurtosis values of the clusters are
displayed in Figs. A2–A5

For E−P we find several relatively large clusters. The
subpolar regions are divided into two clusters (clusters 1 and
4), where cluster 4 is more poleward. The main difference
between the two clusters is the lower standard deviation in
the higher-latitude cluster. The high standard deviation re-
gion of the ITCZ also clearly stands out as a separate cluster
(cluster 6). The subtropical region is divided into nine differ-
ent clusters. The six clusters that cover the North Equatorial
Current and South Equatorial Current stand out with strong
positive excess kurtosis and strong negative skewness (clus-
ters 2, 3, 5, 9, 10, and 11). These are regions that experience
tropical storms and hurricanes, which are recorded as very
strong extreme precipitation events in the E−P noise fields.
These extremes can be very local, explaining why six clusters
are necessary for this region. The cluster closest to a Gaus-
sian distribution is the cluster in the southeastern subtropical
region (cluster 12) with a skewness of 0.16 and an excess
kurtosis of 0.90 (Fig. 2b). For all clusters, kurtosis is larger
than 1.5 times the square of the skewness (Fig. 2b), which is
consistent with multiplicative noise (Sardeshmukh and Sura,
2009).

The 12 clusters for the T2 m noise do not show an overlap
with the E−P clusters, and several of them appear to follow
the general ocean circulation pattern. For example, cluster 12
is centered around the North Atlantic Current, while cluster
10 is centered around the North Equatorial Current and the

North Brazil Current. While for theE−P noise several clus-
ters are necessary for the subtropics, for T2 m several clusters
are necessary for regions covered by sea ice or areas adja-
cent to those regions. Cluster 3 describes the regions in the
Labrador and Greenland seas that experience sea ice annu-
ally. Clusters 2, 5, and 6 all cover regions close to the sea ice
edge. The noise in these regions is likely affected by interan-
nual variability in sea ice extent that leads to relatively strong
positive excess kurtosis and relatively strong negative skew-
ness. Two clusters (7 and 12) have near-zero area-weighted
skewness and excess kurtosis and are therefore close to a
Gaussian distribution (0.00 skewness for both areas and 0.06
and 0.13 for excess kurtosis, respectively; Fig. 2d). Cluster
7 covers the South Atlantic between 30 and 50° S and parts
of the eastern North Atlantic between 30 and 60° N. Clus-
ter 12 is the cluster around the North Atlantic Current, but
it does show some variability in both skewness and excess
kurtosis in the cluster. Just as for the E−P clusters, for all
T2 m clusters kurtosis is larger than 1.5 times the square of
the skewness (Fig. 2d), which is consistent with multiplica-
tive noise.

3.2 CMIP6 data

In this section we analyze the results for the multi-model
mean (MMM) of the CMIP6 models. We determine the
MMM at the end of the analysis. For example, this means that
we first determine the skewness for each model and then av-
erage it over the 2D skewness fields of all the models to cre-
ate the MMM. Each model has been given the same weight.
Results for individual models can be found in Appendix A
(Figs. A10 to A15).

The MMM for the noise in the E−P flux does not always
represent the amplitude in the statistics of the ERA5 noise
well (Fig. 3a–f); however, the spatial patterns are relatively
well resolved in the MMM. The standard deviation is under-
estimated over the entire ocean, with the strongest underes-
timation in the ITCZ regions and over the western boundary
currents (Fig. 3d). The multi-model mean shows a stronger
negative skewness over the South Equatorial Current that
is also shifted more southward compared to ERA5 noise
(Fig. 3e). Furthermore, the positive skewness over the east-
ern subtropical region is not captured by the CMIP6 MMM.
The excess kurtosis is also positively biased in the CMIP6
MMM over the South Equatorial Current (Fig. 3f). In the
region between 10° S and 25° N there is a patchy response,
where most regions see an underestimation of the excess kur-
tosis compared to the ERA5 noise (red colors) while some re-
gions see an overestimation of the excess kurtosis compared
to the ERA5 noise (blue colors). The CMIP6 MMM does
capture the spatial pattern and amplitude of the standard de-
viation of the noise in T2 m well compared to the ERA5 noise
(Fig. 4a, b). The spatial pattern of the skewness is captured
reasonably well in the Northern Hemisphere, but the ampli-
tude is typically smaller than in the ERA5 noise (Fig. 4c, d).
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Figure 2. Overview of the clusters and corresponding statistics. (a) The clusters for the E−P noise. (b) The skewness (S; x axis) and excess
kurtosis (K; y axis) of the clusters in (a). The colors of the markers correspond to the color coding in (a). The size of the markers represents
the standard deviation (in mm d−1). Panels (c) and (d) are the same as (a) and (b) but for the T2 m clusters. The unit used for the standard
deviation in (d) is °C. The black line in (b) and (d) represents K = 1.5S2.

In the Southern Hemisphere the CMIP6 MMM shows mostly
slightly positive skewness, whereas the ERA5 noise mostly
shows slightly negative skewness. The absolute differences
are not that large, but there is an important difference in sign.
For excess kurtosis, the spatial pattern is also relatively simi-
lar in the CMIP6 MMM compared to the ERA5 noise; how-
ever, the regions in the ERA5 noise with slightly negative
kurtosis are not captured by the CMIP6 MMM (Fig. 4e, f).
The amplitude of the excess kurtosis, however, is not as well
resolved as the spatial pattern. Most regions in the CMIP6
MMM show an underestimation of the excess kurtosis com-
pared to ERA5.

4 Noise model

The CMIP6 MMM appears to do a decent job in capturing
the observation-based noise field of both E−P and T2 m.
However, there is still a large spread in the model ensemble,

meaning not all models are able to capture these noise fields
adequately. Our aim in this section is to develop a statistical
model of the noise in both E−P and T2 m that can be used
as forcing in ocean models. We have tried several methods
to construct such a model, and we will present four of these
methods below. All of these models are based on the ERA5
reanalysis data.

Three of the methods are based on a principal compo-
nent analysis (PCA) in which we base the noise model on
the principal components (PCs) and corresponding empiri-
cal orthogonal functions (EOFs). The PCA is performed on
the noise and is weighted to account for the grid cell areas.
For all three methods we use the number of EOFs necessary
to explain 90 % of the variance in the noise (i.e., 289 EOFs
and PCs for E−P and 53 for T2 m). For the first two meth-
ods we directly sample (with replacement) from the PCs. The
first method we name PC(1), as we select one random time
step (i.e., month) for all PCs. For the PC(1) method we uni-
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Figure 3. Standard deviation (σ ), skewness, and excess kurtosis of CMIP6 multi-model mean (MMM) noise for the E−P flux (a)–(c).
Differences between CMIP6 and ERA5 data (i.e., ERA5 minus CMIP6 MMM) are shown in (d)–(f). The numbers in the top-right corner
of (a)–(c) reflect the spatial correlation and root-mean-square error. Values in (a) and (d) are given in units of mm d−1.

formly sample one integer from 1 to the length of the PCs,
i.e., 996. We apply this integer for all PCs. For example, if
our integer is 7, we sample the seventh month of each PC
to construct the noise model. Using this method we there-
fore have in total 996 different realizations to sample from,
meaning this method is not strictly stochastic. For the sec-
ond method (PC(N)), we sample a random time step out of
the PCs but a different time step for each PC. For the third
method (PC(NIG)), we fit a normal inverse Gaussian (NIG)
distribution to the individual PCs and next sample randomly
from these distributions in a similar fashion as in the PC(N)
method. The NIG distribution used in the PC(NIG) model

has a probability density function determined by

f (x,α,β,δ,µ)=
αδK1α

√
δ2+ (x−µ)2

π
√
δ2+ (x−µ)2

eδ
√
α2−β2+β(x−µ), (1)

where α is a tail heaviness parameter, β is an asymmetry
parameter, µ regulates the shift in the distribution, and δ is
the scale of the distribution. K1 represents a modified Bessel
function of the second kind.

We choose to use three different PCA-based models. The
PC(1) model is used to test whether the PCAs can in fact
capture the statistics of the noise well. However, since this
method is not fully stochastic, we also chose to use other
models. The PC(N) model has a very similar setup, but it
has a larger number of values to sample from than the PC(1)
method. Since the PC(N) model also has a discrete number
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Figure 4. The same as Fig. 3 but for T2 m in °C.

of values to sample from, we also used the PC(NIG) model,
which does not have this problem. For all three methods,
noise fields are constructed by multiplying the value sam-
pled from the PCs with the spatial patterns captured by the
EOFs and next summing over the number of PCs and EOFs.
Results for the PC(1) and PC(N) models can be found in
Appendix A (Figs. A6 to A9). The PC(NIG) model shows
a good agreement with the noise diagnosed from the ERA5
data for the spatial patterns of the standard deviation (Fig. 5a,
d), but it is unable to capture the spatial patterns of the skew-
ness (Fig. 5b, e) and excess kurtosis (Fig. 5c, f). The standard
deviation in the noise is captured reasonably well (Fig. 5d).
Looking at the skewness (Fig. 5e) and the excess kurtosis
(Fig. 5f), we can see that this model is unable to represent
these metrics correctly since the PC(NIG) model simulates
near-zero skewness and excess kurtosis. Just as for the E−P
flux, the PC(NIG) model represents the spatial pattern of the
noise in the T2 m well in the standard deviation (Fig. 6a, d) but

not in the skewness (Fig. 6b, e) and excess kurtosis (Fig. 6c,
f). The skewness and excess kurtosis are again near zero in
all regions, with the exception of the excess kurtosis in the
sea-ice-covered regions in the North Atlantic.

Since the models using the PCA show difficulty in repre-
senting the ERA5 noise, we have also fitted several statisti-
cal distributions directly to the noise for each grid cell as a
fourth method. For both the E−P and T2 m, the normal in-
verse Gaussian (NIG) distribution appeared to be the best fit.
Note that we have tried several other distributions as well, all
of which performed worse than the NIG distribution. Other
tested distributions mostly fail to capture the excess kurto-
sis well. A summary of the performance of a selection of the
tested models can be seen in Fig. A18.

We have tested the goodness of fit with several metrics
(Fig. A16). Firstly, we performed an Anderson–Darling nor-
mality test. We find that for the E−P noise only 8 % of the
grid points pass this test (p < 0.05) (Fig. A16b). For T2 m this
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Figure 5. Standard deviation (σ ), skewness, and excess kurtosis of the noise from the PC(NIG) model for the E−P flux (a)–(c). Differences
with ERA5 data (i.e., ERA5 minus PC(NIG)) are shown in (d)–(f). The statistics of the noise model are based on 10000 realizations (months).
The numbers in the top-right corner of (a)–(c) reflect the spatial correlation and root-mean-square error. Values in (a) and (d) are given in
units of mm d−1.

is higher, i.e., 42 % (Fig. A16g). Next we have tested whether
the NIG provides a better fit than a normal distribution for
each grid point. For this we use the following equation:

χn =
1
N

N∑
i=1

(fi −mi)2

m2
i

, (2)

where N is the number of bins used (i.e.m 50); fi the prob-
ability density function of the time series per grid point; and
mi the fitted probability density function, which is fitted to
either an NIG distribution or a normal distribution. We com-
pute χn for both an NIG and Gaussian fit and compare the
two. For 98 % of the grid points the NIG fit performs bet-
ter (i.e., χn is smaller for the NIG fit) for the E−P noise
(Fig. A16a), and this is the case for 94 % of the grid points
for the T2 m noise (Fig. A16f). To test whether the NIG model

is a good fit, we apply a Kolmogorov–Smirnov test. For the
E−P only 27 grid points do not pass this test, while for
T2 m there are 8 grid points that do not pass (out of 138 788
ocean grid points) (p < 0.05). However, the Kolmogorov–
Smirnov test is not well suited for heavy-tailed distributions
such as those found in our data. Ideally, we would like to
perform an Anderson–Darling test (or a similar test) as a
goodness-of-fit test to check whether the NIG fits are sta-
tistically significant, but this is too computationally expen-
sive. For the Anderson–Darling test we need to compute crit-
ical values, which is computationally demanding. Since these
critical values are dependent on the parameters of the NIG
distribution in Eq. (1) (i.e., α, β, µ, and δ), we would have to
repeat the computations for each grid point, which leads to
high computational cost. As an alternative, we computed the
Akaike information criterion (AIC) and Bayesian informa-
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Figure 6. The same as Fig. 5 but for T2 m in °C.

tion criterion (BIC) (Fig. A16c, h) scores for both the Gaus-
sian and the NIG fits. For the E−P noise, the NIG fit is a
better fit compared to a Gaussian fit for 98 % and 87 % of
the grid points for the AIC and BIC metrics, respectively.
For the T2 m noise this is 62 % and 35 %, respectively. Lastly,
we test the significance of the skewness and kurtosis of the
E−P and T2 m noise. We do this by fitting an AR(1) model to
the data and subsequently generate sampling statistics from
this model. The fitted (Gaussian) AR(1) model fails to rep-
resent the skewness and excess kurtosis in the E−P noise
(p < 0.05) for 93 % and 85 % of the grid points (Fig. A16d,
e) and 38 % and 53 % of the grid points for the T2 m skewness
and excess kurtosis (Fig. A16i, j).

Based on this collection of tests, we think that for most of
the grid points the NIG model provides a good fit to the data.
Furthermore, following the Anderson–Darling test on nor-
mality and the fitted AR(1) model, most of the E−P noise
is non-Gaussian, and to a lesser degree this also applies to

the T2 m noise. The grid points for the E−P noise that are
likely Gaussian are located in clusters 4 and 11, which are
indeed clusters with skewness and excess kurtosis close to
0 (Fig. 2a, b). For the T2 m noise, the grid points that show
Gaussian behavior are mainly located in the sea-ice-free sub-
polar ocean. These grid points mainly belong to clusters 1, 7,
and 12, which are also the clusters with approximately zero
skewness and near-zero excess kurtosis (Fig. 2c, d).

Using the fitted NIG distribution, we can generate a fully
stochastic noise field for each month using the four param-
eters for each grid cell. The model shows a good agreement
with the noise diagnosed from the ERA5 data for the spa-
tial patterns of the standard deviation (Fig. 7a, d), skewness
(Fig. 7b, e), and excess kurtosis (Fig. 7c, f). The standard
deviation in the noise is captured especially well, with only
small deviations present between 10° S and 25° N (Fig. 7d).
The NIG distribution underestimates the regions with strong
negative skewness over the latitude bands 0° N to 10° S and
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10 to 25° N (Fig. 7e). For excess kurtosis we see a similar un-
derestimation in these regions, meaning that the excess kurto-
sis is higher in the ERA5 data (Fig. 7f). However, the region
between these two latitude bands shows a much higher ex-
cess kurtosis in the NIG model compared to the ERA5 noise.

Just as for the E−P flux, the NIG model represents the
spatial pattern of the noise in the T2 m well in the standard
deviation (Fig. 8a, d), skewness (Fig. 8b, e), and excess kur-
tosis (Fig. 8c, f). Here the standard deviation is also captured
very well by the NIG model, with only very small differences
in the sea-ice-covered regions (Fig. 8d). The same applies to
the skewness, where we also see some deviations in these
same regions (Fig. 8e). For most regions the NIG model cap-
tures the excess kurtosis quite well (Fig. 8f). However, for
regions with a high excess kurtosis in the ERA5 noise, such
as the sea-ice-covered regions and the Gulf of Mexico, the
NIG model strongly overestimates the excess kurtosis.

5 Performance CMIP6 and NIG models

In this section, we compare the noise models and the CMIP6
models with the ERA5 noise using Taylor diagrams (Fig. 9)
to provide a more in-depth discussion on the performance
of the individual models. We compare how well the differ-
ent models represent the standard deviation (Fig. 9a, b), the
skewness (Fig. 9c, d), and the excess kurtosis (Fig. 9e, f)
found in the ERA5 noise. Taylor diagrams are a good tool to
better understand the performance of all the different mod-
els against the observation-based noise. In a Taylor diagram,
three metrics are displayed: (1) the spatial correlation coeffi-
cient, (2) the variation in the data as represented by the stan-
dard deviation, and (3) the root-mean-square error (RMSE)
between the observation-based data and the model. The spa-
tial correlation coefficient is displayed on the outer circle and
the straight dotted lines in Fig. 9, lines of constant correlation
connect the origin with the outer circle. The standard devia-
tion is displayed on both the x axis and y axis. Lines of equal
standard deviation are circles with their center in the origin
of the plot. The dashed black line in Fig. 9 displays the stan-
dard deviation in the observation-based noise. The RMSE
is displayed using the black contour circles that have their
center in the observation-based noise marker. The location
of each of the markers therefore provides information about
three important metrics and therefore the performance of the
individual models compared to the observation-based noise.
Ideally, a model will be in the lower part of the graph, since
this indicates high spatial correlation, or close to the dashed
black lines, since this indicates similar variability compared
to the observation-based noise, and by combining these two
the RMSE will consequently also be low. All three metrics
are determined using weights considering the area of each
grid cell.

For the E−P noise models, the PC(1) model performs
best for the standard deviation, skewness, and excess kurto-

sis, while the PC(NIG) performs the worst (Fig. 9a, c and e).
The PC(N) model performs equally well for the spatial corre-
lation, but it strongly underestimates the variability in skew-
ness and excess kurtosis. The NIG model has a lower spatial
correlation, but it is much better in capturing the variability
in all three statistical moments. All models have trouble rep-
resenting the excess kurtosis in the latitudinal bands 10° S to
25° N. The PC(1) and PC(N) models overestimate the excess
kurtosis in almost the entire region, whereas the NIG model
underestimates the excess kurtosis over the ITCZ region and
overestimates it in the other regions. This is because this re-
gion can experience very extreme rainfall episodes with a
very low number of occurrences, which severely affects the
excess kurtosis diagnosed from the ERA5 noise, as was also
found with the clustering analysis (Fig. 2). Because these
episodes only occur a few times in the time series, these are
not represented well by the NIG model and are also difficult
to represent in the PC(1) model.

We can explain the failure of the PC(NIG) model to ac-
curately resemble the observation-based skewness and ex-
cess kurtosis using the central limit theorem. This theorem
states that when summing over random variables, the distri-
bution of this sum converges towards a Gaussian distribution,
which by definition has zero skewness and excess kurtosis.
In these PC models we sample values from the PCs, multi-
ply them with the EOFs and sum the results, which follow-
ing central limit theorem converge towards a Gaussian dis-
tribution. The same applies to the PC(N) model, which per-
forms well for spatial correlation skill but (based on a time
series of 10 000 realizations) underestimates the amplitude
of the skewness and excess kurtosis. This underestimation
increases when longer time series are used, and the model
slowly converges to a Gaussian one in these cases. Meth-
ods based on a PCA, with the exception of the PC(1) model,
will therefore be unable to represent the skewness and ex-
cess kurtosis in the observation-based noise. An alternative
explanation as to why the PC-based models fail to capture
the skewness and excess kurtosis is that the PCs might be
(nonlinearly) dependent on each other. To test this, we have
calculated the distance correlation (Székely et al., 2007) be-
tween the PCs, including whether the distance correlation
is significant (p value < 0.05) based on a permutation test
of n= 1000 (Fig. A17). For both the E−P and T2 m PCs,
around 5 % of the possible PC combinations experience a
significant dependence. However, the strongest distance cor-
relation is only 0.14 for the PCs corresponding to the E−P
noise and 0.11 for the PCs corresponding to the T2 m noise,
meaning there is at best a very weak dependence between
the PCs. We therefore do not expect that the weak nonlinear
dependence between some of the PCs is the reason why the
PC-based models fail, but we instead expect that the expla-
nation mentioned before, i.e., the central limit theorem, is the
main reason.

For T2 m, Fig. 9b, d, and f show that the NIG and PC(1)
models consistently perform the best of all the models. All
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Figure 7. Standard deviation (σ ), skewness, and excess kurtosis of the noise from the NIG model for the E−P flux (a)–(c). Differences
with ERA5 data (i.e., ERA5 minus NIG) are shown in (d)–(f). The statistics of the noise model are based on 5000 realizations (months). The
numbers in the top-right corner of (a)–(c) reflect the spatial correlation and root-mean-square error. Values in (a) and (d) are given in units
of mm d−1.

models capture the spatial pattern in the standard deviation of
the noise as shown by the near-unity spatial correlation coef-
ficient; however, the PC(N) and PC(NIG) models both over-
estimate the variability in the standard deviation of the noise
as shown by the high RMSE and larger standard deviation
(Fig. 9b). The spatial pattern of the skewness is captured rea-
sonably well by the NIG, PC(1), and PC(N) models but not
by the PC(NIG) model (Fig. 9d). The PC(N) shows a stronger
underestimation of the variability compared to the PC(1) and
NIG models. For the excess kurtosis a similar conclusion
can be drawn, except that the NIG model strongly overes-
timates the variability (Fig. 9f). The worse performance for
excess kurtosis can be explained by the overestimation of the
sea-ice-covered regions and the Gulf of Mexico by the NIG
model. In these regions, the distribution of the ERA5 noise
has a relatively broad and flat peak or sometimes a slightly

bimodal peak. This is the reason the NIG fit does not per-
form very well in these regions. Similar to the E−P noise,
the PC(N) and PC(NIG) models are unable to explain the
variability in the skewness and excess kurtosis as explained
above.

As discussed in Sect. 3.2, the CMIP6 MMM captures the
ERA5 E−P noise reasonably well, although the perfor-
mance decreases for the higher statistical moments. This is
likely related to strong biases over the South Equatorial Cur-
rent where the skewness and the excess kurtosis are too nega-
tive and too positive, respectively, in the CMIP6 MMM com-
pared to the ERA5 noise. This is potentially related to the
double ITCZ bias present in most CMIP6 models (Tian and
Dong, 2020). The latitudinal extent of the ITCZ is too south-
ward in many models, which also causes a shift in the higher-
order statistical moments in this region, resulting in relatively
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Figure 8. The same as Fig. 7 but for T2 m in °C.

large biases. From Fig. 9 we see that the individual models
that consistently perform the best are CESM2-WACCM (30),
CESM2 (31), and NorESM2-MM (32) (except for excess
kurtosis, where NorESM2-MM has quite a large RMSE).
What these models have in common is that their atmospheric
model is the Community Atmosphere Model 6 (CAM6) or,
in the case of CESM2-WACCM, is based on CAM6 and run
on a nominal 1° horizontal resolution. This suggests that this
atmospheric model is able to capture the observation-based
noise reasonably well.

Liu et al. (2022) also found that these models perform rela-
tively well for precipitation biases, which they suggest is due
to the specific two-moment prognostic cloud microphysics
scheme (Gettelman and Morrison, 2015) used in CAM6.
TaiESM1, which uses CAM5 and an earlier version of the
prognostic cloud microphysics scheme, also performs rela-
tively well. There are also two other CESM2 models that
use a form of CAM6, i.e., CESM2-WACCM-FV2 (27) and

CESM2-FV2 (29). These models perform less well com-
pared to the other three, which might be explained by the fact
that these models are run at a lower (i.e., 2°) resolution. The
CMIP6 MMM has the same biases in the latitudinal band be-
tween 10° S and 25° N, although these biases are less strong
in some regions. This is probably because the high-rainfall
episodes in the ERA5 data are smoothed when regridded to
a 1° grid, which is done before comparing it to the CMIP6
models and MMM.

For T2 m the CMIP6 MMM also performs reasonably
well compared to the ERA5 noise, and the performance is
lower for higher statistical moments as for E−P noise. The
strongest biases (both positive and negative) in excess kur-
tosis are found over the sea-ice-covered regions. This might
be related to biases in sea ice cover in the CMIP6 models
(Watts et al., 2021). For the individual models it is more dif-
ficult to point towards models that consistently perform well.
The UKESM1-0-LL (22) model simulations performed by
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Figure 9. Taylor diagrams for statistics of the noise. Panels (a) and (b) show the standard deviation. Panels (c) and (d) show skewness.
Panels (e) and (f) show excess kurtosis. Panels (a), (c), and (e) are for the E−P noise, while (b), (d), and (f) are for the noise in the T2 m.
The star refers to the ERA5 data, the different red numbers refer to the different CMIP6 models, the blue letters refer to the noise models,
and the square black marker represents the CMIP6 MMM. Note that the model UKESM1-0-LL listed as no. 22 is performed by the MOHC,
while the model UKESM1-0-LL listed as no. 33 is performed by NIMS-KMA. Values of standard deviation are given in units of mm d−1 in
(a) and °C in (b).
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the MOHC show the most consistency. Other models that
perform relatively well in two out of three statistical mo-
ments are CESM2-FV2 (29) and CAS-ESM2-0 (8). Interest-
ingly, the UKESM1-0-LL (33) simulations performed by the
NIMS-KMA are among the worst-performing models. The
only differences between the two models are the computer
on which the model is run and the initial conditions. This
suggests that there is also a dependency on initial conditions
in the performance of the CMIP6 models.

Except for the excess kurtosis in the T2 m noise, the NIG
model outperforms the individual CMIP6 models and MMM,
which is due to the overestimation of the excess kurtosis over
sea-ice-covered regions by the NIG model. The PC(NIG)
model only outperforms the CMIP6 MMM for the standard
deviation and is very poor for the skewness and excess kur-
tosis. The PC(1) model outperforms the CMIP6 models and
MMM for the skewness and excess kurtosis. The PC(N)
model outperforms the CMIP6 MMM for all moments with
respect to the spatial correlation and is very similar to the
CMIP6 MMM and the best CMIP6 models for RMSE. This
means that we can capture “realistic” noise better with the
statistical model than the fully coupled Earth system models.
Among the PC-based models, the PC(1) model performs best
and is similar to the NIG model, but this model is not fully
stochastic like the other noise models.

6 Summary and discussion

In this study we have analyzed ERA5 evaporation minus pre-
cipitation (E−P ) and 2 m air temperature (T2 m) fields to
determine what observation-based noise is in these variables.
We find that due to non-zero skewness and excess kurtosis,
the noise in both variables typically cannot be classified as
white, and studies that assume white noise in either of the
two variables might not resolve the response of the ocean to
atmospheric noise realistically. We have analyzed the noise
in 36 different CMIP6 Earth system models and the CMIP6
multi-model mean (MMM) and compared these models to
the ERA5 noise. There is quite a spread in the performance
of the CMIP6 models, but the MMM performs relatively well
compared to the individual models. Typically, the models
perform best for standard deviation and worst for excess kur-
tosis. Furthermore, we have fitted a normal inverse Gaussian
(NIG) distribution to the ERA5 noise of both variables. This
results in a stochastic noise model that can be used as input in
ocean general circulation models (OGCMs). We have shown
that the NIG model captures the standard deviation, skew-
ness, and excess kurtosis of the ERA5 noise reasonably well
in both the E−P and T2 m data, with the exception of the ex-
cess kurtosis in the T2 m noise, where the NIG model strongly
overestimates the positive excess kurtosis in sea-ice-covered
regions. For most metrics and statistics, the NIG model per-
forms better than the individual CMIP6 models and CMIP6
MMM.

Previous studies have looked into biases in CMIP6 mod-
els. However, these studies typically look into the biases
in the mean state or the seasonality of the variables. Here,
we have specifically looked at variability up to interannual
timescales, the distribution, and related metrics (i.e., standard
deviation, skewness and excess kurtosis). We found that bi-
ases in these quantities are still to some extent connected to
biases in the mean state. For example, the biases in skewness
and excess kurtosis in the E−P noise in the South Atlantic
are likely to be related to the double ITCZ bias described in
earlier studies (Tian and Dong, 2020; Li et al., 2020). Differ-
ences in the excess kurtosis in sea-ice-covered regions can
also be related to the biases in Arctic sea ice thickness and
cover (Watts et al., 2021).

In the development of a noise model, the best variant
turned out to be a pointwise statistical fit of a normal inverse
Gaussian (NIG) distribution. As shown in Sect. 3, the model
performs relatively well at most grid points but can still de-
viate quite a bit (especially for excess kurtosis). One major
drawback of fitting a statistical distribution to the data in a
pointwise manner is that we lose spatially coherent structures
and potentially auto-correlation in the noise for the individ-
ual noise fields (i.e., one random realization). We have con-
structed alternative models based on a principal component
analysis (PCA) where the corresponding empirical orthogo-
nal functions (EOFs) capture the spatial structures. The PCs
contain nonlinear effects, but these are difficult to extract sta-
tistically. The PC-based models underestimate the skewness
and excess kurtosis in the noise fields because of the central
limit theorem or (for the PC(1) model) are not fully stochas-
tic. Therefore, we eventually decided to fit a model to the
data that can relatively accurately represent the standard de-
viation, skewness, and excess kurtosis in the ERA5 noise.
However, when the spatially coherent structures captured by
the EOFs are deemed more important than an accurate repre-
sentation of the skewness and kurtosis of the noise, PC-based
models can be used. The loss of spatially coherent structures
can be important when studying noise-induced transitions of
the AMOC. Noise that is spatially coherent influences larger
areas of ocean. This could, for example, mean that a freshen-
ing of the surface ocean could happen over a larger area of
the ocean and therefore might be more efficient in inhibiting
deep convection in the North Atlantic. Whether it is actually
important should be tested in an ocean model; however, such
tests are outside the scope of this study.

Similar studies that look into the characteristics of E−P
and T2 m noise are sparse. In Sura and Sardeshmukh (2008),
they investigate the non-Gaussianity of daily sea surface
temperature (SST) variability. The timescales assessed in
Sura and Sardeshmukh (2008) are faster (i.e., daily versus
monthly), and they look at SSTs, whereas we look at air tem-
peratures. However, relatively similar results are achieved in
our study compared to Sura and Sardeshmukh (2008). Skew-
ness in daily SST variability is typically negative in the At-
lantic Ocean, whereas the excess kurtosis is mostly positive,
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similar to what we find for the air temperature. They relate
this to multiplicative noise in mixed-layer dynamics. How-
ever, they make the assumption that daily fluctuations in air
temperature are Gaussian. Our study shows that this is not the
case over most of the ocean (at least on monthly timescales).
Whether the multiplicative noise signal we find in the T2 m
noise originates from SST variability, atmospheric dynam-
ics, or a combination of the two is left for further study.

To conclude, we have provided an analysis of observation-
based noise from ERA5 reanalysis data. Based on this realis-
tic noise, we have constructed a noise model based on a nor-
mal inverse Gaussian distribution fit to the ERA5 noise. This
product is made publicly available in the repository related
to this paper (Boot and Dijkstra, 2024). The noise model can,
for example, be used as a forcing on ocean models to study
noise-induced transitions of the AMOC under realistic noise
forcing.
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Appendix A

Figure A1. Metrics for the k-means clustering method versus the number of clusters for theE−P clusters (a–c) and the T2 m clusters. Panels
(a) and (d) represent the elbow method, panels (b) and (e) represent the silhouette score, and panels (c) and (f) represent the gap statistic.
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Figure A2. The 12 clusters for the E−P noise fields. Columns 1 and 2 (from left to right) correspond to the standard deviation of the
clusters, columns 3 and 4 represent the skewness, and columns 5 and 6 represent the excess kurtosis. The numbers in the top-right corner of
each plot represent the area-weighted mean of the metric.
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Figure A3. The same as Fig. A2 but for the T2 m clusters.
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Figure A4. Probability density functions for the 12 clusters for the E−P noise. Red lines represent a normal inverse Gaussian fit, blue lines
represent a Gaussian fit, and the yellow histogram represents the data (using 50 bins). The y axis shows the density, and the x axis shows the
E−P noise (in mm d−1).

Figure A5. The same as Fig. A4 but for the T2 m clusters (in °C instead of mm d−1).
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Figure A6. Standard deviation (σ ), skewness, and excess kurtosis of the noise from the PC(1) model for the E−P flux (a)–(c). Differences
between the ERA5 and PC(1) data (i.e., ERA5 minus PC(1)) are shown in (d)–(f). The statistics of the noise model are based on 10 000 re-
alizations (months). The numbers in the top-right corner of (a)–(c) reflect the spatial correlation and root-mean-square error. Values in (a)
and (d) are given in units of mm d−1.
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Figure A7. Standard deviation (σ ), skewness, and excess kurtosis of the noise from the PC(N) model for the E−P flux (a)–(c). Differences
between the ERA5 and PC(N) data (i.e., ERA5 minus PC(N)) are shown in (d)–(f). The statistics of the noise model are based on 10 000 re-
alizations (months). The numbers in the top-right corner of (a)–(c) reflect the spatial correlation and root-mean-square error. Values in (a)
and (d) are given in units of mm d−1.

https://doi.org/10.5194/esd-16-115-2025 Earth Syst. Dynam., 16, 115–150, 2025



136 A. A. Boot and H. A. Dijkstra: Temperature and freshwater noise over the Atlantic Ocean

Figure A8. The same as Fig. A6 but for T2 m.
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Figure A9. The same as Fig. A8 but for T2 m.
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Figure A10. Standard deviation (σ ) in the noise of the E−P for the analyzed CMIP6 models. The numbers in the top-right corner of each
plot reflect the spatial correlation and root-mean-square error.
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Figure A11. Skewness in the noise of the E−P for the analyzed CMIP6 models. The numbers in the top-right corner of each plot reflect
the spatial correlation and root mean square error.
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Figure A12. Excess kurtosis in the noise of the E−P for the analyzed CMIP6 models. The numbers in the top-right corner of each plot
reflect the spatial correlation and root-mean-square error.
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Figure A13. The same as Fig. A10 but for T2 m.
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Figure A14. The same as Fig. A11 but for T2 m.
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Figure A15. The same as Fig. A12 but for T2 m.
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Figure A16. Collection of results for statistical tests. The top row is for the E−P noise, and the bottom row is for the T2 m noise. Panels (a)
and (e) show χ values, where white regions represent grid points where the normal inverse Gaussian distribution provides a better fit than a
Gaussian distribution. (b, f) Results from an Anderson–Darling test on normality where black regions represent grid points where the test is
passed and the distribution is significantly Gaussian. (c, g) Results of the significance test of the skewness based on an AR(1) model, where
black regions show where the AR(1) model provides a good fit. Panels (d) and (h) are the same as panels (c) and (g) but for excess kurtosis.
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Figure A17. Results of the distance correlation analysis to test for dependencies between the PCs. (a) Distance correlation between the PCs
for E−P . In panel (b) black squares represent a significant dependency (p < 0.05). Panels (c) and (d) are the same as (a) and (b) but for
T2 m. Panels (e) and (f) represent the two PCs that share the highest distance correlation (0.14) for E−P but with a scatter plot in (e) and a
time series in (f). Panels (g) and (h) are the same as panels (e) and (f) but for the PCs with the highest distance correlation (0.11) for T2 m.
Note that a distance correlation has a range of 0 to 1, where 0 represents no relation and 1 indicates that a relation is present.
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Figure A18. The same as Fig. 9 but for pointwise fits using different distributions. Moments are based on 5000 realizations.
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Table A1. CMIP6 model list.

Number Name Reference

1. TaiESM1 Lee and Liang (2020)
2. AWI-CM-1-1-MR Semmler et al. (2018)
3. AWI-ESM-1-1-LR Danek et al. (2020)
4. BCC-CSM2-MR Wu et al. (2018)
5. BCC-ESM1 Zhang et al. (2018)
6. FGOALS-g3 Li (2019)
7. CanESM5-CanOE Swart et al. (2019a)
8. CAS-ESM2-0 Chai (2020)
9. CMCC-CM2-HR4 Scoccimarro et al. (2020)
10. CanESM5 Swart et al. (2019b)
11. IITM-ESM Choudhury et al. (2019)
12. CMCC-CM2-SR5 Lovato and Peano (2020)
13. CMCC-ESM2 Lovato et al. (2021)
14. ACCESS-CM2 Dix et al. (2019)
15. ACCESS-ESM1-5 Ziehn et al. (2019)
16. FIO-ESM-2-0 Song et al. (2019)
17. MPI-ESM-1-2-HAM Neubauer et al. (2019)
18. MIROC-ES2L Hajima et al. (2019)
19. MIROC6 Tatebe and Watanabe (2018)
20. HadGEM3-GC31-LL Ridley et al. (2019a)
21. HadGEM3-GC31-MM Ridley et al. (2019b)
22. UKESM1-0-LL (MOHC) Tang et al. (2019)
23. MPI-ESM1-2-LR Wieners et al. (2019)
24. MRI-ESM2-0 Yukimoto et al. (2019)
25. GISS-E2-1-G-CC NASA/GISS (2019)
26. GISS-E2-1-H NASA/GISS (2019a)
27. CESM2-WACCM-FV2 Danabasoglu (2019b)
28. GISS-E2-2-H NASA/GISS (2019b)
29. CESM2-FV2 Danabasoglu (2019d)
30. CESM2-WACCM Danabasoglu (2019c)
31. CESM2 Danabasoglu (2019a)
32. NorESM2-MM Bentsen et al. (2019)
33. UKESM1-0-LL Byun (2020)

(NIMS-KMA)
34. NESM3 Cao and Wang (2019)
35. SAMO0-UNICON Park and Shin (2019)
36. MCM-UA-1-0 Stouffer (2019)

Code and data availability. ERA5 data can be down-
loaded from the Copernicus Climate Data Store (CDS):
https://doi.org/10.24381/cds.f17050d7 (Hersbach et al., 2023).
CMIP6 data can be downloaded from the Earth System Grid
Federation (ESGF) or using the scripts in the repository
https://doi.org/10.5281/zenodo.14224062 (Boot and Dijkstra,
2024). Directions as to which exact data need to be downloaded
and all scripts used for analyses and making the figures can
be found at https://doi.org/10.5281/zenodo.14224062 (Boot and
Dijkstra, 2024). A script that contains the noise models can also be
found at the abovementioned DOI.
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