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Equations (S1-S2): 36 

The OWZP is a resolution independent tracking method to detect tropical cyclones (Tory et al., 2013b, a). It primarily relies 37 

on Okubo-Weiss Parameter and other large-scale variables that are interpolated to 1°×1° grid. Here we provide a brief 38 

introduction to the OWZP tracking scheme. The detailed algorithm is explained in the references. 39 

The Okubo-Weiss Parameter is a measure of the low-deformation vorticity  40 

𝑂𝑊 = 𝜉! − (𝐸! + 𝐹!)  (S1) 41 

where 𝐸 = +"#
"$
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, are the square of the stretching and shearing deformation, respectively. Then, 42 

Okubo-Weiss-Zeta parameter is calculated by calculating vertical component of absolute vorticity (𝜂 = 𝜉 + 𝑓) weighted by 43 

𝑂𝑊'()* = [𝜉! − (𝐸! + 𝐹!)]/𝜉! and multiplied by the sign of Coriolis parameter 𝑓 for a consistent cyclonic vorticity in both 44 

hemispheres:  45 

𝑂𝑊𝑍 = 𝜂 × (𝑂𝑊'()*, 0) 	× 𝑠𝑖𝑔𝑛(𝑓) (S2) 46 

Therefore, 𝑂𝑊𝑍 and absolute vorticity have a similar magnitude, and the 𝑂𝑊𝑍 to 𝜂 ratio gets smaller when the flow has 47 

strong deformation.  48 

The potential to support TC formations is identified by the “initial” thresholds (Table SX) for 𝑂𝑊𝑍 at 850 hPa and 500 hPa, 49 

relative humidity at 950 hPa and 700 hPa, vertical wind shear between 850 hPa and 200 hPa, and specific humidity at 950 hPa. 50 

The threshold values were obtained from Raavi et al. (2023). 51 

Neighboring grid points that meet the initial thresholds are merged together and create a single “clump”, representing a storm 52 

at a specific time. Weaker and smaller in close proximity are eliminated. The identified clumps are then tracked forward in 53 

time until no clumps remain. At each position along the storm track, the storm is assigned individual values for OWZ, relative 54 

humidity, vertical wind shear, and specific humidity. If the updated values pass the “core” threshold (Table S1), it is labeled 55 

as “true”. If a sequence of clumps meets consecutive “true” labels for 48 h or more, the storm is considered as a tropical 56 

cyclone. In our study, we utilized 6 hourly data, therefore, the criteria for identifying a tropical cyclone is based on the presence 57 

of nine consecutive “true” clumps along the track, with the ninth “true” position being designated as the location of storm 58 

genesis. 59 

 60 

 61 

 62 
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Table S1: Initial and core thresholds for tracking tropical cyclones (TCs) using Okubo–Weiss–Zeta parameter (OWZP) detection 68 
scheme. 69 

Criterion OWZ850 OWZ500 RH950 RH700 VWS850-200 SH950 

Initial > 50×10-6 s-1 > 40×10-6 s-1 > 70 % > 50% < 25 m s-1 >10 g kg-1 

Core > 60×10-6 s-1 > 50×10-6 s-1 > 85 % > 70% < 12.5 m s-1 >14 g kg-1 

 70 

 71 
Table S2: Performance indices (Reichler and Kim, 2008) that give the absolute error in climatology of the last 11 years in (a) MR 72 
and (b) HR AWI-CM3 historical simulations as a fraction of the absolute error averaged over CMIP6 models. Values below (above) 73 
1 correspond to below (above) CMIP6 average biases. The underlying observations against which all models were evaluated are OSI 74 
SAF OSI-450 (Lavergne et al., 2019) – sea ice concentration (siconc); MODIS Atmosphere L2 Cloud Product (Platnick et al., 2015) 75 
– cloud cover (clt); Global Precipitation Climatology Project (GPCP) Monthly analysis (Adler et al., 2018) – precipitation (pr); 76 
Clouds and the Earth’s Radiant Energy System (CERES) (Wielicki et al., 1996) – TOA outgoing longwave radiation (rlut); ECMWF 77 
reanalysis ERA5 (Hersbach et al., 2023) – near- surface air temperature (tas), eastward near-surface wind (uas), northward near-78 
surface wind (vas), 300 hPa eastward wind (ua), and 500 hPa geopotential height; NOAA Jason-1, Jason-2, and CryoSat-2 combined 79 
– sea surface height (zos); HadISST2 (Titchner and Rayner, 2014) – sea surface temperature (tos); EN4 (1900-1997) (Good et al., 80 
2013) – ocean temperature (thetao) and salinity (so) at 10m, 100m, and 1000m. The list of CMIP6 models for climate model 81 
performance index calculation is ACCESS-CM2, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CAS-ESM2-0, CanESM5, 82 
CIESM, CESM2, CMCC-CM2-SR5, CNRM-CM6-1-HR, FGOALS- f3-L, FIO-ESM-2-0, E3SM-1-1, EC-Earth3, GFDL-CM4, 83 
GISS-E2-1-G, HadGEM3-GC31-MM, ICON-ESM-LR, IITM-ESM, INM-CM5-0, IPSL-CM6A-LR, KIOST- ESM, NESM3, 84 
NorESM2-MM, MCM-UA-1-0, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0, SAM0-UNICON, and TaiESM1. 85 
 86 

 87 
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 89 
Figures S1 to S17: 90 

 91 
Figure S1: The simulated global mean temperatures in the MR simulation control run (light blue), MR historical and SSP5-8.5 92 
simulation (dark blue), MR (purple) and HR (coral) 1950 control – historical - SSP5-8.5 time-slice simulations as well as an 93 
observational estimate from the ERA5 reanalysis (black). 94 
 95 
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 96 
Figure S2: Global mean top of atmosphere (TOA) radiative imbalance calculated for (a) 1950~1969 MR transient control, MR time-97 
slice, HR time-slice simulations and (b) 2090~2099 MR transient, MR time-slice, HR time-slice simulations.  98 
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 99 
Figure S3: Bias map for MR historical simulation (2002-2012) for (a) total cloudiness (upper left) relative to MODIS cloud product 100 
(2000-2011) (Kato et al., 2018). Other panels: bias maps for (b) sea surface temperature, (c) sea surface salinity and (d) 100 m 101 
temperature relative to the observational EN4 climatology (1900-1997) (Good et al., 2013). Rmsd and bias refer to the root mean 102 
squared deviation and the global mean difference between model and reference product. The stippled areas where the null hypothesis 103 
can be rejected at the 95% confidence level by Welch’s t-test. We used the default settings in the stats module SciPy (version 1.11.1) 104 
in Python, which applies Welch’s t-test at every grid point allowing for unequal variances. 105 

 106 

 107 
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 108 
Figure S4: Bias map for HR historical simulation (2002-2012) for (a) total cloudiness (upper left) relative to MODIS cloud product 109 
(2000-2011) (Kato et al., 2018). Other panels: bias maps for (b) sea surface temperature, (c) sea surface salinity and (d) 100 m 110 
temperature relative to the observational EN4 climatology (1900-1997) (Good et al., 2013). Rmsd and bias refer to the root mean 111 
squared deviation and the global mean difference between model and reference product. The stippled areas where the null hypothesis 112 
can be rejected at the 95% confidence level by Welch’s t-test. We used the default settings in the stats module SciPy (version 1.11.1) 113 
in Python, which applies Welch’s t-test at every grid point allowing for unequal variances. 114 

 115 
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 116 

Figure S5: Annual mean difference of global mean (a) high, (b) middle, (c) low cloud cover in MR simulation (blue line) and HR 117 
(navy dot) snapshot simulations relative to 2000s. 118 

 119 

 120 
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 121 
Figure S6: Atlantic Meridional Streamfunction [Sv] for HR simulation, upper: average for years 2000-2009; lower: average for 122 
years 2090-2099. The number indicates the maximum value of the streamfunction in the northern Hemisphere. 123 



12 
 

 124 
Figure S7: Seasonal cycle of sea-ice volume in Arctic Ocean (left) and Southern Ocean (right) for 2000s and 2030s HR snapshot 125 
simulations. Unit [1000 km3]. The sea ice amplitude in the phase-wheel diagram is represented by the radius and the seasonal phase 126 
by the angle. 127 

 128 

 129 

 130 
Figure S8: Seasonal evolution of sea ice area in Southern Ocean (left), Arctic Ocean (right) for individual years from 2002-2009, 131 
climatology and for future snapshot simulation for years 2032 and 2093. 132 
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 133 
Figure S9: Probability distribution of present-day lifetime maximum 10 m wind speed (ms-1) for tropical cyclones, detected using 134 
the OWPZ tracking scheme (see methods in Supplementary S1 and S2) for AWI-CM3 MR and HR simulations. Observation data 135 
is obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) best track database version 4 (Knapp 136 
et al., 2010).   137 
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 138 
Figure S10: Annual cycle of (a) tropical cyclone genesis frequency, (b) sea surface temperature (SST), (c) relative humidity at 700 139 
hPa (R700), and (d) vertical wind shear between 200 hPa and 850 hPa (VWS) from observation (yellow boxes) and model simulations 140 
(thick lines) for each basin. For the comparison of genesis environments, variables in (b)–(d) are averaged within latitude band of 141 
30°S to 30°N. Observation data for SST is obtained from OISSTv2 for SST, while R700 and VWS are derived from the ERA5 142 
reanalysis, averaged over the period from 1991 to 2020. 143 
 144 
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 145 

 146 
Figure S11: (a) November–April wavenumber-frequency power spectra of 10°S–10°N averaged precipitation from observations 147 
(GPCP) and simulations (HR, MR, and 36 CMIP6 models) for the period 2000-2012. (b) Root mean squared error in the spectral 148 
domain. 149 
 150 
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 151 
Figure S12: (a) Time lag-longitude correlation of 20-100-day filtered precipitation averaged over 10°S-10°N with reference to the 152 
precipitation at the Indian Ocean (10°S-5°N, 75°-100°E) during NDJFMA (period 2000-2012) obtained from observations (GPCP) 153 
and simulations (HR, MR, and 36 CMIP6 models). The black contour represents correlation coefficients of ±0.2. (b) Root mean 154 
squared error in the time-longitude domain [50°E–180°, from day -20 to day 20]. 155 
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 156 
Figure S13: Precipitation (mmday-1) regression with North Atlantic Oscillation Index using 15 years of the MR simulation (2085-157 
2099) (a) and HR simulation (2090-2099 and 2090-2094) (b). (c) and (d), same as (a) and (b), but for the wind speed (ms-1). (e) and 158 
(f), same as (a) and (b), but for the surface temperature (°C).  The NAO index is based on the leading empirical orthogonal function 159 
of DJF seasonal mean sea level pressure anomalies over the North Atlantic and is normalized. 160 

 161 
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 162 
Figure S14: Present-day observed and simulated El Niño teleconnections: Regression between DJF Niño 3.4 SST anomalies with 163 
GPCC rainfall observations over North America (a) and Maritime Continent (d) [mmday-1oC-1] and JJA Niño 3.4 SST anomalies 164 
with GPCC rainfall observations over Indian Ocean (g); (b),(e),(h), same as (a),(d),(g), but for 32 combined years of the MR 165 
simulation; (c),(f),(i) same as (a),(d),(g), but for 32 combined years of the 1950 and 2000 HR simulations. The data were detrended 166 
prior to the analysis. The stippled areas indicate the regression coefficient values that exceed the 90% confidence level based on the 167 
two-tailed Student's t-test (against zero regression). We used the stats module package in Python to perform a two-tailed Student’s 168 
t-test, assessing whether the regression coefficients significantly differ from zero. 169 
 170 
 171 
 172 

 173 
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Figure S15: Regression between observed JJA Niño 3.4 SST anomalies and (a) observed rainfall (GPCP); (b) same as (a), but for 174 
MR (32 years of present-day climate); (c), same as (a), but for HR (32 years of present-day climate); (d), same (a)(b), but for 2090-175 
2099 period (10+5 years);  (e), same as (c), but for 2090-2099 period (10+5 years). 176 

 177 

  178 

 179 
Figure S16: Regression between observed DJF Niño 3.4 SST anomalies and (a) observed rainfall (GPCP); (b) same as (a), but for 180 
MR (32 years of present-day climate); (c), same as (a), but for HR (32 years of present-day climate); (d), same (a)(b), but for 2090-181 
2099 period (10+5 years);  (e), same as (c), but for 2090-2099 period (10+5 years). 182 

 183 
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 184 

Figure S17: Probability density functions of percentages in accumulated precipitation at each topography bins over (a) the Himalaya 185 
region (70°-110°E, 24°-42°N) and (b) the Andes region (northern part, 75°-95°W, 20°S-10°N) for the period 2005-2012 from MR, 186 
HR, and ERA5 Reanalysis (25km). 187 
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